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Abstract

Query rewriting plays a pivotal role in
Retrieval-Augmented Generation (RAG) by
refining real-world queries of varying com-
plexity. Existing approaches typically rely on
outcome-supervised training or heuristic rules
to guide the rewriting process. However, these
paradigms often struggle to handle queries with
varying levels of complexity, posing over- and
under-refinement problems. We identify the
root cause of these issues as the absence of
supervision signals for intermediate steps. To
fully construct and utilize such signals, we pro-
pose Q-PRM, a novel query rewriting frame-
work. Q-PRM reformulates the rewriting pro-
cess as a Markov Decision Process (MDP) com-
posed of atomic rewriting steps. In this way,
Q-PRM can apply process-level supervision to
each atomic step according to the query type,
offering more targeted and effective guidance.
Q-PRM comprises three key stages: (1) ap-
plying Monte Carlo Tree Search to generate
step-level process supervision signals; (2) per-
forming reinforced self-training for progres-
sive process refinement; and (3) employing
PRM-guided decoding during inference. Ex-
periments on several open-domain QA bench-
marks demonstrate that Q-PRM consistently
outperforms baselines across different levels of
query complexity.

1 Introduction

In real-world applications, Retrieval-Augmented
Generation (RAG) systems need to handle user
queries that vary widely in complexity (e.g., multi-
hop reasoning, ambiguity) (Jeong et al., 2024;
Gao et al., 2023; Zhang et al., 2025a). This need
arises from the users’ diverse expression styles,
intents, and background knowledge (Kharitonov
et al., 2013; Spatharioti et al., 2023). To improve
retrieval effectiveness and answer generation qual-
ity, it is essential to transform raw queries into syn-
tactically clear and retrieval-friendly forms. This
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process, termed query rewriting, has emerged as
a crucial pre-processing step in RAG (Song and
Zheng, 2024; Ma et al., 2023).

Existing query rewriting methods primarily rely
on either heuristic rules (Jagerman et al., 2023) or
outcome-based training (Ma et al., 2023) to per-
form single-step or multi-step rewriting (Song and
Zheng, 2024). However, these approaches often
fail to adapt to queries of varying complexity, pos-
ing over- and under-refinement challenges for real-
world deployment. We conduct experiments to
better illustrate these challenges.

As shown in Figure 1 (a), outcome-supervised
approaches utilize downstream answer quality as
the reward to train the rewriter. However, our ex-
periment finds they tend to omit critical steps when
handling complex queries (e.g., ambiguous, multi-
hop), causing the under-refinement challenge. For
example, the ambiguous query “Which country
won more medals in the 2008 Olympics,
China or the US?” requires disambiguation
(e.g., distinguishing between the Summer and Win-
ter Olympics). However, the outcome-supervised
rewriter merely decomposes the query without
resolving the ambiguity, resulting in sub-queries
that lack essential context (i.e., under-refinement).
On the other hand, heuristic-based methods refine
queries using fixed information expansion strate-
gies (Chan et al., 2024; Baek et al., 2024). How-
ever, such approaches often cause step redundancy
when rewriting simple queries, leading to over-
refinement in the final rewritten query. As in Fig-
ure 1 (b), the example simple query “Who is Elon
Musk?” is unnecessarily expanded with excessive
background information, introducing redundant in-
formation into the rewritten version.

The main reason for such over- and under-
refinement issues stems from the lack of super-
vision signals under each intermediate rewriting
step (He et al., 2021). Instead of relying solely on
the final answer, the process supervision paradigm
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Figure 1: Existing query rewriting methods often struggle to adapt to queries of varying complexity, leading to
two key issues: (a) For complex queries, they tend to overlook critical intermediate reasoning steps, resulting in
under-refinement; (b) For simple queries, they frequently introduce unnecessary steps, leading to over-refinement;

provides step-level guidance using the Process Re-
ward Model (PRM) (Song et al., 2025; Chen et al.,
2024). PRM serves as a valuable reminder for the
query rewriter to pay attention to essential steps
when handling queries of varying complexity. In
this way, the rewriter can better preserve essen-
tial steps when handling complex queries, while
avoiding unnecessary ones for simpler queries.

However, two primary challenges emerge when
applying process supervision to the task: (1) the
absence of process supervision signals to train the
PRM (Mao et al., 2024); and (2) the lack of multi-
step reasoning ability tailored for rewriting tasks,
which prevents rewriters from effective incorpo-
ration of PRM signals. To address these chal-
lenges, we propose our method Q-PRM. Specifi-
cally, Q-PRM consists of three key steps: (1) Data
Collection: to address the high cost of manually
annotating process supervision signals (challenge
1), we propose an uncertainty-aware Monte Carlo
Tree Search (MCTS) approach to automatically
collect robust supervision signals for training the
PRM; (2) Model Training: we apply reinforced
self-training (Gulcehre et al., 2023) to enhance the
rewriter’s reasoning ability to handle queries of
varying complexity (challenge 2); and (3) Infer-
ence: by combining the PRM with the rewriter,
we propose a decoding method that leverages the
PRM for fine-grained guidance, enhancing general-
ization to queries of varying complexity.

Our contribution can be summarized as follows:

e We emphasize the importance of process-level
supervision to handle queries with varying com-
plexity in RAG system.

e We propose Q-PRM, a novel query rewriting

framework that leverages a process reward model
to guide the rewriting steps in a more adaptive and
interpretable manner.

e Extensive experiments demonstrate that our
approach outperforms existing baselines on varying
datasets with different query complexity.

2 Related Works

Query Rewriting in RAG As a crucial step in
the pre-retrieval stage of RAG process (Gao et al.,
2023; Zhang et al., 2025b), existing works can
be categorized into training-free (heuristic) and
training-based (Song and Zheng, 2024).
Training-free methods leverage LLMs’ world
knowledge to heuristically expand queries for bet-
ter retrieval. Some works (Gao et al., 2022; Jager-
man et al., 2023) (e.g., Query2Doc) converted raw
queries into pseudo-documents using the internal
knowledge of LLMs. Other works (Baek et al.,
2024; Chan et al., 2024) utilize heuristic rules to
expand the query in a multi-step way. Although ef-
ficient, these methods will inevitably introduce un-
necessary and redundant information to the query
due to hallucinations of LLMs (Huang et al., 2025).
For training-based methods, existing works
mainly use outcome supervision to fine-tune the
rewriter model. Some works (Ma et al., 2023; Cong
et al., 2024; Wang et al., 2024b) utilize reinforce-
ment learning (e.g., PPO (Schulman et al., 2017))
to train the rewriter model with downstream task
quality (i.e., generation, retrieval, re-ranking (Mao
et al., 2024)) as the rewards. However, since down-
stream task performance depends not only on the
quality of query rewriting but also on other factors
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(e.g., query difficulty (Jeong et al., 2024), retrieval
quality (Wang et al., 2024b), and LLM internal
knowledge (Zhao et al., 2023)), the reward is often
unstable and sparse (Wang et al., 2024b), making
it difficult for the rewrite model to effectively learn
the optimal actions.

Process Supervision for RAG. RAG is widely
adopted for knowledge-intensive tasks (Press et al.,
2022; Li et al., 2024b; Zhang et al., 2025a), but it
still faces limitations in complex multi-step reason-
ing. Existing methods integrate RAG with Chain-
of-Thought (CoT) reasoning (Trivedi et al., 2022;
Press et al., 2022). Since direct CoT often falters
on challenging tasks (e.g., competitive program-
ming), CR-Planner (Li et al., 2024b) attempts to
use PRM to assist search and improve the reason-
ing ability of RAG systems through test-time scal-
ing. AutoPRM (Chen et al., 2024) decomposed
complex problems into subproblems while lever-
aging a self-supervisedly trained PRM to provide
feedback, thereby enhancing multi-step logical rea-
soning tasks. To improve the trustworthiness in the
reasoning process, ReARTeR (Sun et al., 2025) in-
troduces the Process Explanation Model to provide
explanations for the reasoning process. Currently,
most works use process supervision to enhance the
in-retrieval and post-retrieval stages (Gao et al.,
2023), but its potential in the pre-retrieval stage to
refine user queries has not yet been explored.

3 Preliminary

Retrieval-Augmented Generation. Consider a
knowledge-intensive task (e.g., open-domain ques-
tion answering), where the dataset comprises mul-
tiple query-answer instances. Each instance con-
sists of a raw query ¢ paired with its correspond-
ing ground-truth answer y. A RAG system f(-)
takes a query ¢ as input and returns an answer
Uq = f(q). The RAG process begins with a re-
triever that identifies a set of relevant documents
D based on g. These documents are then passed to
an LLM reader, which generates the final response.
The effectiveness of a RAG system is typically as-
sessed by evaluating the quality of the generated
response {, using metrics such as Exact Match
and F1 Score (Rajpurkar et al., 2016; Yu et al.,
2024), which compare the generated answer /, to
the ground-truth answer y. In this paper, we denote
this evaluation function as sim(gq, y).

Query Rewriting as Markov Decision Process.
Given a query ¢, the goal of query rewriting is to

refine ¢ into a rewritten query ¢’ = M(q), where
M is the rewriter. We formulate the rewriting pro-
cess as a multi-step MDP (S, Q, A, R, P), where
each MDP trajectory starts with the query ¢ and
ends with final rewritten sub-queries ¢’. Each state
s¢ is related to the current rewritten query ¢; € Q
and a response gjqé). At each rewriting state s; , the
rewriter M can apply an atomic rewriting action
a; € A, where A = {adecompy Qdisamb, Qabst; aexp}
contains four atom actions (decomposition, dis-
ambiguation, abstraction, expansion) as defined
by Song and Zheng (2024). Then s; transitions to
a new state s¢y1 until the final state. A process
reward function R : § x A — R evaluates each de-
cision step individually by assigning a fine-grained
reward to each state s;.

4 Our Method: Q-PRM

In this section, we present our proposed method,
Q-PRM. The overall workflow of Q-PRM is illus-
trated in Figure 2. Specifically, Q-PRM consists
of three key steps. (1) Data Collection: leverag-
ing MCTS to gather process supervision signal for
query rewriting; (2) Model Training: using the
collected data to train the rewriting model M and
the PRM; (3) PRM-Guided Inference: introduc-
ing a PRM-guided search decoding mechanism for
inference.

4.1 Tree Search for Data Collection

To implement the idea of guiding the query rewrit-
ing process through process supervision, an es-
sential step is to train a PRM, which can provide
rewards tailored to the rewriting steps of queries
with different levels of complexity. However, the
lack of publicly available process reward data for
query rewriting poses a significant challenge. To
address this issue, we draw inspiration from the
success of existing mathematical and code gener-
ation tasks (Li et al., 2024a) and adopt MCTS to
collect high-quality process reward signals for the
rewriting process, which are then used to train the
PRM (see Section 4.2).

As illustrated in Figure 2, MCTS iteratively per-
forms four key stages: selection, expansion, eval-
uation, and backpropagation '. To adapt MCTS
to query rewriting tasks with varying complexity,
we introduce targeted designs for the selection and
evaluation stage.

'Please refer to Appendix A for the details of the four
stages in the traditional MCTS algorithm.
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Figure 2: The overall workflow of the proposed Q-PRM method consists of three steps: (1) we perform uncertainty-
aware MCTS to generate process-level supervision signals and collect trajectory data for query rewriting; (2) we use
the collected data to train both the PRM and the rewriter; (3) during inference, the trained PRM is used to guide the

multi-step rewriting process.

Evaluation Stage. During the evaluation stage, we
adopted a random rollout strategy (Zhang et al.,
2024), where actions were randomly sampled from
a given state until a terminal state was reached.
A state s; is considered terminal when one of the
following conditions is met: (1) the rewriter M
determines that no further rewriting is possible; (2)
the maximum rewriting depth is reached; or (3)
the evaluation score of the current state exceeds a
predefined threshold, 0, i.e., sim(g]qg, y) > 6. To
improve reward estimation, multiple rollouts are
conducted for each simulation. Specifically, the re-
ward of node s, is the average result of IV rollouts,
+ 227:1 (™. To eliminate the influ-
ence of query complexity from the reward, we use
the difference between the evaluation score of the
rewritten query ¢’(") and that of the raw query ¢ as
the reward.

ie., r

r( = SIm(Ygr(n, y) — sim(yg, y), 0

Selection Stage. During the MCTS process, the
early reward estimate of the node is usually in-
accurate and biased due to random rollout (Oren
et al., 2024). To obtain a more accurate reward
estimation, we employ an uncertainty-aware UCT
criterion in the selection phase:

In N(p)
N (st)

where w is a hyperparameter that balances the ex-
ploitation (i.e., node value C'(s;)) and exploration

UCT (St) =C (375) + (2)

w

(i.e., visit count N (s;)), and p denotes the parent
node of s;. C(s) is the uncertainty-aware node
value, which combines the value (average node
reward) V' (s;) and its standard deviation:

(St))

C (s1) =V (s0) + BSA({V O (1)} 3)

Intuitively, some nodes exhibit large reward fluc-
tuations due to unstable reward estimation, which
will lead to higher C'(s;). These nodes are more
likely to be selected, increasing the chances of dis-
covering successful nodes rather than being biased
toward high but potentially inaccurate values. As it-
eration progresses, value estimates V' (s;) stabilize,
and C(s;) gradually converges to the true value of
node.

4.2 Model Training

After MCTS simulations, we collect the process
supervision signals and trajectories to fine-tune the
rewriter and PRM, respectively.

4.2.1 Rewriter Training

Since general-purpose LLMs cannot often perform
query rewriting (Ye et al., 2023), we train a special-
ized rewriter to acquire the ability to decompose
and refine queries through multiple rewriting steps.
We first collect the high-reward trajectories from
MCTS simulation to supervised fine-tune (SFT) an
LLM My into Mggr. Then, we further enhance
its multi-step rewriting ability through Reinforced
Self-training (Gulcehre et al., 2023), as illustrated
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Algorithm 1 PRM-Guided CoT Decoding

Require: User query ¢, initial state sg, beam
width k, trained PRM R(-)
Ensure: Top sequence/path
1: Initialize beam B < {s¢}
2: for t =1to N do
3: Sample m next-step candidates {s{}™,
based on each existing step s;—1 € B and store
their decoding confidence A(s!).

4: Predict process reward for each candidate
using PRM: R(si|q).
5: Choose top-k candidates of si from all mk

samples according to score (5).
Update beam B < top-k candidates.
7: end for
8: return highest-reward steps in B

in Figure 2. In each self-training iteration, we sam-
ple M rewritten outputs from Mgpr. We evaluate
each one and retain those with rewards above a
threshold (r(™ > ). The model Mgy is then
further fine-tuned on the retained samples in an
iterative manner.

4.2.2 PRM Training

Due to the influence of the internal knowledge
embedded in LLMs (Zhao et al., 2023; Ma et al.,
2023), the absolute reward values of RAG can fluc-
tuate significantly across queries of different com-
plexity. To ensure the robustness of the PRM’s
output scores, we do not estimate absolute reward
values as in previous work (Sun et al., 2025). In-
stead, we adopt a pairwise loss to train the PRM
to capture the relative differences between good
and bad rewriting steps. For each query of dif-
ferent complexity, we perform K MCTS itera-
tions and obtain multiple intermediate states s;.
We assume that a state s; ;1 is preferred over an-
other state s;o (denoted s;1 > s¢92) if its esti-
mated value V(1) is greater than V' (s;2). These
preference pairs are then collected into a dataset:
Dpret = {(5t.,1,8t2/q) | st.1 = st.1}Y ;. The PRM
is then trained by minimizing the following pair-
wise loss:

Lpr = —E[logo (R (s¢,11q) — R (st,2]9))], (4)

where o is the sigmoid function, R (s, ¢) denotes
the predicted reward for state s; given query q.

4.3 PRM-Guided Decoding for Inference

After obtaining the self-trained rewriter M seif Train
and the trained PRM, we propose a PRM-Guided
CoT decoding strategy during the inference stage.
Specifically, for each user query ¢, this strategy
selects the candidate sub-steps via process reward-
weighted CoT-decoding probability (Wang and
Zhou, 2024; Chen et al., 2024) as the new score.
Mathematically, we have:

st = arg H}gfztxA (st | 5<t,q) - R(stelg),  (5)

where R(s¢|q;) is the process reward predicted by
PRM R, and A(-) is the CoT decoding confidence
function (Wang and Zhou, 2024), which measures
the probability disparity between the top and sec-
ondary tokens in the sub-step:

A(st | s<t,q) = . > 1Pm (W | y<ing) -
|sel A2,
Pu (47 | y<i ).
(6)
Here yz1 and yf represent the top two tokens at
the ¢-th decoding step in query-rewriting sub-step
st. |s¢| means the number of tokens contained in
sub-step s;.

S Experiment

5.1 Experimental Details

Datasets. We conduct extensive experiments on
four English open-domain QA datasets contain-
ing queries of varying complexities to validate the
effectiveness of our method, including multi-hop
query (i.e., HotpotQA(Yang et al., 2018), Strate-
gyQA (Geva et al., 2021)), ambiguous query (i.e.,
AmbigQA (Min et al., 2020)) and single-hop query
(i.e., PopQA (Mallen et al., 2022)). To validate the
effectiveness of our method in Chinese, we conduct
an online A/B test on a commercial Chinese RAG
system, which handles hundreds of thousands of
real-world user queries every day.

Baselines. We compare Q-PRM with a wide range
of SOTA models, which include both heuristic
methods and outcome-supervised methods. For
heuristic methods, LLM Rewrite directly enables
the LLMs to rewrite the original query with a
few-shot prompt. HyDE (Gao et al., 2022) and
Query2Doc (Jagerman et al., 2023) convert queries
into pseudo-documents to improve retrieval effi-
ciency. Crafting (Back et al., 2024) rewrites the
query through multiple predefined rewriting steps.
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Table 1: Evaluation results on queries of varying complexity, assessed using multi-hop, ambiguous, and single-hop
open-domain QA datasets. For all three metrics reported, higher values indicate better performance. Both LLaMA3-
8B and Qwen2.5-7B are used as rewriters. Bold indicates the best result, and underline denotes the second-best.

Multi-Hop Ambiguous Single-Hop
Method H R
otpotQA StrategyQA AmbigQA PopQA

EM F1 Acc EM F1 Acc EM F1 Acc EM F1 Acc
No Retrieval ~ 17.40 24.57 19.60 68.20 68.20 70.00 1520 25.55 29.60 9.80 13.67 17.20
Standard 3040 41.16 37.00 63.00 63.00 67.40 46.80 59.43 6420 10.60 2840 63.00
£  LLMRewrite 23.80 3344 34.60 3920 3920 53.80 40.00 53.67 6120 920 2477 58.60
C HyDE 31.80 42.87 41.00 6140 61.40 70.60 4540 59.85 66.60 9.60 25.13 51.20
Z Query2Doc 30.60 40.28 37.00 64.60 64.60 68.80 45.60 58.92 64.00 620 15.12 35.80
T Crafting 30.00 3895 3520 65.60 6560 6820 4440 5699 6260 640 16.16 39.20
$ SFT 30.00 39.99 36.00 64.00 64.00 67.20 44.80 56.99 61.80 9.40 29.04 62.40
@ RaFeppo) 31.00 40.60 37.60 6240 6240 6720 4620 59.08 6620 9.80 26.10 58.40
LEU RRRpro) 31.60 4290 37.60 6620 66.20 68.80 48.80 61.97 6740 1040 27.98 62.20
- Q-PRM 33.60 43.65 44.80 6640 66.40 72.80 4940 61.62 71.60 10.80 28.60 63.80
©  LLM Rewrite 25.80 34.34 30.60 6140 6140 6540 3340 44.02 4860 920 2322 52.80
E HyDE 32.80 43.81 38.60 67.20 67.20 71.00 47.20 60.35 64.60 9.00 22.65 52.80
2 Query2Doc 30.80 41.25 36.80 63.60 63.60 67.60 48.60 60.77 6520 820 19.52 44.20
Z Crafting 28.80 39.29 3540 6520 6520 69.00 42.80 55.13 60.80 7.60 18.36 44.80
T SFT 29.80 39.39 36.20 63.60 63.60 67.60 4320 5599 6220 9.00 2232 54.00
: RaFeppo) 32.60 4324 3840 68.80 68.80 71.80 48.00 60.76 6440 11.40 26.67 58.00
& RRReppo) 33.60 44.19 3920 68.60 68.60 71.20 47.00 59.89 64.40 12.20 2893 62.60
& Q-PRM 3420 4446 39.40 70.20 7020 72.60 51.00 6390 69.20 12.20 29.75 63.60

For outcome-supervised baselines, Following (Mao
et al., 2024), SFT uses the pre-generated rewrites
to directly train the rewrite model. RaFe utilizes
re-ranker feedback to construct good-bad rewriting
pairs to train the rewriter via DPO (Rafailov et al.,
2023). RRR (Ma et al., 2023) trains the rewriter
using the quality of generated answers and answer
hit rate in the retrieved documents as the reward.
For the detailed specifics of the baseline, please
refer to Appendix B.

Evaluation Metrics. For offline evaluation met-
rics, following previous works (Sun et al., 2025;
Cong et al., 2024), we use Exact Match (EM), F1
score (F1), and accuracy (Acc). For online test eval-
uation, since the real-world RAG system typically
lacks explicit feedback (e.g., click-through rate)
and ground-truth answer, we rely on a professional
annotation team to conduct human assessments on
rewritten queries. The evaluation criteria are de-
tailed in the Appendix C.

Implementation Details. Our model is developed
and evaluated using the FlashRAG (Jin et al., 2024)
framework. We employ the widely-used dense re-
triever E5 ? to collect relevant documents from the
English Wikipedia dump from December 20, 2018.

2https://huggingface.co/intfloat/e5-1large-v2

The experiments are implemented on Qwen-max 3

as the LLM reader and Qwen 2.5-0.5B as the PRM.
To mimic real-world queries of varying complex-
ity, we randomly selected 10,000 samples from the
training set and 500 samples from the test (dev) set
of each dataset to construct new training and evalu-
ation sets for our experiments. This combined train-
ing dataset is then used to train both the outcome-
supervised and our process-supervised rewriting
methods to achieve their best performances.

5.2 Main Results

Offline Experiment (EN). Table 1 reports the
performance of Q-PRM compared to baselines
on four datasets comprising real-world queries
with diverse levels of complexity. Results indi-
cate that Q-PRM achieves the best performance
compared with other baselines on both multi-hop,
ambiguous, and single-hop tasks, which means
Q-PRM can adaptively refine queries of varying
complexity. Specifically, we find that both heuris-
tic (e.g., HyDE and Query2Doc) and outcome-
supervised rewriting methods (e.g., RRR) exhib-
ited instability performance across different com-
plexities. For instance, although heuristic methods
like HyDE perform well on more complex queries

Shttps://www.aliyun.com
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Table 2: Ablation Study of Q-PRM across different datasets using Qwen2.5-7B-Instruct as the rewriter.

HotpotQA StrategyQA AmbigQA PopQA
EM F1 Acc EM F1 Acc EM F1 Acc EM F1 Acc
Q-PRM 33.60 44.19 39.20 70.20 70.20 72.60 51.00 63.90 69.20 12.20 29.75 63.60
w/o PRM 30.40 40.87 37.60 67.40 67.40 70.20 4520 5648 6440 11.60 28.23 57.00
w/o CoT decoding 33.00 43.64 39.00 68.00 68.00 70.20 46.20 58.87 62.80 10.80 24.86 51.40
w/o Self-Training  30.80 41.09 36.00 63.80 63.80 67.20 47.00 59.00 63.80 940 25.00 53.20
w/o SFT 26.60 3574 31.80 62.00 62.00 64.80 37.80 49.29 52.60 8.60 22.01 49.00
bose Rate Tie Rate Ambiengs —Jelerhor 5.3 Analysis Experiment
13.6% .
29.1% 5.3.1 Ablation Study
Temporgl uihop  We conduct ablation studies by systematically re-
moving each component at a time from Q-PRM
> to investigate the effectiveness of each component.
Win Rate Unambiguous —Tontext-dependent The results presented in Table 2 highlight the sig-

(a) Online A/B test result (b) WinRate on different types of query

Figure 3: Online A/B Test Results of Q-PRM. (a)
Win/Tie/Loss rates of Q-PRM compared to the existing
production system. (b) Win rates of Q-PRM and the
baseline system across queries of varying complexity.

(e.g., AmbigQA), they fail to effectively rewrite
simple queries, such as those in the PopQA dataset.
Moreover, when using Qwen2.5-7B as the rewriter,
outcome-supervised methods (e.g., RRR) perform
even worse than heuristic baselines on the Am-
bigQA dataset. We attribute this to the instability
of outcome-supervised rewards across queries of
varying complexity. In contrast, Q-PRM leverages
process supervision signals and achieves superior
performance across multiple tasks.

Online A/B Test (ZH). We conducted an online
A/B test in a real-world Chinese RAG system by
deploying our Q-PRM (7B) alongside the original
production model (referred to as the old system) of
the same size. Both models were exposed to real
user traffic via shadow deployment.

Based on human evaluations of the rewritten
queries, we report the Win/Tie/Lose rates, which
represent the proportions of cases where our
model’s output was preferred, rated as equivalent,
or less preferred compared to the old system. As
shown in Figure 3 (a), Q-PRM achieved a win rate
of 57.3% with only a 13.6% Lose Rate, demonstrat-
ing its strong overall performance. Furthermore, as
illustrated in Figure 3 (b), our model consistently
outperforms the old system across user queries of
varying complexity, showing significant advantages
in WinRate across all categories of query.

nificance of each element. Specifically, we eval-
uate the following configurations: (1) w/o PRM:
removing the guidance of PRM and directly us-
ing CoT decoding (Wang and Zhou, 2024) when
inference to analyze its effect on the rewriting pro-
cess of Q-PRM. (2) w/o CoT decoding: utilizing
the beam search when inferencing. (3) w/o Self-
Training: Removing the Reinforced Self-Training
Phase to directly use the SFT model to conduct
query rewriting. (4) w/o SFT: directly using the
original LLM without SFT and self-training to con-
duct query rewriting.

The experimental results, presented in Table 2,
demonstrate that removing any of these compo-
nents negatively impacts the overall performance
of Q-PRM. This highlights the importance of each
component in enhancing the query rewriting of the
RAG system. Moreover, the results in the table
demonstrate the importance of process supervision
from PRM for query rewriting. During inference
with process supervision, Q-PRM performs sig-
nificantly better than without process supervision,
especially for multi-hop and ambiguous queries.
For example, in the StrategyQA dataset, the EM
score with the guidance of PRM is 4.15% higher
than the EM score without PRM.

5.3.2 Generalization Across Tasks

To evaluate the generalization capability of PRM,
we conduct experiments across a diverse set of
RAG scenarios. Specifically, we consider four
representative settings: (a) Open-Domain QA us-
ing the MRQA-NQ subset (Fisch et al., 2019),
(b) Close-Domain QA with DomainRAG (Wang
et al., 2024a), (c) Conversational QA on CORAL
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Figure 4: Rewriting performance of Q-PRM under varying MCTS simulation steps. We report EM and F1 scores
with and without uncertainty guidance, denoted as EM, EM (w/o), and F1, F1 (w/0), respectively.

Simple Query:

PRM score: -5.0777

Analysis: The query is concise but
lacks details about the specific
organization or field of work.

Action: <Expand>: [What was
Edward Corser’s occupation in
1945 when he was the Vice

What is Edward {

Corser's occupation?

PRM score: 0.5239

President of UBC in the U.S.?’]

Analysis: Since the query is clear
and specific, asking about Edward

Complex Query:
Are the Laleli
Mosque and Esma
Sultan Mansion
located in the same
neighborhood?

PRM score: 7.3594

Analysis: The query is specific and clear
about comparing the locations of two
locations, Laleli Mosque and Esma Sultan
Mansion. However, it lacks detailed context '

such as the city they are located in.

Action: <Decompose>: ['Where is the

PRM score: 6.1836
Analysis: After
expanding, the query
now asks for the
locations of two distinct
landmarks. There is no
need to decompose the
query further.

Laleli Mosque located?', 'Where is the

Esma Sultan Mansion located?']

PRM score: -6.1836

Action: <End>

Analysis: The query is specific but lacks clarity on which

Corser's occupation, no further
optimization is needed.

Action: <End>

(a) PRM-guided simple query rewriting

neighborhood is being referred to. It also might be beneficial
to specify the city or region where these locations are situated.

Action: <Expand>: ['Are the Laleli Mosque and Esma Sultan
Mansion located in the same neighborhood in Istanbul, Turkey?']

(b) PRM-guided complex query rewriting

Figure 5: Case study of Q-PRM in rewriting simple and complex queries. The simple query is selected from the
PopQA dataset, while the complex query is chosen from the HotpotQA dataset.

(Cheng et al., 2024b), and (d) Long-form QA s ] 7
using ASQA (Stelmakh et al., 2022). Follow- _ 1501
ing prior works (Jin et al., 2024; Cheng et al., ™= o a 1254
2024b; Stelmakh et al., 2022), we adopt F1 as the
evaluation metric for MRQA and DomainRAG, . \ﬂ{\:“dloo@ e $§\0\><e\ @@f&oeo P @z‘[\@o@
and ROUGE-L for CORAL and ASQA. We se- < & o™ e o
lect the best-performed baselines for comparison: (a) MRQA-NQ (b) DomainRAG
Query2Doc, RaFe, and RRR. Notably, neither our
method nor the baselines are further fine-tuned on = 30 7 3
these datasets. o S 14

As shown in Figure 6, our method consistently 2 20- 2 13
delivers strong performance across all four RAG © e 5o @ o
tasks. While on MRQA (Figure 6 (a)) our results N\Qv&g@& 3 Qfg?“l\@ e ¥ Q;“@I\@
are comparable to RRR, Q-PRM outperforms all (c) CORAL (d) ASQA

baselines in the remaining settings. These find-
ings indicate that process-supervision-guided query
rewriting enables robust generalization across di-
verse RAG tasks.

5.3.3 Impact of MCTS Simulation.

Figure 4 illustrates how Q-PRM’s performance
changes across different datasets as we increase the
total number of MCTS simulation steps. Specif-
ically, we vary the number of uncertainty-aware
MCTS simulations from 500 to 2000, using these
simulations to train both the query rewriter and
the PRM. For comparison, we also include the per-
formance of models trained without uncertainty
guidance, highlighting the benefit of incorporating

Figure 6: Comparison of Q-PRM and baseline methods
on query rewriting performance across different RAG
tasks. Evaluation scenarios across different QA settings:
(a) Open-Domain: MRQA-NQ (Fisch et al., 2019), (b)
Close-Domain: DomainRAG (Wang et al., 2024a), (c)
Conversational: CORAL (Cheng et al., 2024b), (d)
Long-form: ASQA (Stelmakh et al., 2022).

uncertainty-aware exploration.

As shown in Figure 4, the performance of query
rewriting improves as the number of MCTS simu-
lation steps increases. This indicates that the tra-
jectories generated by MCTS not only help the
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rewriter learn how to perform multi-step rewrites,
but also that the process supervision signals col-
lected through MCTS enable the PRM to better
adapt the rewriter to queries of varying complex-
ity. In contrast, without considering uncertainty
during MCTS, the efficiency of the search may be
reduced due to excessive exploration of low-value
nodes (Oren et al., 2024; Hayes et al., 2023).

5.3.4 Case Study on Process Supervision.

To demonstrate how PRM helps Q-PRM both gen-
eralize to queries of different complexity levels
and improve the interpretability of query rewrit-
ing (Cheng et al., 2024a), we provide case studies
on HotpotQA (complex queries) and PopQA (sim-
pler queries).

As shown in Figure 5, when faced with a single-
hop query (i.e., What is Edward Corser’s
occupation?), our method generates two paths.
One path suggests expanding the query with back-
ground information about Edward Corser, while
the other deems the query sufficiently clear and
proceeds directly to retrieval. In this case, the PRM
assigns a higher score (i.e., 0.5239) to the second
path (i.e., direct retrieval), and thus, this path is
ultimately selected. Similarly, when faced with a
multi-hop query (i.e., Are the Laleli Mosque
and Esma Sultan Mansion located in the
same neighborhood?), Q-PRM first selects the
path with the higher PRM score, which aims to
decompose it into two sub-queries, and then termi-
nates the rewriting process. From these examples,
we can see that Q-PRM not only effectively adapts
to queries of varying complexity but also addresses
the issue of limited interpretability in the rewriting
process (He et al., 2021; Kim and Lee, 2024).

6 Conclusion

In this paper, we identify a key challenge in query
rewriting across varying levels of complexity: ex-
isting methods often overlook critical intermediate
steps, leading to incorrect rewrites. We attribute
this problem to the absence of process supervi-
sion signals. To bridge this gap, we emphasize
the importance of process supervision signals and
propose Q-PRM, a method that leverages a PRM
to guide the rewriting process. Since such supervi-
sion signals are not readily available for this task,
Q-PRM leverages uncertainty-aware MCTS to al-
leviate reward instability in the RAG process and
to collect process signals for training the PRM. Of-
fline experiments on four open-domain QA datasets

and online evaluations show that Q-PRM effec-
tively handles queries with diverse complexities.

Limitations

We acknowledge several limitations and opportuni-
ties for future work.

e Recent studies have proposed iterative RAG
approaches, which perform multi-turn retrieval and
rewriting during the inference stage to better handle
complex tasks such as multi-hop question answer-
ing. In contrast, our work focuses on improving
query rewriting in the pre-retrieval stage. These
two directions are not mutually exclusive and could
potentially be integrated to further enhance perfor-
mance.

e Recently, the emergence of Large Reasoning
Models (e.g., DeepSeek-R1 (Guo et al., 2025)) has
shown promising capabilities in multi-step reason-
ing. These models often adopt end-to-end rein-
forcement learning methods (e.g., GRPO (Shao
et al., 2024)) to directly enhance reasoning abil-
ity, rather than relying on an intermediate reward
model. Although our approach mitigates reward
sparsity and instability to some extent, future re-
search may investigate the use of rule-based reward
functions within RL frameworks to further enhance
stability and effectiveness.

o Although multi-step reasoning at test time is in-
creasingly adopted in both industrial systems (e.g.,
DeepSeek-R1 (Guo et al., 2025)) and academic
works (e.g., iterative RAG), where moderate rewrit-
ing latency is acceptable due to improved response
quality, introducing a PRM for multi-step query
rewriting still incurs additional inference overhead.
In future work, we aim to mitigate this overhead
while preserving the benefits of multi-step reason-
ing.
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Appendix
A Monte Carlo Tree Search

In existing literature (Zhang et al., 2024; Browne
et al., 2012), MCTS builds a search tree T" based
on a policy model 7y, which is usually the target
LLM M,. Each node s; = [g¢, N(s¢), V(s¢)] rep-
resents a state comprising the optimization action
at, optimized sub-queries ¢, the number of visits
N(s;), and the value function (expected reward)
V (s¢) for downstream RAG task. The root node
S0 = [qo] only contains the original input query
qo, and each edge represents an action aimed at
generating the next sub-query. During the search
process, MCTS runs for multiple simulations. For
the ¢-th simulation, it conducts four operations to
expand the tree:

e Selection: selects the leaf node with the high-
est exploration potential, determined by the UCT
(Upper Confidence Bounds applied to Trees) score.
The UCT score is calculated as follows:

In N;(p)

UCT; (st) = Vi (s¢) +w N; (s1)

(7

where w is a hyper-parameter that balances the ex-
ploitation (i.e., node value N;(s;)) and exploration
(i.e., visit count N;(s;)), and p denotes the parent
node of s;.

e Expansion: explores multiple child nodes {s;41}
from the selected node s; by repeatedly sampling
actions based on the policy model 7y. Note that the
expansion prompt for query rewriting is shown in
Table 6.

e Evaluation: aims to perform rollout for each ex-
panded child node s;; until the task is solved and
obtain a reward 7 based on the rollout results.

® Backpropagation: leverages the reward r of the

child node to update the value V;(s;) of nodes s;
along the path from the root node sy to the current
node s;:

Nit1(st) = Ni(s¢) +1
i \St) 1Vi (St r 8
Vig1 (st) = a ;V]:](it) H v

where NV; and V; are the number of visits and value
function at the i-th iteration, respectively.

B Baseline Implementation Details

All model training is completed on a single ma-
chine with 2xNVIDIA A6000 GPUs. For heuristic
query rewriting methods, we compare the follow-
ing baselines:

o LLM-Rewrite: directly enable the LLMs to
rewrite the original query with a few-shot prompt.
The few-shot prompt is shown in Table 5.

e Query2Doc (Jagerman et al., 2023) expanded
query by generating pseudo-documents through
the few-shot prompting of LLMs. The prompt used
in this paper is identical to the original work (Jager-
man et al., 2023).

e HyDE (Gao et al., 2022) generated hypothetical
documents for each query, and then encoded the
query and documents to retrieve similar real docu-
ments.

e Crafting (Baek et al., 2024): implements fixed
numbers of steps to conduct multi-step query
rewriting using few-shot prompting. The input
prompt for Crafting is shown in Appendix D.1I,
which is identical to the original paper.

For outcome-supervised training-based query
rewriting methods, we compare the following base-
lines:

o SFT: uses the pre-generated high-quality rewrites
to directly train the rewriter, following (Ma et al.,
2023).

e RaFe (Mao et al., 2024): utilizes feedback of
re-ranker to construct good-bad rewriting pairs to
train the rewriter via DPO (Rafailov et al., 2023).
The DPO fintuing is implemented via LLamaFac-
tory (Zheng et al., 2024)

¢ RRR (Ma et al., 2023): conduct reinforcement
learning (e.g., PPO (Schulman et al., 2017)) to train
the rewriter using the quality of generated answers
and answer hit rate in the retrieved documents as
the reward. Following the original paper, we use
an indicator to reward if the retrieved content hits
the answer and penalize if it misses the answer, de-
noted as Hit. The total reward is a weighted sum of
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EM, F1, and Hit. The DPO fintuing is implemented
via LLamaFactory (Zheng et al., 2024)
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C Human Evaluation Criteria

In our online experiment, the evaluation conducted by the experiment team broadly followed the guidelines
outlined below:

Clarity and Completeness

- Referential Disambiguation: Rewritten queries should resolve ambiguous pronouns or omitted subjects/objects using
context from the current or previous dialogue.

Example:

User: “What are its use cases?”

Previous Turn: “Can you tell me what a large language model is?”

Rewritten: “What are the use cases of large language models?”

Incorrect: “What are its use cases?” (retains ambiguity)

- Intent Completion: Incomplete or underspecified queries should be supplemented to express a full and meaningful user
intent.

Example:

User: “iPhone 13 Pro Max”

Good Rewritten: “Can you introduce the iPhone 13 Pro Max?”

Bad Rewritten: “iPhone 13 Pro Max?” (still incomplete)

Fluency and Factuality

- Fluency: Rewritten or decomposed queries must be grammatically correct and natural in standard English. No awkward
phrasing or unnatural syntax should remain.

- Factual Accuracy: The rewritten query must not introduce hallucinated or incorrect facts. It should reflect only what is
present or inferable from the input.

Example:

User: “What’s the battery life of the iPhone 15?”

Goold Rewritten: “How long does the battery of the iPhone 15 last?”

Bad Rewritten: “Does the iPhone 15 have a 24-hour battery?” (adds unfounded claim)

Semantic Alignment

- Semantic Correctness: The meaning of the rewritten query must be faithful to the original.
Key information and focus must not shift.

Example:

User: “Is it bad to sleep late every night?”

Good Rewritten: “Are there any health risks to sleeping late regularly?”

Bad Rewritten: “What are the benefits of staying up late?” (reverses meaning)

- Intent Consistency: The question type (e.g., “how”, “why”, “what”) must align with the user’s original intent.
Misinterpreting intent leads to poor query decomposition.

Example:

User: “I get nervous and blush easily. It’s distressing. What can I do?”

Good Rewritten: “How to cope with frequent blushing?”

Bad Rewritten: “Why does nervousness cause blushing?” (shifts from solution-seeking to explanation)

Coverage and Completeness

- Comprehensiveness: For complex queries, especially those involving multi-step processes,

the decomposition should result in a set of sub-queries that collectively cover all critical aspects.

Example:

User: “How do I apply for a credit card?”

Good Rewritten: “What are the steps to apply for a credit card?”, “What documents are needed to apply for a credit
card?”, “What are the eligibility criteria for credit card applications?”

Bad Rewritten Incomplete: “What are the steps to apply for a credit card?”” (misses documents and criteria).

Table 3: Human evaluation criteria for rewritten query.
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D Prompt Details
D.1 Input Prompts for Baselines

By following the requirements, write 3 steps related to the Query and answer in the same format as the example.
Requirements: 1. In Step 1, generate the contextual background extracted from the existing query.

2. In Step 2, generate what information is needed to solve the question.

3. In Step 3, generate the expected answer based on the query, Step 1, and Step 2.

4. If you think there is no suitable answer, end with "None".

Example: Query 1: What is the number one Formula One car?

Step 1: Formula One (F1) is the highest class of international automobile racing competition held by the FIA.
Step 2: To know the best car, you have to look at the race records.

Step 3: Red Bull Racing’s RB20 is the best car.

(4-shot examples) ...
Query: <query> Output:

Table 4: Input prompt for Crafting

D.2 Prompt for Few-Shot Method

Instruction: You are an expert at rewriting user query for the retrieval generative generation process.
Requirement Given a user query, your task is to give the rewritten query. Please refer to the query rewriting examples.
Example: Input Query: What are the best deep learning models?

Action: <Rewrite>

Output: ["What are the latest state-of-the-art deep learning models in 2024, particularly in NLP,
computer vision, and recommendation systems?"]

Input Query: What profession do Nicholas Ray and Elia Kazan have in common?

Action: <Decompose>

Output: ["What was Nicholas Ray’s profession?", "What was Elia Kazan’s profession?"]

Input Query: How to improve LLM inference efficiency?

Action: <Expand>

Output: ["What are optimization techniques like quantization, distillation, and pruning?"]

Input Query: Who is the 2024 Summer Olympics table tennis singles champion?

Action: <Disambiguate>

Output: ["Who is the women’s singles champion in table tennis at the 2024 Summer Olympics?",
"Who is the men’s singles champion in table tennis at the 2024 Summer Olympics?"]

Input Query: How many times has China hosted the Olympic Games?

Action: <Abstract>

Output: ["The history of hosting the Olympic Games."]

Input Query: <query>
Output: [...]

Table 5: Input prompt for Few-Shot
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D.3 Prompt for MCTS Expansion

Instruction: You are an expert at optimizing user query for the retrieval generative generation process.
Given a user query and an existing partial solution (not a complete answer),

your task is to give the correct next query optimization step.

Your goal is to optimize the query, making it can retrieve relevant documents to answer the user’s question.
You can only choose from the following actions:

<Decompose>, when the query is too complex or contains multiple sub-questions,

requires retrieving information from different sources or perspectives,

or involves reasoning that can be broken into simpler steps,

<Decompose> the query into separate sub-queries.

Example: Input Query: ’What profession does Nicholas Ray and Elia Kazan have in common?’
<Decompose>: ["What was Nicholas Ray’s profession?", "What was Elia Kazan’s profession?"]

<Expand>, when the query is too short and may not return enough relevant documents, lacks key background details,
or could benefit from additional context or related concepts, <Expand> the query.

Example: Input Query: ’How to improve LLM inference efficiency?’

<Expand>: ["What are optimization techniques like quantization, distillation, and pruning?’]
<Disambiguate>, when the query is ambiguous or has multiple potential interpretations, [Disambiguate] the query.
Example: Input Query: Who is the 2024 Summer Olympics table tennis singles champion?’
<Disambiguate>: ["Who is the womens singles champion in table tennis at the 2024 Summer Olympics?’,
’Who is the mens singles champion in table tennis at the 2024 Summer Olympics?’]

<Abstract>, when the query requires not only an understanding of the facts but also the ability to comprehend
and apply domain-specific reasoning integral to the context of the data, <Abstract> the query.

Example: Input Query: "How many times has China hosted the Olympic Games?’

<Abstract>: ['The history of hosting the Olympic Games.’]

Format:

Assuming the input is n-steps, then the format of the input is:

Query: ...

Existing Steps:

Step 1: Analysis: ...

Action: <...>: [...]

Step 2: Analysis: ...

Action: <...>: [...]

Step n: ...

where . .. denotes omitted input information.

If no existing steps are provided, you need to briefly analyze the user query

and then output the first step to optimize it.

Otherwise, you need to output the next step (step n+1) based on the optimized query in the previous step (n).
Your output must be strictly in this format:

Next step: Analysis: ... Action: <...>: [...]
Here is the input, please follow the restricted output format.
Query:

Table 6: Prompt for MCTS Expansion
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