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Abstract

Mixture-of-Experts (MoE) models have be-
come increasingly powerful in multimodal
learning by enabling modular specialization
across modalities. However, their effectiveness
remains unclear when additional modalities in-
troduce more noise than complementary infor-
mation. Existing approaches, like the Partial
Information Decomposition, struggle to scale
beyond two modalities and lack instance-level
control. We propose Beyond Two-modality
Weighting (BTW) !, a bi-level, non-parametric
weighting framework that combines instance-
level Kullback-Leibler (KL) divergence and
modality-level mutual information (MI) to dy-
namically adjust modality importance during
training. Our method requires no extra param-
eters and supports any number of modalities.
Specifically, BTW computes per-example KL
weights by measuring divergence between each
unimodal and the current multimodal predic-
tion, and modality-wide MI weights by estimat-
ing global alignment between unimodal and
multimodal outputs. Extensive experiments on
sentiment regression and clinical classification
demonstrate that our method significantly im-
proves regression performance and multiclass
classification accuracy.

1 Introduction

Multimodal learning has advanced rapidly in
vision-language reasoning (Lin et al., 2024a), emo-
tion recognition (Zadeh et al., 2018), and clinical
decision support (Soenksen et al., 2022; Hou and
Wang, 2025). Sparsely-gated Mixture-of-Experts
(MoE) models have emerged as powerful and ef-
ficient solutions for scaling multimodal architec-
tures through modular specialization across ex-
pert subnetworks (Shazeer et al., 2017; Fedus
et al., 2022). Designed for modality-specific and
cross-modal patterns, MoE models have achieved

Thttps://github.com/JuneHou/Multimodal-Infomax-
moe.git
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Figure 1: Illustration of our motivation. The CMU-
MOSI dataset text modality stand alone could performs
better than the multimodal in 5-class classification (Acc-
5), binary classification (Acc-2) and Weighted-F1 score.

success in multimodal fusion, including vision-
language grounding, representation learning, and
alignment (Feng et al., 2022; Mustafa et al., 2022).
Recent MoE frameworks flexibly integrate three or
more modalities, achieving strong results across do-
mains (Han et al., 2024; Yun et al., 2024; Li et al.,
2025).

Despite these advances, it is unclear if integrat-
ing multiple modalities adds more noise than use-
ful information, or if current MoE designs capture
cross-modal interactions effectively. As shown in
Figure 1, the text-only model outperforms the full
multimodal system in 5-class and binary sentiment
classification (Acc-5, Acc-2), as well as Weighted-
F1, on the CMU-MOSI dataset (Zadeh et al., 2016).
This result suggests that merely aggregating modal-
ities can hurt performance when one view is sub-
stantially more informative, as also seen in health-
care (Hager et al., 2024), highlighting the need
for a mechanism that both stabilizes variance and
selectively amplifies complementary information
to achieve a more effective multimodal integra-
tion. Although multiple approaches for modeling
modality interactions exist (Table 1), each has no-
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Table 1: Comparison of modality interaction methods
by scalability, parametric nature, task-specificity, and bi-
level design. BTW uniquely supports all four, enabling
robust and efficient modeling.

Scalable ~Nom- - Taske gy
parametric  agnostic
BTW v 4 v
MI v v v b 4
PID X v X X
Game-theory v X v X
Attention v b 4 (4 X

table limitations.. Mutual information (MI)-based
methods (Shannon, 1948; Han et al., 2021; He
et al., 2024) select informative modalities, but lack
fine-grained variance control. Partial Information
Decomposition (PID) (Williams and Beer, 2010;
Liang et al., 2023) provides a principled way to dis-
entangle information among modalities, but is hard
to scale up and to generalize to regression tasks.
Game-theoretic frameworks (Kontras et al., 2024)
and attention mechanisms (Zhang et al., 2023) learn
dynamic modality weights but are computationally
costly.

To address these limitations, we propose BTW, a
novel bi-level weighting mechanism that stabilizes
variance across modalities and manages noise from
added modalities. At the instance-level, BTW em-
ploys Kullback-Leibler (KL) divergence (Kullback,
1997) to measure how much multimodal predic-
tions capture the distributional information from
each individual modality. At the modality-level, it
leverages MI to quantify global reliability and con-
tribution of each modality’s prediction across the
dataset. By combining KL. and MI, BTW dynam-
ically balances instance-level contributions with
global modality reliability, reducing variance while
preserving complementary information. Based
on experimental results, our framework improves
model stability and performance across both con-
tinuous (regression) and categorical (classification)
tasks, as demonstrated by performance gains in
emotion recognition tasks ((Zadeh et al., 2016),
(Bagher Zadeh et al., 2018)) and clinical length-of-
stay prediction tasks (Johnson et al., 2023).

2 Related Work

2.1 Multimodal Fusion with MoE

Recent multimodal MoE works enhanced fine-
grained modality understanding and cross-modal
interaction through the use of modality-aware ex-
perts (Lin et al., 2024b), local-to-global expert hi-

erarchies (Cao et al., 2023), and text-guided ex-
pert activation (Zhao et al., 2024). Other meth-
ods are designed so that different modalities selec-
tively guide expert usage, such as the sparsely acti-
vated architecture in SkillNet (Dai et al., 2022) and
the gating-based dynamic fusion in DynMM (Xue
and Marculescu, 2023). These methods aim to
dynamically match modality complexity with ap-
propriate expert pathways. To further scale MoE
architectures beyond two modalities and for large-
scale tasks, recent approaches integrate modality-
specific encoders and expert parallelism into uni-
fied models. For instance, FuseMoE (Han et al.,
2024) introduces per-modality and disjoint routers
to handle heterogeneous modality integration. Flex-
MoE (Yun et al., 2024) supports scalable integra-
tion of any subset of modalities through a unified,
flexible expert routing mechanism. Uni-MoE (Li
et al., 2025) decouples data and model parallelism
across modality-specific experts. IMP (Akbari
et al., 2023) leverages alternating gradient descent
to integrate multimodal perception efficiently.

2.2 Modality Interaction Modeling

Before modality interactions can be effectively
modeled, the missingness handling (Lin and Hu,
2023), contrastive learning (Poklukar et al., 2022)
and data augmentation (Lin and Hu, 2024) have
improved robustness in multimodal representa-
tions. Non-statistical approaches interpret or bal-
ance modality contributions using attention-based
fusion (Tsai et al., 2019; Zhang et al., 2023) and
gradient-based visualization (Chen et al., 2023).
Statistical interaction modeling is favored for its
model-agnostic, non-parametric nature and is ap-
plied at either global or instance levels.

At the global level, MI has been used to model
modality interactions (Han et al., 2021; He et al.,
2024), and the information bottleneck has been
used to reduce noise (Wu et al., 2023). But these
lack instance-level or directional specificity, limit-
ing use for heterogeneous data. PID (Williams and
Beer, 2010; Liang et al., 2023) decomposes infor-
mation into unique and shared contributions from
each modality but is typically limited to two modal-
ities by computational cost. Game-theoretic frame-
works (Kontras et al., 2024) further leverage mu-
tual information decomposition to balance modal-
ity influence across the dataset. Although these
frameworks are generalizable to high-dimensional
settings, the assumption of modality competition

15090



\:*i:\ i N ut, ot

{ C.BTW Weights

Sample-level Weight w, , ™
| - | -
‘ | ‘.II ‘

N( ‘umulll o-mulll) N( ‘u(m) o(m))

Per-modality
Router

/ B Multimodel
Embeddings

2=

‘||l|lﬂm -
|

N
a
ws, o KL-Divergence
3 ', o
= Modality-level Weight wgmaI . (m)
'-
® ® ® ®
FEN2 Y || [TEENS FFN4
R video Mutual Information
|
Final Weight w, ™
L7 Norm (KL, MI)
Dynamic Update
umit gmult W = - W 4 (1= ap) - W,

Figure 2: The overall architecture of the proposed BTW weighting framework. (A) Unimodal Initialization: Each

modality is processed separately through the shared MoE backbone to produce unimodal predictions g,

a Gaussian distribution (ugm), o

(m) yielding

3

(m)) for regression and categorical probabilities for classification. (B) Multimodal:

All embeddings of each modality are fused by a MoE module with the per-modality routers, producing a prediction

(‘umultz

oMUty for regression or categorical probabilities for classification. (C) BTW Weights: The instance-level

and modality-level weights are computed based on the predictions from (A) and (B). The final L1-normalized

weights Wi(m) are dynamically smoothed across epochs to rescale modality embeddings during training.

tends to overlook the need to resolve conflicts be-
tween modalities. At the instance level, DIME (Lyu
et al., 2022) attributes model predictions to each
modality for individual samples, though its com-
putational complexity can be a limitation. Recent
work uses information bottleneck for instance-level
modality contribution (Fang et al., 2024), filtering
noise rather than modeling interactions.

3 Method

Our proposed BTW framework, as shown in Fig-
ure 2, specifically addresses the need for a gen-
eralizable solution capable of scaling to arbitrary
modalities by systematically analyzing modality
interactions while simultaneously stabilizing vari-
ance. The framework is built on top of existing
MoE models (Han et al., 2024) and involves three
steps: (1) obtaining unimodal predictions, (2) com-
puting bi-level weights, and (3) dynamically apply-
ing these weights to modality embeddings.

3.1 Unimodal Predictions Initialization

To begin, we aim to extract the maximum amount
of information from the input embeddings of each

(m)

individual modality X, in the complete data X;,

where m € {1,..., M} and M is the total number
of modalities. Consider a multimodal classifier f
capable of handling an arbitrary number of modali-
ties. To establish a baseline measure of information
provided by each individual modality, we first gen-
erate unimodal predictions y?m

(2
only one modality at a time:

) by training f using

0 = rOx %) (1)
i = ) @
M = FOD ). )

Next, we train the same model using all avail-
able modalities jointly with existing MoE models,
without applying any modality-specific weighting:

“)

After training the unimodal and multimodal, we
collect the model prediction (") and §™. These
unimodal and multimodal predictions serve as es-
sential reference points for quantifying the individ-
ual contributions and variability of each modality
in subsequent training phases.

~multi

9! — fmulti (X’L)
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3.2 BTW: Instance-Level Weights

Instance-level weights are computed based on KL
divergence between the probability distributions of
unimodal and multimodal predictions.

Classification tasks can directly output the prob-
ability, which for each modality and instance. For
modality m, the instance-level weight is calculated
as the KL-divergence between the unimodal and
multimodal prediction distributions:

wi™ = Dic (P 1X™) || PG xm)).
(5)

Regression tasks have continuous output from
each modalities prediction. First, unimodal predic-

tions, we model each modality’s prediction as a
(m)

Gaussian distribution with mean p; and variance

agm). The network output is interpreted as the con-

ditional mean, ,u(m) = E[g)l(m) | X Z.(m)]. In addition,

(2

we use the squared error O'Z(m) = (YZ — ugm))Q
as an estimator of the conditional variance, where
Y; is the ground truth. Second, for multimodal
predictions, pW* and o™t are estimated us-
ing the same procedure. The unimodal estima-
tions and the multimodal estimations are used in
the closed-form KL divergence between the uni-
modal Gaussian /(1™ ¢(™) and multimodal
Gaussian N (g4 gmulth) “respectively (see Ap-
pendix C for the full derivation). The instance-level
weight is calculated as the KL-divergence between

the above two Gaussian distributions:
w™ = D (N (™, ™) | N (e,
(6)
These instance-level KL divergences are normal-
ized across modalities for each instance to ensure
comparability. A larger KL divergence indicates
stronger disagreements between the unimodal and
multimodal predictions, indicating more unique in-
formation can be learned from this modality, and

thus a higher weight in the final integration,

3.3 BTW: Modality-Level Weights

Modality-level weights are designed to quantify
global modality reliability and informativeness. We
calculate MI between unimodal and multimodal
predictions across the entire dataset. Formally, let
g = {5}, and g = (g} denote
the predicted outputs from the unimodal model
for modality m and the multimodal model, respec-

O_Zmulti)) )

tively. We define their mutual information as fol-
lows (see Appendix E for details):

MI(Z)(m) ’ gmulti) _

~(m) ~multi M
Z P(y I y ) log P(Q("L))P(gmulli) .
Q(m)7gmultiey

(N

In classification tasks, both §(™ and §™t are dis-

crete class predictions, each taking values in the set
of all possible classes ), and mutual information
is computed between each modality’s predicted
values and the multimodal prediction across the
dataset’. For regression tasks, where the predic-
tions are continuous-valued scores, the summation
in Eq. 7 is replaced with double integration over
4™ and ™ In the implementation mutual infor-
mation is estimated using non-parametric entropy
estimators based on k-nearest neighbor statistics>.
In both cases, the resulting MI score captures how
much predictive information the unimodal modal-
ity shares with the multimodal model.

3.4 Dynamically Adapted Bi-level Weights

The modality-level MI weights are used to rescale
the instance-level KL divergence weights, amplify-
ing contributions from globally informative modal-
ities while attenuating the influence of less reliable
ones. We evaluate two versions of our BTW frame-
work, BTW-local (KL) defined as using instance-
level weight only, and BTW defined as using bi-
level weights. At the training epoch ¢, two versions
of final weights are computes as:

BTW-local (KL):  W,}" =

wz(,T) . MI(]:/(m) ’ gmulti)

i .
Zj:l wz(,Jt) )

BTW: W =

1y

hdl(g(j)’gnnﬂd)'
€)
We dynamically update the computed bi-level
weights throughout training epochs based on model
performance improvements, measured by the F1
score for classification tasks or mean absolute er-
ror (MAE) for regression tasks. A smoothing fac-
tor (c;) with time step ¢ is adaptively adjusted, in-
cremented if performance improves and otherwise
2https://scikit—learn.org/stable/modules/
generated/sklearn.metrics.mutual_info_score.html
3https://scikit—learn.or‘g/stable/modules/

generated/sklearn.feature_selection.mutual_info_
regression.html
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decremented, avoiding rapid fluctuations. Specif-

ically, the updated weights WZ(T) for modality at
instance for the epoch are computed as:

Wi =y WS+ (1= ) WS, (10)

These stabilized weights are then multiplica-
tively applied to modality embeddings prior to each
subsequent training epoch, emphasizing reliable
and informative modalities while reducing vari-
ance across individual instances and modalities,
thus enhancing robustness and generalization of
the multimodal integration.

4 Experiment

We conduct experiments to validate BTW in sta-
bilizing variance and evaluating robustness across
modalities, tasks, and diverse domains. Details on
computation, time cost, and hyper-parameters are
in Appendix F.

4.1 Datasets

We conduct experiments on three publicly available
benchmark datasets with more than two modalities:

CMU-MOSI (Zadeh et al., 2016) contains 2,199
clips collected from YouTube opinion videos la-
beled with sentiment in the range of -3 (negative)
and +3 (positive).

CMU-MOSEI (Zadeh et al., 2018): 23,500 clips
labeled from sentiment intensity. Both datasets
are benchmarks for multimodal sentiment analysis
with textual, acoustic and visual modalities.

MIMIC-IV  (Johnson et al., 2023) is a large-scale
clinical dataset containing rich multimodal patient
data, including irregularly sampled time series (e.g.,
vital signs, lab tests), clinical notes, chest X-ray
(CXR), and ECG signals. We adopt the dataset cu-
ration pipeline from FuseMoE (Han et al., 2024), in
which only 25% of samples include CXR modality
and 52% include ECG modality, while all sam-
ples contain time-series modality. For our exper-
iments, we focus on predicting patient length-of-
stay (LOS), re-framed as a 4-class classification
task based on clinical grouping criteria proposed
by CORe (van Aken et al., 2021). To evaluate
the impact of missing modalities on our weight-
ing framework, we construct a subset containing
only instances with complete modality availability
(statistics summarized in Table 2).

Total
5,178

LOS in days <3 3-7 714 >14
1,465 2,342 923 448

Count

Table 2: Length-of-stay (LOS) class distribution for
the MIMIC-IV dataset used in our experiments. Only
the no-missing-modality subset is used for training and
evaluation, containing 5,178 complete patient stays.

4.2 Experimental Setup

Baseline MoE Model For all experiments, we
adopt the MoE architecture from FuseMoE (Han
et al., 2024) as the backbone for multimodal fu-
sion. We select the per-modality router, the best-
performing strategy in FuseMoE. The per-modality
router distributes each modality independently to
a shared pool of experts, offering a principled bal-
ance between modality-specific specialization and
cross-modal integration. Implementation details
and hyper-parameters are provided in Appendix F.

Weight Initialization and Adaptation For both
tasks, we follow the three-step procedure described
in Section 3. After each training epoch, the com-
puted bi-level weights are dynamically updated ac-
cording to model performance (F1 score for classi-
fication, MAE for regression). A smoothing factor
(o) stabilizes these updates.

Evaluation Metrics Regression results of the
MOSI and MOSEI datasets are evaluated using
MAE. Additionally, following established senti-
ment benchmarks (Han et al., 2021), we report Pear-
son correlation (Corr), seven-class accuracy (Acc-
7), five-class accuracy (Acc-5), binary classifica-
tion accuracy (Acc-2) and F1 score computed for
positive/negative and non-negative/negative classi-
fication results. Model performance for LOS classi-
fication is evaluated using overall Accuracy, Macro
F1-score, and Weighted F1-score.

5 Main Results

Sentiment Analysis Table 3 summarizes evalu-
ation results for multimodal sentiment regression
across two benchmarks: CMU-MOSI and CMU-
MOSEI. We compare our proposed bi-level weight-
ing framework (BTW-local (KL) and BTW) against
recent state-of-the-art multimodal fusion methods,
including MulT (Tsai et al., 2019), MMIM (Han
et al., 2021), and standard MoE (Han et al., 2024).
Specifically, on CMU-MOSI, the BTW-local (KL)
approach achieves the lowest MAE of 0.714 (-
2% improvement over MMIM and MoE) and the
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Table 3: Main results on CMU-MOSI and CMU-MOSETI for multimodal sentiment regression. BTW-global (KL),
BTW-global (MI), BTW-local (KL) and BTW denote variants of our proposed bi-level weighting framework. Bold
numbers indicate the best performance and underlined numbers indicate the second-best. All results are averaged
over three runs with different random seeds. MMIM (Han et al., 2021) and MulT (Tsai et al., 2019) results are
reproduced from open-source code with the hyperparameters specified.

Method MAE| Corr Acc-7 Acc-5 Acc-2 Weighted-F1

MulT 0.989+0.04 0.646+0.03 33.33+1.24 36.60+1.77 77.05+121/78.46+1.42 77.01£1.12/78.53+1.36

7 MMIM 0.738+0.01  0.778+0.01 44.12+131 50.294053 82.5140.38/84.45+1.07 82.34+0.41/84.3740.93
% MoE 0.735+000 0.77040.01 45.87+0.59 52.28+0.89 81.78+1.05/83.99+1.07 81.56+1.18/ 83.88+1.02
BTW-global (KL) 0.746+0.011 0.77440.001 44.56+1.80 51.65+1.18 82.17+0.37/84.00+0.27 82.07+0.42/ 83.96+0.30
BTW-global MI) 0.72640.012 0.776+0.003 44.514+0.89 51.80+1.10 82.3441.06/ 84.56+0.31 82.49+0.87/ 84.66+0.23
BTW-local (KL) 0.714+0.01 0.7864001 46.40+323 53.26+3.31 82.4640.97/84.554+0.92 82.3340.96 / 84.5040.88
BTW 0.716+0.01  0.781+0.01 47.52+0.77 54.28+1.43 82.75+1.17/84.354+0.84 82.68+1.26 / 84.34+0.91

MulT 0.613+0.01  0.66940.02 49.55+049 50.93+0.64 78.2240.37/80.36+1.40 78.5540.21/80.4240.89

=] MMIM 0.578+0.01  0.728+0.01 51.03+042 52.39+054 81.614+237/83.31+039 81.23+2.67/82.98+0.71
8 MoE 0.570+0.01 0.7234+0.01 52.17+0.61 53.73+0.64 80.02+3.84/83.414+1.12 80.534+3.34 / 83.29+1.11
= BTW-global (KL) 0.572+0.011 0.72540.010 52.2440.44 53.55+049 80.90+3.83/83.3240.69 81.14+3.19/83.10+0.61
BTW-global (MI) 0.566-+0.006 0.729+0.002 52.344+0.59 53.95+0.63 76.09+3.40/81.784+1.88 75.66+4.16/ 81.68+2.08
BTW-local (KL) 0.566+0.01 0.727+0.01 52.32+0.76 53.85+0.73 83.02+1.10/83.60+1.87 82.81+0.98 / 83.0742.29
BTW 0.573+001  0.72240.00 52.62+0.74 54.15+0.87 81.97+2.36/81.92+0.96 81.50+1.98/81.22+1.36

Table 4: Main results on the MIMIC-IV dataset for
length-of-stay classification. BTW-local (KL) and BTW
denote variants of our bi-level weighting framework.
Bold values indicate the best results across all methods.
All metrics are averaged over three random seeds.

Method Accuracy Macro-F1 Weighted-F1
MulT 43.3342.08 33.3343.21 41.33+0.58
HAIM 46.00+0.00 33.0040.00 42.0040.00
FuseMoE 41.334+153 37.67+2.89 40.33+2.31
BTW-local (KL) 43.67+231 37.00+1.00  43.00+1.73
BTW 45.674+0.58 37.67+0.58 45.004-0.00

highest Pearson correlation of 0.786, outperform-
ing all baseline models. Incorporating global
MI weighting (BTW) yields competitive perfor-
mance following BTW-local (KL) in regression
metrics (MAE=0.716, Corr=0.781). Notably, BTW
also achieves the best 7-class accuracy (47.52%),
5-class accuracy (54.28%), and the highest bi-
nary accuracy when including the zero-threshold
(82.75%). Overall, the BTW-local (KL) weights
consistently improve the regression metrics, while
BTW presents consistent out-performance in clas-
sification tasks.

For the larger CMU-MOSEI dataset, BTW-local
(KL) consistently shows strong regression results,
achieving an MAE of 0.566, best binary classifi-
cation accuracy (83.02%/83.60%) and weighted-
F1 (82.81% with zero-threshold included). Mean-
while, BTW is consistently leading in multi-class
classification, reporting the highest accuracies in

7-class (52.62%) and 5-class (54.15%) settings. Al-
though, BTW demonstrates reduced binary clas-
sification accuracy and F1 scores, its outstanding
performance in multi-class scenarios highlights the
complementary value of incorporating modality-
level mutual information.

Length-of-Stay Prediction We evaluate our pro-
posed bi-level weighting framework on the MIMIC-
IV dataset for the clinically relevant task of four-
class length-of-stay (LOS) classification. For these
experiments, we utilize only stays with complete
modality data, thereby minimizing modality incom-
pleteness as a confounding factor and focusing ex-
clusively on evaluating the core modality interac-
tion capacity of our weighting methods. Missing
modality and 3-modality scenarios are explored
separately in Appendix A and Appendix B, re-
spectively. Table 4 summarizes classification re-
sults comparing our proposed BTW-local (KL)
and BTW weighting variants against three strong
baselines: the tree-based machine learning model
HAIM (Soenksen et al., 2022), the transformer-
based fusion model MulT (Tsai et al., 2019), and
the recent FuseMoE (Han et al., 2024). Our BTW
weighting method achieves the highest Macro-F1
and significantly outperforms all other methods in
Weighted-F1 (+5% over FuseMoE, +4% over MulT,
and +3% over HAIM). Additionally, BTW yields
the second-highest Accuracy (45.67%, close to the
top-performing HAIM model at 46.00%). The
instance-level BTW-local (KL) attains the second-
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best Macro-F1 (37%) and Weighted-F1 (43%), ex-
ceeding all baselines, and achieves competitive Ac-
curacy (43.67%). These results highlight that our
bi-level weighting approach substantially enhances
multimodal classification performance, effectively
balancing class-specific performance and overall
accuracy compared to state-of-the-art baselines.

6 Ablation Study
6.1 Weighting Mechanisms

To better understand the individual contributions
of each weighting component in our BTW frame-
work, we conducted ablation experiments on the
sentiment analysis task. Specifically, for BTW-
global (KL), we modify Eq. 8 by replacing the
instance-level weight for each modality with its
average across the dataset, thus using a constant
modality-specific weight for all samples. For BTW-
global (MI), we make an analogous change to Eq. 9,
using only the global MI value for each modality
and omitting instance-level weights. Table 3 sum-
marizes the results of these ablations.

BTW-global (MI) consistently outperforms
BTW-global (KL), highlighting the effectiveness of
MI in capturing global modality alignment. Com-
pared with BTW-global (KL), BTW-local (KL)
demonstrates a clear advantage of instance-level
weighting across nearly all metrics on both datasets,
underscoring the benefits of fine-grained variance
stabilization at the instance-level.
veals its complementary strengths by consistently
outperforming the BTW-global (MI) in multiclass-
classification accuracy (e.g., CMU-MOSEI Acc-
7: 52.62% vs. 52.34%), indicating the synergy
between local variance management and global
modality informativeness.

In summary, KL provides effective instance-
level variance control beneficial to regression,
while MI contributes significantly to global align-
ment and multi-class accuracy. The bi-level
weights yields balanced, robust multimodal fusion.

6.2 Weight Distribution Analysis

To better understand how our BTW framework sta-
bilizes variance in heterogeneous datasets, we an-
alyze modality-specific weight trajectories across
training epochs on MIMIC-1V (Figure 3).

In the BTW-local (KL) case, weights quickly sta-
bilize after the first epoch. Notably, the weights for
time-series modality (TS) drop sharply and remain
relatively stable thereafter, indicating that the mul-

0.6
05
2 04
a
=03 \‘~ = ———
© o e
Soz PN
2 o1
= 0.0 Modality
0 1 2 3 4 5 6 7 —e—ts

Epoch text
0.6 —e— CXI

) e —— St —
£04 \./ \,/'

203 N /\
5 6

/
7

eight

KL)

—e— ecg

—
-
~
e

0.0
0 1 2 <) 4
Epoch

Figure 3: The evolution of modality weights across eight
training epochs on MIMIC-IV dataset. The upper panel
shows the BTW and the lower panel shows BTW-local
(KL) weights. BTW effectively balances the dominant
TS modality from overy emphasized the uniqueness.

timodal prediction for TS closely matches what can
be achieved with TS alone. This observation aligns
with our expectation that TS is inherently easier
for the model to capture. However, the high KL
divergence weights for text, imaging (CXR), and
ECG suggest that these modalities provide distinct,
potentially noisy information that requires careful
reconciliation during multimodal fusion.
Incorporating modality-level MI weights re-
shapes the distribution, consistently emphasizing

Lastly, BTW rethe globally informative TS while balancing dis-

tinct contributions from other modalities, signif-
icantly improving accuracy and F1 scores (Ta-
ble 4). Without weights, the model treats modal-
ities equally, whereas BTW-local (KL) weights
overly emphasize the uniqueness of TS. Integrating
MI provides a necessary global perspective, bal-
ancing the strong predictive power of TS with the
unique contributions of other modalities, resulting
in a more robust multimodal fusion.

6.3 Encoder Sensitivity

To assess sensitivity to the language encoder, we
replace the baseline BERT encoder with DeBERTa
while keeping all other components identical, and
compare against ITHP and other baselines (Ta-
ble 5). BTW-local provides the strongest regression
metrics, while BTW leads multi-class classification.
On MOSI, BTW-local attains MAE=0.691; BTW
achieves the best multiclass accuracy and high bi-
nary accuracy when including the zero-threshold
(82.80%). Similar trends hold on MOSEI, where
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Figure 4: Kernel density plots of ground-truth sentiment scores for the test set, showing the distributions of all
samples, predictions corrected by two variations of weighting schemes, and new mistakes introduced, across both
MOSI and MOSEI datasets. Both schemes tend to correct errors in high-density regions of the score distribution,
with BTW especially concentrating corrections near neutral sentiment.
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Figure 5: Visualization of test split counts of all in-
stances, corrections, and mistakes over the ground-truth
classes for the LOS classification task. BTW distributes
corrections more evenly across all classes, notably im-
proving performance in class 0.

BTWe-local yields competitive MAE and BTW at-
tains leading Acc-7/Acc-5.

These results show that our framework cap-
tures fine-grained sentiment distinctions better than
ITHP, which compresses information toward a
dominant modality. In contrast, BTW balances
all modalities using instance-level KL divergence
and modality-level mutual information, preserving
diverse signals and improving complex multi-class
performance. This demonstrates that our weighting
approach yields consistent improvements that are
not dependent on the choice of encoder.

6.4 Smoothing Factor («;)

We analyze the impact of EMA smoothing fac-
tor a; € 0.3,0.5,0.7 on BTW-local and BTW on

MOSI/MOSEI. As shown in Table 6, lowering (0.3)
or raising (0.7) improves some metrics while reduc-
ing others, so we set the default value to oy = 0.5,
which consistently offers the best and most stable
trade-off across datasets and metrics.

6.5 Case Study: Error Analysis

To further validate how our proposed bi-level
weighting framework improves multimodal predic-
tions, we conduct an in-depth case study examining
the instances where our methods correct baseline
errors or introduce new mistakes. Kernel density
estimates of ground-truth scores for all instances,
corrections, and new mistakes are plotted for senti-
ment analysis regression (Figure 4; complementary
scatter plots in Appendix D) and LOS classification
tasks (Figure 5).

When applied to both tasks, both weighting
schemes consistently correct predictions in re-
gions with high data density in the regression task,
as higher density implies greater agreement and
stronger confidence in corrections via KL diver-
gence. For sentiment analysis, incorporating global
MI leads to corrections concentrated around neu-
tral sentiment scores in MOSI and MOSEI. For
LOS classification, the results highlight a critical
trade-off and the strength of our bi-level approach.
While BTW-local (KL) focuses its corrections on
the high-density majority class (106 corrections in
class 1), it performs poorly on the most challenging
minority class (only 2 corrections in class 0). In
contrast, the full BTW framework uses global MI
to re-balance its focus. It strategically sacrifices
some corrections on the majority class to make sig-
nificant gains in the most difficult classes, most
notably increasing corrections in class 0 from 2 to
31. This ability to improve performance on minor-
ity classes by resolving uncertainty and ambiguity
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Table 5: Performance comparison on CMU-MOSI and CMU-MOSETI using the DeBERTa text encoder. Results are
compared against baseline models and the ITHP model. Bold numbers indicate the best performance and underlined
numbers indicate the second-best. All results are averaged over three runs with different random seeds. The ‘Acc-2°
and ‘Weighted-F1° columns show ‘include-zero / non-zero* results.

Method MAE| Corr? Acc-71 Acc-57 Acc-27 Weighted-F11
ITHP 0.719+40.004 0.840+0.006 43.75+0.75 54.264+1.22 85.69+1.02/87.33+1.00 85.66+1.05/87.34+1.02
= MMIM 0.71340.007 0.79940.005 45.00+0.99 52.724+1.00 82.7540.17/84.93+0.37 82.6440.23/84.77+£0.49
czb MoE 0.70140.011 0.79340.013 44.70+£1.09 52.48+1.19 82.4640.89/84.80+0.93 82.3040.96 / 84.73+£0.97
BTW-local 0.696+0.006 0.801+0.005 45.14+2.09 52.63+1.65 83.5340.67/85.77+1.07 83.38+0.66/85.7041.07
BTW 0.691+0.005 0.79040.013 46.55+1.38 54.86+1.35 82.80+0.50/85.3740.16 82.7040.46/85.04+0.62
ITHP 0.59940.004 0.78240.003 48.30+0.28 52.3240.32 80.6740.39/85.66+0.32 81.364-0.34/85.75+0.29
5 MMIM 0.566+0.014 0.73240.020 51.83+0.67 53.114+0.80 80.58+1.86/83.34+1.04 80.7741.35/83.03+1.42
8 MoE 0.55940.006 0.74240.018 52.32+0.46 53.7240.78 81.1642.62/83.90+1.64 81.3941.95/83.68+2.04
= BTW-local 0.540+0.005 0.757+0.005 53.89+0.19 55.63+0.21 81.754+1.23/85.11+£0.32 82.1040.92/84.97+0.50
BTW 0.54540.007 0.75640.004 53.35+0.27 55.0440.16 82.1042.96/84.7140.45 82.3442.47/83.48+1.85
Table 6: Ablation study on the smoothing factor (a;) for BTW-local (KL) and BTW methods on the MOSI and

MOSEI datasets. The default value of 0.5 consistently provides the best or most stable performance. All results are

averaged over three runs.

Method MAE|

it

Corr?t

Ace-71

Acc-57

Acc-27

Weighted-F11

0.740+0.016
0.71440.011
0.758+0.006

BTW-local

0.77440.008
0.7864-0.005
0.7664-0.003

45.4841.055
46.40+3.227
43.6441.091

52.534+1.752
53.26+3.312
50.1941.701

81.8840.670/83.94+0.919
82.464-0.970/84.55+0.919
81.2940.734/83.54+0.531

81.744-0.688/83.88+0.952
82.334-0.961/84.50+0.883
80.944-0.960/82.65+1.473

MOSI

0.73940.021
0.716+0.008
0.744+0.013

BTW

0.771+0.011
0.7814-0.009
0.77040.006

45.73+1.097
47.52+0.773
44.9541.244

52.67+1.604
54.28+1.431
52.1941.197

81.54+1.091/83.79+1.424
82.754-1.173/84.35+0.836
81.9740.656/84.60+0.703

81.3540.865/83.54+1.427
82.6841.260/84.34+0.910
81.6440.606/84.3940.650

0.574+0.007
0.566-+0.008
0.563+0.003

BTW-local

0.72140.004
0.727+0.006
0.7294-0.003

52.1440.440
52.32+0.757
52.6940.428

53.7340.188
53.85+0.732
54.2540.359

82.8340.710/82.90+0.613
83.02+1.098/83.60-+-1.869
81.2144.540/82.64+0.538

82.494-0.490/82.26+0.765
82.81+0.983/83.07+2.288
82.1741.989/82.17+0.386

MOSEI

0.5744-0.002
0.573+0.007
0.57740.008

BTW

0.71840.005
0.7224-0.003
0.71640.006

52.0740.363
52.6240.737
52.0340.397

53.6940.174
54.15+0.867
53.1240.817

81.56+1.712/82.43+0.771
81.974-2.356/81.92+0.961
82.4141.025/82.55+0.882

81.4141.642/81.50+1.525
81.5041.976/81.22+1.360
82.2140.856/82.04+0.760

in classification boundaries is critical for building
a robust and clinically useful model.

While the BTW-local (KL) weights efficiently
reduce variance in densely populated sentiment
regions, global MI effectively targets the ambiguity
regions, underscoring the complementary strengths
of the bi-level weights.

7 Conclusion

This paper introduces a bi-level, non-parametric
weighting framework that advances multimodal
learning beyond two modalities by addressing pre-
diction variance and modality interaction explain-
ability. By integrating instance-level KL diver-
gence with modality-level mutual information, the
method adaptively calibrates modality contribu-
tions without introducing additional trainable pa-
rameters. The framework’s value lies not only in
quantitative improvements but also in its efficiency

as a non-parametric, plug-and-play module that
enhances existing architectures. Extensive experi-
ments on diverse benchmarks and both regression
and classification tasks demonstrate how the frame-
work stabilizes variance in high-density regions
and resolves ambiguity by leveraging globally in-
formative modalities, ultimately facilitating more
robust and transparent multimodal models.
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Limitations

While the BTW framework offers improved inter-
pretability and performance across diverse multi-
modal tasks, there are some limitations that might
obstacle further generalization and effectiveness.
First, the information theory-based weights rely
on the assumption that unimodal predictions pro-
vide informative and well-calibrated distributions.
In cases where modalities have low quality or
completeness, the resulting weights may introduce
noise rather than stabilize variance. Future work
could explore uncertainty-aware regularization or
confidence-based gating to downweight unreliable
unimodal predictions.

First, the information theory-based weights rely
on the assumption that unimodal predictions pro-
vide informative and well-calibrated distributions.
In cases where modalities have low quality or
completeness, the resulting weights may introduce
noise rather than stabilize variance. Future work
could explore uncertainty-aware regularization or
confidence-based gating to downweight unreliable
unimodal predictions.

Second, the BTW framework, in its current form,
is demonstrated on an MoE architecture. Its core
requirement is the ability to obtain separate predic-
tions from each unimodal path as well as a joint
multimodal prediction. Therefore, it is directly
applicable to various late-fusion or hybrid-fusion
architectures but is not suited for pure early-fusion
models where raw features are concatenated at the
input layer, preventing the generation of distinct
unimodal outputs from the fused representation.

Third, our method inherits the zero-embedding
strategy from the FuseMoE backbone (Han et al.,
2024) for handling missing modalities. As shown
in our ablation, information-theoretic metrics like
mutual information fail to provide meaningful sig-
nals when modalities are absent, due to the degen-
erate nature of zero vectors. Risks might arise if
modality imputation is inaccurate or missing data
are handled improperly, leading to unreliable or
misleading model predictions. This suggests that
imputing missing modality embeddings with syn-
thetically generated representations could offer a
more coherent and informative approximation, pre-
serving the multimodal distributional structure.

Finally, while our method is task-agnostic for
regression and classification tasks, supervision
through labels is required for the current frame-
work. This supervised assumption limits gener-

alizability to unsupervised or self-supervised set-
tings. Future research could explore proxy objec-
tives such as contrastive similarity or mutual pre-
dictability to extend this framework to representa-
tion learning.
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A  MIMIC-IV with Missing Modalities

In real-world, the more modalities included will re-
sult in more likely and challenging missing modal-
ity problem. We conducted additional experiments
using the MIMIC-1IV dataset including stays with
missing modalities as shown in Table 7. While
the BTW-local (KL) variant achieves slightly bet-
ter Macro-F1 (39.67%), we observe a performance
drop after applying the full BTW weights, particu-
larly when incorporating modality-level MI. These
results indicate instance-level weights provide ro-
bust and stable performance even when modalities
are absent. In contrast, the modality-level MI be-
comes unreliable, since the missing modality con-
tributes no information, fooled the weights wrongly
favors modalities that are consistently present re-
gardless of their quality in informativeness. This
bias degrades the variance stabilization ability for
the bi-level weights, revealing the inherent sensitiv-
ity of MI-based alignment to incomplete real-world
data.

Table 7: Performance on the MIMIC-IV dataset with
randomly missing modalities. BTW-local (KL) and

BTW represent variants of our bi-level weighting frame-
work. All metrics are averaged over three random seeds.
Standard deviations are shown in +.

Method Accuracy Macro-F1 = Weighted-F1

MulT 46.67+1.53  38.33+3.06 45.67+1.53

FuseMoE  44.00+1.00 38.67+1.53 44.0042.00
BTW-

Jocal (KL) 45.67+058  39.67+1.15 45.0040.00

BTW 44.00+1.41  35.50+0.71 42.50+0.71

B 3-Modalities Performance

This section presents additional results evaluating
the robustness of our bi-level weighting framework
against FuseMoE (Han et al., 2024) under various
modality ablation scenarios on MIMIC-IV (John-
son et al., 2023). We compare model performance
when each of the three auxiliary modalities (ECG,
CXR, Text) is removed individually, under both no
missing (Table 8 and full datasets Table 9).

C Proof of Estimation of Conditional
Variance

This section formally derives the instance-level KL
divergence used in our weighting framework for
regression tasks. We provide a justification based
on the Law of Total Variance, show the unbiased-
ness of residuals, and present the closed-form ex-

Table 8: Performance comparison across weighting
strategies on MIMIC without missing modalities

. Macro Weighted

Method Modality Acc F1 F1
w/o ECG 46 41 46

w/o Text 43 42 41

FuseMoE /o cxR 48 37 47
w/o ECG 47 40 46

BTW-local w/o Text 42 33.5 40
(KL) wio CXR 44 385 44
w/o ECG 45 37 44

w/o Text 45 17 29

BTW wioCXR 46 36 4

Table 9: Performance comparison across weighting
strategies on full MIMIC dataset

. Macro Weighted

Method Modality Acc F1 F1
w/o ECG 45 38 43

w/o Text 43 35 40

FuseMoE  \/ocxR 47 38 46
w/o ECG 46 36 44

BTW-local w/o Text 44 30 40
(KL) w/oCXR 44 36 42
w/o ECG 46 34 43

w/o Text 44 25 36

BTW wioCXR 46 37 45

pression for Gaussian KL divergence between uni-
modal and multimodal predictions.
C.1 Law of Total Variance
Var(Y) = Var(E[Y | X]) + E[Var(Y | X)]
(11)

Var(E[Y | X;]) = Var(u;)) =0 (12)

Var(Y | X;) = Var(Y) = E[(Y — p)?]  (13)
C.2 Unbiasedness of the Squared Residual

E[(Y —p)® | Xi] = Var(Y | X;3),  (14)
so each empirical squared residual (Y; — y;)? is an
unbiased estimate of the conditional variance.

C.3 Gaussian KL-Divergence

For two Gaussians p = N(up,op) and ¢ =
N(/Lq’ Uq)’

0';27 + (Np - ,uq)z 1

g
D = log ¢ .
kL(p [l 9) og, + 207 2
(15)

By setting

Mp:uh Up = (}/l_,ul)27
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multi

multi)2
g = [ ) i ) )

7

og=(Yi—p

we obtain the instance-level weight

wi = Do (N (i, (Yi = 11)?) |

N (™8, (Y = ™h)?). (16)

D Scatter plots for error analysis

We visualize instance-level corrections and mis-
takes for sentiment regression as shown in Fig-
ure 6 and Figure 7 for BTW-local (KL) and BTW
scenario, respectively. Each point represents the
change in prediction (corrected or error) relative
to the true sentiment score, with the vertical axis
indicating the magnitude and sign of these modifi-
cations. For MOSI, corrections using BTW-local
(KL) tend to show larger error reductions in mod-
erately positive and negative regions, whereas the
BTW approach produces a denser band of mod-
est corrections across the full range. In MOSEI,
both schemes demonstrate more uniform correction
magnitudes across sentiment values. In all cases,
the majority of mistakes (orange) are smaller in
magnitude and more evenly distributed, confirming
the effectiveness of bi-level weights.

4

Correction
Mistake

A Error (weighted — baseline)

-3 -2 -1 0 1 2 3
Ground Truth Sentiment Score
(a) MOSI BTW-local (KL) Corrections and Mistakes Distri-
bution
4

Correction
Mistake

A Error (weighted — baseline)

-3 -2 -1 0 1 2 3
Ground Truth Sentiment Score

(b) MOSEI BTW-local (KL) Corrections and Mistakes Distri-
bution

Figure 6: Visualization of test split scatter plots, correc-
tions density and mistakes density over the ground truth
sentiment score for BTW-local (KL) experiments.

Correction
Mistake

A Error (weighted — baseline)

-3 -2 -1 0 1 2 3
Ground Truth Sentiment Score

(a) MOSI BTW Corrections and Mistakes Distribution
4

Correction
Mistake

A Error (weighted — baseline)
o

-3 -2 -1 0 1 2 3
Ground Truth Sentiment Score

(b) MOSEI BTW Corrections and Mistakes Distribution

Figure 7: Visualization of test split scatter plots correc-
tions density and mistakes density over the ground truth
sentiment score for BTW experiments.

E Proof of Mutual Information

Let X be the whole dataset with /N data points.
Naturally P(X;) = 1/N for all X; € X'. Then we
have:

PGy = S PEMIXM™) PX™)

x™ex
(17)
P(gmulti) _ Z P(gmulti| Xmulti) P( Xmulti)
) 7 )
X;nullieX
(18)

And the joint probability is defined as:

P(y(m)’gmulti) _
Z P(ﬂgm) ’Xi(m))P(Xi(m) ‘leulti)
xMex
P(ylynulti ’X;nulti)P(X?lulti) (19)

F Computation Resources, Time Cost,
and Hyper-Parameters

We summarize the computation resources and
MoE-specific hyperparameters and packages used
in our experiments. Hyper-parameter settings are
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Table 10: Computational cost analysis. All times are averaged over three runs.

Method Text Overhead Audio Overhead Video Overhead Main Training Time Total Est. Time
7 Baseline N/A N/A N/A 6m 45s 6m 45s
© BTW-local (KL) 6m 4s 2m 39s Im 7s 7m 35s 17m 25s
= BTW (KL+MI) 6m 4s 2m 39s Im 7s 7m 55s 17m 46s
&5 Baseline N/A N/A N/A 37m 36s 37m 36s
8 BTW-local (KL) 30m 4s 22m 24s 22m 20s 43m 59s 118m 47s
S BTW (KL+MI) 30m 4s 22m 24s 22m 20s 45m 36s 120m 24s

Table 11: Hyperparameters used for MoE module

Parameter Name Value
Number of Experts 16
FFN hidden size 512
Top k 2
Router_type permod
Hidden activation function =~ GeLU
Number of MoE layers 3

aligned with those in prior work on LOS classifica-
tion and sentiment analysis to ensure comparability
and reproducibility.

Computation Resources All experiments were
conducted on a single NVIDIA A40 GPU with
48GB memory (CUDA 12.4, driver version
550.67). For the CMU datasets, we follow the
preprocessing steps from MMIM (Han et al., 2021)
and incorporate the MoE layer from FuseMoE (Han
etal., 2024).

Time Cost Our framework introduces an initial,
one-time overhead for pre-training the unimodal
models, which is required to initialize the weight-
ing process. The duration of this step is highly
dependent on the size of the dataset. As shown in
Table 10, the per-epoch training time of our meth-
ods remains comparable to the baseline.

Hyper-Parameter Settings The hyper-
parameters for MoE module are listed in Table 11.
Other hyper-parameters used for LOS classification
are same as in (Han et al., 2024), and for sentiment
analysis are same as in (Han et al., 2021).

Implementation Our implementation used
Python 3.8 with the following key libraries:
PyTorch, NumPy, pandas, scikit-learn, and
HuggingFace Transformers.
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