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Abstract

Knowledge Graph Embedding (KGE) seeks
to learn latent representations of entities and
relations to support knowledge-driven Al sys-
tems. However, existing KGE approaches of-
ten exhibit a growing discrepancy between
the learned embedding space and the intrinsic
structural semantics of the underlying knowl-
edge graph. This divergence primarily stems
from the over-reliance on geometric criteria
for assessing triple plausibility, whose effec-
tiveness is inherently limited by the sparsity
of factual triples and the disregard of higher-
order structural dependencies in the knowledge
graph. To overcome this limitation, we intro-
duce Structure-aware Calibration (SaCa), a ver-
satile framework designed to calibrate KGEs
through the integration of global structural pat-
terns. SaCa designs two new components: (i)
Structural Proximity Measurement, which cap-
tures multi-order structural signals from both
entity and entity-relation perspectives; and (ii)
KG-Induced Soft-weighted Contrastive Learn-
ing (KISCL), which assigns soft weights to
hard-to-distinguish positive and negative pairs,
enabling the model to better reflect nuanced
structural dependencies. Extensive experi-
ments on seven benchmarks demonstrate that
SaCa consistently boosts performance across
ten KGE models on link prediction and entity
classification tasks with minimal overhead.

1 Introduction

Knowledge graphs (KGs), which represent enti-
ties as nodes and their relationships as edges in
a graph-based structure, have widespread applica-
tions in diverse fields such as knowledge discovery,
question answering, recommendation systems, and
clinical prediction. The applicability of KGs faces
two primary challenges. Firstly, real-world knowl-
edge graphs suffer from sparsity and incomplete-
ness despite their considerable scales. Secondly,
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Figure 1: The Spearman correlation coefficient of KG-
induced similarities and MRR on FB15k-237 dataset.

while most knowledge-driven applications operate
in numerical spaces, knowledge graphs are predom-
inantly represented in symbolic or logical formats.

To enable efficient reasoning and knowledge ac-
quisition, knowledge graph embedding (KGE) tech-
niques (Sun et al., 2019; Trouillon et al., 2016; Bal-
azevic et al., 2019; Zhang et al., 2020; Wang et al.,
2022) have been developed to map entities and re-
lations into low-dimensional vector spaces, which
are expected to preserve the underlying structural
properties of the original graph. Thus, embeddings
are widely utilized in various downstream tasks, in-
cluding knowledge graph completion (Wang et al.,
2022; Fan et al., 2024; Jiang et al., 2024; Wei et al.,
2024), entity classification (Xie et al., 2016; Weller
and Paulheim, 2021; Liang et al., 2023), and more.

While current KGE models have yielded promis-
ing outcomes, most still focus on explaining single
triple facts (an intra-triple perspective) while over-
looking the broader inter-triple relationships among
triples. As a result, researchers raise questions
about their ability to effectively capture structural
proximity within KGs (Jain et al., 2021; Ilievski
et al., 2023; Hubert et al., 2024). Building upon
previous work, we further reveal that structural
semantic drift is prevalent across existing KGE
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Figure 2: Illustration of graph contexts and their overlap
for Leonardo Da Vinci, Raphael, and Monet within a
knowledge graph.

models. This is evidenced by varying Spearman
correlation coefficients' between KG-induced sim-
ilarities and cosine similarities from learned entity
embeddings, as shown in Fig. 1. Such variation re-
flects differing model abilities to preserve original
KG semantics, potentially leading to suboptimal
performance where fine-grained structural distinc-
tions are critical.

Recent contrastive strategies (Liang et al., 2023;
Qiao et al., 2023; Zhang et al., 2024; Lin et al.,
2024) attempt to address this by using standard
contrastive learning to learn more discriminative
entity embeddings. However, this approach suf-
fers from three key limitations: Firstly, the con-
tinuous nature of entity similarity conflicts with
rigid binary labeling in simple contrastive learn-
ing, necessitating non-discrete modeling. Secondly,
over-reliance on individual triples for contrastive
sample construction lacks mechanisms for cap-
turing contextual consistency across graph struc-
tures. As illustrated in Figs. 2 and 3, while Da
Vinci, Raphael, and Monet all share the triple

( occupation

ent ————— painter), Da Vinci and Raphael
exhibit stronger semantic ties due to a greater ex-

"We adopt the non-parametric Spearman correlation co-
efficient to measure the monotonic relationship between the
similarity rankings predicted from learned embeddings and
the KG-induced similarity scores computed based on the struc-
tural proximity defined in Section 4.1.

tent of contextual overlap between them. Conse-
quently, their embedding space distance should be
closer than that with Monet. Thirdly, in real-world
KGs with multiple relations, entity semantics are
inherently multifaceted and vary across different
relational contexts. However, existing contrastive
methods often emphasize entity-level contrast, ig-
noring these relation-contextualized semantics.

To address this, we propose Structural Calibra-
tion (SaCa), a plug-and-play framework that im-
proves the sensitivity of a model to global structural
signals in the KG. SaCa draws inspiration from
the distributional hypothesis: entities with similar
meanings tend to appear in similar structural con-
texts. Based on this, we design four strategies to
induce similarity metrics grounded in context over-
lap, which capture multi-scale structural cues from
both entity and relation perspectives.

These structural similarities are then used as soft
supervision in our KG-induced Soft-weighted Con-
trastive Learning (KISCL) module. Unlike stan-
dard contrastive learning, KISCL introduces a con-
tinuous weighting mechanism that adjusts the loss
sensitivity based on similarity confidence, enabling
more nuanced and structure-aware embedding re-
finement.

SaCa integrates seamlessly into existing models
without adding parameters. Extensive experiments
show that it consistently enhances structural fidelity
and improves performance across a range of KGE
architectures and benchmarks.

2 Related Work

2.1 Knowledge Graph Embedding

Knowledge graph embedding (KGE) aims to rep-
resent entities and relations in a continuous vector
space based on the existing triple structure. Typ-
ically, conventional KGE models employ various
scoring functions to evaluate the plausibility of
triples.

Translation-based approaches, such as TransE
(Bordes et al., 2013), TransR (Lin et al., 2015b),
RotatE (Sun et al., 2019), and PairRE(Chao et al.,
2021) rely on the translation assumption.

Tensor decomposition-based models rely on low-
rank factorization assumptions, such as CP decom-
position (Hitchcock, 1927), RESCAL (Nickel et al.,
2011), DistMult (Yang et al., 2015), and ComplEx
(Trouillon et al., 2016). However, these models
have limitations since they can easily overfit the
training triples while violating the distributed se-
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Figure 3: Differences in entity embedding similarity rankings before and after structural semantic calibration.

mantics assumption (Zhang et al., 2020; Cui and
Zhang, 2024).

Graph Neural Networks (GNNs) (Ristoski and
Paulheim, 2016; Vashishth et al., 2019; Weller and
Paulheim, 2021; Tan et al., 2023) have been widely
explored for knowledge graph completion (KGC),
as they incorporate structural information through
iterative message passing. However, recent studies
report that message passing is often less effective in
KGC (Zhang et al., 2022; Li et al., 2023b). More-
over, the over-smoothing problem, where repeated
propagation causes node embeddings to converge
and lose discriminability, is well documented in the
GNN literature (Oono and Suzuki, 2020; Keriven,
2022). These limitations motivate alternatives that
avoid excessive reliance on local message passing
while preserving structural information.

Recently, text-based approaches (Wang et al.,
2022; Jiang et al., 2023, 2024), which integrate pre-
trained language models (PLMs) or large language
models (LLMs) into KGE via entity descriptions,
have attracted growing attention. While effective in
leveraging textual semantics, these methods strug-
gle to capture the structural richness of knowledge
graphs. Our framework addresses this gap by ex-
plicitly incorporating structural patterns alongside
textual signals to enhance structural awareness and
improve robustness.

2.2 Contrastive Learning for Knowledge
Graph Embedding

Contrastive learning has recently emerged as a pow-
erful paradigm for KGE. Several representative
methods have explored this direction. For instance,
LP-BERT (Li et al., 2023a) employs triple-level
negative sampling to refine relational representa-

tions. C-LMKE (Wang et al., 2023) and SimKGC
(Wang et al., 2022) apply the InfoNCE loss on
PLM-encoded triples with in-batch sampled neg-
atives. StructKGC (Lin et al., 2024) developed a
structure-aware contrastive learning method by con-
trasting triples with their local structural contexts.
PMD (Fan et al., 2024) introduces a progressive
distillation framework to stabilize training, while
GHN (Qiao et al., 2023) generates challenging neg-
atives through a seq2seq model. HaSa+ (Zhang
et al., 2024) further emphasizes hard negative min-
ing and proposes strategies to mitigate the impact
of false negatives.

Despite these advances, most methods rely on
rigid binary labels, limiting their ability to cap-
ture fine-grained structural semantics. In contrast,
our approach harnesses global structural patterns
as soft contrastive signals to achieve higher-order
structural awareness.

3 Preliminaries

In this section, we briefly describe the formulation
of the knowledge graph embedding (KGE) and
the concept of graph context within a knowledge
graph (KG). A Knowledge Graph (KG): A general
KG can be formalized as £G = (£,R,T) where
&, R are the entity set, the relation set respectively.
T ={(h,r,t) | h,t € E,r € R} is the triple set.
Knowledge Graph Embedding. Knowledge
Graph Embedding (KGE) encompasses encoding
entities £ and relations R into low-dimensional
continuous vectors (d < |€|). These embeddings
are typically optimized by applying a scoring func-
tion F(h,r,t) to evaluate the plausibility of triples.
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Figure 4: Overview of our proposed SaCa framework to alleviate the structural drift problem in knowledge graphs.

3.1 Graph Context

Graph context encapsulates the relational envi-
ronments surrounding a subject (entity or entity-
relation pair) within a knowledge graph, which is
critical for interpreting its structural implications.
To achieve a comprehensive understanding, we ex-
amine graph context at multiple scales, specifically
first-order and higher-order contexts. Addition-
ally, we consider different subject perspectives, in-
cluding entity-centric (&) and relation-aware (F-
R) views, to ensure a comprehensive understanding
of multifaceted semantics across various relational
contexts.

For a view S (either E or E-R), its k-order con-
textual scope C¥(.9) is defined as:

CHE) = {(rl,...,rk,Ek) ‘ E%Ek} )

C*(E,R) = {(rl, T By ‘ g Eolneconl, Ek} :

2
where k denotes the contextual scale. At k = 1, the
framework specializes in capturing the most funda-
mental and localized relationships associated with
the subject. When k > 2, the higher-order graph
context extends beyond direct neighbors, encod-
ing logical patterns along multi-hop relation chains
and revealing implicit structural interactions. In
practice, these higher-order contexts are automati-
cally extracted using depth-first search (DFS) with
a maximum path length of 4, as empirical evidence
from prior research (Sun et al., 2018) indicates that
semantically similar entities are rarely separated by
extensive relation paths.

4 Methodology

In this section, we present our framework, SaCa,
as illustrated in Fig. 4. Four combination strate-
gies are designed to induce the structural proximity
inherent in knowledge graphs, capturing both di-
rect and indirect cues from both entity and relation
perspectives. Then, we propose KG-induced Soft-
weighted Contrastive Learning (KISCL), which
leverages KG-derived similarities as continuous
weighting factors in contrastive learning to refine
the knowledge embedding space. Finally, we seam-
lessly integrate our framework with existing KGE
methods by jointly optimizing the proposed con-
trastive loss and their original scoring functions,
leading to a more comprehensive and effective
knowledge representation.

4.1 Multi-scale Structural Proximity
Measurement

Measuring similarity within complex, multi-
layered KGs is challenging. Inspired by the distri-
butional hypothesis (Suresh et al., 2023), we design
a multi-scale structural proximity measurement
based on overlapping graph contexts. This mea-
surement operates at varying granularities—from
first-order (k = 1) analysis of direct connections
using C1(.9), to higher-order (k > 2) exploration of
implicit structural chains within broader contexts
C*(S) (identified via graph traversals)—thereby
enabling the comprehensive modeling of both di-
rect connections and multi-hop dependencies. We
then unify this similarity measurement using the
contextual scope operator C¥(.S) (from Sec. 3.1) in
a parameterized Jaccard formulation:
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» |CR(S1) NCR(Sy)]
Sim" (51, S2) = |Ck(S1) UCk(Ss)| ©

4.1.1 Relation-aware Operational
Instantiation

Unlike previous contrastive KGE methods that fo-
cus solely on entity-level discrimination (Liang
et al., 2023; Qiao et al., 2023; Zhang et al., 2024),
we consider that the relations also play a crucial
role in knowledge graphs. Thus, we simultaneously
consider two perspectives: the entity-centric (E)
mode, which examines all surrounding structural
contexts to form a comprehensive entity profile,
and the relation-aware (ER) mode, which focuses
on entity structure within specific relations, em-
phasizing relation-contextualized semantics. Both
perspectives analyze similarity at multiple gran-
ularities: first-order measures capture direct con-
nections, while higher-order ones encode indirect
semantic associations. Consequently, we define
four operational instantiations for the Jaccard for-
mulation as follows.

E-First: First-order entity-centric similarity for
entity pairs (Eq, Fs):

. efirs CY(Ey) NCYHE
Sim (51 B = (e n e @

E-High: Higher-order (k > 1) entity-centric simi-
larity:
[C*(E1) N C* ()|

O AN A

ER-First: First-order relation-constrained similar-
ity, where the context for entity E' is refined to
CY(E,R):

_ |Ct(E1, R1) N CH(E2, R2)|
ICY(E1, R1) UCYH(E2, R2)|’
©)

simS St (5 Ry), (Bs, Ro))

ER-High: Higher-order relation-constrained simi-
larity using k-th order paths initiating with a spe-
cific relation R:

|C*(Ey1, R1) N C*(Ea, Ry)|

imer-high o E —
Sim ((E1, R1), (B2, R2)) = ICF(Ey, B1) UCK (Ba, Ra)|
(@)

All similarity measures follow the Jaccard index
definition with values in [0,1], where O indicates
completely disjoint context sets and 1 represents
identical sets.

4.1.2 Strategies for Accelerating Similarity
Computing

The naive pairwise Jaccard similarity computation
has prohibitive complexity of O(N?- M) for N en-
tities with average context size M, limiting scalabil-
ity to large knowledge graphs. We address this with
a feature-context inverted index that transforms
global comparisons into local, feature-specific in-
tersections. The effectiveness of this strategy lever-
ages the inherent long-tail distribution in knowl-
edge graphs, where only a few features are fre-
quent and most appear rarely. As a result, the
computational cost is dominated by the feature fre-
quency m, and for any feature f, my < N due
to sparsity. Thus, the overall complexity becomes
D fer O(m?c) < O(N?- M), yielding substantial
efficiency gains, especially for large-scale graphs.
More empirical results are provided in Appendix D.

4.2 Similarity-Guided Continuously Weighted
Contrastive Learning

We introduce the KG-induced Soft-weighted Con-
trastive Learning (KISCL), which leverages KG-
derived similarity as continuous weighting factors
in contrastive learning. KISCL dynamically adjusts
embedding distances by bringing similar entities
closer and pushing dissimilar ones apart, guided by
the KG-induced similarity. Based on the two essen-
tial characteristics of contrastive loss—alignment
and uniformity—KISCL consists of two compo-
nents: Dynamic Alignment Loss and Mutual Dis-
similarity Loss.

To dynamically align the embedding space pro-
duced by KGE models with the inherent semantics
of the original knowledge graph, we introduce the
dynamic alignment loss as:

N
£5m — %Z (; . Z Sim(si, s;5) - f(Si,Sj)) .
i=1 JEP; (k)
®)
Where N denotes the total number of subjects,
and k represents the number of considered posi-
tive samples. P;(k) refers to the set of k positive
samples for the i-th entity. The function f(-,-)
computes the Euclidean distance between two sub-
jects” embeddings, s; and s;. Sim(s;, s;) denotes
the structural similarity calculated through specific
operational instantiation (e.g., E-First, ER-First, E-
High, ER-High), with values in [0,1] following the
Jaccard index definition.
To increase the uniformity of the embedding
space, we introduce a mutual dissimilarity loss that
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penalizes the similarity between embeddings of
dissimilar entities. This promotes the even distribu-
tion of entities in the latent space, preventing overly
dense embeddings. The Mutual Dissimilarity Loss
is defined as:

2 5 Sq Sj
Eollor o) = 5515 2 2 Tl Tl
©
where B denotes the batch size, The terms ||s;|| and
||s;|| represent the norms of embeddings vectors s;

and s;.

4.3 Model Training and Inference

Our framework captures structural granularity at
different levels. Therefore, we define two types of
similarity-based losses—one for first-order and an-
other for higher-order information—each incorpo-
rating terms from both entity (E) and entity-relation
(ER) perspectives. These losses are formulated as
follows:

LFirst/High _
KISCL

The total loss function, combining the KGE
backbone loss and the weighted contrastive learn-
ing loss LkiscL, is given by:

ER-First/High

+ 8L,

N LE-FIrSt/ngh + ALy, (10)

1D

To mitigate structural interference, our proposed
decoupled-integrated learning framework utilizes
a two-phase optimization. It first allows for sep-
arate training to leverage diverse similarity-type
strengths, then integrates local and global struc-
tural information via an embedding fusion strategy
for joint prediction:

Lo = Lige + LxiscL-

z = - Zfiest + (1 — ) - Zhigh. (12)

S Experiment

5.1 Dataset

For the link prediction task, we adopt four widely-
used benchmark datasets: WNI18RR (Dettmers
et al., 2018), FB15k-237 (Toutanova and Chen,
2015), YAGO3-10, UMLS, and Kinship (Kok and
Domingos, 2007). For the entity classification task,
we adopt two benchmark datasets, including AIFB
(Bloehdorn and Sure, 2007) and MUTAG (Ristoski
et al., 2016). These datasets vary in size and com-
plexity, allowing for a comprehensive assessment
of our method across different types of knowledge
graphs. We use the training set to compute KG
similarity and train the model. For further details,
please refer to Appendix B.

5.2 Baselines

In our study, we conducted a comparative anal-
ysis of our methods against various KGEs. The
translation-based methods we considered encom-
pass TransE (Bordes et al., 2013), RotatE (Sun
et al., 2019), PairRE (Chao et al., 2021) and
HAKE (Li et al., 2022). The tensor decomposition-
based methods include CP (Hitchcock, 1927), Com-
plEx (Trouillon et al., 2016), DisMult (Yang et al.,
2015), N3 (Lacroix et al., 2018) and DURA (Zhang
et al., 2020). The text-based methods we eval-
uated include SimKGC (Wang et al., 2022), LP-
BERT (Li et al., 2023a), C-LMKE (Wang et al.,
2023), GHN (Qiao et al., 2023), HaSa (Zhang et al.,
2024), PMD(Fan et al., 2024) and KG-FIT(Jiang
et al., 2024). The GNN-based methods we include
RDF2Vec (Ristoski and Paulheim, 2016), R-GCN
(Schlichtkrull et al., 2018), E-R-GCN (Weller and
Paulheim, 2021) and MQuinE (Shang et al., 2024).

5.3 Evaluation Metrics

The evaluation framework employs two comple-
mentary assessment tasks to comprehensively val-
idate model performance: link prediction for
knowledge graph completion and entity classifica-
tion for structural categorization. This task eval-
uates the embedding quality through rank-based
metrics, with Mean Reciprocal Rank (MRR) and
Hits@N, where Ne {1, 3,10}. The entity classi-
fication task adopts classification accuracy as its
core metric, quantifying the proportion of correctly
categorized entities against a predefined taxonomy.

5.4 Implementation Detail

Our framework SaCa is implemented based on Py-
torch (Paszke et al., 2019). For fair competition,
we ensure consistency with the baseline configu-
rations as presented in the original papers. For
further details about the novel weighting parame-
ters, please refer to Appendix A. The implementa-
tion is publicly available at https://github.com/
ninjaX2o/SacCa.

5.5 Main Result

Table 1 summarizes the link prediction results
for our SaCa framework when applied to various
baseline models on the WN18RR and FB15k-237
benchmark datasets. Detailed link prediction re-
sults for the smaller UMLS and Kinship datasets
are provided in Appendix E.1. To evaluate its effec-
tiveness and generalizability, SaCa was integrated
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WN18RR \ FB15k-237

Methods

MRR Hit@l Hit@3 Hit@10 \ MRR Hit@l Hit@3 Hit@10
Translation Based Models
TransE 0.202  0.014 0.367 0.496 0.329 0.230 0.368 0.526
TransE-SaCa 0.229  0.041 0.388 0.523 0.343  0.244 0.382 0.539
RotatE 0.476  0.428 0.492 0.571 0.335 0.238 0.372 0.530
RotatE-SaCa 0.481 0.435 0.498 0.576 0.356  0.260 0.393 0.548
PairRE 0.451 0.405 0.463 0.545 0.345 0.252 0.381 0.542
PairRE-SaCa 0.461 0.416 0.476 0.555 0.353  0.257 0.390 0.552
Tensor Decomposition Based Models
CP 0.438 0.414 0.444 0.485 0.333 0.247 0.364 0.508
CP-SaCa 0.480  0.447 0.498 0.559 0.358  0.268 0.393 0.543
DisMult 0444 0414 0.454 0.504 0.343 0.251 0.376 0.525
DisMult-SaCa 0.476 0.431 0.493 0.564 0.351 0.262 0.385 0.531
ComplEx 0.460  0.428 0.471 0.522 0.346  0.256 0.382 0.525
ComplEx-SaCa  0.495 0.447 0.512 0.581 0.365 0.272 0.405 0.554
Text Based Models
C-LMKE 0.619 0.523 0.671 0.789 0.306  0.218 0.331 0.484
LP-BERT 0.482  0.343 0.563 0.752 0.310 0.223 0.336 0.490
GHN 0.678 0.596 0.719 0.821 0.339 0.251 0.364 0.518
HaSa+ 0.538 0.444 0.588 0.713 0.304  0.220 0.325 0.483
SimKGC 0.671 0.587 0.731 0.817 0.333 0.246 0.362 0.510
SimKGC-SaCa  0.689 0.619 0.728 0.822 0.355  0.260 0.391 0.545
PMD 0.678 0.588 0.737 0.832 0.331 0.241 0.363 0.518
PMD-SaCa 0.690 0.615 0.740 0.834 0.350  0.255 0.395 0.548

Table 1: Performance Comparison on WN18RR and FB15k-237 Datasets.

Methods | AIFB | MUTAG
RDF2Vec | 0.889 | 0.672
RGCN 0.931 | 0.682
RGCN-SaCa | 0.944 | 0.706
ER-GCN | 0913 | 0.682
E-R-GCN-SaCa | 0936 | 0.693

Table 2: Comparative evaluation of SaCa against base-
line KGE models on entity classification tasks.

into popular KGE baselines across different cate-
gories. The results demonstrate that applying SaCa
generally leads to notable improvements over the
respective baseline models across evaluation met-
rics. For instance, SaCa boosts the performance
of Translation Based Models on WN18RR by an
average of 5.54% in MRR and a significant 65.74%
in Hit@1 relative to their baselines. For Tensor De-
composition Based Models on WN18RR, the aver-
age relative gains were 8.59% for MRR and 5.51%
for Hit@ 1. When applied to SimKGC (Text Based)
on FB15k-237, SaCa increased MRR by 6.61% and
Hit@1 by 5.69% relatively. This underscores that
SaCa’s proposed graph-induced weighting mecha-
nism effectively introduces nuanced structural su-
pervision, leading to enhanced differentiation be-
tween semantically similar entities.

Further analysis, as shown in Table 2, compares
SaCa with GNN-based methods on the entity classi-
fication task. Unlike GNNs, which mainly depend
on neighborhood aggregation and are prone to over-
smoothing, SaCa leverages its distinctive KISCL
loss to more effectively align and distinguish enti-
ties across diverse structural patterns and relational
contexts. This approach resonates with prior stud-
ies Zhang et al. (2022); Li et al. (2023b), which
highlight the critical role of loss function design
over complex information propagation schemes in
enhancing KGE performance.

In summary, the consistent improvements ob-
served when applying SaCa—across datasets of
varying sizes and for different tasks —demonstrate
its robustness and versatility as a powerful enhance-
ment for a diverse range of KGE models.

5.6 Semantic Confusion Rate Analysis

To quantitatively evaluate the model’s capacity
in distinguishing semantically proximate entities,
we evaluated our method against three categories
of baseline approaches using a curated challenge
subset consisting of 1,200 high-similarity entity
pairs based on pretrained embeddings from the
WN18RR dataset. Then, we propose the Semantic
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Confusion Rate (SCR) metric:

N
SCR = % Z I (rank&))l’fem > rankfdgarest_distractor) )
i=1 (13)
where rankgorect denotes the rank of the
ground-truth entity in prediction results, and
nearest_distractor represents the most semantically
similar competing entity identified through cosine
similarity in the embedding space. Lower SCR
values indicate superior discrimination capability.
As shown in Table 3, the baseline models ex-
hibit increasing SCR with higher semantic similar-
ity. However, our SaCa demonstrates progressively
greater advantages in higher similarity intervals.
The relative SCR reduction reaches 7.5% in the
> 0.9 range, compared to 5.2% reduction in 0.8-
0.9 and 4.1% in 0.7-0.8. This pattern suggests our
method particularly excels at resolving subtle se-
mantic distinctions.

Method Similarity Range
0.7-0.8 0.8-0.9 >0.9

TransE 243+12 31715 432+21
RotatE 21.8+1.1 284+13 39619
ComplEx 189+£09 237+1.1 341+%1.6
KG-BERT 19.7+£1.0 253+12 36417
SimKGC 162+08 205+1.0 298+14
SimKGC-SaCa 121+0.6 153+0.7 223+0.9

Table 3: Semantic Confusion Rate (SCR) results (%).

5.7 Ablation Analysis

Our ablation study on ComplEXx, presented in Ta-
ble 4, confirms the necessity of each component
in our framework, as their removal consistently
degrades performance. A balanced combination
of Dynamic Alignment Loss terms (L5 and £ER)
is particularly important, since using either term
alone results in substantial performance drops, with
the removal of ESR having the most pronounced
effect on WN18RR. On the sparse UMLS dataset,
higher-order terms prove more effective, corrob-
orating our strategy of leveraging broader graph
contexts.

To further validate our design, we examined
two variants: SaCa-D, which discretizes similarity
scores, and SaCa-S, which restricts the model to
a single relational context. Both variants under-
perform, underscoring the importance of contin-
uous similarity scores and diverse relational con-
texts. Overall, the full SaCa model, by integrating

multiple structural levels, delivers the best results,
demonstrating the complementary synergy of its
components.

Setting WNISRR UML$
MRR Hit@10 | MRR Hit@10

Only £frst 0488 0567 | 0.844 0967
wlo L5 0472 0538 | 0.699  0.898
wlo Lot 0461 0526 | 0.775 0932
w/o Lo, 0483 0558 | 0.838  0.965
Only £7T79" 0492 0577 | 0.850  0.976
wlo L5 0484 0556 | 0.798  0.959
wlo L5er 0469 0538 | 0.836 0972
w/o Lo, 0487 0572 | 0.848 0973
SaCa-D 0472 0549 | 0832 0.6l
SaCa-S 0478 0562 | 0.837 0968
Full SaCa Model | 0.495  0.581 | 0.861  0.982

Table 4: Ablation study results on WN18RR and UMLS
datasets.

~4— CompGCN  —e— KRACL
4 saCa

Rotate

10 20 30 40 50
Proportion of triples for training(%)

Figure 5: Link prediction performance on the FB15k-
237 dataset under low-resourse setting.

5.8 Sparsity Analysis

We evaluated our model’s robustness in sparse sce-
narios through a detailed sparsity analysis on the
FB15k-237 dataset. As shown in Fig. 5, our frame-
work consistently demonstrated superior and more
stable performance compared to baseline models,
even when trained on significantly reduced data
subsets. This resilience is largely attributed to its
ability to leverage higher-order structural contexts,
which our analysis indicates remain relatively rich
even in highly sparse graph conditions where first-
order contexts are diminished. For a comprehen-
sive description of the experimental setup, detailed
performance metrics, and the statistical analysis
of graph properties under varying sparsity levels,
please refer to Appendix C.

5.9 Relational Mode Analysis

The semantics of an entity are inherently multi-
faceted and exhibit variations across different re-
lational contexts. As depicted in Fig. 6, the SCR
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distribution across various relation types demon-
strates how these variations manifest. This ability
can be attributed to our explicit modeling of rela-
tional contexts, enhanced by the incorporation of
relational-aware contrastive loss.

m— SimKGC RotatE  mmm ComplEx mmm SaCa

hypernym

member_meron

ym instance_of has._part
Relation Type

Figure 6: SCR distribution across relation types.

5.10 Scalability Analysis

Time Complexity. Our framework has linear time
complexity O(N (B + K — 1)d), which scales ef-
ficiently with the number of triplets. Empirically,
training on FB15k-237 with TB-based models in-
curs an average additional time of 13.6 minutes,
whereas on WN18RR the average additional time
is 5.6 minutes. Additional efficiency analyses are
provided in Appendix D.

Larger-scale Results. On the larger-scale YAGO3-
10 dataset (~1M triples), SaCa achieves notable
relative improvements over standard models. Ad-
ditional results and detailed comparisons are pro-
vided in Appendix E.2.

6 Conclusion

In this study, we introduce Structure-aware Cal-
ibration (SaCa), a novel framework designed to
mitigate structural drift in knowledge graph em-
beddings. First, we develop a structural proximity
metric by quantitatively leveraging the concept of
overlapping graph context. Second, we propose
KG-induced Soft-weighted Contrastive Learning
(KISCL) to enhance the refinement of embeddings.
Our extensive experiments demonstrate that SaCa
consistently enhances the performance of various
baseline models, underscoring its high compati-
bility, efficiency, and effectiveness with existing
KGE architectures. Our analysis further validates
the framework’s robustness, showing that SaCa
preserves structural consistency while enhancing

discrimination among semantically proximate enti-
ties.

Limitations

The simplicity and versatility of the SaCa frame-
work, along with its ability to consistently improve
KGE models, demonstrate its practical value in
mitigating structural drift and enhancing knowl-
edge graph embeddings. Despite the strengths of
the framework, there are some limitations worth
noting. Firstly, although SaCa leverages global
structural patterns to compensate for the sparsity
of valid triples, its performance may fluctuate on
extremely sparse knowledge graphs due to limited
available context signals. Secondly, as an emerging
approach, the current SaCa framework primarily
focuses on static knowledge graph representations
and lacks mechanisms for modeling temporal evo-
lution in dynamic knowledge graphs. Future work
will explore adapting the framework to dynamic
systems, enabling its extension to time-aware sce-
narios that require temporal calibration.
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Model WNI18RR FB15k-237 Kinship UMLS YAGO3-10
« I6] «@ 5] «@ I6] « B «@ B
TB-based (A = 0.05)
CP 0.05 | 0.15 | 0.025 | 0.075 | 0.025 | 0.075 | 0.025 | 0.075 | 0.005 | 0.015
ComplEx 0.05 | 0.15 | 0.025 | 0.075 | 0.025 | 0.075 | 0.025 | 0.075 | 0.005 | 0.015
DisMult 0.05 | 0.15 | 0.025 | 0.075 | 0.025 | 0.075 | 0.025 | 0.075 | 0.005 | 0.015
Translation-based (A = 0.05)

TransE 0.7 0.1 0.4 0.25 0.8 0.1 0.4 0.1 - -

RotatE 0.7 0.1 0.4 0.25 0.8 0.1 0.8 0.2 - -

PairE 0.7 0.1 0.6 0.1 0.8 0.1 0.8 0.2 - -

PLM-based (A = 0.05)
SimKGC 0.4 0.6 0.5 0.5 - - - - - -
PMD 0.4 0.6 0.5 0.5 - - - - - -
Table 5: Models with corresponding 1 /31 and «y /B2 values for different datasets.

A Hyperparameters Datasets  Entities Relations ~ Edges Classes
AIFB 8,285 45 29,043 4
Table 5 provides the optimal settings for the MUTAG 23,644 23 74,227 2

hyperparameters used. Specifically, for a fair com-
parison, we adhere to the setups of various KGE
models and use the same hyperparameters as pre-
sented in the original papers. The newly introduced
hyperparameters «, (3, and \ are selected via grid
search. The parameter A is consistently set to 0.05
across all experiments. For different KGE model
classes, we adjust the search range accordingly: for
TB-based models, since excessive regularization
can hinder convergence, we search « and 3 within
{0.3,0.15,0.075, 0.05, 0.025, 0.015, 0.005}.
While for Translation-based and PLM-based
models, the range is set from 0.1 to 1.0. Based
on our experiments, we found that sharing
hyperparameters within the same type of model
generally yields better performance.

B Datasets

In this work, we evaluate our proposed methods
on several widely used benchmark datasets. These
datasets cover both link prediction and entity clas-
sification tasks, and vary in terms of size, number
of entities, relations, and edges. Detailed statistics
for each dataset are summarized in Tables 6 and 7.
The diversity and scale of these datasets allow for a
comprehensive assessment of the effectiveness and
generalizability of our approach.

Datasets Entities Relations Train  Valid Test Total Triples
WNI8RR 40,943 11 86,835 3,034 3,134 93,003
FB15k-237 14,541 237 272,115 17,535 20,466 310,116
YAGO3-10 123,182 37 1,079,040 5,000 5,000 1,089,040
UMLS 135 46 5,216 652 661 6,529
Kinship 104 25 8,544 1,068 1,074 10,686

Table 6: Six benchmark datasets for link prediction.

Table 7: Four benchmark datasets for entity classifica-
tion.

C More Details on Sparsity Analysis

To evaluate the robustness of our method in sparse
scenarios, we conducted a sparsity analysis by ran-
domly selecting factual triples to create reduced
training subsets of the FB15k-237 dataset. As
shown in Fig. 5, as the size of the training set
decreased, our model consistently exhibited low
standard deviations in performance metrics, out-
performing the baseline models across all settings.
This demonstrates the SaCa framework’s ability
to maintain robust embeddings even when trained
with limited data, underscoring its effectiveness
in capturing meaningful semantic relationships in
knowledge graphs under sparse conditions.

Furthermore, we performed a statistical analysis
of the out-degree and relationship context quanti-
ties at various sparsity levels for the FB15k-237
dataset, as shown in Table 8. In sparse KGs, the
sparsity ratio directly impacts the out-degree of en-
tities and the availability of 1-hop contexts. Sparse
graphs typically feature fewer entity connections,
leading to a reduction in the richness of 1-hop con-
texts. However, even in highly sparse datasets, such
as the FB15k-237 dataset with 10% sparsity, the
2-hop contexts remain relatively rich. This abil-
ity to maintain rich higher-hop contexts is a key
strength of our approach, ensuring that the model
can still capture meaningful relationships despite
data sparsity.
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Data Subset | Out-degree | Avg 1-hop for E | Avg 1-hop for ER | Avg 2-hop for E | Avg 2-hop for ER
Original 18.76 37.52 18.76 1330.91 230.95
ratios 0.1 2.35 4.71 1.70 176.85 63.97
ratios 0.2 4.15 8.30 2.04 277.25 88.29
ratios 0.3 5.96 11.92 2.32 396.82 110.72
ratios 0.4 7.78 15.56 2.56 547.71 149.28
Table 8: Sparsity levels for the FB15k-237 datasets.
Models UMLS | Kinship
MRR Hit@l Hit@3 Hit@10 | MRR Hit@l Hit@3 Hit@10
Translation Based Models
TransE 0.704  0.547 0.835 0.935 0298  0.113 0.375 0.684
TransE-SaCa 0.708  0.553 0.839 0.936 0.306  0.120 0.394 0.682
RotatE 0.760  0.621 0.877 0.953 0.645  0.500 0.741 0.925
RotatE-SaCa 0.764  0.632 0.874 0.951 0.662  0.521 0.758 0.930
PairRE 0.835  0.740 0913 0.979 0.543  0.379 0.631 0.890
PairRE-SaCa 0.844  0.756 0.917 0.980 0.559  0.392 0.659 0.920
Tensor Decomposition Based Models
CP 0.789  0.679 0.879 0.956 0.633  0.484 0.736 0.928
CP-N3 0819 0.717 0.910 0.966 0.664  0.519 0.768 0.940
CP-DURA 0.810  0.706 0.897 0.962 0.688  0.562 0.792 0.948
CP-SaCa 0.849  0.760 0.932 0.972 0.711  0.580 0.809 0.958
ComplEx 0.783  0.690 0.848 0.948 0.647  0.497 0.749 0.938
ComplEx-N3 0.796  0.707 0.864 0.950 0.654  0.502 0.763 0.943
ComplEx-DURA  0.812  0.715 0.872 0.962 0.662  0.497 0.778 0.944
ComplEx-SaCa 0.861  0.767 0.920 0.982 0.704  0.567 0.806 0.955

Table 9: Performance Comparison on UMLS and Kinship Datasets

Model MRR Hit@l Hit@10
RotatE 0.495  0.402 0.670
HAKE (Li et al., 2022) 0.546  0.462 0.694
MQuinE (Shang et al., 2024)  0.566 0.492 0.711
KG-FIT (Jiang et al., 2024) 0.568  0.472 0.718
CP 0.531 0.467 0.687
CP-SaCa 0.583  0.511 0.710
ComplEx 0.541 0.482 0.693
ComplEx-SaCa 0.589 0.518 0.715

Table 10: Link prediction on YAGO3-10.

D Efficiency Analysis

The efficiency of our framework is evaluated in
two stages: structural proximity measurement dur-
ing preprocessing and the model training phase.
In preprocessing, the Jaccard computation is per-
formed once per dataset, as relational contexts are
deterministic for a fixed knowledge graph. Directly
computing Jaccard similarity for every entity pair
can be computationally expensive, especially with
large datasets. To address this, we employ three
synergistic mechanisms: (1) a feature-context in-
verted index that precomputes entity affiliations
per structural feature, reducing search space from

global comparisons to local feature-specific inter-
sections; (2) frequency-based filtering to exclude
high-frequency, low-discriminative features, and
(3) parallel processing to distribute the workload
across multiple cores. Additionally, we limit the
maximum path length to k& < 4. Previous works
(Lin et al., 2015a; Sun et al., 2018) show that con-
sidering excessively long relation paths is often
unnecessary, as semantically similar entities are
usually not extremely far apart. In contrast to the
conventional Jaccard similarity approach—which
generally incurs a time complexity of O(N? - M)
for N entities with an average context size of M—
our method effectively reduces the complexity to
> per O(m #2), where m denotes the frequency
of feature f. Given that most features occur infre-
quently, and high-frequency features are filtered
out, the summation }_ > O(m £2) is typically
much smaller than N2, leading to significant effi-
ciency gains, especially when enhanced by parallel
execution. Specifically, for larger datasets such as
FB15k-237 and WN18RR, the context extraction
takes approximately 35 minutes and 12 minutes, re-
spectively, on an Intel Xeon Platinum 8352V CPU.
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Entity Similar Entity

Joint 1-hop Relational Context

Joint 2-hop Relational Context

Taylor Miley Cyrus (0.84), (’/common/topic/webpage/category’, (’celebrity/friendship/participant’,
Swift Joe Jonas (0.79), Justin  ’Official Website’), (’/peo- ’/people/person/nationality’, "USA’),
Bieber (0.76) ple/person/profession’, Musician- (’/people/person/profession’, ’/peo-
GB’), (’/people/person/profession’,  ple/specialization_of’, *Artist-GB”)
’Singer-songwriter-GB’)
Bill Hillary Rodham (0.87), (’/people/person/profession’, (’/government_position_of_office’,
Clinton  George W. Bush (0.71), ’Politician-GB’), (’/govern- ’/loca-

Barack Obama (0.68)

ment_position_office’, "USA’)

tion/statistical_region/exported_to’,
’Angola’)

Table 11: Nearest neighbor analysis in FB15k-237.

In the training phase, our framework achieves
linear time complexity, specifically O(N (B + K —
1)d). Here, N denotes the number of triplets, B
is the batch size, and d is the feature dimension.
This complexity arises from two main components:
(1) the Dynamic Alignment Loss, with O(N Kd)
complexity for processing K positive sample pairs
per triplet and (2) the Dissimilarity Loss, with
O(N(B — 1)d) complexity for in-batch negative
sample comparisons. In other words, the compu-
tational complexity of our SemCa framework is
comparable to that of a supervised contrastive loss
function applied to K positive samples, ensuring
computational efficiency. Empirically, for tensor
factorization models, the average extra training
time is 5.6 minutes for WN18RR and 13.6 min-
utes for FB15k-237, with negligible overhead for
smaller datasets like Kinship and UMLS. For text-
based KGE methods with dual-encoder architec-
tures (e.g., SIMKGC and PMD), integrating SaCa
increased running times by merely 15 minutes on
WN18RR and 24 minutes on FB15k-237, respec-
tively. This highlights that the computational over-
head of SaCa is modest and manageable, facilitat-
ing substantial performance gains without a signifi-
cant impact on overall efficiency.

E Supplementary Link Prediction Results

E.1 Results on UMLS and Kinship

We present supplementary link prediction results
on the UMLS and Kinship datasets, further evalu-
ating our SaCa framework. These smaller bench-
marks provide additional insights into SaCa’s per-
formance when integrated with various KGE base-
lines.

As detailed in Table 9, applying SaCa generally
enhances the performance of the baseline mod-
els. For instance, PairRE-SaCa, CP-SaCa, and
ComplEx-SaCa demonstrate consistent improve-

ments across all reported metrics (MRR, Hit@1,
Hit@3, Hit@10) on both UMLS and Kinship
datasets when compared to their original versions.
Notably, for the CP and ComplEx baselines, the
SaCa-enhanced versions also clearly outperform
other comparative enhancement techniques like N3
and DURA across all metrics. The overall results
on these datasets complement the findings on larger
benchmarks, illustrating SaCa’s broad applicability
and significant benefits.

E.2 Results on YAGO3-10

To further assess the scalability of SemCa, we con-
duct experiments on the large-scale YAGO3-10
dataset (~1M triples), as shown in Table 10. No-
tably, YAGO3-10 poses significant demands on
both model capacity and computational efficiency.
Specifically, it boosts CP and ComplEx by an av-
erage of 9.4% in MRR and 8.5% in Hit@1. These
results highlight SemCa’s robust performance and
practical value for large knowledge graphs.

F Case Study

To gain a clearer understanding of how the em-
bedding space encodes semantic relationships, we
conducted a nearest neighbor case study, as shown
in Table 11. We examined Taylor Swift and Clinton,
who, despite both being American figures, repre-
sent distinct semantic prototypes: the former aligns
with cultural domains such as singers and actors,
while the latter is consistently associated with polit-
ical figures. This contrast underscores the model’s
capacity to capture fine-grained semantic distinc-
tions between entities across different domains.
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