SQLSpace: A Representation Space for Text-to-SQL to
Discover and Mitigate Robustness Gaps

Neha Srikanth®*

Victor Bursztyn®* Puneet Mathur® Ani Nenkova®

#University of Maryland *Adobe Research
nehasrik@umd.edu

Abstract
We introduce SQLSpace, a human-
interpretable, generalizable, compact

representation for text-to-SQL examples
derived with minimal human intervention. We
demonstrate the utility of these representations
in evaluation with three use cases: (i) closely
comparing and contrasting the composition of
popular text-to-SQL benchmarks to identify
unique dimensions of examples they evaluate,
(ii) understanding model performance at
a granular level beyond overall accuracy
scores, and (iii) improving model performance
through targeted query rewriting based on
learned correctness estimation. We show
that SQLSpace enables analysis that would
be difficult with raw examples alone: it
reveals compositional differences between
benchmarks, exposes performance patterns
obscured by accuracy alone, and supports
modeling of query success.

1 Introduction

Systems tasked with translating a natural language
utterance to an executable SQL query (text-to-SQL,
or NL2SQL for short) are typically evaluated for
their accuracy on one or more benchmarks such as
BIRD (Li et al., 2024) or SPIDER (Lei et al., 2024).
While these accuracies can be used to rank mod-
els on a leaderboard in a coarse-grained way, this
evaluation paradigm obscures parts of evaluation
that are useful for researchers and practitioners to
know. It cannot answer naturally arising questions
around dataset composition (Why are the accura-
cies for the same model so different on the two
benchmarks?), open challenges for the field that
future work must address (What subsets of data are
easy or difficult for all models?), and explorations

* Work on the SQLSpace representation was completed
during an internship at Adobe Research. Analysis of model
performance for open-source models was done at the Univer-
sity of Maryland after the completion of the internship.

SELECT r.restaurantName
FROM restaurants r
JOIN menuitems mi
ON r.restaurantId = mi.restaurantId
WHERE r.cuisine = 'Italian’
AND r.borough = ‘Brooklyn’
GROUP BY r.restaurantName

“I'm craving some

authentic pasta on

abudget in
Brooklyn”

@

ORDER BY Avg(mi.price) ASC; j
Aspect-Based Feature Discovery @
S
Employs indirect speech act r—r—
Has an aggregate function B
Has nested prepositional phrases a .,.a]
Blind Spot Analysis
°°° code-gemma-9b /A flan-t5-xx1 A
°°° Uses indirect speech act | Uses indirect speech act

0@ Has an aggregate function |
@
P00 %@
)

Contains a CASE statement
————

Employs passive voice | Employs passive voice
R e e S 10D 0 SIPAS S VEIVOICERN)

Omits expected conjunctions | Involves nested logic

Figure 1: Our framework generates compact represen-
tations of NL2SQL examples by ingesting a dataset,
discovering shared properties of dataset items in natural
language, and evaluating these properties on examples
to produce binary feature vectors. Clustering these fea-
ture vectors and examining a model’s cluster-level accu-
racy reveals classes of examples that it systematically
struggles with, called blind spots.

into performance and cost trade-offs (Are there sub-
sets of data on which cheaper models perform as
well as more expensive models?).

A deeper, finer-grained understanding of text-
to-SQL examples could help us better understand
model performance and benchmark composition,
making it easy for practitioners to compare their
own data to existing benchmarks in order to se-
lect the top-performing model on a benchmark that
best reflects their own data. Similarly, such under-
standing would help researchers looking to build
new robustness benchmarks better analyze existing
gaps in datasets and systems in order to inform the
design of new challenge evaluation sets.

To facilitate informed decision-making in scenar-
ios like these, we introduce SQLSpace, a framework
to increase visibility into benchmark composition
and model behavior with minimal human interven-

1533

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 1533-1559
November 4-9, 2025 ©2025 Association for Computational Linguistics

tion.! SQLSpace ingests one or more NL2SQL

benchmarks and extracts human-interpretable fea-
tures of examples (e.g. “has an aggregate func-
tion”) in order to construct generalized vector rep-
resentations of any NL2SQL example (§3) in a
largely automated manner.

We demonstrate the utility of these vector repre-
sentations with three use cases that leverage the rep-
resentations in different ways. First, we compare
the distribution of examples in popular NL2SQL
benchmarks (§4), allowing us to understand which
particular dimensions each dataset uniquely eval-
uates. Then, we compare the strengths and weak-
nesses of 13 models with greater detail than in
leaderboards by clustering examples across bench-
marks that share similar features, and identifying
“blind spots”, or systematic classes of examples that
a model struggles with (§5). We identify two clus-
ters of universal blind spots and multiple clusters
for which cheaper models can outperform expen-
sive ones. Finally, show that learning a correctness
estimator for a given model to inform rewrites of
NL queries that are predicted to fail can improve
accuracy (§6).

2 Background

Task and Evaluation. Text-to-SQL involves
translating natural language question X to a valid
SQL query Y that is executable over a database
with schema S. Along with knowledge of S and
SQL, this task may require other domain knowl-
edge or forms of linguistic and inferential reason-
ing (Gan et al., 2021b). Generated queries Y are
typically evaluated by executing them and com-
paring the resulting output with that produced by
executing the gold query (Li et al., 2024), and com-
puting execution accuracy (EX), or the proportion
of examples for which the results of the predicted
and gold SQL queries match. While other met-
rics, such as PCM-F1 (Hazoom et al., 2021), have
been proposed to award partial credit, we report EX
as our primary evaluation metric due to its wider
adoption in well-established benchmarks (Li et al.,
2024; Lei et al., 2024).

Datasets. Datasets such as SPIDER (Yu et al.,
2018; Lei et al., 2024) and BIRD-BENCH (Li et al.,
2024) are general-purpose benchmarks designed to
reflect realistic queries and use-cases, spanning sev-
eral database schemas and domains. These bench-
marks maintain leaderboards to facilitate efficient

"https://github.com/nehasrikn/robust-sql.

and standardized evaluation and are helpful in gaug-
ing model performance. While some benchmarks
release accompanying analyses on the composi-
tion of examples (e.g. Yu et al. (2018) include
SQL pattern coverage, or “difficulty” metadata),
these statistics are not standardized across datasets
(Appendix C). In turn, it is challenging to identify
qualitative differences between benchmarks and,
more importantly, understand the specific strengths
and weaknesses of the models evaluated on them.

Robustness-oriented benchmarks help address
this by targeting specific model weaknesses. Gan
et al. (2021a) create SPIDER-SYN to measure para-
phrastic robustness (Srikanth et al., 2024) after
finding models vulnerable to synonym substitu-
tion (Utama et al., 2018; Ma and Wang, 2021).
Other SPIDER variants incorporate domain knowl-
edge (Gan et al., 2021b). Pi et al. (2022) study
model robustness to table perturbations, and Chang
et al. (2023) explore 17 perturbation types to both
questions and SQL queries. These types of robust-
ness benchmarks typically rely on hand-designed
perturbations informed by human priors, requiring
significant manual effort. Experts must identify
systematic model failures and craft challenge sets
targeting those errors, as in Chang et al. (2023). As
models improve, this process resembles an itera-
tive cycle where researchers (1) identify remaining
model weaknesses, (2) design challenge sets to tar-
get those weaknesses, after which (3) models are
optimized to saturate those challenge benchmarks.
Not only is this process costly, but it risks overlook-
ing robustness gaps for particular combinations of
properties of NL2SQL examples, or more broadly,
along other dimensions not explicitly included in
these benchmarks. SQLSpace addresses these gaps
in NL2SQL model robustness evaluation with min-
imal human intervention (Appendix A).

3 Representation Discovery

Understanding the composition of NL2SQL
datasets offers both theoretical and practical bene-
fits. It facilitates a deeper scientific understanding
of the NL2SQL task by identifying requisite reason-
ing abilities as well as informed decision-making
about model and benchmark selection for differ-
ent use cases. We introduce a method, SQLSpace,
to discover interpretable feature-based representa-
tions of NL2SQL examples which we use for down-
stream analysis on benchmarks (§4) and model per-
formance (§5).

1534

https://github.com/nehasrikn/robust-sql

3.1 Motivation

We motivate SQLSpace with a simplified thought
experiment designed to illustrate the opacity of
accuracy-based leaderboard evaluation (Figure 2).
Consider a model M that scores 80% accuracy
on benchmark B. Conventional NL2SQL leader-
boards simply rank models by this accuracy, ob-
scuring deeper performance characteristics of M.
However, grouping examples according to shared
properties (e.g., queries containing nested SELECT
clauses or ambiguous entity references) and ana-
lyzing model predictions within and across these
groups could reveal more about the strengths and
weaknesses of M. For this thought experiment,
we assume exclusive class membership, though we
revisit this in §5.

Fig. 2 illustrates three scenarios that all main-
tain the 80% accuracy of M while exhibiting fun-
damentally different error distributions: (1) per-
fect accuracy on certain classes and complete fail-
ure on others, (2) uniform performance across all
classes, and (3) mixed performance within individ-
ual classes. This breakdown helps us better under-
stand M. Furthermore, the lower panel of Fig. 2
illustrates that example class distributions may vary
significantly across benchmarks (§4). If benchmark
B contains disproportionately many examples with
nested clauses relative to other evaluation sets, this
compositional bias could account for M’s degraded
performance on B, since the upper panel shows a
scenario in which M systematically fails on those
types of examples. The SQLSpace representations
we build in this section help us automatically iden-
tify such shared properties, facilitating scalable
benchmark and model analysis.

3.2 Representation Construction

SQLSpace ingests a set of examples and involves
four steps to semi-automatically produce general-
purpose vector representations of examples: (1)
aspect-based example description generation, (2)
feature discovery from descriptions, (3) feature
deduplication, and lastly, (4) representation con-
struction (inference) on examples.

Development Example Set. We use a portion of
the development set from the UNITE corpus (Lan
et al., 2023) (UNITE-DEV) for automatic feature
discovery since it collates several public NL2SQL
datasets. The portion we use includes a total of
10,697 examples from SPIDER (Yu et al., 2018),
SQUALL (Shi et al., 2020), SPIDER-SYN (Gan

Benchmark Test Set

Figure 2: Aggregate accuracy may obscure important
performance characteristics of models. Three models
with identical 80% accuracy on benchmark B exhibit
different error patterns across example classes, while
varying class distributions across benchmarks can ex-
plain performance differences.

et al., 2021a), CRITERIA2SQL (Yu et al., 2020),
SPARC (Yu et al.,, 2019b), CoSQL (Yu et al.,
2019a), SPIDER-DK (Gan et al., 2021b), PARA-
PHRASEBENCH (Utama et al., 2018), KAGGLED-
BQA (Leeetal., 2021), ACL-SQL (Kaoshik et al.,
2021), SEOSS-QUERIES (Tomova et al., 2022),
and FIBEN (Sen et al., 2020). Examples in these
benchmarks span various natural language con-
structions, SQL patterns, and database schemas,
making the compilation well-suited for discovering
generalizable features. Though we select UNITE-
DEV, our method is dataset-agnostic, and in prac-
tice can be applied to any example collection.

Step 1: Description Generation. Building a
human-interpretable example representation re-
quires identifying diverse and meaningful proper-
ties of NL2SQL examples that may not necessarily
be captured by traditional embedding methods.?

For an example e with natural language question
X and gold SQL query Y, a Describer model gen-
erates five descriptions of e that focus on different
“aspects” related to the NL2SQL task:

1. Syntax (dsy,): Commentary on the linguistic
syntax of X, including word order, grammati-
cal relations, sentence structure, etc.

2. SQL Syntax (dq.syn): Covers elements of
Y, including the structure and complexity of

*We experimented with instruction-tuned embedding mod-

els for generating representations, but found they focused on
shallow features, even after masking schema-specific entities.

1535

l' G QL

Phase 1: Automatically Discover Example Representations

First, the sentence makes use of a
comparative structure with the phrase
“greater..than”. The question utilizes

a relative clause “that have..”

Text-to-SQL Example Corpus

Generate descriptions of examples

Phase 2: Analyzing Benchmarks and Models

—s,— & ' '

o F 9,

o) e | P @O

[o, 1, 0, 1, 0, ..]
gpt-do-mini Detect feature presence Compare model
to build representations Cluster £ lust
Analysis Datasets and Models \ ROIONMANCOONICIS ery

Countries that

Blind Spot Analysis L

Blind
have a greater land Spot
area than the USA /\

uses exact column names

Countries that have
greater surface area 00 M
than the USA SELECT T1.surface_area
Rewrite example without from c:usmf[qy_areas
blind spot features @

Figure 3: We discover representations of NL2SQL examples, and then use these representations in two applications:
fine-grained analysis of models and benchmarks, and improving performance of models by rewriting NL questions

to eliminate features associated with incorrect predictions.

employee: id, name, salary, dept_id | department: dept_id, name
Question (X): How many employees earn more than their department’s average salary?

SQL (Y'): SELECT COUNT(*) FROM employee e WHERE salary > (SELECT AVG(salary)
FROM employee WHERE dept_id = e.dept_id)

Aspect # Example Predicates (p) Evaluated
Syntax 74 omits expected conjunctions 0
(40%) contains subordinate clauses 1
contains nested conditionals 0
SQL 41 includes a subquery 1
Syntax (22%) has an aggregate function
contains a CASE statement 0
Example 27 involves nested logic 1
Semantics (14%) has direct relationship 0
requires domain knowledge 0
Pragmatics 33 employs direct speech acts 1
(18%) relies on conversational impl.
exhibits minimal ambiguity 1
Database 17 uses exact column names 1
Reasoning (9%) requires commonsense reasoning 0
mirrors schema structure 1
Total (P) 187 (100%)

Table 1: Our final set of natural language predicates, P,
spans multiple aspects of NL2SQL examples. Building
a representation of an example e involves evaluating
each predicate p on e to produce binary feature vector.

the query as well as SQL keywords or other
syntactic elements.

3. Example Semantics (ds): Specific com-
mentary on the relationship between X and
Y, such as parallel characteristics, types of
reasoning required to map between X and Y,
and other similarities and differences.

4. Pragmatics (dprag): Discussion of pragmatic
elements of X such as speech acts (Searle,
1975), adherence to Gricean maxims (Grice,
1975), uses of presupposition (Beaver, 1997)
and implicature (Grice, 1975), and relevance.
May also include commentary on any ambigu-
ity (Wang et al., 2023a) or vagueness (Sapa-
rina and Lapata, 2024).

5. Database Reasoning (dg,): Commentary on
the relationship between X and the database
schema &, including necessary reasoning re-
quired to map between entities in X and
columns in S, etc.

Inspired by aspect-based summarization (Ange-
lidis and Lapata, 2018), these descriptions are de-
signed to capture fine-grained details about ex-
amples in the input dataset. The choice of as-
pects above is informed by previous studies on
the types of reasoning required to solve NL2SQL
problems. We select gpt-40-2024-05-13 as our
Describer?® and generate these five aspect-based
descriptions for all 10,697 examples in UNITE-
DEV using Prompts D.1-D.5 (see Table 11 for ex-
ample descriptions).

Step 2: Feature Discovery. Long-form descrip-
tions generated by the Describer in Step 1 serve
as a repository of aspect-related facts about an ex-
ample. Examples similar in certain aspects may
share phrases or sentences in their descriptions. To
discover shared properties across descriptions, we
use a module from the goal-driven explainable clus-
tering pipeline in Wang et al. (2023b) designed to
propose binary natural language predicates from
descriptions. These predicates then serve as can-
didate features of an NL2SQL example (hence-
forth, we use predicate and feature interchange-
ably). Given a natural language predicate p and a
NL2SQL example e, p(e) = 1 when e expresses p,

3SQLSpace can be run using any Describer, open-source
or proprietary. Future work may explore the effects of different
Describers on generated features.

1536

and p(e) = 0 when e does not express p.

We run a predicate proposal module from Wang
et al. (2023b) which ingests a collection of texts
and a natural language goal, and has a Proposer
LLM generate a list of candidate predicates, es-
sentially performing “in-context clustering.” Con-
cretely, this process iteratively (1) samples a ran-
dom subset of documents from the input collection
and (2) prompts the Proposer to generate a struc-
tured list of n predicates, repeating the process for
j iterations.

For each collection of aspect-based descrip-
tions Caspect (€.8. Csyn = {dsyn,, dsyns, ---}), the
Proposer generates n = 40 predicates per itera-
tion for j = 5 iterations (Appendix E). We use
gpt-3.5-turbo-0125 as our Proposer (see Ta-
ble 1 for example predicates). Note that describ-
ing examples in Step 1 before predicate pro-
posal disentangles reasoning and understanding
examples from the task of finding commonal-
ities across examples in this step. We also use
gpt-40-2024-08-06 as an additional Proposer to
diversify candidate predicates, as different mod-
els prioritize different parts of descriptions when
proposing predicates (see Table 5 for counts of
proposed candidate predicates).

Step 3: Feature Deduplication. The pool of
candidate predicates for each aspect generated by
the Proposers in the previous step contains dupli-
cates (“contains a nested JOIN” and “uses nested
JOINS”). We remove them by filtering out those
with high token similarity as measured by Leven-
shtein distance,* and then manually removing any
remaining paraphrases to ensure a clean set.’ This
process yields 187 general-purpose features across
five aspects (Table 1), henceforth denoted as P,
which we exhaustively list in Table 10 as an artifact
of our work that other researchers may leverage.

Step 4: Example Representation Construction.
We now have a set of predicates that can serve as
descriptive features of NL2SQL examples and that
span all components of the example: the natural
language question X, its relationship to the schema
S, and the corresponding SQL query Y. We create

“We use thefuzz with a token set similarity threshold of
€ = 70. This method, based on the Levenshtein edit distance,
compares sets of tokens, ignoring order and redundancies.
It effectively removes predicates with similar wording (e.g.,
contains a JOIN” and uses a JOIN”).

>We also experimented with automatic methods such as
instruction-tuned embedding models, but ultimately relied on
manual deduplication to ensure a clean final predicate set.

a vector representation of an example e by eliciting
binary judgments from a predicate Evaluator with
Prompts F.2-F.5 on {p(e) | p € P} (Wang et al.,
2023b), yielding a |P|-dimensional binary vector.
We use gpt-40-2024-08-05 as our Evaluator.
For each aspect, we only include the relevant com-
ponents of the example in the predicate evalua-
tion prompt (e.g., syntax-based predicates are only
evaluated over the natural language question, or
database reasoning-predicates are only evaluated
over the natural language question and the schema).

We estimate the accuracy of our chosen
Evaluator by randomly sampling 50 example-
predicate pairs for each aspect (250 examples total)
and have two authors independently evaluate the
predicate on the example. The average accuracy of
the Evaluator based on the two authors was 73%.
We compute the agreement between the two annota-
tors, obtaining Cohen’s kappa values of x = 60.2,
indicating substantial agreement (Artstein and Poe-
sio, 2008) (see Table 6 for statistics per aspect).
While we use a larger closed-source model to eval-
uate predicates for proof-of-concept, future work
could explore using fine-tuning lighter-weight mod-
els on the task of predicate evaluation.

What do these example representations help
achieve? Our four-step pipeline (see Appendix B
for ablation discussion and further intuitions) pro-
duces |P|-dimensional binary vectors that serve as
a general-purpose unified representation for any
NL2SQL example. These representations enable
various analyses, including comparing dimensions
along which benchmarks significantly differ (§4)
as well as understanding fine-grained classes of
examples across benchmarks on which NL2SQL
models struggle (§5). They also allow us to build
a correctness classifier to estimate the likelihood
that a model will produce correct SQL for a natural
language example, and in cases where an exam-
ple exhibits features associated with blind spots,
intervene to remove them (§6).

4 Comparing Text-to-SQL Benchmarks

Analyzing the composition of datasets can reveal
distributions of example properties within datasets,
and highlight similarities and differences of exam-
ples across benchmarks. These analyses enhance
our understanding of the reasoning skills or knowl-
edge needed to perform well on NL2SQL, and in
turn, can help inform decisions about model de-
sign or new benchmark construction. For instance,

1537

https://github.com/seatgeek/thefuzz

UMAP Projection of Feature Vectors for Text-to-SQL Benchmarks

dataset i
bird_dev ¥ ogd 2
spider_dev Y !
spider_realistic

UMAP dimension 2

UMAP dimension 1

9\
5

Predicate

Utilizes range specifications in o
the natural language query 11.6% 5.6% 7.3%

Has a more detailed filtering o
component in the SQL query 85.2% 52.0% 64.6%

L 3N grounded in the schema, with
% no additional reasoning 16.0% 41.1% 0.9%
¥\ required

Contains elided predicates 4.0% 15.2% 10.0%

hows brevity at the cost of 15.9% 26.0% 29.0%
the quantity maxim : . :

1
5

mploys a WHERE clause with 2.8% 5.2% 8.0%
multiple conditions

Figure 4: Visualizing a UMAP projection (left) of our example representations for three NL2SQL datasets reveals
classes of examples across datasets that share certain properties. Computing the proportions of examples exhibiting
certain features (right) reveals dimensions along which the composition of datasets statistically significantly differs.

discovering the prevalent syntactic complexity of
questions may inspire new linguistically-informed
approaches to modeling or data creation.

Dataset comparison also offers practical bene-
fits. When a practitioner has a proprietary NL2SQL
dataset, Dyarger, understanding prevalent properties
of examples in Dyyeer as well as the dimensions
along which it resembles or differs from existing
benchmarks D 4 or Dp helps them select the cheap-
est model that performs well on their data, and
opens up other avenues such as data augmentation
with benchmarks that closely resemble Dyyrger.

Setup. We compute |P|-dimensional vector rep-
resentations for examples (Step 4 in §3) in three dif-
ferent datasets: (1) the development set (1,034 ex-
amples) of SPIDER (Yu et al., 2018), one of the pre-
vailing cross-domain benchmarks in the NL2SQL
community (SPIDER-DEV), (2) the development
set (1,534 examples) of BIRD-BENCH (Li et al.,
2024), another popular large-scale cross-domain
benchmark released as an updated, more chal-
lenging alternative to SPIDER-DEV(BIRD-DEV),
and (3) SPIDER-REALISTIC (Deng et al., 2021),
a dataset of 508 examples based off of SPIDER-
DEV designed to reflect more realistic natural lan-
guage questions. We pose a scenario in which
SPIDER-REALISTIC is a target dataset whose com-
position we want to better understand as compared
to established benchmarks SPIDER-DEV (D 4) and
BIRD-DEV (Dp) to illustrate the utility of our vec-
tor representations.

Comparing SPIDER-DEV and BIRD-DEV. Fig-
ure 4 visualizes a UMAP projection (Mclnnes
et al., 2018) of feature vectors of all examples in

D4, Dp, and Dyyrge; into two dimensions.® While
dataset-specific clusters do emerge for SPIDER-
DEV and BIRD-DEV, Figure 4 reveals classes
of examples that may share similar properties in
‘P. Referencing hand-annotated difficulty meta-
data released for each example in BIRD-DEV re-
veals that these high regions of overlap between
BIRD-DEV and SPIDER-DEV mainly occur with
BIRD-DEV examples annotated as “simple” (Fig-
ure 5). This aligns with our priors on the construc-
tion of both datasets, as BIRD-DEV was introduced
as a more difficult benchmark due to its complex
schema (Li et al., 2024), and features that are of-
ten associated with simpler examples (use of exact
column names in the natural language question, or
clear mappings between the question and the SQL
query) are more prevalent in SPIDER-DEV exam-
ples (Deng et al., 2021).

Drarget- We observe regions with substantial over-
lap between Diyrger and our two benchmarks, along
with a couple of outlier clusters of Dyyger-specific
examples. To interpret these patterns, we com-
pute the proportion of examples in each dataset
exhibiting each feature and run a chi-square test to
identify features with statistically significant differ-
ing proportions. This allows us to understand the
dimensions along which each dataset is distinct.
The table on the right in Figure 4 shows six
illustrative features and the proportion of exam-
ples in each dataset that express them. The
third row shows a question-schema alignment fea-
ture rarely present in examples from SPIDER-

®To project feature vectors using UMAP, we use a neigh-
bor count (n_neighbors) of 50 and a minimum distance
(min_dist) of 0.01.

1538

REALISTIC (Diarger). This validates our approach,
since it aligns with the creation of SPIDER-
REALISTIC, which was constructed by Deng et al.
(2021) by manually modifying natural language
questions in SPIDER-DEV to remove or paraphrase
mentions of column names. A likely consequence
of this process appears in Row 5, where SPIDER-
REALISTIC contains the highest proportion of ex-
amples that trade satisfying the Gricean maxim of
quantity (Grice, 1975) for brevity.

These analyses allow us to better understand the
skills required to perform well on each dataset (e.g.,
BIRD-DEV contains more syntactically complex
examples than SPIDER-REALISTIC: 20% of ex-
amples include mixed use of symbols and words
as compared to 5% in SPIDER-DEV and 6% in
SPIDER-REALISTIC). They illustrate how our
framework can equip a user with detailed knowl-
edge about their dataset when they are trying to
make sense of new Diarer data, and can be repeated
with any other dataset.

5 Identifying Model Blind Spots

We now use the feature space constructed in §3 to
analyze the performance of LLMs when solving
NL2SQL problems. Models must not only be ac-
curate (i.e, predict SQL queries correctly), but also
robust (consistently correct in the face of diverse,
potentially flawed, or difficult inputs).

While many robustness studies create datasets
targeting specific weaknesses (Deng et al., 2021;
Gan et al., 2021a), they may overlook model ro-
bustness gaps on examples with unique combina-
tions of properties. Building on the ideas in §4,
we cluster examples across datasets and analyze
LLM correctness by cluster to identify challenging
example classes for each model. Importantly, this
analysis supplements the metric of execution ac-
curacy on an entire dataset, which may obfuscate
nuanced model behaviors (§3.1).

Clustering Example Representations. We run
K-means clustering over the set union of examples
in SPIDER-DEV and BIRD-DEV, setting £ = 14
using the elbow method (Thorndike, 1953).” Ta-
ble 2 visualizes the distribution of examples in each
cluster along with the raw example counts.

Model Inference. We experiment with 13
instruction-tuned LLMs whose behavior we would

"We use the implementation from https://github.com/
DistrictDatalLabs/yellowbrick.

like to better understand, making sure to in-
clude a mixture of closed and open-source mod-
els, code-based and general purpose language
models, as well as models of different sizes:
7B code and chat-based gemma models (Team
et al., 2024), 7B and 13B code and chat-based
1lama-2 models (Touvron et al., 2023), 3B and
8B code granite models (Mishra et al., 2024),
1.3B and 7B code deepseek models (Guo et al.,
2024), as well as gpt-4o0, gpt-40-mini, and
gpt-3.5-turbo (Hurst et al., 2024).3 We generate
predictions for all examples in SPIDER-DEV and
BIRD-DEV with all models using Prompt G.1 in
a zero-shot manner (Gao et al., 2023; Yang et al.,
2024), which includes the database schema and
three example rows of values. We report execu-
tion accuracy (EX) over the full datasets (Table 2,
Column 1) as well as per cluster (Columns 2-15).

Blind Spots. All models have varying perfor-
mance across clusters that, in some cases, signif-
icantly deviate from their overall EX (Table 2).
For example, all models perform well on exam-
ples in Clusters 1 (Cy) and 12 (Cq2), averaging
well above their overall accuracy on SPIDER-DEV.
Conversely, all models struggled with Cg and C1,
including the strongest model overall, gpt-4o.

We train a random forest classifier with 100 esti-
mators on all (feature vector, cluster label C) pairs
to identify important features for each cluster us-
ing mean decrease in impurity. For example, Cg
contains examples with complex conditional ex-
pressions and technical jargon (Table 9). We call
this a blind spot of models, or a class of examples
on which a model systematically achieves low per-
formance as compared to its overall accuracy. In
contrast, Cy contains examples that filter data from
a single column of the table and uses aliases for ta-
ble or column names, requiring minimal additional
reasoning to map effectively (Table 9).

Cluster-based analysis also allows us to iden-
tify classes of examples for which cheaper, smaller
models perform competitively with larger ones or
where open-source models may perform at par with
proprietary ones. For example, granite-code-3b
performs on par with deepseek-coder-7b on ex-
amples in Cy4, and even exceeds its performance
on examples in C;. deepseek-coder-1.3b, our
smallest model, outperforms granite-code-3b on
C13, while performing on par with it on Ci4.

8The analyses are model and dataset-agnostic. Others may
select any model they want to analyze.

1539

https://github.com/DistrictDataLabs/yellowbrick
https://github.com/DistrictDataLabs/yellowbrick

Cluster Number Cy Cy Cs Cy Cs

Cg Cr Cs Cy Cio Cny Ci2 Ci3 C1a

total examples 148 303 194 203 87 146 234 230 275 160 147 130 161 150
Distribution @ @ @ @ @ @ @ @ @ @ 9 @ @
[BIRD-DEV (1534) 52 254 167 92 13 101 14 223 258 133 41 4 116 66
[SPIDER-DEV (1034) 96 49 27 111 74 220 7 17 27 106 126 45 84
%SPIDER-REALISTIC (508) 6.7 8.9 41 9.1 1.9 16.5 1.6 3.7 3.1 2.8 124 2.6 3.7 9.8
gpt-4o-mini (37.1/76.1) 8453 561 (25 3972 42429 32 47925 684@D 16504 46525 28120 [69.4 (@D 1892W0T 659 (23) 547 (25
gpt-40 (13.7/76.1) 87.8 1D 63.0(23) 4072 4782 598020 56225 9.2 274020 5205 33102 6802 88500 658022 567 25)
gpt-3.5-turbo (33.0/02.1) 74319 4955 3142 34503 66722 4382 5040 13902 41829 262019 558 708D 596 480 2
gemma-7b (19.9/60.9) 70.3 @D 38609 14402 3999 64423 24008 500@) 576 24408 1310D 51025 76208 46625 31302
code-gemma~7b (31.2/66.1) 87.8(10 489225 304@) 305D 51725 47335 556025 100 40.7@Y 219070 5859 85402 577129 44,025
)

deepseek-coder-1.3b (11:/511) 70.9 3D 2710 14402 19706 402 (4

))
))

))

))

))

))
deepseek-coder-7b (23.5/052) | 73.6 (19 383024 22207 976(20) 59804
))

))

))

))

))

))

granite-code-3b (11.5/70.9) 784001 1750149 12901 9710 51725
granite-code-8b (16.6/0 1) 84.513) | 97720 17004 9871 (20 4485
code-11ama-7b (1%.6/50.6) 76.4(18) | 337(22) 90,1 (16) 95119 5295
code-11ama-13b (21 2/66.1) 777070 3969 23208 26620 56325
1lama-2-7b (5.1/21.5) 46.6) 630 46@W 596 11500
11ama-2-13b (6.5/15.0) 588 (Y 15503 103 94 () 25309

30.1 (D 48335 91
41.10CY 57304
31522 54335 570)
43.8 () 6842 520

18.9 19 12500 4220) 66932 37902 260019
14302 31.30@D 21207 61920 84603 5030 40729
15.313) 100 76.9 (18 31.1 2D 26,0 (19

)
)
)
)
19.6 10 13.8(12) 54435 877D 3850 40,0 Y
)
)
)
)

)

35.6(3) 47.0@) 78(M 21107 15613 49735 ‘700CL " 4535 340 (2
41.1@Y 5563 700 25109 16904 5245 78500 46,625 46.0 (2
750 90® 17® 360 3103 1630 36233) 106" 730
24719 34633 3503 730 500 320 75409 9267020 922708

Table 2: We cluster feature vectors for all examples in SPIDER-DEV and BIRD-DEV and compute the mean and
variance of each model’s correctness per cluster. This yields clusters on which models perform well above their

dataset-level execution accuracy (/

) such as in C; and C; 2, while revealing blind spots, or clusters

with systematically low performance (Cg and Cyg). Mapping examples in our Diyge; (SPIDER-REALISTIC) to
clusters with K-means inference reveals that the dataset most resembles clusters with weaker performance (Row 3).

Open-source models like code-gemma-7b perform
on par with proprietary models like gpt-40 on ex-
amples in Cj.

Interestingly, we also observe some general-
purpose language models exceeding the perfor-
mance of their code counterparts on certain clus-
ters (e.g. gemma-7b exceeds the performance of
code-gemma-7b on C4 and Cs, while performing
lower on all other clusters). This could indicate
that examples in these clusters require linguistic or
reasoning skills that general-purpose LLMs may be
better at. While clusters are dataset-dependent and
can be produced with any inference dataset(s), we
explicitly propose and will release these example
clusters of BIRD-DEV and SPIDER-DEYV since they
are popular community benchmarks.

Discussion. This analysis can inform a variety
of downstream applications. Research into the ro-
bustness of NL2SQL models may leverage low-
performing clusters to build challenge splits of the
data, similar in spirit to existing hard splits of nat-
ural language inference data (Gururangan et al.,
2018). Moreover, blind spots could assist in the
generation of adversarial test sets of new challenge
examples expressing combinations of properties
that models systematically struggle with.
Practically, this analysis could help users make
informed model selections, since the majority of
their own data (Diargec) may closely resemble only a
handful of clusters. We illustrate this by running K-
means inference on SPIDER-REALISTIC (Diarger)
to understand which clusters it most closely resem-
bles. Table 2 includes the proportion of SPIDER-

REALISTIC that mapped to each cluster. The high-
est performing cluster, Cj1, includes the small-
est amount of SPIDER-REALISTIC data, with only
2.6% of SPIDER-REALISTIC examples mapped to
it, while the majority of data maps to Cg, where
many models seem to struggle. Smaller models per-
forming on par with larger, more expensive models
in particular clusters that resemble Dyyger allows
practitioners to perform cost-efficient inference.

6 Question Rewriting

While SQLSpace is primarily intended to enable
offline analyses or applications (§4 and §5), we il-
lustrate a query rewriting application that removes
features associated with a model’s blind spots as
a proof-of-concept for an online application. We
pose a scenario where a lightweight correctness
estimator alerts a user when their NL2SQL system
is likely to produce incorrect SQL for a natural
language question. In this case, a user may be in-
formed that their question can be rewritten without
a particular feature to increase the chances that the
system produces correct SQL.

Correctness Estimation. For a model M whose
performance we seek to improve, we first build
a lightweight correctness classifier C' to predict
whether M will produce correct SQL for an ex-
ample given its feature vector. We obtain binary
correctness labels by evaluating predictions from
M on all 10,697 examples in UNITE-DEV and
train a random forest classifier on a subset of data
consisting of feature vectors and correctness la-

1540

. Rewritin;
No Rewriting — o Acf@3

31.2 319 377
23.5 243 308

code-gemma-7b
deepseek-coder-7b

Table 3: Rewriting NL questions in BIRD-DEV that
express features most likely to contribute to an incorrect
prediction by a model improves execution accuracy. We
report accuracy with the top 1 and 3 negative features
(acc@1 and acc@3).

deepseek-coder-7b-it

code-gemma-7b-it
Rewrite v/ Rewrite X

Rewrite v/ Rewrite X

Estimator v/ 22.8 43.7 18.5 51.4
Estimator X 16.0 17.5 15.4 14.7

Table 4: Percentage breakdown of BIRD-DEV examples
by correctness estimator prediction accuracy (“estimator
right or wrong”) and rewrite success Acc@3 (whether
rewriting yielded correct SQL) for code-gemma-7b-it
and deepseek-coder-7b-it.

bels.” Using the remaining set of examples, we
compute feature importance with permutation im-
portance (Breiman, 2001) on negative examples,
giving us an ordering of features in P most con-
tributing to C’s prediction that M will produce
incorrect SQL for an example (see Table 7 for top
predicates for different models).

Rewriting with Correctness Estimation. We se-
lect BIRD-DEV as the dataset on which we aim
to improve model M’s performance. We simulate
an online inference scenario with BIRD-DEV ex-
amples: first, the correctness estimator C predicts
whether M will generate correct SQL for exam-
ple e (calibration plots in Figures 6 and 7). For
predicted failures, we identify top negative fea-
tures in e using the feature importances we pre-
viously computed and prompt a Rewriter (here,
gpt-40-2024-08-06) to rewrite the natural lan-
guage question to address the negative feature it ex-
hibits using Prompt H.1. Here, the Rewriter sim-
ulates a human user who may themselves rewrite
their question when informed that it contains a fea-
ture that may yield incorrect SQL from M.'" Both
the correctness estimator C' and the rewriting fea-
tures are restricted to the 121 features derived from
the natural language question and schema, exclud-

“We use 200 estimators, training them on 90% of UNITE-
DEV examples and computing feature importance using the
remaining 10%. Table 8 contains performance metrics.

10See Appendix H for a discussion on feature modulation
as well as the cost of rewriting.

ing gold SQL-derived features to maintain a realis-
tic inference setting (see Table 8 for performance
metrics of C').

We then evaluate the generated SQL conditioned
on the rewrite and report EX in two settings: Acc@3,
which rewrites the question with the top three nega-
tive features and awards M credit if any of the three
rewrites produce correct SQL, as well as Acc@1,
where we consider only the rewrite conditioned on
the top negative feature.

Results. We evaluate rewriting on two mod-
els: code-gemma-7b and deepseek-coder-7b.
Rewriting questions to remove features that hurt
model performance can help improve accuracy (Ta-
ble 3), especially when rewrites address multiple
negative features (Acc@3). This indicates that mul-
tiple negative features compound to hinder model
performance, and rewriting to eliminate just a sin-
gle negative feature (Acc@1) is often insufficient.
Rather, comprehensive rewrites addressing mul-
tiple negative features that collectively degrade
model accuracy yield more substantial improve-
ments (Acc@3). A realistic setting that leverages
this finding may ask a user to eliminate multiple
negative features in a single rewrite of their query.

Table 4 reveals that in most cases, the correct-
ness estimator produced a correct decision (“Esti-
mator "), but the generated rewrite did not pro-
duce correct SQL (“Rewrite <), illustrating that
the representation space produced by SQLSpace is
meaningful for modeling correctness, but that a
more nuanced procedure to produce better rewrites
would likely further improve accuracy, which we
leave to future work.

7 Conclusion

We present SQLSpace, a framework to construct
unified representations of text-to-SQL examples
semi-automatically. SQLSpace enables detailed
and interpretable examination of NL2SQL bench-
marks to better understand example properties as
well as fine-grained analysis of LLM behavior
across benchmarks, and we argue that having such
analyses is essential for future benchmark construc-
tion and model development in NL2SQL. We lay
the groundwork for several future research direc-
tions, such as data augmentation or adversarial ex-
ample generation informed by model blind spots,
the development of an online “router” to route dif-
ficult examples to larger models, or the design of a
more robust, generalizable correctness estimator.

1541

Limitations

Human Intervention. Our goal is to construct a
meaningful but compact representation space for
text-to-SQL examples with as little manual inter-
vention as possible. While the human effort nec-
essary to construct these representations is signif-
icantly less than other robustness studies that col-
lect manual annotations from database engineers
or SQL experts, our semi-automated pipeline still
contains two points of manual intervention: de-
termining the five aspects on which to condition
description generation, and further predicate filter-

ing.

Correctness Estimator Efficacy. The perfor-
mance of the correctness estimators we train during
our rewriting experiments varies depending on the
dataset, potentially limiting its utility in certain set-
tings. While the estimators do learn meaningful
patterns for the two NL2SQL models we experi-
ment with, it is possible that their ability to estimate
the correctness of other NL2SQL models may vary
based on the dataset. Future work could explore
more complex models beyond random forests to im-
prove the generalization ability of the correctness
estimators, in turn enabling several downstream
applications.

Cost. Several parts of our pipeline utilize closed-
source LLMs. While we do this to establish a
proof-of-concept, as well as an upper bound of per-
formance, we acknowledge the cost associated with
them. Future work could experiment with replacing
the predicator evaluator in §3 with a lighter-weight,
open-source model to enable inference time predic-
tion of features in a new text-to-SQL example.

References

Stefanos Angelidis and Mirella Lapata. 2018. Sum-
marizing opinions: Aspect extraction meets senti-
ment prediction and they are both weakly supervised.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3675-3686, Brussels, Belgium. Association for Com-
putational Linguistics.

Ron Artstein and Massimo Poesio. 2008. Inter-coder
agreement for computational linguistics. Computa-
tional linguistics, 34(4):555-596.

David Ian Beaver. 1997. Presupposition. In Handbook
of logic and language, pages 939-1008. Elsevier.

Leo Breiman. 2001. Random forests. Machine learning,
45:5-32.

Shuaichen Chang, Jun Wang, Mingwen Dong, Lin Pan,
Henghui Zhu, Alexander Hanbo Li, Wuwei Lan,
Sheng Zhang, Jiarong Jiang, Joseph Lilien, et al.
2023. Dr. spider: A diagnostic evaluation bench-
mark towards text-to-sql robustness. arXiv preprint
arXiv:2301.08881.

Xiang Deng, Ahmed Hassan Awadallah, Christopher
Meek, Oleksandr Polozov, Huan Sun, and Matthew
Richardson. 2021. Structure-grounded pretraining
for text-to-SQL. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1337-1350, Online. As-
sociation for Computational Linguistics.

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew
Purver, John R. Woodward, Jinxia Xie, and Peng-
sheng Huang. 2021a. Towards robustness of text-
to-SQL models against synonym substitution. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2505—
2515, Online. Association for Computational Lin-
guistics.

Yujian Gan, Xinyun Chen, and Matthew Purver. 2021b.
Exploring underexplored limitations of cross-domain
text-to-SQL generalization. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 89268931, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language mod-
els: A benchmark evaluation. arXiv preprint
arXiv:2308.15363.

Herbert P Grice. 1975. Logic and conversation. In
Speech acts, pages 41-58. Brill.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming—
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy,
Roy Schwartz, Samuel Bowman, and Noah A. Smith.
2018. Annotation artifacts in natural language infer-
ence data. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 107-112,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Moshe Hazoom, Vibhor Malik, and Ben Bogin. 2021.
Text-to-SQL in the wild: A naturally-occurring
dataset based on stack exchange data. In Proceedings
of the 1st Workshop on Natural Language Processing

1542

https://doi.org/10.18653/v1/D18-1403
https://doi.org/10.18653/v1/D18-1403
https://doi.org/10.18653/v1/D18-1403
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.18653/v1/2021.emnlp-main.702
https://doi.org/10.18653/v1/2021.emnlp-main.702
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/2021.nlp4prog-1.9
https://doi.org/10.18653/v1/2021.nlp4prog-1.9

for Programming (NLP4Prog 2021), pages 77-87,
Online. Association for Computational Linguistics.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Ronak Kaoshik, Rohit Patil, Shaurya Agarawal, Naman
Jain, and Mayank Singh. 2021. Acl-sql: Generating
sql queries from natural language. In Proceedings
of the 3rd ACM India Joint International Conference
on Data Science & Management of Data (8th ACM
IKDD CODS & 26th COMAD), pages 423—423.

Wuwei Lan, Zhiguo Wang, Anuj Chauhan, Henghui
Zhu, Alexander Li, Jiang Guo, Sheng Zhang, Chung-
Wei Hang, Joseph Lilien, Yiqun Hu, et al. 2023.
Unite: A unified benchmark for text-to-sql evaluation.
arXiv preprint arXiv:2305.16265.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew
Richardson. 2021. KaggleDBQA: Realistic evalu-
ation of text-to-SQL parsers. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 2261-2273, Online. As-
sociation for Computational Linguistics.

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng
Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo,
Hongcheng Gao, Wenjing Hu, Pengcheng Yin, et al.
2024. Spider 2.0: Evaluating language models on
real-world enterprise text-to-sql workflows. arXiv
preprint arXiv:2411.07763.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

Pingchuan Ma and Shuai Wang. 2021. Mt-teql: eval-
uating and augmenting neural nlidb on real-world
linguistic and schema variations. Proceedings of the
VLDB Endowment, 15(3):569-582.

Leland Mclnnes, John Healy, and James Melville. 2018.
Umap: Uniform manifold approximation and pro-
jection for dimension reduction. arXiv preprint
arXiv:1802.03426.

Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang
Shen, Aditya Prasad, Adriana Meza Soria, Michele
Merler, Parameswaran Selvam, Saptha Surendran,
Shivdeep Singh, et al. 2024. Granite code models:
A family of open foundation models for code intelli-
gence. arXiv preprint arXiv:2405.04324.

Xinyu Pi, Bing Wang, Yan Gao, Jiaqi Guo, Zhoujun
Li, and Jian-Guang Lou. 2022. Towards robustness
of text-to-SQL models against natural and realistic
adversarial table perturbation. In Proceedings of the

60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2007-2022, Dublin, Ireland. Association for Compu-
tational Linguistics.

Irina Saparina and Mirella Lapata. 2024. Ambrosia:
A benchmark for parsing ambiguous questions into
database queries. arXiv preprint arXiv:2406.19073.

John R Searle. 1975. A taxonomy of illocutionary acts.

Jaydeep Sen, Chuan Lei, Abdul Quamar, Fatma
Ozcan, Vasilis Efthymiou, Ayushi Dalmia, Greg
Stager, Ashish Mittal, Diptikalyan Saha, and Karthik
Sankaranarayanan. 2020. Athena++ natural language
querying for complex nested sql queries. Proceed-
ings of the VLDB Endowment, 13(12):2747-2759.

Tianze Shi, Chen Zhao, Jordan Boyd-Graber, Hal
Daumé III, and Lillian Lee. 2020. On the poten-
tial of lexico-logical alignments for semantic pars-
ing to SQL queries. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1849-1864, Online. Association for Computational
Linguistics.

Neha Srikanth, Marine Carpuat, and Rachel Rudinger.
2024. How often are errors in natural language rea-
soning due to paraphrastic variability? Transac-
tions of the Association for Computational Linguis-
tics, 12:1143-1162.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

Robert L Thorndike. 1953. Who belongs in the family?
Psychometrika, 18(4):267-276.

Laura Tolosi and Thomas Lengauer. 2011. Classifica-
tion with correlated features: unreliability of feature
ranking and solutions. Bioinformatics, 27(14):1986—
1994.

Mihaela Todorova Tomova, Martin Hofmann, and
Patrick Mider. 2022. Seoss-queries-a software engi-
neering dataset for text-to-sql and question answering
tasks. Data in Brief, 42:108211.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Prasetya Utama, Nathaniel Weir, Fuat Basik, Carsten
Binnig, Ugur Cetintemel, Benjamin Hittasch, Amir
Ilkhechi, Shekar Ramaswamy, and Arif Usta. 2018.
An end-to-end neural natural language interface for
databases. arXiv preprint arXiv:1804.00401.

1543

https://doi.org/10.18653/v1/2021.acl-long.176
https://doi.org/10.18653/v1/2021.acl-long.176
https://doi.org/10.18653/v1/2022.acl-long.142
https://doi.org/10.18653/v1/2022.acl-long.142
https://doi.org/10.18653/v1/2022.acl-long.142
https://doi.org/10.18653/v1/2020.findings-emnlp.167
https://doi.org/10.18653/v1/2020.findings-emnlp.167
https://doi.org/10.18653/v1/2020.findings-emnlp.167
https://doi.org/10.1162/tacl_a_00692
https://doi.org/10.1162/tacl_a_00692

Bing Wang, Yan Gao, Zhoujun Li, and Jian-Guang Lou.
2023a. Know what I don‘t know: Handling ambigu-
ous and unknown questions for text-to-SQL. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2023, pages 5701-5714, Toronto, Canada.
Association for Computational Linguistics.

Zihan Wang, Jingbo Shang, and Ruiqi Zhong. 2023b.
Goal-driven explainable clustering via language de-
scriptions. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 10626-10649, Singapore. Association for
Computational Linguistics.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang
Lin, and Chang Zhou. 2024. Synthesizing text-to-
SQL data from weak and strong LLMs. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 7864—7875, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-
cent Zhang, Caiming Xiong, Richard Socher, Walter
Lasecki, and Dragomir Radev. 2019a. CoSQL: A
conversational text-to-SQL challenge towards cross-
domain natural language interfaces to databases. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1962—
1979, Hong Kong, China. Association for Computa-
tional Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radeyv. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911-3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern
Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene
Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit,
David Proctor, Sungrok Shim, Jonathan Kraft, Vin-
cent Zhang, Caiming Xiong, Richard Socher, and
Dragomir Radev. 2019b. SParC: Cross-domain se-
mantic parsing in context. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4511-4523, Florence, Italy.
Association for Computational Linguistics.

Xiaojing Yu, Tianlong Chen, Zhengjie Yu, Huiyu
Li, Yang Yang, Xiaoqian Jiang, and Anxiao Jiang.
2020. Dataset and enhanced model for eligibility
criteria-to-sql semantic parsing. In 12th International
Conference on Language Resources and Evaluation

(LREC).

1544

https://doi.org/10.18653/v1/2023.findings-acl.352
https://doi.org/10.18653/v1/2023.findings-acl.352
https://doi.org/10.18653/v1/2023.emnlp-main.657
https://doi.org/10.18653/v1/2023.emnlp-main.657
https://doi.org/10.18653/v1/2024.acl-long.425
https://doi.org/10.18653/v1/2024.acl-long.425
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/P19-1443

A Human Intervention in SQLSpace

SQLSpace discovers features for representation con-
struction in a semi-automatic manner, avoiding
a scenario in which database engineers manually
come up with perturbations, as in other robustness
NL2SQL benchmarks.

Human Intervention in NL2SQL Robustness
Studies. Many robustness studies rely on signifi-
cant manual effort. Pi et al. (2022) study whether
or not text-to-SQL systems are robust to adversarial
perturbations to the tables and schemas involved
in text-to-SQL examples. Their benchmark took
253 human hours to annotate. Chang et al. (2023)
introduce DR. SPIDER, a dataset that introduces 17
human-created perturbations from database experts
and crowdworkers. Here, human intervention in-
volved (1) crowdsourcing annotators from Mechan-
ical Turk to paraphrase questions from SPIDER, (2)
task experts (3 SQL experts) that review the para-
phrases and categorize them from the text-to-SQL
task perspectives, and (3) more task expert hours (3
SQL experts) review the paraphrased questions that
are generated from models. Task experts create on-
tologies of paraphrases. Lastly, Gan et al. (2021a)
study the robustness of text-to-SQL models to syn-
onym substitution. They introduce SPIDER-SYN, a
human-curated dataset. Four graduates students in
Computer Science annotate their dataset manually.
The graduate students are trained with a detailed
annotation guide, and must to annotate samples in
a trial phrase before annotating the whole dataset.
The annotators manually choose synonyms for sub-
stitution in the natural language questions. They
have two rounds of annotation, and in total, annota-
tors look at 5,672 questions.

Human Intervention in SQLSpace. In contrast
to the related work above, we have no SQL ex-
perts or crowdworkers creating any data or on-
tologies for our framework. The only manual
intervention in SQLSpace involves 1-2 hours of an
author removing semantic duplicates from the gen-
erated predicate list in Step 3 of Section 3. This
required no task expertise, only proficiency in En-
glish.

B Ablation Studies

The primary goal of our pipeline is to better char-
acterize and understand features of text-to-SQL
datasets in a human-interpretable fashion and how

these features help users better understand model

performance. Consider the four steps in the system:
[Step 1: Describe Examples based on Aspects] Here,
given an aspect such as “natural language syntax” or
“linguistic pragmatics”, an LLM generates an aspect-
conditioned description of a text-to-SQL example.

[Step 2: Propose Features (Predicates) from Descrip-
tions] Here, given a collection of generated descriptions,
an LLM can extract short binary natural language predi-
cates that serve as features in SQLSpace.

[Step 3: Remove Duplicate Features] Using a combina-
tion of automatic and manual methods, we clean the list
of generated predicates to produce a deduplicated list of
features.

[Step 4: Compute Feature Vectors for any Inference
Example] For a given text-to-SQL example e, we run
through our list of deduplicated features, and use an LLM
to predict whether or not the feature is present in e to pro-
duce a binary feature vector v that serves as the example’s
representation for downstream use.

What are the intutions behind each step in the
pipeline? The overall goal of SQLSpace is to dis-
cover human-interpretable, generalizable features
of text-to-SQL examples to use in downstream anal-
ysis. The overarching intuition is to create a space
in which to represent queries, without committing
to a prior researcher intuitions. In Step 1, we ask
an LLM to produce a prose description of an ex-
ample containing commentary related to a particu-
lar aspect. These descriptions are an intermediate
checkpoint before predicate generation. One could
imagine suggesting features without descriptions
just by looking at examples, but this is significantly
more challenging for language models since meta-
reasoning about all aspects at once is challenging.
Describing an example before coming up with fea-
tures is similar to how chain-of-thought serves to
improve problem solving in LLMs.

Step 2 simply suggests features extracted from
descriptions. Natural language predicates as fea-
tures lend themselves well to the main goal of
SQLSpace: human interpretability. Features are
short, human-readable, and binary in order to max-
imize the flexibility and interpretability of our
framework. This predicate generation step is taken
from an explainable clustering pipeline (Wang
et al., 2023b) and is positioned as a module that per-
forms “in-context clustering” based on a random
subset of the corpus with explainable cluster proper-
ties. We use the predicate generation module from
their pipeline to produce a list of “explanations” of
shared properties in our corpus of examples. This
automatic process mirrors a manual process of a
database engineer sampling random slices of the ex-
ample corpus and coming up with properties shared
by the majority of examples in the slice.

1545

We employ pruning in Step 3 mainly to reduce
the dimensionality of the feature vectors and dupli-
cate features, removing paraphrases of features to
reduce bloating of the feature set. A refined version
of this step may include the practitioner determin-
ing what types of features they are looking to study
(assuming a prior).

Step 4 is feature vector construction. Step 3 pro-
duces a feature set, and Step 4 builds the feature
vector representation for any example by check-
ing whether a feature is “on” or “off” for an ex-
ample, as in any feature vector construction in
classical machine learning with the exception that
SQLSpace employs an LLM to evaluate whether a
feature is “hot”.

What steps in our pipeline can be ablated? We
discuss three ablative settings that help illustrate
the utility of the decisions made during our pipeline
design: (1) predicate proposal from text-to-SQL ex-
amples directly instead of descriptions which elim-
inates Step 1 altogether (B.1), (2) aspect-agnostic
description generation (B.2) which eliminates con-
ditioning on aspects, (3) non-deduplicated pred-
icates (B.3) which eliminates Step 3 altogether.
We compare the predicates produced in these set-
tings to those produced by our final pipeline in
SQLSpace. These ablations revolve around Step
1 (description generation) and Step 3 (predicate
deduplication). We note that Step 2 (actual gener-
ation of predicates) and Step 4 (inference) cannot
be materially ablated (turned on or off).

B.1 Ablation Analysis 1: Predicate Proposal
Directly from Text-to-SQL Examples

SQLSpace leverages a predicate proposal module
from Wang et al. (2023b), designed to generate a
list of explanations, or predicates by prompting an
LLM to perform “in-context clustering”. This pro-
posal module ingests a subset of examples from the
overall corpus, some natural language goal g, and
an instruction to produce a set of explanations for
the candidate clusters. Formally, it ingests a sample
set S = {zj...x7}, a goal ¢, and an instruction
(for example, “Generate a list of n explanations for
candidate clusters based on the sample set”). See
Section 3 of Wang et al. (2023b) for more details.
SQLSpace uses aspect-based descriptions of ex-
amples instead of NL2SQL examples themselves
as input into the predicate proposal module in order
to disentangle individual example understanding
and reasoning from reasoning required for example

clustering. When generating aspect-based descrip-
tions, an LLLM is forced to reason about an example
from a particular perspective, and the LLM in the
predicate proposal step (Step 2 in SQLSpace) can
simply find commonalities among these descrip-
tions.

Goal of Ablation. To illustrate the utility of this
design decision, we consider an ablative setting
in which we turn off example description gen-
eration altogether (turn off Step 1 of SQLSpace),
and input raw NL2SQL examples directly into the
predicate proposal module, forcing the LLM to not
only reason about individual examples, but also
commonalities across examples. We analyze the
predicates proposed from this setup and compare
them to P, the predicate set resulting from first
running aspect-based example description genera-
tion for each example (Step 1) and inputting these
descriptions into the proposal module.

Setup. We use all NL2SQL examples from
UNITE-DEV as in SQLSpace with the same setup
as described in Step 2 of Section 3. Each sample
passed to the proposal LLM look like so:

Natural Language Question: subject states that
he / she has current hepatic disease.

SQL: select id
hepatic_disease = 1

from records where

We set the goal as following (in contrast to aspect-
specific goals in SQLSpace):

Prompt B.1: Control Goal

Prompt: Here are some examples of natural
language questions and their corresponding SQL
queries. I want to cluster these examples based
on similarities.

Results. This process produced 167 predi-
cates, and after automatically deduplicating with
thefuzz, we obtain 102 predicates, listed in the
first row of Table 12. Manually inspecting these
predicates reveals a few different types of unhelpful
properties:

* Database Content-Based Predicates: Many
predicates revolve around database entities
(e.g “asks about flights and airlines”,
“qQueries about car details and
specifications”, “asks about music
albums and songs”). These are not gen-
eralizable and are database-specific. This is
likely due to the proposal LLM is simply

1546

https://github.com/seatgeek/thefuzz

finding shallow commonalities in entities in
SQL queries. Our aspect-based predicates
(Table 10) are designed to focus on meta-
properties of examples instead of database
content.

Generic Properties of SQL Queries: Propos-
ing predicates from examples themselves
without any prior reasoning or example under-
standing step also yielded predicates that were
vague phrases that generally apply to most
SQL queries, and are hence not discriminative
(e.g. “requests specific information
based on database criteria”, “seeks
details from a database”, or “seeks
to retrieve data based on specific
criteria”). These types of predicates do
not convey meaningful information about
NL2SQL examples, and would be treated as
noise if we chose this setting in SQLSpace.

Operation Focused: When predicates were
not database-specific or generic/vague, they
were mostly focused on the operation that
the SQL query was trying to perform (e.g.
“requests for maximum or minimum
values”, “requests information about
counts or totals”, “asks about
comparisons”). While some of our predi-
cates in SQLSpace are indeed concerned with
these types of SQL operations, SQLSpace’s fi-
nal set of predicates contain much richer infor-
mation about how the natural language ques-
tion and SQL query achieve the operation.

All in all, this ablation experiment highlights
the need for a step which explicitly performs
the necessary example understanding for high-
quality predicates. While SQLSpace is designed
for general-purpose use across NL2SQL applica-
tions, it is possible that practitioners may indeed
want predicates related to topics as a part of their
example representation vector. In these cases,
SQLSpace offers flexibility to describe examples
conditioned on whichever aspects practitioners find
useful.

B.2 Ablation Analysis 2: Aspect-Agnostic
Description Generation

In Appendix B.1, we demonstrated that the predi-
cates produced by eliminating an example under-
standing step before predicate proposal yields low-
quality, generic, and non-generalizable features.

This helped to illustrate the utility of description
generation (Step 1) of the SQLSpace pipeline de-
scribed in Section 3.

Here, we explore another ablative experiment

setting of Step 1 that removes aspect-based condi-
tioning of description generation for each example
(i.e the generation of dgy,, dsgl-syns dsems dprag, and
dgp from Step 1 in Section 3), and instead produces
general descriptions of each example.

Goal of Ablation. This ablation helps to demon-
strate the utility of conditioning descriptions on a
particular aspect. We analyze the predicates pro-
posed from this setup and again compare them to
‘P to understand the impact and role of focusing on
particular aspects of NL2SQL examples.

Setup. For each example in UNITE-DEV, we gen-
erate a general description agnostic of any aspect
using the prompt below (compare this prompt to
Prompts D.1-D.5):

\

Prompt B.2: Generating Descriptions: Control

Prompt: You are an expert SQL programmer and
linguist. I will give you a natural language
question and the corresponding SQL query. I will
also provide the underlying database schema in
the form [database_name] | [table] : [column],
[column] ...| [tablel : ... | I am a
database engineer trying to learn about examples
in my dataset. Output a paragraph describing the
example.

J

We do not instruct the description generator LLM
to focus on any aspect of the example, instead let-
ting it choose what details and information to in-
clude in a summary description of each example.
This process yields high-level descriptions of ex-
amples. Compare two descriptions of the same
example below: the first description is the aspect-
agnostic description, while the second description
is dsyn.

In this example, we are working with a database named ’204_335’ that
contains several tables related to tennis tournaments and match outcomes.
The tables include ’tournament_address’, ’opponents_in_the_final_list’,

’score_in_the_final_list’, ’score_in_the_final_list_number’,
’score_in_the_final_list_number1’, ’score_in_the_final_list_number2’,
and ’'w’. Each table has columns that store various details about

the matches, such as match IDs, addresses, opponents, scores, and
other relevant information. The natural language question asks us to
compare the years 1971 and 1972 to determine which year had the most
matches won by a player named Osborne. The corresponding SQL query
is designed to find this information by selecting the ’date_number’
(which represents the year) from the ’w’ table where the ’date_number’
is either 1971 or 1972 and the ’outcome’ is ’winner’. The query groups
the results by ’date_number’ and orders them by the count of matches
won in descending order, limiting the result to the top entry. The SQL
query effectively counts the number of matches won by Osborne in each
of the specified years and returns the year with the highest count.
This approach ensures that we can identify the year in which Osborne
had the most victories, providing a clear comparison between the two
years in question.

1547

The natural language question "comparing 1971 and 1972, which year has
the most won matches by osborne?” presents several interesting syntactic
features. Firstly, the question starts with a non-canonical structure,
known as "fronting,” where the comparative element "comparing 1971 and
1972" is placed at the beginning of the sentence. This fronting not
only functions to set the stage for the query but also highlights
the focus of the comparison—namely, the two given years. Moreover, the
question employs a Wh-type clause with "which year,"” invoking a selection
process among a defined set of options (1971 and 1972). This clause
acts as the main clause’s subject, making the syntactic structure of the
sentence an embedded question within a comparison framework. The verb
phrase "has the most won matches” maintains subject-verb agreement with
the singular subject "year,” and showcases a superlative construction
("most"”) typical in comparative questions. Additionally, the indirect
object "by osborne” follows a prepositional phrase, where "by” denotes
the agent performing an action. This prepositional phrase functions
syntactically as an adjunct that specifies the performer of the winning
matches. The inclusion of the agent within a comparison emphasizes the
relationship between the syntactic elements and endows the question
with specificity regarding whose matches are being evaluated. The
linguistically intricate layering of a subject-complement (which year),
combined with a comparative framework (more), and the specification of
the agent (by osborne), all contribute to the syntactic complexity of
the natural language question. This structure efficiently narrows down
the information scope while maintaining syntactic coherence in a query
format.

It is worth noting that while the aspect-agnostic
description does produce details that are scattered
across different aspect-based descriptions, it fo-
cuses more on the database content and less on the
meta-properties of the examples.

We take these aspect-agnostic descriptions and
feed them into the same predicate proposal mod-
ule from Step 2 in Section 3, but again change the
natural language goal to be aspect-agnostic, encour-
aging the model to cluster examples and propose
predicates solely based on similarities of generated
descriptions:

Prompt B.3: Control Goal

Prompt: Here are some descriptions of natural
language questions and their corresponding SQL
queries. I want to cluster these examples based
on similarities.

Results. This process produced 171 predi-
cates, and after automatically deduplicating with
thefuzz with a threshold of 85, we obtain 124
predicates, listed in the second row of Table 12.
Inspecting these predicates yields similar results
to Ablation B.1. Many predicates are yet again
focused on database content but to an even higher
degree, ignoring meta-properties of the example
(e.g. “concerns retrieving birth dates
of tennis players”, “seeks the number
of singles released in a specific year
from a music database” or “seeks data
on poker players’ achievements”). These
predicates are not generalizable to other databases
and therefore do not make for strong features in a
unified NL2SQL example representation. Some
predicates are again vague and high-level, ap-
plying to all or a majority of SQL examples
(“utilizes SQL functions and operators”,

“asks for specific information retrieval”,
“focuses on specific data extraction”).
We do however observe that introducing descrip-
tions, and hence a step that focuses on reason-
ing about examples, does start to introduce mean-
ingful predicates (e.g. “demonstrates the use
of INTERSECT operator in SQL queries” or
“requires joining multiple tables in SQL
queries”), something that was not present at all
in Ablation B.1.

It is exactly this behavior that we sought to
encourage with the introduction of aspects in
SQLSpace. However, we still see a focus on pred-
icates related to the SQL query, and very little
representation of the linguistic properties of the
natural langugage question, an important part of
the NL2SQL task. This ablation, taken with the
results from the previous ablation setting, help
to underscore the importance of explicitly pro-
ducing aspect-specific conditions, since they al-
low the model to focus on fine-grained meta-
properties of NL2SQL examples that yield high-
quality, generalizable, and useful predicates.

B.3 Ablation Analysis 3: No Deduplication

Lastly, we discuss a setting in which we ab-
late Step 3 of SQLSpace, predicate deduplication.
This step was included primarily for cleanliness
and avoid noisy or useless features. We run
the predicate proposal step in SQLSpace(Step 2)
with two models: gpt-40-2024-08-06 as well
as gpt-3.5-turbo-0125. Since both LLMs were
provided the same descriptions, many predicates
were duplicated. Without deduplication, Step 2
produced a total of 1,210 predicates (see break-
down in Table 5). This would have yielded 1,210-
dimensional vectors, a prohibitively high dimen-
sion that would decrease interpretability and ease of
usage for users of SQLSpace. Furthermore, dupli-
cate and highly correlated features can affect down-
stream usage (Tolosi and Lengauer, 2011). This
helps illustrate the importance of Step 3, which
reduces 1,212 predicates down to a set of just 187,
improving interpretability, utility, and removing
noise. Furthermore, Step 3 is essential in reducing
the overall latency of SQLSpace, since computing
each individual feature for an NL2SQL example
requires a call to an LLM.

1548

https://github.com/seatgeek/thefuzz

C Comparing SQLSpace Features to
Metadata in SPIDER and BIRD

Spider. The authors of Yu et al. (2018) conduct
an analysis of the SQL hardness of examples in
their dataset to understand dataset composition
from a SQL component perspective. They divide
SQL queries into easy, medium, hard, and extra
hard solely based on the the number of SQL com-
ponents, selections and conditions. This results in
queries with more keywords considered as harder.
These labels are static.

In contrast, SQLSpace does not prescriptively
pre-define what makes an example difficult, but
rather finds examples across datasets that share
properties, and evaluates models on these group-
ings. These groupings can have features that not
only span the gold SQL, but also involve properties
of the natural language question and its relation-
ship to the underlying schema, allowing us to un-
derstand what makes examples difficult for a par-
ticular model (clusters where a model performs
lower than others).

Bird. The authors of Li et al. (2024) annotate ex-
amples as simple, moderate, and challenging, aug-
menting criteria beyond SQL complexity to include
schema linking, reasoning required, and question
intent understanding. Here, they ask annotators to
provide a judgment on a scale from 1-3 across four
dimensions and subsequently rank all examples.
While this setup captures example properties better
than in Yu et al. (2018), it is neither sufficiently
fine-grained nor easily interpretable. A static label
of “simple” does not offer much insight into exam-
ple dynamics enough to carefully understand the
specific properties that make the example simple.

Again, our framework does not pre-define ex-
ample difficulty, simply identifying features that
describe text-to-SQL examples in general, and eval-
uating models on groups of similar examples. Our
187-dimensional vector representations of exam-
ples allow practitioners to thoroughly understand
properties of examples that are simple or challeng-
ing for models.

D Generating Example Descriptions

Prompt D.1: Generating Descriptions: Syntax

Prompt: You are an expert SQL programmer
and linguist. I will give you a natural
language question and the corresponding SQL
query. I will also provide the underlying
database schema in the form [database_namel
| [table] [column], [column] ...| [tablel
2 . | I am a linguist
trying to learn about examples in my dataset
from a linguistic syntax perspective. This
includes anything about word order, grammatical

relations, hierarchical sentence structure
(constituency), agreement, the nature of cross
linguistic variation, and the relationship

between form and meaning. Output a highly
detailed paragraph describing ONLY fine-grained
linguistic syntactic observations about the
natural language question.

\ J

Prompt D.2: Generating Descriptions: SQL Syntax

Prompt: You are an expert SQL programmer and
linguist. I will give you a natural language
question and the corresponding SQL query. I will
also provide the underlying database schema in
the form [database_name] | [tablel] [column],
[column] ...| [tablel : ... | I am a
database engineer trying to learn about examples
in my dataset from a SQL syntax perspective.
Specifically, I would like to learn about the
structure of the SQL query, the complexity of
the query, the relationship between the query
and the provided underlying database schema, and
the nature of cross-database variation. Output
a highly detailed paragraph describing ONLY
fine-grained observations about the SQL query.

J

Prompt D.3: Generating Descriptions: Example Semantics

Prompt: You are an expert SQL programmer and
linguist. I will give you a natural language
question and the corresponding SQL query. I will
also provide the underlying database schema in
the form [database_name] | [tablel] [column],
[column] ...| [table]l : ... | I am a
database engineer trying to learn about examples
in my dataset of SQL queries. Specifically,
I would like to learn about the relationship
between the provided natural language question
and the SQL query. For example, how does the
natural language question relate to the SQL
query? Do they exhibit parallel characteristics,
or is there some reasoning required to map
between the two? What kind of reasoning
is required? What are the similarities and
differences between the two? Output a highly
detailed paragraph describing ONLY fine-grained
comparison-based observations about the natural
language question versus the SQL query.

1549

Bird-Bench and Spider Text-to-SQL Benchmarks

Metadata, Dataset
simple, bird_dev

o moderate, bird_dev
challenging, bird_dev

-1 spider_dev

o~

P

Lo 2

@ -

(7] -

£

£ 5

o -3 & ¥

< . -

> v

=}

-6

22 24 26 28

UMAP dimension 1

Figure 5: UMAP projection of feature vectors from BIRD-DEV and SPIDER-DEV. We color each point in BIRD-
DEV using the hand-annotated metadata released with the dataset. We observe that areas of overlap between
BIRD-DEV and SPIDER-DEYV typically occur on examples annotated as “simple” in BIRD-DEV.

Prompt D.4: Generating Descriptions: Pragmatics Prompt D.5: Generating Descriptions: Database Reasoning

Prompt: You are an expert SQL programmer and
linguist. I will give you a natural language
question and the corresponding SQL query. I will
also provide the underlying database schema in
the form [database_name] | [table] [column],
[column] ...| [table] .. | .. I
am a linguist trying to learn about examples
in my dataset from a linguistic pragmatics
perspective. Specifically, I would like to learn
about the pragmatics of the natural language
question. For example, what speech acts are
used in the question? Include commentary on
Gricean theory, implicature, relevance, and any
other information about how word choice and
context contribute to the meaning. Does the
question exhibit vagueness, underspecification,
or ambiguity that make it difficult to
understand the author’s intent? Output a highly
detailed paragraph describing ONLY fine-grained
linguistic pragmatic observations about the
natural language question.

Prompt: You are an expert SQL programmer and
linguist. I will give you a natural language
question and the corresponding SQL query. I will
also provide the underlying database schema in
the form [database_name] | [tablel] [column],
[column] ...| [table] | ... The
provided natural language question is attempting
to access information from the provided database
schema. I am a database engineer and I want to
learn about the relationship between the natural
language question and the provided database
schema. To what degree is the question grounded
in the schema? Does the question use exact
column names from the schema? Do the concepts
and need expressed in the question have clear
counterparts in the database schema? If not,
what types of reasoning are required to map
between the two? Explain what kind of reasoning
is required. For example, is linguistic
reasoning required (e.g. analogical reasoning,
syntactic reasoning or paraphrastic reasoning)?

Is commonsense reasoning required? Is logical
reasoning required (e.g. deductive reasoning or
causal reasoning). How does the structure of
the question (syntactic or semantic) relate to
the structure of the database schema? Output
a highly detailed paragraph describing ONLY
these sorts of fine-grained observations about
the relationship between the natural language
question and the provided database schema.

1550

of Proposed Predicates F Predicate Evaluation

Aspect gpt-40 gpt-3.5-turbo \ Total
Syntax 100 130 230 Pr F1: Predi T
llfxampltta.Semantlcs 19680 ﬂ; ;i; Prompt: You will be given some text. Determine
I;igg“alzi . it 14 00 whether the TEXT satisfies a PROPERTY. Respond
atabase Reasoning with Yes or No. When uncertain, output No.
Table 5: We propose candidate predicates for each as- Now complete the following example:

pect using both gpt-40 and gpt-3.5-turbo in the pred-
icate proposal step. Each model proposes n predicates
in an iterative fashion. The number of predicates pro-
posed by both models are shown above, stratified by Does the text exhibit the PROPERTY?:
aspect. -

PROPERTY: property
TEXT: question

Prompt F.2: Predicate Evaluation: SQL Syntax

E Predicate Discovery Prompt: You will be given a SQL query and

a PROPERTY. Determine whether the SQL query

: - satisfies the PROPERTY. Respond with Yes or No.
Prompt E.1: Predicate Discovery: Syntax When uncertain, output No.

Prompt: Here are some detailed descriptions

Now complete the following example:
of natural language questions and their

corresponding SQL queries. I want to cluster PROPERTY: property
these descriptions based on observations about SQL Query: query
linguistic syntax.

Does the query exhibit the PROPERTY?:

Prompt E.2: Predicate Discovery: SQL Syntax

Prompt FE.3: Predicate Evaluation: Semantics

Prompt: Here are some detailed descriptions
of natural language questions and their
corresponding SQL queries. I want to cluster
these descriptions based on observations about
the syntax of the SQL query.

Prompt: You will be given a natural language
question and its SQL translation. You will
also be given a PROPERTY. Determine whether
the natural language question and its SQL
translation satisfy the PROPERTY. Respond with
Yes or No. When uncertain, output No.

Prompt E.3: Predicate Discovery: Example Semantics

Now complete the following example:
Prompt: Here are some detailed descriptions > = 7

of natural language questions and their PROPERTY: property

corresponding SQL queries. I want to cluster NATURAL LANGUAGE QUESTION: question

these descriptions based on comparisons between SOL Query: query

the provided natural language question and the

SQL query. Does the question and its SQL translation

exhibit the PROPERTY?:

Prompt E.4: Predicate Discovery: Pragmatics

Prompt F.4: Predicate Evaluation: Pragmatics

Prompt: Here are some detailed descriptions

of naturall language) questions and their Prompt: You will be given a natural language
correspondlr)g ,SQL ueraes. Lol 150 cluster question and its SQL translation. You will
these.de.scrlptlons.based on observations about also be given a PROPERTY. Determine whether
linguistic pragmatics. the natural language question and its SQL

translation satisfy the PROPERTY. Respond with
Yes or No. When uncertain, output No.

Prompt E.5: Predicate Discovery: Database Reasoning

. L Now complete the following example:
Prompt: Here are some detailed descriptions of

natural language questions written to query an PROPERTY: property

underyling database schema. I want to cluster NATURAL LANGUAGE QUESTION: question

these descriptions based on the relationship and SQL Query: query

reasoning between the provided natural language

question and the underyling database schema. Does the question and its SQL translation

exhibit the PROPERTY?:

1551

Aspect Mean Annotator
Accuracy Agreement (k)

Syntax 67.0 41.6

SQL Syntax 86.0 81.6

Example Semantics 77.0 61.4

Pragmatics 63.0 49.0

Database Reasoning 72.0 04.5

Table 6: The average accuracy of gpt-4o on predica-
tion evaluation for a sample of 250 example-predicate
pairs, stratified by aspect. We also compute the Cohen’s
Kappa between the two annotator judgments.

Prompt E.5: Predicate Evaluation: Database Reasoning

Prompt: You will be given a natural language
question that is trying to query a database as
well as the database schema. You will also be
given a PROPERTY. Determine whether the natural
language question satisfies the PROPERTY.
Respond with Yes or No. When uncertain, output
No.

Now complete the following example:

PROPERTY: property
DATABASE SCHEMA: question
QUESTION: question

Does the natural language question exhibit the
PROPERTY with respect to the database schema?

\ J

G NL2SQL Inference

Prompt G.1: NL2SQL Inference

Prompt: Write an SQLite query to answer the
following question given the database schema
and example rows. Please wrap your code answer
using ~°°:

Schema: {schema}

Question: {question}

Write a SQLite query wrapped in "~~~ to answer the
question and output nothing else:

H Question Rewriting

Feature Modulation. Features can be helpful
(““question is grounded in the database schema”)
or harmful (“has vagueness in meaning”) to the
NL2SQL task. Negative examples may express
bad features, in which case we want to remove
them during the rewrite, or be absent of positive
features, in which case we want to add them during
the rewrite. We modulate this mode during prompt-
ing based on manual assignments to features. In
our proposed setting, a human rewriting would nat-
urally modulate this mode themselves.

Cost of Rewriting. Section 6 poses an “online”
scenario in which for an inference example con-
sisting of only a natural language question and the
underlying database schema, (1) a feature vector
is computed for the example using only the set of
features extractable from the question and schema
alone (121 features), (2) a lightweight correctness
estimator ingests this feature vector and outputs
a binary prediction on whether or not the text-to-
SQL model is likely to produce correct SQL for the
question, and (3) if not, alerts the user to rewrite
their query based on the blind-spot features present
in the question. In our simulation of this scenario,
we use an LLM to rewrite the question.

Constructing the feature vector from the natu-
ral language question and database schema is the
step requiring the most compute resources, since
an LLM evaluates whether or not each of the 121
features is present in the example or not. Our ex-
periments leverage gpt-4o0 as the feature evaluator.
While we do not know the number of parameters
in gpt-40, we send concurrent API requests for
each of the 121 features to the model, reducing
the overhead of feature vector computation down
to an average of 10-15 seconds per example. Fu-
ture work may explore the possibility of using a
smaller LLM (e.g 1B—4B parameters) and send-
ing batched inference calls for feature evaluation,
which would likely dramatically decrease the over-
head in an online setting.

We consider two settings in which we feel use
of rewriting can be justified. First, consider a sce-
nario in which we are trying to boost the perfor-
mance of a particularly weak model on text-to-
SQL (e.g. a model not trained on code). As demon-
strated by our experiments in Section H, rewrit-
ing natural language questions to remove negative
features can help boost performance. Rewriting
questions to optimize the performance of a weak
text-to-SQL model can improve accuracy without
the need to retrain or finetune. Second, consider a
scenario in which we are trying to boost the perfor-
mance of a particular large model on text-to-SQL
(e.g. a model with > 100B parameters). Here,
the cost of each call can greatly outweigh the cost
of feature vector construction. Targeted natural
language question rewrites can help optimize the
performance of the model on text-to-SQL without
excessive calls to the large model.

1552

Calibration for Correctness Estimator
of code-gemma-7b-it on bird-dev

Calibration for Correctness Estimator
of code-gemma-7b-it on unite-dev (test)

0.8 —e— Calibration curve 7z
= = Perfectly calibrated 7z

0.8 —e— Calibration curve
— — Perfectly calibrated

g ¢
‘g 0.6 'g 0.6
5 5
é 0.4 % 0.4
g 3
£ I
0.2 0.2
g 0’
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Mean predicted probability Mean predicted probability
(a) Confidence Calibration Plot for code-gemma-7b (b) Confidence Calibration Plot for code-gemma-7b
on the held-out 10% test split of UNITE-DEV. on BIRD-DEV.

Figure 6: Visualizing calibration of the random forest classifiers we train to predict whether or not code-gemma-7b
will produce correct SQL given a compact representation of the example.

Calibration for Correctness Estimator
of deepseek-coder-7b-it on unite-dev (test) Calibration for Correctness Estimator
of code-gemma-7b-it on bird-dev

0.8 —e— Calibration curve

= = Perfectly calibrated 7z 0.8 —e— Calibration curve s

8 — — Perfectly calibrated P
=
G 06 8
g H
= 2 o6
o o
c a
2 k]
E 04
g 8
s g 04
©
[
0.2
0.2
0’
0 0.2 0.4 0.6 0.8 1 ,
0
Mean predicted probability 0 0.2 0.4 0.6 0.8 1

. A Mean predicted probability
(a) Confidence Calibration Plot for

deepseek-coder-7b on the held-out 10% (b) Confidence Calibration Plot for
test split of UNITE-DEV. deepseek-coder-7b on BIRD-DEV.

Figure 7: Visualizing calibration of the random forest classifiers we train to predict whether or not
deepseek-coder-7b will produce correct SQL given a compact representation of the example.

1553

code-gemma-7b

deepseek-coder-7b

requires domain-specific knowledge

involves semantic mapping from NL to DB

adheres to Gricean conversational maxims

requires commonsense reasoning to understand the question
has a slight vagueness in meaning,

involves temporal constraints in the natural language question
employs punctuation for clarity

contains vague or ambiguous language

question is clearly grounded in the provided database schema
uses quantifiers for specificity

Table 7: Top five most discriminative features associated with a model M producing incorrect SQL. We use
permutation importance to derive an ordered list of all predicates in P. During rewriting, we remove (or add in) the

most important feature that the example expresses.

UNITE-DEV BIRD-DEV
P R F1 Acc P R F1 Acc

gemma 79.0 821 80.5 81.1| 524 737 612 709
deepseek 79.7 744 77.0 804 | 40.1 63.2 49.0 70.0

gemma 71.0 763 735 736 | 46,5 50.3 483 66.4
deepseek 70.4 66.5 68.4 73.1 37.1 40.2 38.6 69.9

online | offline

Table 8: Precision, recall, F1, and accuracy of the random
forest correctness estimator for both code-gemma-7b-it and
deepseek-coder-7b-it. We include results from both the
offline version of the correctness estimator that has access to
the full set of P features, as well as the online version that has
access to only the 121 features related to the natural language
question and schema. UNITE-DEV Test is the 10% holdout
set used for feature importances.

Prompt H.1: Rewriting with Natural Language-based Fea-
tures

Prompt: Given the definition of {feature}, I
want to rewrite the following natural language
question to mode {feature}. I want the meaning
and intent of the question to be preserved. The
question I want to rewrite is {question}

It is trying to query a database with
this schema: {schema}. Only output your
rewritten question and wrap it in “‘. Your
question must be as detailed as possible. DO
NOT drop information from the original question.
If the question cannot be rewritten with the
property, output “INVALID”.

Rewritten semantically equivalent natural
language question that expresses {feature}:

I Computational Resources and
Hyperparameters

We run inference for all open-source models on
two NVIDIA A6000 GPUs. We set a temperature
of 0.7 for description generation, and a temperature
of 0.1 during NL2SQL generation.

1554

Table 9: Top 10 most important features computed with permutation importance for all clusters, consisting of
examples from both SPIDER-DEV and BIRD-DEV.

Permutation Importance-Based
Top Features

Cq

involves logical inference beyond direct keyword matching (0.06)

filters data from a single column of the table (0.06)

contains a single condition in the WHERE clause (0.05)

directly aligns with a specific column in the schema, requiring minimal additional reasoning to map effectively (0.04)
requires additional contextual understanding (0.03)

involves reasoning about data representation (0.03)

contains a WHERE clause (0.03)

uses aliases for table or column names (0.03)

requires commonsense reasoning to understand the question (0.03)

C2

contains a single condition in the WHERE clause (0.07)

filters data based on a single criterion (0.06)

retrieves data from multiple tables (0.06)

uses a JOIN operation (0.05)

uses aliases for table or column names (0.03)

utilizes prepositional phrases for modification (0.03)

uses prepositional phrases to modify noun phrases (0.03)

utilizes nominal phrases with modifying prepositional phrases (0.03)
uses modifiers to specify conditions (0.03)

employs a WHERE clause with multiple conditions (0.02)

Cs

uses subordinate clauses for postmodification (0.06)

contains subordinate clauses modifying main clauses (0.05)

contains subordinate clauses (0.05)

contains nested clauses (0.04)

contains relative clauses (0.04)

contains subordinate clauses modifying noun phrases (0.04)

employs relative clauses to modify noun phrases (0.03)

uses complex noun phrases (0.02)

involves the use of logical operators to define selection criteria (0.02)
contains a WHERE clause (0.01)

Cy

uses a LIMIT clause (0.11)

includes an ORDER BY clause (0.07)

limits the selection based on a specific column condition (0.07)
contains a WHERE clause (0.06)

involves comparison operations (0.03)

employs a GROUP BY clause (0.03)

retrieves data from multiple tables (0.02)

uses a JOIN operation (0.02)

uses aliases for table or column names (0.02)

filters data based on a single criterion (0.02)

Cs

includes a HAVING clause (0.2)

employs a GROUP BY clause (0.07)

contains a WHERE clause (0.05)

utilizes comparative numerals and inequality symbols (0.04)

exhibits conditional logic (0.03)

utilizes range specification in nominal phrases (0.02)

directly maps threshold values to their respective columns in the SQL query (0.02)
includes an ORDER BY clause (0.02)

has a complex conditional expression (0.02)

employs comparison operations for numerical values (0.02)

Ce

filters data based on a single criterion (0.05)

retrieves data from multiple tables (0.05)

filters data from a single column of the table (0.05)

uses a JOIN operation (0.04)

contains a single condition in the WHERE clause (0.04)

uses aliases for table or column names (0.03)

involves missing or incomplete information in either natural language question or SQL query (0.02)
requires commonsense reasoning to understand the question (0.02)

clearly grounded in the provided database schema, with no additional reasoning required (0.02)
contains vague or ambiguous language (0.01)

Cr

limits the selection based on a specific column condition (0.08)

contains a WHERE clause (0.07)

has a more detailed filtering component in the SQL query (0.05)

requires domain-specific knowledge (0.04)

follows a basic SELECT-FROM-WHERE structure (0.04)

involves reasoning about data representation (0.03)

involves logical inference beyond direct keyword matching (0.02)
involves interpretation and understanding of context (0.02)

requires understanding of logical operations and condition grouping (0.02)
contains a single condition in the WHERE clause (0.02)

Cs

contains a CASE statement (0.06)

has a complex conditional expression (0.04)

exhibits minimal vagueness or ambiguity (0.03)

adheres to Gricean conversational maxims (0.03)

involves stricter conditions than the natural language question (0.02)

uses aggregate functions in the SELECT clause (0.02)

contains technical jargon (0.02)

requires understanding of logical operations and condition grouping (0.02)

primarily based on direct mappings with some synonymy and domain-specific knowledge required (0.02)
closely grounded in the database schema, although it does not use exact column names (0.02)

Continued on next page...

1555

Table 9 (continued)

Permutation Importance-Based
Top Features

Cg employs a WHERE clause with multiple conditions (0.1)
involves the use of logical AND operators (0.09)
contains a single condition in the WHERE clause (0.05)
uses comparison operators to connect conditions in the WHERE clause (0.03)
filters data based on a single criterion (0.03)
has missing constraints in the sql query (0.02)
contains vague or ambiguous language (0.02)
contains relative clauses (0.02)
underspecifies information (0.02)
exhibits conditional logic (0.02)

Cio includes nested sub-conditions (0.05)
involves the use of logical operators to define selection criteria (0.04)
utilizes range specification in nominal phrases (0.04)
employs logical quantifiers to set multiple criteria (0.04)
involves the use of logical AND operators (0.04)
includes numerical comparison with inequality symbols (0.04)
utilizes range specifications (0.04)
integrates quantified expressions within a conditional framework (0.03)
employs a WHERE clause with multiple conditions (0.03)
employs comparison operations for numerical values (0.03)

Ci1 employs logical connectors and operators (0.08)
uses logical operators to connect clauses (0.07)
uses coordinating conjunctions (0.05)
employs coordinated noun phrases to express relationships (0.04)
uses conjunctions to coordinate noun phrases (0.03)
involves the use of logical operators to define selection criteria (0.03)
uses coordinating conjunctions for enumeration (0.03)
employs coordinated noun phrases (0.03)
employs logical quantifiers to set multiple criteria (0.02)
employs alternative conditions (0.02)

Ci2 requires recognition of implicit relationships between natural language concepts (0.08)
limits the selection based on a specific column condition (0.06)
involves logical inference beyond direct keyword matching (0.06)
involves interpretation and understanding of context (0.05)
breaks down the problem into specific conditions that need to be met (0.05)
contains a WHERE clause (0.05)
demonstrates specificity in language use (0.05)
involves reasoning about data representation (0.04)
directly aligns with a specific column in the schema, requiring minimal additional reasoning to map effectively (0.03)
involves understanding of specific technical terms and concepts (0.03)

Cis contains a single condition in the WHERE clause (0.06)
uses prepositional phrases to modify noun phrases (0.04)
utilizes nominal phrases with modifying prepositional phrases (0.04)
filters data based on a single criterion (0.04)
utilizes prepositional phrases for modification (0.04)
uses a JOIN operation (0.02)
utilizes prepositional phrases to modify nouns (0.02)
retrieves data from multiple tables (0.02)
employs a WHERE clause with multiple conditions (0.02)
uses aliases for table or column names (0.02)

Cia contains subqueries (0.15)
has a nested subquery (0.15)
has a nested SELECT statement (0.13)
involves nested logic (0.06)
uses a nested WHERE clause (0.06)
uses a single select statement (0.04)
uses aliases for table or column names (0.02)
retrieves data from multiple tables (0.01)
uses a JOIN operation (0.01)
uses multiple nested parentheses (0.01)

1556

Table 10:

Final set of 187 predicates used as features in SQLSpace stratified by aspect.

Predicates

Syntax

uses complex sentence structures, involves conditional statements, uses prepositional phrases to modify noun phrases, contains
subordinate clauses modifying main clauses, has a compound sentence structure, utilizes prepositional phrases for modification, has a
conditional clause, employs passive voice constructions, contains elided predicates, contains subordinate clauses, contains subordinate
clauses modifying noun phrases, employs hierarchically structured sentence elements, contains multiple coordinate phrases joined
by conjunctions, contains relative clauses, uses prepositional phrases to indicate hierarchy, contains a passive voice construction
with a predicate adjective, contains subordinate clauses with multiple conditions, uses subordinate clauses for postmodification, uses
coordinating conjunctions for enumeration, includes nested sub-conditions, contains nested clauses, employs ellipsis, uses mathematical
symbols and units within the syntactic structure, integrates quantified expressions within a conditional framework, uses complex
prepositional phrases, employs non-restrictive modifiers, incorporates post-modifier adjective phrases, contains nested prepositional
phrases, employs technical lexicon, employs parenthetical expressions, employs punctuation for clarity, demonstrates parallel syntactic
constructions, uses shorthand notation, exhibits truncated, telegraphic style, utilizes comparative numerals and inequality symbols,
employs mathematical symbols and units, uses punctuation to parse complex syntactic units, uses non-standard shorthand notation
for numerical range, includes mixed use of symbols and words, uses shorthand notation to indicate range, employs non-standard
linguistic constructions, employs nominal phrases for specification, employs coordinated noun phrases, uses complex noun phrases,
employs relative clauses to modify noun phrases, uses conjunctions to coordinate noun phrases, utilizes prepositional phrases to modify
nouns, employs coordinated noun phrases to express relationships, includes modifiers for noun phrases, employs nominal phrases for
subject and object, utilizes nominal phrases with modifying prepositional phrases, employs nominal phrases as subjects, utilizes range
specification in nominal phrases, employs nominal phrases with elided predicates, uses typographic symbols to modify nouns, involves
the use of disjunctions, employs logical connectors and operators, uses logical operators to connect clauses, uses comparison operations
for selection criteria, uses coordinating conjunctions, uses conjunctions to connect clauses, has a clear logical flow, involves comparison
operations, involves the use of logical operators to define selection criteria, employs logical quantifiers to set multiple criteria, utilizes
range specifications, employs logical quantifiers like *and” and "or’, employs comparison operations for numerical values, employs
Boolean expressions conjoined with logical operators, uses conjunctions to express disjunction, employs inclusive disjunction with *or’
coordinating conjunction, uses modifiers to specify conditions, includes numerical comparison with inequality symbols

SQL Syntax

has a nested subquery, has a nested SELECT statement, uses a nested WHERE clause, contains subqueries, employs a LEFT JOIN,
employs a LEFT OUTER JOIN, uses a JOIN operation, contains multiple joins, uses a self join, contains a cross join operation, utilizes
a common table expression (CTE), uses logical OR operators, uses multiple nested parentheses, employs a GROUP BY clause, uses a
union operator, includes aggregate functions, contains a WHERE clause, employs a WHERE clause with multiple conditions, includes
a HAVING clause, follows a basic SELECT-FROM-WHERE structure, includes a window function, uses aggregate functions in the
SELECT clause, limits the selection based on a specific column condition, contains a CASE statement, filters data based on a single
criterion, contains a single condition in the WHERE clause, uses a LIMIT clause, involves the use of logical AND operators, employs a
recursive common table expression, contains a pivot or unpivot operation, uses a correlated subquery, uses comparison operators to
connect conditions in the WHERE clause, uses a single select statement, includes an ORDER BY clause, contains a UNION ALL
operator, uses aliases for table or column names, retrieves data from multiple tables, filters data from a single column of the table, uses
a distinct keyword, has a complex conditional expression

Example Seman-
tics

requires understanding of logical operations and condition grouping, involves understanding of specific technical terms and concepts,
involves semantic mapping, requires domain-specific knowledge, involves parallel characteristics between natural language and
sql query, involves logical inference beyond direct keyword matching, requires mapping of natural language concepts to database
schema, involves stricter conditions than the natural language question, has a direct relationship with no reasoning required, has a
more detailed filtering component in the SQL query, directly maps threshold values to their respective columns in the SQL query,
involves interpretation and understanding of context, requires recognition of implicit relationships between natural language concepts,
involves reasoning about unique identifiers, involves reasoning about data representation, requires identifying table and column
names, has missing constraints in the sql query, requires technical familiarity with the database schema, requires additional contextual
understanding, involves complex logical reasoning, involves missing or incomplete information in either natural language question or
SQL query, requires mapping of high-level concepts to database schema, breaks down the problem into specific conditions that need to
be met, involves nested logic, requires recognizing present state vs. past action, involves temporal constraints in the natural language
question

Pragmatics

uses quantifiers for specificity, relies on context for relevance, has a clear and specific request, employs direct speech acts, has a slight
vagueness in meaning, adheres to Gricean conversational maxims, relies on conversational implicature, demonstrates assertive speech
act, invokes epistemic modality, contains technical jargon, has a cooperative intention, uses declarative structure for assertive statement,
demonstrates specificity in language use, employs declarative statements as questions, underspecifies information, exhibits conditional
logic, employs reported speech, seeks specific and measurable information, contains vague or ambiguous language, performs an
indirect speech act, uses disjunction to allow for multiple criteria, employs alternative conditions, shows brevity at the cost of quantity
maxim, assumes prior knowledge, relies on presuppositions, presumes mutual understanding of context, exhibits minimal vagueness or
ambiguity, uses rhetorical questions, demonstrates careful word choice, demonstrates a delicate balance of precision and interpretive
flexibility, underspecified in terms of database schema, implies a causal relationship

Database Reason-
ing

requires commonsense reasoning to understand the question, requires semantic mapping between natural language and schema, requires
both syntactic and semantic reasoning to bridge the question’s semantics to the schema’s structure, involves both synonymy and
analogical mapping to align natural language terms with schema column names, requires commonsense reasoning to understand
the implicit subject of the table entries, primarily based on direct mappings with some synonymy and domain-specific knowledge
required, requires basic deductive logic to map between the natural language question and the schema, clearly grounded in the provided
database schema, with no additional reasoning required, mirrors the structure of the database schema, with little room for ambiguity or
interpretation, directly aligns with a specific column in the schema, requiring minimal additional reasoning to map effectively, uses
exact column names from the schema to query for specific values, involves paraphrastic reasoning to map natural language expressions
to schema-specific terminology, is already expressed in a highly structured and database-oriented way, requiring no additional reasoning
to map to the schema, uses syntactic variation to describe a condition, closely grounded in the database schema, although it does not
use exact column names, semantically aligns with the database schema, but requires some degree of linguistic and commonsense
reasoning to accurately map the concepts

1557

Table 11: Example descriptions used to mine predicates for SQLSpace.

Predicates

Syntax

The natural language question Find the number of orchestras whose record format is ’CD’ or ’DVD” displays a
variety of syntactic features relevant to linguistic analysis. Firstly, the sentence employs a relative clause
(’whose record format is ’CD’ or ’DVD”) that modifies the noun ’orchestras.’ This relative clause specifies a
condition related to ’orchestras,’ showcasing typical English syntactic behavior where the relative pronoun
’whose’ introduces additional information and establishes a relationship between ’orchestras’ and ’record
format.’ The main clause ’'Find the number of orchestras’ contains an imperative verb ’Find,’ which signals a
direct command. This imperative construction lacks an explicit subject, a common feature in English commands
where the subject ’you’ is understood implicitly. The noun phrase ’the number of orchestras’ consists
of a definite article ’the,’ a noun ’number,’ and a prepositional phrase ’of orchestras,’ which together
form a well-defined noun phrase indicating a specific quantity. The prepositional phrase functions as a
postmodifier to specify what kind of ’number’ is being requested. Additionally, the relative clause ’whose
record format is 'CD’ or ’DVD” features a coordination structure 'CD or DVD,’ highlighting a binary choice
within the linguistic structure. The use of ’is’ within the relative clause indicates singular agreement
with ’record format,’ demonstrating subject-predicate agreement. The relative clause further relies on the
copular verb ’is’ followed by the disjunctive conjunction ’or,’ linking two alternatives in a linear syntactic
arrangement, which presents a straightforward binary condition. Overall, the sentence structure exemplifies
several critical syntactic phenomena: the use of imperative mood, relative clause formation, noun phrase
construction, subject-predicate agreement, and coordination within a relative clause, all contributing to
an intricate yet coherent inquiry.

SQL Syntax

The given SQL query is relatively straightforward and has a simple structure, which includes a SELECT
statement aimed at retrieving a single column value from a specific table. The query’s complexity is minimal
because it involves only one table and a straightforward WHERE clause without any JOIN operations, nested
queries, or aggregate functions. In terms of the relationship between the query and the provided underlying
database schema from ’204_206’, the SQL operation specifically targets the ’w’ table. The ‘SELECT‘ clause
chooses the ‘time_greatest_utc‘ column, indicating that the objective is to retrieve the time in UTC format
for a specific date. The ‘WHERE‘ clause filters the rows of the table where the ‘date‘ column matches
’october 3, 2415’. This implies a one-to-one mapping between the question’s focus on a specific date and the
database’s date column, showing a direct translation of the natural language input to SQL command. Moreover,
no type casting or formatting functions are employed, hinting that the provided date format in the query is
directly comparable to the stored data. In terms of cross-database variation, this example uses a fairly
common SQL syntax that should be universally understood across different SQL-compliant databases like MySQL,
PostgreSQL, SQLite, and others without requiring modifications. This universality is due to its use of basic
SQL keywords (SELECT, FROM, WHERE) and standard date format handling. Overall, the SQL statement is simple
and efficient for this specific query because it directly addresses the requirement using the basic querying
capabilities of SQL and is highly readable to those familiar with standard SQL operations.

Example Seman-
tics

In the provided example, the natural language question directly translates to the corresponding SQL query
with a high degree of parallelism. The question specifies ’how many automobiles,’ which maps to the SQL
function ¢ount(*); indicating a need to count rows. The term ’were produced’ implies a filter condition,
which in SQL is represented by the ‘WHERE‘ clause. The specific year ’1980’ in the question is directly
used in the SQL query’s condition ‘YEAR = 1980‘. Thus, there is a clear one-to-one correspondence between
the elements in the natural language and SQL query. The natural language inherently asks for a count based
on production year, and the SQL query represents this request accurately without requiring any complex
reasoning or transformation. Both the question and the query focus on the same entity (automobiles) and
reference the same attribute (year), showing a straightforward and direct mapping with parallel structure
and semantics. The differences lie mainly in syntax and format rather than in conceptual understanding or
logical structure.

Pragmatics

The natural language question ’uncontrolled hypertension’ displays several interesting facets from a
pragmatics perspective. Firstly, it is not presented in the form of a typical question, exhibiting an
elliptical style which omits the interrogative structure commonly expected in querying databases. This
ellipsis can signal a form of implicit performative speech act, where the speaker’s intent is to request
information or specify a condition without using a direct question. According to Grice’s Maxims, the
utterance violates the Maxim of Manner which prefers clarity and the avoidance of ambiguity since the phrase
is underspecified and lacks a clear syntactic structure. The Maxim of Quantity is also in question here,
as the statement assumes a shared understanding of what is meant by ’uncontrolled’ despite not explicitly
mentioning it in the context, thereby creating some potential for ambiguity. This could implicature that
the speaker had previously established a context where the control level of hypertension was discussed,
although it is unexpressed here. Furthermore, the Maxim of Relevance suggests that within the context of
the database schema provided, ’uncontrolled hypertension’ is pertinent to ’hypertension’ being coded as ’'1’,
implicating a shorthand reference within a well-understood domain-specific language. The choice of the term
’uncontrolled’ implies a subjective, clinical threshold which is not necessarily informationally equivalent
to the binary schema indicated in the database but relies on an implied understanding. Therefore, the phrase
exhibits a form of semantic underspecification, leaving it open to interpretation whether ’uncontrolled’
is directly equatable to ’hypertension = 1’. This concise expression’s interpretive relies heavily on the
presumed shared knowledge and context between the issuer of the query and the interpreter.

Database Reason-
ing

The natural language question, ’What are the country codes of countries where people use languages other
than English?’ is well-aligned with the provided database schema for the most part. The question and schema
share direct counterparts: ’country codes’ corresponds to the ’CountryCode’ column in the ’countrylanguage’
table, and ’languages other than English’ is explicitly related to the ’Language’ column in the same table.
The phrasing ’languages other than English’ requires a form of paraphrastic reasoning to translate into the
SQL syntax ‘LANGUAGE != ’English’‘, which involves a negation operation in the WHERE clause. Additionally,
the word ’distinct’ in SQL query (‘SELECT DISTINCT CountryCode‘) is derived from understanding that multiple
countries might have the same code listed under various languages, necessitating uniqueness. Therefore, both
syntactic/semantic matching and an element of logical reasoning are required here to achieve the correct
SQL query. The structure of the question semantically corresponds to the schema as it clearly asks about
the diverse attribute values within specific columns, effectively tapping into the database’s relational
structure.

1558

Table 12: Predicates from ablation studies.

Predicates

NL2SQL Ex-
amples (Abla-
tion B.1)

requests information about entities and their attributes, inquires about top results or rankings, requests data related to issues and
resolutions, asks for information related to specific entities or categories, asks for comparisons between different data points, inquires
about specific data based on criteria, inquires about specific details or attributes in a dataset, requests for maximum or minimum values,
inquires about the maximum or minimum values within a dataset, asks for counts or frequencies, seeks information about the highest
or lowest values, inquires about database queries related to entities, requests counts or sums based on specific conditions, requests
information about counts or totals, seeks specific details based on conditions, asks about the popularity or rankings of certain items, asks
about flights and airlines, seeks to compare different data points, asks for comparisons between different data entries, inquires about
database statistics, queries about car details and specifications, inquires about the number of occurrences or counts, requests specific
information based on numerical values, requests information about rankings or top results, requests specific data filtering criteria,
seeks specific information with numerical results, asks about music albums and songs, asks about comparisons, seeks details on issues
and resolutions, requests specific information based on database criteria, requests specific details about data based on certain criteria,
requests comparisons between different entities, seeks aggregate data based on certain criteria, seeks details from a database, requests
statistical analysis, requests comparison between different data points, inquires about the highest or lowest values, seeks to identify the
top or bottom entries based on a specific attribute, seeks to identify extremes or limits, requires filtering based on multiple conditions,
inquires about numerical values, inquires about numerical comparisons, asks for statistical calculations, requests information based on
conditional criteria, "requests specific details about a single entity, involves comparison between different entities, seeks to find the
maximum/minimum value, asks about singer details, involves querying for specific information, inquires about rankings or superlatives,
inquires about comparative data, requests information about rankings or top values, inquires about relationships between entities,
inquires about TV series and ratings, requests for the count of occurrences based on certain conditions, requests information about
rankings or extremes, asks for counts or statistics from a database, inquires about specific data filtering criteria, asks for details on
winners and rankings, asks for comparisons between different entities, seeks specific information about car details, inquires about flight
details, seeks specific information based on comparisons, seeks details on issue tracking and resolution, requests counts or totals of data,
requests specific information about data based on conditions, seeks details about particular entities, involves querying for statistical
information, inquires about specific data based on conditions, requests counts or sums based on certain criteria, asks for comparisons
or rankings, inquires about winners and rankings, seeks details about maximum or minimum values, requests information based on
aggregate functions, asks about the count or sum of certain database entries, seeks details on data related to winners and rankings,
inquires about specific data points, "seeks aggregated statistical information, seeks information about relationships between different
entities, requests information on document templates and ids, seeks data related to multiple categories, asks for counts or totals, inquires
about rankings or ordering, seeks aggregated results from multiple entities, inquires about data related to specific categories, requests
information on issues and resolutions, requests statistical summaries, requests information on car-related data, requests information on
flights and airlines, seeks to filter and display distinct data entries, seeks aggregate information, asks for details on specific attributes or
characteristics, asks for statistical analysis, seeks details about document templates, seeks comparisons between different data entries,
asks about flight details and statistics, asks for information related to TV series, requests information about the maximum or minimum
value in a dataset, seeks to retrieve data based on specific criteria, asks about the number of occurrences based on certain conditions,
seeks information on contestants and votes, inquires about rankings or extremes

Aspect-Agnostic
Descriptions
(Ablation B.2)

involves correcting errors in SQL queries, retrieves specific information about poker players from a database, concerns retrieving
birth dates of tennis players, addresses a specific issue ID in a database, involves querying for specific information from databases,
involves querying for data based on specific conditions, requests data related to poker player performance, inquires about states with
both guardians and veterinarians, seeks the number of singles released in a specific year from a music database, asks for the birth date
of a player with a specific name, pertains to identifying authors affiliated with a specific organization and working in a particular field,
seeks a list of affiliates with the number of authors working in a specific field, pertains to querying player details from a tennis database,
involves listing affiliates and the number of authors working in a specific field, seeks information on authors in a particular field and
their affiliates, involves counting entries based on a condition in a database, asks for specific information about a player, asks for a count
based on a specific condition, involves querying for specific player details in a tennis database, pertains to counting singles released in a
specific year, involves querying multiple tables with joins, inquires about the number of authors in a specific field per affiliate, targets
a specific issue and retrieves related information, focuses on counting authors in a specific field per affiliate, concentrates on listing
affiliates and authors in a field, seeks information about authors affiliated with a particular organization and field, targets specific data
retrieval based on provided criteria, seeks data on poker players’ achievements, queries for fix version of a particular software issue,
asks for details about final tables made and best finishes of poker players, involves retrieving author names based on affiliations and
fields of study, demonstrates the importance of accurate SQL query formulation, utilizes SQL functions for data retrieval, asks for
the fix version of an issue in a software engineering database, queries for specific details related to software development, requests
information about a specific issue in software development, queries for the birth date of a specific tennis player in a sports database,
inquires about authors affiliated with "PRESTO Japan Science and Technology Corporation’ working in a specific field, inquires about
the presence of specific groups in certain states, utilizes multiple table joins for data retrieval, focuses on joining multiple tables in a
database, retrieves data based on certain conditions, targets a specific issue’s fix version in a software engineering database, utilizes
filtering based on conditions, asks for details about authors and their affiliations, requests data on singles released in a specific year,
focuses on database schema and tables, involves querying for birth date based on player name, inquires about authors affiliated with a
specific organization and field of study, requires joining multiple tables in SQL queries, seeks fix version information for a software
issue in an SEOSS database, queries for states with specific types of residents, requests a list of affiliates in a particular field, asks
for details about poker players’ performance and achievements, asks for the birth date of a player named Justine, involves counting
entries based on specific criteria, emphasizes the importance of accurate SQL query translations, focuses on identifying common
attributes between tables, inquires about poker player performance metrics, joins multiple tables to retrieve data, seeks information
about authors affiliated with specific organizations and fields of study, inquires about the number of singles released in a particular
year, addresses fixing versions of specific software issues, utilizes SQL functions and operators, requests specific data from a database
related to academic research, pertains to final tables made and best finishes for poker players, concerns finding states with specific
groups of residents, seeks information on singles released in a specific year, focuses on joining multiple tables in sql queries, aims to
retrieve authors affiliated with a specific organization and field from an academic database, inquires about the fix version of a specific
issue, requests the fix version of a specific issue in a software development database, filters data based on specific conditions, requires
correcting errors in SQL queries, seeks data related to tennis players and their rankings, focuses on querying for specific information
from databases, queries for final tables made and best finishes of poker players in a poker database, demonstrates the importance
of accurate SQL query representation, addresses errors in SQL queries for accurate data retrieval, requests counts based on specific
criteria, focuses on retrieving information about authors and their affiliations, requests data on final tables made and best finishes for
poker players, involves finding common data points between two tables in a dog kennel database, requests the count of entries based on
a specific criterion, asks for specific information about tennis players, requests information about poker player performance, inquires
about fix versions for software development issues, involves working with database tables and columns, queries for specific information
from a database, requests the count of authors working in a specific field per affiliate, focuses on querying for player data in a database,
asks for specific information retrieval, involves joining multiple tables in SQL queries, seeks names of authors affiliated with a specific
organization in a particular field, requests information on fix versions for software development issues, seeks information about music
releases in a specific year, emphasizes the importance of accurate conditions in the WHERE clause, retrieves fix version of a specific
issue from a database, addresses states with both dog owners and veterinary professionals residing, requests poker player performance
metrics, asks for details about authors affiliated with specific organizations and working in particular fields, inquires about states with
specific types of residents, requests birth date of a specific player, focuses on specific data extraction, requests specific player details
from a tennis database, involves joining multiple tables to extract information, focuses on querying player details in a tennis database,
asks for author information based on affiliations and fields of study, aims to extract fix version for a particular issue, inquires about
authors affiliated with a particular organization in a specific field, provides counts and lists based on specified conditions, focuses on
retrieving specific information from a database, demonstrates the use of INTERSECT operator in SQL queries, requests specific details
about a player in a sports database, identifies states with specific types of residents in a dog kennel database, inquires about the number
of singles released in a specific year in a music database, asks for the count of singles released in a specific year from a music database,
seeks information on states with specific types of residents in a dog kennel database, emphasizes the importance of accurate query
reflection, focuses on retrieving specific data from a database, illustrates the importance of correct conditions in SQL queries, focuses
on filtering data based on conditions, involves using SQL to retrieve data based on conditions, relates to analyzing data from databases

1559

