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Abstract

Alzheimer’s Disease (AD), the 7th leading
cause of death globally, demands scalable
methods for early detection. While speech-
based diagnostics offer promise, existing ap-
proaches struggle with temporal-spatial (T-
S) challenges in capturing subtle linguistic
shifts across different disease stages (tempo-
ral) and in adapting to cross-linguistic vari-
ability (spatial). This study introduces a novel
Large Language Model (LLM)-driven T-S fu-
sion framework that integrates multilingual
LLMs, contrastive learning, and interpretable
marker discovery to revolutionize Late Onset
AD (LOAD) detection. Our key innovations
include: (1) T-S Data Imputation: Leverag-
ing LLMs to generate synthetic speech tran-
scripts across different LOAD stages (NC, Nor-
mal Control; eMCI, early Mild Cognitive Im-
pairment; /MCI, late Mild Cognitive Impair-
ment; AD) and languages (Chinese, English,
Spanish), addressing data scarcity while pre-
serving clinical relevance (expert validation:
86% agreement with LLM-generated labels).
(2) T-S Transformer with Contrastive Learn-
ing: A multilingual model that disentangles
stage-specific (temporal) and language-specific
(spatial) patterns, achieving a notable improve-
ment of 10.9-24.7% in F1-score over existing
baselines. (3) Cross-Linguistic Marker Dis-
covery: Identifying language-agnostic markers
and language-specific patterns to enhance inter-
pretability for clinical adoption. By unifying
temporal LOAD stages and spatial diversity,
our framework achieves state-of-the-art perfor-
mance in early LOAD detection while enabling
cross-linguistic diagnostics. This study bridges
NLP and clinical neuroscience, demonstrating
LLMs’ potential to amplify limited biomedical
data and advance equitable healthcare Al

1 Introduction

Alzheimer’s Disease (AD) is the 7th leading cause
of death worldwide. 95% of AD cases occur af-
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ter age 65, i.e., Late Onset Alzheimer’s Disease
(LOAD). In this paper, LOAD refers to the dis-
ease category that includes four diagnostic stages:
Normal Control (NC), early Mild Cognitive Im-
pairment (eMCI), late Mild Cognitive Impairment
(IMCI), and AD.

Low-cost and non-invasive approaches to LOAD
detection and monitoring, especially via speech
tests, offer promising solutions for population-
based screening (Whelan et al., 2022). Previous
studies have demonstrated the utility of speech-
based neurodegenerative detection (Henderson
et al., 2023; Patel et al., 2022), with cognitive-
linguistic markers emerging as potentially effective
markers to detect LOAD in an early stage (Eyigoz
etal., 2020). However, despite this promise, current
methods face three major limitations that arise from
both the temporal (T) dimension (different LOAD
stages) and the spatial (S) dimension (different lan-
guage populations with distinct linguistic, cultural,
and demographic factors). First, T-S resource con-
straints: the available speech datasets (e.g., De-
mentiaBank (Lanzi et al., 2023)) remain small,
fragmented, and predominantly in English, with
insufficient samples for the early LOAD stages,
especially eMCI and IMCI (Mueller et al., 2018).
This data scarcity reduces the robustness of Al-
driven approaches and constrains cross-linguistic
generalizability. Second, T-S diagnostic gaps:
while AI methods achieve high accuracy in distin-
guishing AD from healthy controls, performance
drops significantly for earlier stages where subtle
cognitive—linguistic changes are most critical for
timely intervention (Petti et al., 2020). Moreover,
most transformer-based diagnostic models remain
language-specific, limiting applicability to diverse
populations (Yang et al., 2022). Third, T-S speech
marker gaps: although linguistic markers have been
studied (Fraser et al., 2015), how speech markers
differ across LOAD stages and whether they are
shared or language-specific remain to be explored.
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To overcome these challenges, this study pro-
poses an innovative Large Language Model (LLM)-
driven T-S fusion approach to massively increase
and fuse the T-S dimensions of a dataset comprising
speech transcripts' from individuals with LOAD,
and to identify the salient speech markers that char-
acterize fine-grained LOAD stages, including NC,
eMCI, IMCI, and AD, especially in Mandarin Chi-
nese’ and English populations. The key innova-
tions of this study include: (1) leveraging multilin-
gual LLMs for large-scale T-S LOAD data impu-
tation across various LOAD stages and languages,
forming a unified T-S imputed dataset; (2) training
a T-S transformer model enhanced with contrastive
learning to better distinguish LOAD stages and
language groups in latent space; and (3) extract-
ing speech markers that highlight cross-linguistic
and stage-specific characteristics of LOAD devel-
opment.

2 Related Work

2.1 T-S LOAD Speech Datasets

Several datasets have been created to support
speech-based LOAD research. These datasets in-
clude connected speech data, demographics (e.g.,
age, gender, and education), and cognitive assess-
ments (e.g., Mini-Mental Status Exam (MMSE))
(de la Fuente Garcia et al., 2020). One of the
most widely used public database in speech-based
LOAD research is DementiaBank (Lanzi et al.,
2023). It contains audio recordings from the Pitt
Corpus (Becker et al., 1994), derived from a longi-
tudinal LOAD study with connected speech sam-
ples collected from subjects labelled AD, MCI, and
NC. In Pitt Corpus, participants were tasked with
the Cookie Theft description task, a standard task
designed to elicit spontaneous speech. More re-
cently, the TAUKADIAL Challenge is available
in DementiaBank, making English and Chinese
samples of connected speech for MCI detection
publicly available (Luz et al., 2024).

Despite the increasing availability of speech-
based datasets and applications, LOAD speech
datasets remain T-S resource-constrained. Also,
limited focus has been paid to early-stage diagnos-
tics due to the lack of longitudinal/temporal LOAD
speech data and labels, particularly those data sam-

'This study focuses exclusively on the analysis of speech
transcripts. No audio recordings were used. Throughout this
paper, the term speech refers specifically to these transcripts.

*In this paper, Chinese refers to Mandarin Chinese.

ples that earmark the early stages of LOAD devel-
opment (de la Fuente Garcia et al., 2020). Even
worse, most LOAD speech samples were collected
from the English-speaking cohorts, limiting their
applicability to other language populations, espe-
cially the Chinese-speaking group (Qi et al., 2023).
To facilitate low-resource language learning tasks,
existing data alignment and fusion often involve
integrating diverse data sources that span across
multiple languages (Ranathunga et al., 2023). A
large and integrated T-S dataset covering the en-
tire spectrum of LOAD speeches across both the
Chinese- and English-speaking populations and dif-
ferent stages is yet to be available.

The advancement of LLMs offers new oppor-
tunities to address the T-S resource-constrained
challenge. LLMs can be used to encode biomed-
ical knowledge and understand medical records
(Singhal et al., 2023; Thirunavukarasu et al., 2023)
across different languages (Wang et al., 2024). Re-
cent works have leveraged the prior knowledge en-
coded in LLMs pre-trained on massive amounts of
data for data generation in low-resource language
scenarios (Lorandi and Belz, 2024; Ma et al., 2024,
Nasution and Onan, 2024; Mo et al., 2024, 2025;
Han et al., 2025; Li et al., 2025b). These studies
provide new insights into how to utilize and enrich
existing LOAD speech datasets in T-S resource-
constrained settings. However, existing research
has yet to utilize LLMs to generate cross-linguistic
data across different stages of LOAD development.
How to utilize resource-constrained datasets (e.g.
DementiaBank) to guide the generation and fusion
of T-S LOAD samples, especially in low-resource
languages in the context of LOAD research such
as Chinese, has not been investigated.

2.2 T-S LOAD Speech Diagnostics

Recent studies have highlighted the application
of Al technologies in speech-based LOAD diag-
nostics using audio and text data (Li et al., 2021;
de la Fuente Garcia et al., 2020; Petti et al., 2020;
Yang et al., 2022). For example, text embeddings
can discriminate AD patients from healthy controls
(Agbavor and Liang, 2022), and when combined
with audio features, they can further improve the
accuracy of AD classification (Ilias and Askou-
nis, 2022; Wang et al., 2021). Although these Al-
driven speech-based LOAD studies have achieved
outstanding accuracy (around 90% on average) in
detecting AD, the temporal characteristic of LOAD
speech across the four LOAD stages (NC, eMCI,
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IMCI, AD) has not been fully explored and under-
stood. The accuracy of detecting the early stages
of LOAD, i.e., eMCI and IMCI, based on speech
samples alone, is comparatively less satisfactory
and studied (Petti et al., 2020; Han et al., 2025).
MCI stages are usually undetected, but their detec-
tion is critical for early intervention and treatment
(Shankle et al., 2005). Unlocking the potential
of Al for accurate detection of LOAD in its early
stages remains a challenging task. On the one hand,
subtle cognitive changes may not be as obvious
in speech; on the other hand, training data from
eMCI/IMCl is disproportionally much smaller than
that of the AD stage.

Moreover, the spatial characteristic (i.e., mul-
tilingual nature) of LOAD speech has presented
significant challenges for robust LOAD diagnos-
tics in cross-linguistic contexts, especially for low-
resource languages in LOAD research, such as
Chinese. The characteristics of LOAD speeches
vary across language and cultural populations due
to linguistic and cultural variability. However,
existing Al-driven speech-based models, such as
transformer-based models, are typically language-
specific (Yang et al., 2022). An Al-driven model
that accounts for spatial variability, such as the dif-
ferences in language structure and cultural variation
(e.g., English vs. Chinese), is crucial for accurately
detecting LOAD across different language popula-
tions. However, only a limited number of models
are capable of capturing cross-linguistic similarities
and differences for LOAD detection. For example,
some work has been done using English-speaking
LOAD corpus data to facilitate LOAD diagnos-
tics, capitalizing on low-resource data obtained
from other languages, such as Spanish and Chinese,
via transfer learning and contrastive learning (Guo
et al., 2020; Pérez-Toro et al., 2022). Nonetheless,
the application of transformer models to speech-
based LOAD diagnostics across both disease stages
and languages remains underexplored.

2.3 T-S LOAD Speech Markers

Several studies have identified speech markers for
LOAD detection. By analyzing a broad range of
linguistic features, such as grammatical complex-
ity, semantic content, and discourse coherence, in
language samples from AD patients and healthy
individuals, previous research showed that a com-
bination of these features can effectively distin-
guish AD from normal aging (Fraser et al., 2015).
When using NLP techniques to extract syntac-

tic, lexical, and semantic features from speech
transcripts, promising results in AD classification
were achieved (Orimaye et al., 2014). Other stud-
ies focused more on specific linguistic deficien-
cies, including speech fluency (Campbell et al.,
2021), word-finding difficulties (Georgiou et al.,
2023), and semantic fluency (Olmos-Villasefior
et al., 2023). Verbal fluency tests were explored as
a screening tool for neurodegenerative conditions,
demonstrating effectiveness in detecting cognitive
impairment (Pakhomov et al., 2010). Addition-
ally, investigations into semantic and phonemic
fluency deficits highlighted their potential as lin-
guistic markers for AD (Kavé and Goral, 2016).

Despite these advancements, there is still lim-
ited understanding of the salient speech markers
(a) characterizing different stages of LOAD and
(b) distinguishing the Chinese-speaking popula-
tion from the English-speaking one. Moreover, the
extent to which these salient speech markers are
shared across languages and specific to particular
languages remains largely unknown.

3 Methodology

Our proposed methodology consists of three com-
ponents: (1) LLM-based T—S speech data genera-
tion and fusion. We leverage multilingual LLMs to
impute missing speech samples in both the tempo-
ral and spatial dimensions. Temporally, the imputa-
tion spans discrete LOAD stages (NC, eMCI, IMCI,
AD), while spatially it extends across language pop-
ulations (English: United States; Chinese: Taiwan;
Spanish: Europe). The fused dataset integrates
these temporally and spatially enriched samples
into a unified corpus for downstream model train-
ing. (2) T-S transformer model with contrastive
learning. We construct a transformer-based model,
following a BERT-style architecture with multi-
head self-attention layers, that projects all sam-
ples into a shared embedding space. Contrastive
learning is applied at the embedding level, en-
couraging proximity between samples of the same
LOAD stage and language while enforcing sepa-
ration across different stages and languages. (3)
Salient speech marker identification. We identify
salient speech markers by applying SHapley Addi-
tive exPlanations (SHAP) to the trained TS trans-
former. SHAP quantifies the contribution of indi-
vidual features to model predictions, allowing us
to interpret which speech markers most strongly
influence the classification of LOAD stages across
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Figure 1: LLM-assisted T-S LOAD Speech Data Gener-
ation and Fusion

language populations.

3.1 LLM-based T-S LOAD Speech Data
Generation and Fusion

Given a limited set of speech transcript samples,
we perform T-S imputation, utilizing multilingual
LLMs (e.g., GPT-40, LLama, etc.) to generate
new T-S speech transcripts of the same cognitive-
linguistic task (i.e., Cookie Theft picture descrip-
tion) to impute missing transcripts across LOAD
development stages (i.e., NC, eMCI, IMCI, and
AD) and languages (Chinese, English, and Spanish)
(see Figure 1). Our LLM-driven imputation lever-
ages the extensive linguistic and clinical knowledge
embedded in pre-trained LLMs, which have been
trained on large and diverse language corpora. This
approach enhances data diversity and clinical rele-
vance, mitigating the constraints posed by limited
real-world datasets.

First, we generate speech data in the temporal
dimension by performing speech transcript impu-
tation at each LOAD stage (four stages in total).
Specifically, LOAD speech data are often cross-
sectional, exhibiting high sparsity in the temporal
dimension, e.g., one subject may only have speech
samples at the AD stage but not MCI stages. First,
we use LLM-based imputation to fill in the missing
tabular values (e.g., MMSE) for each subject at
each stage using the LL.M-based imputation tech-
niques developed by Li et al. (2024). For missing
speech data, we randomly select a set of available
transcripts from other subjects with similar charac-
teristics. Specifically, subjects with similar demo-
graphic and cognitive characteristics (age, gender,
and MMSE) are matched using a K-nearest neigh-
bors (KNN) approach with K=3, where Euclidean
distance is computed across these normalized vari-
ables to select the most similar samples for each tar-
get subject at each stage. For each case, the LLM is
instructed to generate a new speech transcript rather
than simply paraphrasing the exemplars. This ap-
proach promotes both demographic/clinical plau-

sibility and linguistic diversity in the augmented
dataset. We use the following LLLM prompting strat-
egy: Based on a list of transcripts collected from
other subjects of similar characteristics: [selected
transcripts], generate a new speech transcript.

Second, we generate speech data in the spatial
dimension by performing speech transcript imputa-
tion for each linguistic population (three languages
in total). The multilingual capabilities of LLMs
have been utilized for translation-based text data
generation across different language populations
(Cahyawijaya et al., 2024). While our approach uti-
lizes direct translation for data generation, we em-
phasize that LLMs, being trained on multilingual
data, can inherently preserve language-specific pat-
terns during translation. Specifically, by exploiting
the multilingual capabilities of LLMs in processing
different languages underlying the same semantic
space, temporally imputed LOAD speech samples
will be further translated into various languages, in-
cluding Chinese, English, and Spanish. We use the
following LLM prompting strategy accounting for
the different language populations covering linguis-
tic, cultural, and demographic factors: Based on a
subject’s speech transcript: [transcript], translate
it into a new speech transcript in [language], while
considering the corresponding demographic and
cultural factors (Age: [age], Gender: [gender],
Region: [region]).

After the temporal and spatial speech data im-
putation, a diverse set of new T-S LOAD speech
transcripts is generated to cover different LOAD
stages and language populations, significantly in-
creasing the sample size and facilitating cross-stage
and cross-lingual learning for the downstream task,
i.e., LOAD diagnostics. The newly generated T-S
LOAD speech samples are combined into one ho-
mogeneous dataset. Each speech sample is denoted
as a triple: (T: LOAD stage, S: language, speech
transcript).

3.2 T-S Transformer-based Diagnostic Model
Development

We develop a transformer-based model to predict
the diagnosis label (i.e., LOAD stage). The back-
bone of the transformer model is based on a pre-
trained language model, e.g., BERT (Devlin et al.,
2019). The speech transcripts are fed into the trans-
former model to output unified text embeddings.
By projecting speech samples into a shared high-
dimensional space, the model enables quantitative
comparison between LOAD speech samples, mak-
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ing it possible to compute distances between sam-
ples, facilitating cross-stage (temporal) and cross-
lingual (spatial) analysis by representing the simi-
larity and difference across speech samples of dif-
ferent LOAD stages and populations (see Figure
2).

We utilize contrastive learning to further align
samples from different LOAD stages and language
populations within the embedding space. Con-
trastive learning aims to guide the model to min-
imize the distance between similar samples and
maximize the distance between dissimilar ones,
making it particularly effective when data are
scarce, imbalanced, or noisy. For instance, speech
samples from earlier LOAD stages within the same
language will be closer together in the embedding
space than those from later stages. Specifically,
let each transcript x; be mapped by the T-S trans-
former encoder into an embedding z; € R?, nor-
malized such that ||z;|| = 1. Similarity between
two embeddings is measured via cosine similar-
ity: sim(z;,z;) = H:ﬁ#ﬂl We define positive
pairs as transcripts from the same LOAD stage and
language, while negative pairs are transcripts from
different LOAD stages or languages. For an embed-
ding z; with a set of positives P(i), the contrastive
loss is calculated as:

exp(sim(z;,2p)/T)

1
TP ZpEP(i) log > acA(i) exXP(sim(zi,2q4)/T)

where 7 > 0 is a temperature parameter, and A(7)
denotes the set of all samples in the batch exclud-
ing ¢. The denominator incorporates both positive
and negative samples, so minimization encourages
embeddings of positives to cluster while simultane-
ously pushing negatives apart.

The transformer model is trained on the uni-
fied T-S imputed dataset, optimized to generate
embeddings that align similar samples and distin-
guish dissimilar ones across LOAD stages and lan-
guages. Specifically, a classification head is added
to the transformer model. The model is fine-tuned
for LOAD stage classification with four labels, in-
cluding NC, eMCI, IMCI, and AD. The primary
objective is to classify LOAD stages, while the
contrastive loss is incorporated, enhancing distinc-
tions between LOAD stages and reinforcing cross-
lingual generalizability. This process helps the
model learn salient speech markers that are both
specific and shared across languages, improving its
performance in LOAD stage classification.
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Figure 2: T-S Transformer Diagnostic Model Develop-
ment with Contrastive Learning
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Figure 3: Salient Speech Marker Identification Across
LOAD Stages and Linguistic Populations

3.3 Salient Speech Marker Identification
Across LOAD Stages and Language
Populations

Feature importance analysis is performed to un-
cover the most salient speech markers associated
with different LOAD stages. SHAP analysis devel-
oped by Lundberg and Lee (2017) is used to assess
the contribution of each speech transcript feature j
to the model’s output f(x), i.e., the classification
of each LOAD stage, such as eMCI, IMCI, and AD
(see Figure 3). For a given input x, the SHAP value
¢; of feature j is defined as:

IS (F[=]S]=1)!

doscR\GYy AT [fSU{j}(ISU{j}) — fs(xs)

where F’ is the full feature set and S is a subset
of features excluding j. Intuitively, ¢; measures
the average change in model prediction when j is
added to subsets S of other features.

The salient speech markers across different
LOAD stages for the same language are identified.
Based on the salient marker identification results,
the temporal similarity and difference across dif-
ferent LOAD stages for the same language are ana-
lyzed and interpreted. In addition, the spatial sim-
ilarity and difference between Chinese-, English-,
ans Spanish-speaking cohorts for the same LOAD
stage are analyzed and interpreted.
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4 Experimental Setup
4.1 Datasets

Connected speech samples in English, Chinese,
and Spanish were collected from DementiaBank?
(Lanzi et al., 2023), including LOAD speech sam-
ples across different stages. Moreover, age, gender,
education (in years), and Mini-Mental State Exami-
nation (MMSE) scores were collected. Specifically,
the Pitt Corpus (English only) (Becker et al., 1994)
and the TAUKADIAL Challenge (Chinese and En-
glish) (Luz et al., 2024) datasets from the Demen-
tiaBank were included. We also included a Spanish
LOAD speech dataset (the Ivanova Corpus) from
DementiaBank (Ivanova et al., 2022) to increase
spatial diversity and the sample size for training.
After data collection, each speech recording sample
was associated with the corresponding subject in-
formation and diagnosis label (NC/MCI/AD). The
total number of speech samples was 1282. 261
were Chinese-speaking samples, 663 were English-
speaking samples, and 358 were Spanish-speaking
samples. The number of NC, MCI, and AD sam-
ples were 595, 401, 286, respectively.

4.2 Data Preprocessing

The transcripts of speech recordings were extracted
using OpenAl’s Whisper model (Radford et al.,
2023). The Whisper model, pre-trained on inter-
net data such as YouTube, is known to occasion-
ally hallucinate content, particularly in non-speech
segments (e.g., inserting phrases such as “thank
you for watching) (Koenecke et al., 2024). To
mitigate this risk, we used the recommended de-
coding parameters (log probability threshold: —1;
no speech threshold: 0.6) (Radford et al., 2023)
for more reliable transcription. Furthermore, we
manually inspected a randomly selected subset of
transcripts and did not observe hallucinated outputs.
Speaker diarization (Bredin, 2023) was used to re-
move the examiner’s speech. These preprocessed
speech transcripts were used as inputs for LOAD
classification model training and evaluation.

4.3 MCI Staging

Fine-grained MCI stages, i.e., early MCI (eMCI)
and late MCI (IMCI), were defined based on
the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) study (Edmonds et al., 2019). Based on the
matched ADNI subject characteristics, MCI labels
from DementiaBank were further categorized into

3https ://dementia.talkbank.org/

eMCI and /MCI, with reference to their correspond-
ing MMSE scores after controlling for age, gender,
and education. After MCI staging, the number of
NC, eMCI, IMCI, and AD samples were 595, 129,
272, 286, respectively.

4.4 Baseline Selection and Abalation Study

For baseline comparison, we included the multilin-
gual BERT model (about 117M parameters) (De-
vlin et al., 2019), along with two domain-specific
BERT variants: BioBERT (Lee et al., 2020) and
Clinical BERT (Huang et al., 2019), which are pre-
trained on biomedical and clinical text corpora. For
the ablation study, we used the best-performing
model in the baseline comparison, as the base ar-
chitecture. We first assessed LOAD diagnostic per-
formance using different training language configu-
rations (Chinese-only, English-only, and combined
multilingual data) to evaluate the effect of linguistic
diversity on model performance. Then, we intro-
duced T-S fusion, followed by contrastive learning,
to quantify their individual contributions to LOAD
diagnostic performance.

4.5 Evaluation Metrics

Using a stratified dataset split, we held out 20% of
the original speech samples to obtain the testing set.
The remaining speech samples, including both orig-
inal and new speech samples generated by T-S data
fusion, were used for model training and selection.
All evaluations were conducted exclusively on the
held-out testing set composed only of real speech
samples from the original dataset, with no synthetic
or imputed data in the testing set. The purpose of
T-S data fusion was to enhance model learning, but
the test of diagnostic performance was performed
on real data.

We selected the best LOAD classification model
using a validation set derived from the training data
and evaluated the fine-tuned model on the testing
set. All baseline models were fine-tuned using the
same data splits and hyperparameters. The best
model for each baseline was selected based on vali-
dation performance. This was repeated three times,
and we reported the average performance metrics.
We used accuracy and F1 score for model perfor-
mance evaluation. They are two commonly used
evaluation metrics in classification tasks. Accuracy,
ranging from O to 1 (the higher, the better), mea-
sures the percentage of correctly detected cases.
F1 score, also ranging from O to 1 (the higher, the
better), combines the precision (positive predictive
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value) and recall (sensitivity) scores and provides a
more comprehensive evaluation of detection accu-
racy. We used weighted F1 score, which accounts
for class imbalances by averaging the F1 scores of
all classes while weighting them by their respective
support (i.e., the number of true instances for each
class).

4.6 Experimental Settings

For T-S data imputation, we generated new speech
transcript samples based on the latest GPT-40
model via OpenAl’s Chat Completion API. A fixed
temperature of 1 was used for text generation.

We fine-tuned the pre-trained BERT models with
a learning rate of le-5 and a weight decay of 0.01
after performing trials with a range of hyperparam-
eter values (learning rate of le-3, le-4, and le-5,
and weight decay of 0.1 and 0.01). For contrastive
learning, the temperature parameter was set to 0.1.
The training process consisted of 10 epochs with a
batch size of 16. The best proposed and baseline
models were selected based on the accuracy of the
LOAD classification task on the validation set.

All experiments were carried out using a Nvidia
A100 40GB GPU on a Linux system through
Google Colab, with Python (version 3.11.11),
and deep learning packages, including PyTorch
(version 2.5.1+cul24) and Transformers (version
4.48.3). The total computational budget was ap-
proximately 5 GPU hours. The pre-trained multilin-
gual BERT model was obtained from HuggingFace
(Apache 2.0 license).

5 Results and Discussion

5.1 Performance Comparison

Table 1 compares the performance of three pre-
trained transformer-based language models, in-
cluding BioBERT, Clinical BERT, and Multilin-
gual BERT, on the original dataset for classifying
subjects into four LOAD stages. Among these,
Multilingual BERT achieves the best performance,
with an accuracy of 56.6% and an F1 score of
49.4%. While the differences across models are
relatively small, the results suggest that broad
cross-lingual pretraining enables better generaliza-
tion compared to domain-specific models such as
BioBERT and Clinical BERT. Despite their special-
ization in biomedical and clinical language, these
models may lack the flexibility needed to capture
the linguistic nuances associated with the varying
stages of cognitive decline in speech-based data.

To further analyze the effect of training language,
we evaluate Multilingual BERT using language-
specific subsets of the original data (Table 2). Train-
ing on Chinese-only data yields the lowest perfor-
mance (47.3% accuracy, 35.6% F1 score), while
training on English-only data results in moderate
improvement (54.2% accuracy, 40.9% F1 score).
Notably, combining all language sets in a multi-
lingual training configuration leads to further per-
formance gains (56.6% accuracy, 49.4% F1 score).
This demonstrates that cross-lingual training en-
hances the model’s capacity to generalize, likely
due to the increased variability in linguistic and
cognitive expression. These findings reinforce the
advantage of using Multilingual BERT, which is
better equipped to process multilingual input in a
unified representation space.

Furthermore, building on the multilingual base-
line, we assess the impact of T-S fusion and con-
trastive learning (Table 2). Adding T-S fusion (cov-
ering English, Chinese, and Spanish languages)
to the model increases accuracy from 56.6% to
61.7%, and F1 score from 49.4% to 57.3%. This in-
dicates that incorporating T-S fusion data helps the
model better distinguish between stages. When
contrastive learning is added to the T-S Fusion
model, accuracy further improves to 62.9%, with a
notable F1 score increase to 60.3%. This suggests
that contrastive learning enables the model to learn
more discriminative representations, reinforcing
inter-class separability and improving stage-level
classification performance.

While the accuracy improvements are modest,
the F1 score increases are substantial (10.9%-
24.7%), highlighting improved classification bal-
ance across all LOAD stages. Compared to the
Chinese-only baseline, the best model achieves a
24.7% gain in F1 score. Compared to the English-
only baseline, the best model achieves a 19.4%
gain in F1 score. Compared to the strongest base-
line using multilingual data without T-S fusion and
contrastive learning, the best model improves the
F1 score by 10.9%. These results underscore the
cumulative benefit of multilingual training, T-S fu-
sion, and contrastive learning.

Furthermore, Table 5 shows the detailed break-
down for each ablation step. Since our model
was trained as a multi-class classifier, per-stage
F1 scores were computed in a standard one-vs-rest
manner (i.e., treating each stage as positive and
all others as negative) to provide a granular view
of performance for each LOAD stage. These re-
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sults consistently show that both T-S fusion and
contrastive learning contribute positively across
stages. Specifically, the contributions of T-S fu-
sion in F1 gains are 3.9%, 5.7%, 16.4%, 9.1%
for NC, eMCI, IMCI, and AD stages, respectively.
The contributions of contrastive learning are 1.5%,
11.5%, 6.7%, and -1.6%, for NC, eMCI, IMCI, and
AD stages, respectively. Notably, T-S fusion is es-
pecially beneficial for the more challenging MCI
stages, and contrastive learning shows its greatest
effect in early-stage classification (eMCI), with a
slight trade-off in the latest stage (AD).

Base Model Avg. Accuracy (%) Avg. F1 (%)
BioBERT 55.6 46.9
ClinicalBERT 56.2 48.2
Multilingual BERT 56.6 49.4

Table 1: Backbone Comparision Using Original Data
for LOAD Classification Across Different Stages
(NC/eMCI/IMCI/AD)

Configuration Avg. Accuracy (%) Avg. F1 (%)
Original Data (Chinese) 473 35.6
Original Data (English) 54.2 40.9
Original Data (All) 56.6 49.4
+ T-S Fusion 61.7 57.3
+ T-S Fusion + CL 62.9 60.3

Table 2: Ablation Study Using Multilingual BERT as
Base Model. CL: Contrastive Learning.

eMCI Score IMCI Score AD Score
A (having) 0.06 7 (having) 0.08 7 (having) 0.12
%5 (scene) 0.05 [BfFE(kitchen)  0.07 35 (scene) 0.12
BfFS (kitchen)  0.05 5 (scene) 0.07  WE#E(sudden)  0.11
7K itti(sink) 0.04  f&5t(scene) 0.06  f&5t(scene) 0.10
B (boy) 0.03  JKitli(sink) 0.06  7Kitli(sink) 0.09
1% (scene) 0.03  WE#E(sudden)  0.06 BfF(kitchen)  0.08
55 (scene) 0.03  M(ba) 0.06  H#(boy) 0.08
PEH (sudden)  0.03  FH(boy) 0.05 % (etc.) 0.07
1B (situation)  0.02  [H{(situation) 0.04 [H{(situation) 0.07
H% (etc) 0.02  %F(etc) 0.04 FitlE(rying)  0.07

Table 3: The Most Salient Speech Markers Among
the Chinese-speaking Cohorts Using SHAP Analysis
(English Translations in Parentheses)

eMCI Score IMCI Score AD Score
outside 0.15  outside 0.22  outside 0.41
faucet 0.10  faucet 0.16  faucet 0.24
cupboard 0.05  cupboard 0.08  happening  0.18
see 0.04 happening 0.07 cupboard 0.18

happening  0.04  trouble 0.06  see 0.18
trouble 0.03  see 0.04 okay 0.12
kitchen 0.03  quiet 0.03  bushes 0.10
woman 0.02  kitchen 0.03  better 0.09
quiet 0.02  woman 0.02  trouble 0.09
okay 0.01  okay 0.02 ah 0.09

Table 4: The Most Salient Speech Markers Among the
English-speaking Cohorts Using SHAP Analysis

5.2 Salient Speech Markers

Tables 3, 4, and 6 show the most salient speech
markers identified by SHAP analysis across LOAD
stages and linguistic populations. Section C in the
Appendix provides more detailed discussions.

For the Chinese population, across all LOAD
stages, common words such as “having”, “scene”,
“sink”, and “boy” remain consistent, reflecting re-
liance on familiar, concrete vocabulary, a well-
documented feature of dementia discourse (Boschi
et al., 2017). In particular, the persistence of “etc.”
across all stages suggests a compensatory strat-
egy for lexical retrieval failures, consistent with
semantic generalization patterns observed in MCI
and AD (Kavé and Goral, 2016). For the IMCI
stage, the emergence of “ba”, a discourse particle,
suggests increased reliance on filler words to com-
pensate for word-finding difficulties (Chou et al.,
2024). For the AD stage, general verbs such as
“trying” emerge, indicating an increased struggle
with verbal planning and execution and consistent
with prior reports of syntactic simplification and
verb generalization in advanced cognitive decline
(Williams et al., 2023).

For the English population, across all LOAD
stages, common words, such as “outside”, “faucet”,
and “cupboard”, persist, indicating preserved use
of familiar and concrete terms, a pattern well docu-
mented in Alzheimer’s discourse studies (Boschi
et al., 2017). In particular, the use of “okay” is also
notable, as it may also serve as a filler or conver-
sational placeholder, similar to how other fillers
(e.g. “um”, “uh”) are used more frequently by indi-
viduals with cognitive decline (Fraser et al., 2015).
The speech markers are similar across the eMCI
and /MCI stages, although their rankings differ. In
the AD stage, new speech markers emerge, such
as “ah”, signaling increased disfluency and hesita-
tion, along with others like “bushes” and “better”,
reflecting that the use of adjectives and nouns in
speech can reveal important aspects of cognitive
decline, e.g., unrelated nouns and non-specific ad-
jectives (Fraser et al., 2015).

For the Spanish population, salient markers shift
from abstract and emotionally nuanced terms in
the eMCI stage, such as “sensacion” (feeling),
“situacion” (situation), and “vida” (life), toward
more routine and generalized vocabulary in later
stages. During IMCI, words like “quehaceres”
(chores), “cocina” (kitchen), and “nifios” (chil-
dren) emerge, reflecting increased reliance on fa-
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miliar and concrete concepts. This trajectory aligns
with evidence that in LOAD, semantic network
breakdown begins with specific attributes and con-
crete concepts, while broader categories and emo-
tional associations are preserved until later stages
(Martinez-Nicol4s et al., 2019). By the AD stage,
the frequent use of broad terms such as “cotidi-
ana” (everyday), “todo” (everything), and “activi-
dad” (activity) indicates reduced lexical diversity
and growing difficulty with precise word retrieval
(Cuetos et al., 2003).

5.3 LLM-generated Data Validation

Furthermore, we have performed a rigorous val-
idation on the LLM-generated text. Specifically,
a blinded expert evaluation on randomly selected
100 LLM-generated and 100 real speech transcripts
across four LOAD stages was performed. The ex-
pert judgments conform with the LOAD stages
labeled by LLM 86% of the time. This result has
demonstrated that the generated samples can re-
flect meaningful cognitive markers consistent with
different LOAD stage.

Specifically, clinical plausibility was judged by
whether the linguistic features (e.g., grammatical
complexity, lexical diversity, semantic appropriate-
ness, and disfluency) in each transcript matched the
expected patterns for the given LOAD stage. Ex-
pert validation was conducted by individuals with
multilingual proficiency in both Chinese and En-
glish, including one linguist with experience in de-
mentia language analysis, to ensure cross-linguistic
appropriateness. The agreement rates between ex-
pert judgment and the stage labels of the LLM-
generated data were 96% (NC), 92% (eMCI), 73%
(IMCI), and 83% (AD). Most disagreements oc-
curred between /IMCI and neighboring stages, re-
flecting the inherent diagnostic ambiguity at these
transitions.

6 Discussion and Conclusion

In this study, we introduce an innovative frame-
work that leverages LLMs for the early detection
of LOAD across Chinese, English, and Spanish-
speaking populations. The primary aim is to ad-
dress the significant challenges posed by tempo-
ral (different LOAD stages) and spatial (different
language populations) dimensions in current diag-
nostic methods, which often lack scalability and
precision.

The main challenges include the scarcity of

longitudinal datasets that capture subtle linguis-
tic shifts across different stages of LOAD, and the
difficulty of adapting models to diverse linguistic
and cultural contexts, particularly in low-resource
languages such as Chinese. These constraints hin-
der effective early-stage detection, which is critical
for timely intervention and treatment.

To overcome these challenges, our study intro-
duces several key innovations. First, we apply
LLMs for T-S data imputation, generating syn-
thetic speech transcripts validated with 86% expert
agreement, thereby addressing data scarcity. Sec-
ond, we develop a T-S transformer model enhanced
with contrastive learning, which significantly im-
proves the model’s ability to distinguish stage-
specific and language-specific patterns, achieving
F1-score gains of 10.9-24.7% over existing base-
lines. Lastly, we identify both cross-linguistic and
language-specific speech markers, enhancing the
interpretability and clinical utility of our approach.

Our T-S fusion LOAD detection framework has
outperformed baseline models such as BioBERT
and ClinicalBERT by 10.9-24.7% in F1 score.
Salient speech markers include increased use of
fillers and action verbs in Chinese, reliance on con-
crete nouns and disfluencies in English, and a shift
from abstract to generic terms in Spanish as cogni-
tive decline progresses.

Future work can integrate complementary sig-
nals such as genetic markers (Li et al., 2025a)
and explore advanced spatial-temporal imputation
strategies from other domains, such as air pollution
data reconstruction (Yu et al., 2023, 2025), to fur-
ther enhance the robustness and generalizability of
T-S fusion for LOAD detection.

The impacts of this work are multifaceted. Clini-
cally, it provides a scalable, non-invasive tool for
early LOAD detection, which is essential for timely
intervention. Methodologically, it demonstrates
the potential of LLMs to enrich limited biomedi-
cal datasets, supporting more equitable diagnostics
across languages and settings. This study under-
scores the importance of integrating linguistic diver-
sity into Al-driven healthcare solutions, enhancing
both diagnostic accuracy and cross-cultural appli-
cability. By bridging natural language processing
and clinical neuroscience, our framework offers a
promising approach to early Alzheimer’s detection,
paving the way for personalized medicine and con-
tinuous monitoring of neurodegenerative disease
stages over time.
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Limitations

In this study, T-S fusion shows strong potential
for advancing speech-based diagnostics of LOAD
by integrating data across various disease stages
and linguistic populations. While T-S fusion cur-
rently leverages imputed speech data to mitigate
challenges in real-world data availability, this ap-
proach also highlights an exciting opportunity: the
ability to generate high-quality, representative sam-
ples from limited datasets. These imputed samples,
informed by existing datasets and pre-trained mod-
els, serve as a valuable foundation for developing
scalable diagnostic tools, especially in underrepre-
sented regions or populations.

The effectiveness of T-S imputation and fusion
opens the door to further enhancements as more
real-world LOAD speech data becomes available.
Rather than viewing the reliance on imputed data
as a constraint, it can be seen as a stepping stone to-
ward building a robust framework that continuously
improves in accuracy and generalizability. Expand-
ing the collection of diverse, real-world speech
samples will directly support the refinement of T-
S fusion methods and ensure that the identified
speech markers are both reliable and broadly appli-
cable. This presents a clear path for future work:
by prioritizing the acquisition of speech data across
different languages and stages of disease progres-
sion, researchers can unlock new possibilities for
inclusive and scalable diagnostic tools.

Looking ahead, the salient speech markers identi-
fied through T-S fusion offer a rich resource for iter-
ative model development. These markers can guide
adaptive refinement of the model, especially when
new data from underrepresented linguistic or de-
mographic groups is introduced. Embedding these
markers within a feedback-driven learning frame-
work, where model outputs are continuously val-
idated and updated using real-world clinical data,
can further enhance performance and adaptability.
Such an iterative, data-driven approach not only
boosts diagnostic accuracy but also supports the
model’s evolution alongside emerging research and
clinical practices.

Finally, we recognize that prospective clinical
validation is essential for demonstrating real-world
utility. In the next stage of our work, we will explic-
itly pursue this as a key direction by collaborating
with clinical partners to validate our findings in in-
dependent and prospective cohorts. Such validation
is critical to translating T—S fusion into clinically

actionable tools for early detection, personalized
diagnostics, and longitudinal monitoring of LOAD,
paving the way for broader impact in neurodegen-
erative disease care.

Ethical Statement

One key consideration in the effectiveness of T-S
data fusion for LOAD diagnostics is the potential
risks due to bias in model training. Since T-S data
fusion relies on pre-trained LL.Ms, the speech data
it generates and the speech markers it identifies
are inherently shaped by the data these models
were trained on. If the training data lack diversity
in terms of demographics, language variations, or
disease stages, our proposed approach may identify
speech markers that do not generalize well across
all populations, leading to disparities in LOAD
diagnostic accuracy.
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Baseline Accuracy (%) F1 (%)

NC 60.6 67.6
eMCI 88.8 0.0
IMCI 77.8 22.6
AD 86.1 62.9
TS-Fusion Accuracy (%) F1 (%)
NC 66.7 71.5
eMCI 87.8 5.7
IMCI 78.8 39.0
AD 90.1 72.0
TS-Fusion + CL  Accuracy (%) F1 (%)
NC 70.7 73.0
eMCI 87.1 17.2
IMCI 79.5 45.7
AD 88.8 70.4

Table 5: Ablation Study with Detailed Breakdown.
Baseline: Multilingual BERT Trained on All Original
Data. CL: Contrastive Learning.

A Ablation Study with Detailed
Breakdown Across LOAD Stages

B Salient Speech Markers

eMCI Score IMCI Score AD Score
cotidiana (everyday)  0.30  todo (everything) 0.16  cotidiana (everyday)  0.42
brillante (bright) 0.11  cotidiana (everyday) 0.14  todo (everything) 0.27
este (this) 0.08  primer (first) 0.08  primer (first) 0.15
cuadro (picture) 0.08  brillante (bright) 0.05  brillante (bright) 0.15
situacion (situation)  0.07  este (this) 0.04  este (this) 0.11
sensacion (feeling) 0.06  lugar (place) 0.04  lugar (place) 0.09
alguna (some) 0.06  quehaceres (chores) 0.04  cuadro (picture) 0.08
palabras (words) 0.05 nifios (children) 0.03  actividad (activity) 0.07
vida (life) 0.05  cocina (kitchen) 0.03  palabras (words) 0.06
todos (everyone) 0.04  luego (then) 0.03  quehaceres (chores) 0.06

Table 6: The Most Salient Speech Markers Among
the Spanish-speaking Cohorts Using SHAP Analysis
(English Translations in Parentheses)

C Cross-Linguistic Comparison and
Linguistic Implications

Across the three linguistic populations, Chinese,
English, and Spanish, consistent patterns emerge
that reflect both shared and language-specific tra-
jectories of cognitive-linguistic decline in AD.

C.1 Shared Markers and Patterns

Across all languages, the early stages of cognitive
impairment (eMCI and /IMCI) are characterized
by the use of relatively rich and specific vocabu-
lary. In contrast, the later stages (LOAD) show
a marked shift toward general, familiar, or high-
frequency terms. Common markers include gen-
eral nouns (e.g., fodo “everything”, outside, scene),
concrete objects and locations (e.g., sink, kitchen,
lugar “place”), and deictic or referential terms (e.g.,
este “this”). This pattern suggests that as lexical

14989


https://arxiv.org/abs/2409.11056
https://arxiv.org/abs/2409.11056
https://arxiv.org/abs/2409.11056

retrieval becomes more effortful, individuals tend
to rely on broader or more accessible vocabulary.

Additionally, fillers and discourse markers (e.g.,
“ba” in Chinese, “okay” and “ah” in English) be-
come more salient in the later stages, indicating
increased disfluency, syntactic disruption, and po-
tential compensatory mechanisms in maintaining
conversational flow.

C.2 Language-Specific Features

While the trajectory of decline is broadly shared,
specific lexical patterns reflect language-specific
linguistic structures:

Chinese: The emergence of the discourse par-
ticle ba in the IMCI stage highlights increased re-
liance on filler elements to maintain fluency amidst
lexical difficulties. In the LOAD stage, verbs such
as “trying” appear more frequently, suggesting a
shift toward describing cognitive effort or action
planning, which may indicate syntactic compensa-
tion.

English: Speech remains grounded in perceptu-
ally salient and concrete vocabulary (e.g., outside,
cupboard) across stages. In LOAD, the increased
use of vague adjectives (e.g., better) and discourse
fillers (e.g., ah, okay) reflects semantic generaliza-
tion and decreased lexical precision.

Spanish: Abstract and emotionally expressive
terms (e.g., vida “life”, sensacion “feeling”) are
common in eMCI, but gradually give way to
routine-related and generic terms (e.g., guehaceres
“chores”, actividad ““activity”, todo “everything”)
in later stages, indicating semantic narrowing and
increased dependence on familiar schemas.

C.3 Linguistic Implications

These observations highlight key linguistic conse-
quences of cognitive decline across languages:

Semantic Impairment: A reduction in lexical
diversity and specificity, with a shift toward generic,
high-frequency vocabulary.

Syntactic Simplification: Increased use of sim-
ple sentence structures, fillers, and reduced syntac-
tic variety, reflecting diminished verbal planning
and execution.

Discourse Cohesion: Greater reliance on dis-
course markers (e.g., ba, okay, luego) suggests an
attempt to maintain narrative structure despite lexi-
cal retrieval challenges.

Pragmatic Compensation: Use of generaliza-
tion, repetition, and vague terms indicates adaptive
strategies to preserve communicative intent.

In summary, while the specific lexical items differ
across languages due to structural and cultural dif-
ferences, the underlying linguistic patterns reveal
consistent neurocognitive changes across different
stages of LOAD. Cross-linguistic analysis thus pro-
vides crucial insight into how AD affects semantic
richness, syntactic complexity, and pragmatic func-
tion across diverse linguistic contexts.
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