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Abstract

Analyzing Socially Unacceptable Discourse
(SUD) online is a critical challenge for reg-
ulators and platforms amidst growing con-
cerns over harmful content. While Pre-trained
Masked Language Models (PMLMs) have
proven effective for many NLP tasks, their per-
formance often degrades in multi-label SUD
classification due to overlapping linguistic cues
across categories. In this work, we propose
an artifact-guided pre-training strategy that in-
jects statistically salient linguistic features, re-
ferred to as artifacts, into the masked language
modeling objective. By leveraging context-
sensitive tokens, we guide an importance-
weighted masking scheme during pre-training
to enhance generalization across discourse
types. We further use these artifact signals
to inform a lightweight dataset curation pro-
cedure that highlights noisy or ambiguous in-
stances. This supports targeted relabeling and
filtering, enabling more explainable and con-
sistent annotation with minimal changes to the
original data. Our approach provides consistent
improvements in 10 datasets extensively used
in SUD classification benchmarks.
Disclaimer: This article contains some extracts of
unacceptable and upsetting language.

1 Introduction

In an era defined by global crises, rising inequality,
and the proliferation of extreme online content, reg-
ulators at different levels pressingly need to adopt
effective Machine Learning (ML) solutions to de-
tect Socially Unacceptable Discourse (SUD). The
ever-changing and evolving nature of social dis-
course not only presents significant challenges to
understanding it but also limits the capabilities of
the available discourse analysis tools. Analyzing
SUD on the other hand is an even more challenging
task that requires context-aware models capable of
understanding its subtleties and nuances.

*These authors contributed equally.

Pre-trained Masked Language Models (PMLMs)
have proven effective in different NLP tasks, in-
cluding accurate classification of inadequate con-
tent (Swamy et al., 2019a; Markov and Daele-
mans, 2021a; Fortuna et al., 2021; Yin and Zubiaga,
2021; Toraman et al., 2022; Antypas and Camacho-
Collados, 2023; Yigezu et al., 2023; Carneiro et al.,
2023; Niaouri et al., 2025). These models how-
ever, face multiple challenges when used for online
discourse analysis (Carneiro et al., 2023; Ghilene
et al., 2024; Niaouri et al., 2025), where they re-
quire to learn from noisy data containing multi-
ple distributions annotated with shallow categories
(Niaouri et al., 2024). In this scenario, counting
on inaccurate content labelling can in turn lead to
severe (or too weak) censorships that may disadvan-
tage content creators or contributing to information
gaps (Draper and Neschke, 2023). We also no-
tice that PMLMs under-perform when required to
generalize over different label distributions (multi-
class) and thus have to specialize over different
types of speech that hereafter we refer to as SUD
(Vehovar et al., 2020; de Maiti and Fišer, 2021;
Carneiro et al., 2023).

Masked Language Models (MLMs) are often
trained with a random masking schema over a
generic corpus, where a model learns to predict
randomly masked (and/or replaced) tokens con-
sidering their surrounding context (Devlin et al.,
2019).

Intuitively, we can expect that the same linguistic
pattern or keywords can appear in different types
of discourse, breaking the assumption that a given
class has a unique structure and vocabulary. In such
a case, the language model ability to recognize and
disentangle a given language feature depends on
the model’s understanding of the context around re-
current textual fragments that statistically represent
a given class. To discover such patterns, an MLM
must learn the heterogeneous contexts surrounding
the pivotal textual feature. This begs the question:
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Could we improve the performance of MLMs by
selectively focusing on more representative SUD
tokens/features during the pre-training?

Recent research efforts (Ramponi and Tonelli,
2022; Levine et al., 2020; Moon et al., 2020) have
highlighted the advantage of leveraging relevant
textual features to enhance the language model
generalization benefits to downstream task such
as SUD classification.

We thus study the possibility of injecting sta-
tistical knowledge of SUD features at the MLMs
pre-training stage. Furthermore, such a strategy
permits us to obtain interpretable cues over the
model decision space that we can also leverage to
estimate noisy labels and perform data curation
over the analyzed corpora. We notice that such a
strategy is so-far overlooked in the automatic SUD
analysis literature.
Contribution: In this work we propose a new SUD
classification framework that selectively focuses on
and ranks informative tokens related to SUD cat-
egories. In turn, it leverages such a knowledge to
train unsupervised and supervised MLMs. The pro-
posed approach uses the contextual significance of
tokens, to weight the training loss and to estimate
noisy labels. We extensively evaluate our contri-
bution in building a SUD classification benchmark
with 13 different datasets.

2 Related Work

SUD classification Recent works have advanced
various techniques for detecting hate speech, which
represent important components of SUD analy-
sis. These methods range from traditional machine
learning classifiers to modern transformer-based
language models.

A wide range of annotated datasets has been
developed to support this task (Davidson et al.,
2017; Gao and Huang, 2017; Founta et al., 2018;
Van Aken et al., 2018; Kumar et al., 2018; De Gib-
ert et al., 2018; Qian et al., 2019; Basile et al., 2019;
Zampieri et al., 2019; Mandl et al., 2019, 2020;
Grimminger and Klinger, 2021; Kocon et al., 2021;
Yuan and Rizoiu, 2022; Hartvigsen et al., 2022;
Mollas et al., 2022), with hatespeechdata1 serving
as a centralized resource for such datasets. Increas-
ing attention has been also devoted to cross-dataset
and cross-domain generalization (Karan and Šna-
jder, 2018; Swamy et al., 2019b; Pamungkas and
Patti, 2019; Salminen et al., 2020; Markov and

1https://hatespeechdata.com/

Daelemans, 2021b; Fortuna et al., 2021; Yin and
Zubiaga, 2021; Toraman et al., 2022; Antypas and
Camacho-Collados, 2023; Malik et al., 2024), mul-
tilingual detection (Pamungkas and Patti, 2019;
Toraman et al., 2022; Malik et al., 2024), and multi-
class or multi-label classification targeting fine-
grained categories and underrepresented popula-
tions (Toraman et al., 2022; Antypas and Camacho-
Collados, 2023; Yigezu et al., 2023; Gandhi et al.,
2024).

In this context, Carneiro et al. (2023) and Niaouri
et al. (2025) introduced a novel corpus combining
texts from diverse platforms (social media, forums,
news comments) and annotation schemes. Building
on this resource, Niaouri et al. (2025) conducted a
comprehensive benchmark of state-of-the-art meth-
ods, exposing inconsistencies in existing datasets,
such as divergent contextual interpretations of the
same labels, and highlighting annotation biases,
showing that models trained on single-domain data
can experience performance drops of up to 28% in
cross-domain evaluations.

Explainable Hate Speech detection Several ex-
plainable hate speech detection efforts have fo-
cused on developing frameworks that combine de-
tection accuracy with interpretable reasoning.

Hartvigsen et al. (2022) introduce explainable
models that leverage narrative structures to capture
subtle, implicit hateful expressions and adversarial
language, while also releasing ToxiGen, a large-
scale machine-generated dataset for implicit hate
speech detection. The HARE framework (Yang
et al., 2023b) complements this by using Large
Language Models (LLMs) with chain-of-thought
prompting to generate detailed rationales that im-
prove detection accuracy and explanation qual-
ity. By addressing logical inconsistencies across
human-annotated datasets, HARE achieves both
improved detection performance (3.8% F1 increase
over baselines) and enhanced generalizability.

A complementary direction of work enriches ex-
planations with external knowledge and toxicity
attributes. For example, Sridhar and Yang (2022)
present a knowledge-informed encoder–decoder
framework that integrates multiple sources of ex-
ternal knowledge to generate nuanced explanations
of stereotypes in biased language, outperforming
prior state-of-the-art approaches. Similarly, Ya-
dav et al. (2024) propose Tox-BART, a generative
model that leverages explicit toxicity attributes to
interpret implicit hate speech.
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Benchmark corpora have been critical in advanc-
ing this line of research. The Social Bias Frames
dataset (SBIC) (Sap et al., 2020) emphasizes rea-
soning about the pragmatic frames in which social
biases and stereotypes are projected, while the La-
tentHatred dataset (ElSherief et al., 2021) provides
fine-grained annotations of implicit hate speech
based on a six-class taxonomy, supporting evalua-
tion of models on subtle and indirect forms of tox-
icity. Likewise, the HateXplain dataset (Mathew
et al., 2022) incorporates word- and phrase-level
human rationales across 20K posts, enabling si-
multaneous assessment of classification accuracy
and explanation faithfulness, and revealing that
high-performing models often diverge from human
reasoning.

Beyond dataset-driven advances, explainable de-
tection has also leveraged deep learning architec-
tures in conjunction with post-hoc interpretability
methods, such as attention and attribution analy-
ses, which provide insights into model behavior
(Murad et al., 2024).

In contrast to these approaches, our work focuses
on mitigating bias and improving cross-domain
generalization (without requiring additional anno-
tations), offering interpretable cues tied to model
confidence in large-scale, heterogeneous settings
where label noise is prevalent.

3 Proposed Approach

This section outlines our methodology for enhanc-
ing SUD classification. In Figure 1, we show
the overall architecture of our SUD classification
framework composed by three novel blocks : I)
Token Scoring, II) Pre-training strategy based on
weighted loss according important tokens (a.k.a.
artifacts), III) Post classification Token Diagnostic
that supports Label Noise detection and Dataset
Relabelling.

In the following parts, we provide a linguistically
grounded definition of SUD describing the details
of each architecture building block.

3.1 Socially Unacceptable Discourse (SUD)

Definition Socially Unacceptable Discourse
(SUD) encompasses a spectrum of harmful commu-
nicative acts characterized by offensive, inciting,
or derogatory language. This includes both ex-
plicit and implicit threats, negative stereotyping,
obscene expressions, and aggressive or dehuman-
izing rhetoric (Vehovar et al., 2020; de Maiti and

Fišer, 2021). From a linguistic standpoint, SUD
often parallels hate speech and extremist narratives,
exhibiting features such as objectifying nominaliza-
tions, third-person plural pronouns that reinforce
in-group/out-group dynamics, present-tense con-
structions that create immediacy, and imperative
verbs that encourage harmful behavior (Okulska
and Kołos, 2024).

SUD Classification Given a text item, namely a
sequence of T tokens X = (x1, x2, . . . , xT ), SUD
classification assigns to X one of K predefined
categories C = {c1, c2, . . . , cK}, each correspond-
ing to a distinct type of harmful or inappropriate
discourse labelled in the corpus.

A fundamental challenge in SUD classifica-
tion lies in its context-dependence: the same lex-
ical items may function differently across dis-
course types generating noisy labels in widely used
datasets that solely dispose of context-insensitive
annotations. To address this, we propose a context-
aware artifact extraction (Figure 1(a)) that selec-
tively emphasizes semantically informative tokens
used during bi-directional transformer model pre-
training (Figure 1(b)). Extracting and scoring lan-
guage artifacts will first permit us to weigh their
importance, raising the focus on statistically rele-
vant contexts that, in turn, we leverage to define an
explainable methodology and estimate label noise
in SUD annotated corpora.

We observe that not every token in a text se-
quence contributes equally to semantic richness
or contextual understanding. In this sense, model
training by random token masking (Meng et al.,
2024), while widely adopted, can result in subop-
timal representation learning by overemphasizing
frequent but uninformative tokens. In the following
part, we describe our artifact scoring and extraction
method.

3.2 Token Scoring
PMI Importance Score To estimate token
salience across SUD categories, we adopt a vari-
ant of Pointwise Mutual Information (PMI) (Fano,
1963), a well-established measure of word-class
association. Following Gururangan et al. (2018)
and Ramponi and Tonelli (2022), we compute:

PMI (xt, c) = log2

(
P (xt|c)

P (xt) · P (c)

)
(1)

where P (xt|c) is the conditional probability of to-
ken xt given its context class c, P (xt) its marginal
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Figure 1: SUD Classification Framework. (a) Token Scoring and ranking for each instance in the corpus. (b) SUD
Artifact-weighted pretraining of a Bi-directional transformer at the core of the SUD classifier (Feed Forward Neural
Network - FFNN + Softmax Layer). (c) Post-classification Token diagnostic and Noise-Driven score computation
for data curation.

probability in the overall corpus, and P (c) the prior
probability of class c. To improve comparability
and mitigate sensitivity to low-frequency tokens,
we normalize PMI using the normalized PMI score
(NPMI), and further rescale it to the range [0, 1] us-
ing min-max normalization. When a token appears
across multiple classes, we compute its overall im-
portance score as the average of its scaled NPMI
scores across all associated classes.

BERTopic (BT) importance Score Our second
extraction strategy employs BERTopic (Grooten-
dorst, 2022), a transformer-based topic modeling
framework that clusters semantically similar texts
using Sentence-BERT embeddings 2 (Reimers,
2019). We identify salient tokens within each topic
using class Term Frequency - Inverse Document
Frequency (cTF-IDF) (Joachims et al., 1997). This
metric reflects a token’s frequency within a topic
relative to its frequency across the corpus:

cTF -IDF (t, Ti) = P (t | Ti) · log
(

N

|Dt|

)
(2)

where P (t | Ti) is the normalized frequency of
token t in its topic Ti ∈ N, N is the total number of
documents, and |Dt| is the number of documents
containing t. In our work, we consider that a token
is assigned to one or multiple topics in an unsuper-
vised manner using a clustering algorithm (Groo-
tendorst, 2022). Hence, Ti represents a cluster
index. A global importance score is then obtained
by averaging each token’s normalized relevance
across all topics in which it appears.

2We use the paraphrase-MiniLM-L3-v2 model to gener-
ate sentence embeddings.

3.3 Artifact-Guided Pre-training

Extracting and scoring tokens permits us to incorpo-
rate an importance score into the MLM pretraining
objective. This integration biases the loss function,
assigning a weight to the selected tokens. In this
section, we present the masking strategy we adopt
and the details of the aforementioned loss function.

Token Masking Strategies To investigate the
effect of artifact-guided masking, we consider four
masking strategies : (1) Random Masking, in
which tokens are masked uniformly at random,
and the standard MLM loss is applied (Devlin
et al., 2019). (2) Top-k Masking, where only the
k percentage tokens, with the highest importance
scores are masked during training. (3) Random
Masking with Weighted Loss, where tokens
are randomly masked, while the loss is scaled
by token-level importance weights. (4) Top-k
Masking with Weighted Loss, extends the Top-k
Masking approach by applying an importance-
weighted loss to the masked tokens.

Weighted MLM Objective As depicted in Fig-
ure 2, given a corpus D = {X1, . . . , XN}, where
each text item is composed by a set of tokens,
namely Xi = (x1, . . . , xT ), a subset M ⊆
{1, . . . , T} is selected for masking. Tokens at these
positions are replaced with the [MASK] string
placeholder. The model is trained to predict each
masked token xt from the corrupted sequence X̃i,
minimizing the standard negative log-likelihood:

ℓt = − log
(
pθ(xt | X̃)

)
(3)

To emphasize semantically salient tokens, each ℓt
is scaled by an importance score wt, derived from
our artifact extraction methods presented in Section
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Figure 2: Masked language model pre-training. Tokens
are passed through a bidirectional encoder model (De-
vlin et al., 2019). The token prediction loss is then
weighted using the pre-computed importance scores.

3.2 and a binary mask indicator (at = 1[t ∈ M]):

ℓ
Weighted
t = ℓt · wt · at (4)

The final objective averages the weighted loss
across all masked positions:

LWeighted
MLM =

∑T
t=1 ℓ

Weighted
t∑T

t=1 at
(5)

This formulation biases training toward artifact-
relevant tokens while maintaining stable optimiza-
tion across variable-length sequences.

Framework Architecture Figure 2 illustrates
with an example the artifact-guided masked lan-
guage model pre-training. Masked tokens are pro-
cessed through a stack of bidirectional transformer
layers, yielding contextualized representations hLt .
These hidden states are projected into the vocabu-
lary space using a learned output matrix E, produc-
ing logits ut = hLt E

⊤, which are then transformed
into output probabilities via a softmax function:

yt = softmax(ut) (6)

These probabilities are used to compute the artifact-
weighted loss defined in Equation 5, where each
token’s contribution is scaled by its corresponding
importance score.

3.4 Dataset Curation via Token Diagnostics
After the classification task, to evaluate Artifact-
Guided pretraining, we analyze token-level recon-

struction loss (Figure 1(c)). Our assumption is to
have the possibility to identify statistically impor-
tant tokens that are difficult-to-reconstruct at MLM
training stage as they can reflect distributional noise
or semantic ambiguities that impair downstream
performance. To that extent, we introduce a token
scoring function based on label noise estimation,
that aims to quantify token relationship with noise.

Noise-Driven Token (ND) Score We introduce
a token-level scoring scheme based on annotation
uncertainty. Following principles from confident
learning (Northcutt et al., 2022), we identify fre-
quent tokens in samples flagged as likely misla-
beled, namely those having high discrepancies be-
tween predicted labels and class-conditional noise
expectations. We extract these candidates using the
Cleanlab toolkit (Northcutt et al., 2022), employ-
ing a confusion score that quantifies semantically
contextually ambiguous tokens with the following
score :

St =
ft

maxt′ ft′
(7)

where ft is the frequency of token t in potentially
misannotated instances, normalized by the maxi-
mum token frequency among all such instances.
To focus on informative textual features, we ex-
clude stop words and retain only the top 25% most
frequent tokens within this error subset.

Noise Removal Algorithm For each masked to-
ken, we compute reconstruction loss during pre-
training and pair it with the computed importance
score, aiming to curate dataset label by flagging
text instances that contain high-scoring tokens.

Such a methodology allows human-in-the-loop
intervention and exploratory analysis of candidate
tokens that the user can iterate in (ranking) order to
investigate and curate label noise prior to perform
SUD classification model fine-tuning (Figure 1(c)).

Our intuition relies on the fact that frequent
tokens likely belong to patterns recognized and
learned by the model to generalize over SUD
classes. In this manner, we propose to consider
such token-level statistics across the relative model
reconstruction capabilities at pretraining stage. To
correct noisy instances in a given corpus, we pro-
pose two strategies:

(1) Relabeling that replaces a label of an in-
stance X , if this latter is different from the instance
label in which the token with the highest score (in
X) occurs globally more often.
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Example 1 Given a corpus C and a text instances
X = {”abc”} ∈ C assigned with label 0. Let
us consider that "b" would be the token with the
highest score that occurs more often in instances
assigned with label 1 ∈ C, the label of X changes
to 1.

(2) Filtering, that removes from the corpus an
instance X if this latter is assigned with a label
different from the instance label in which the token
with the highest score (in X) occurs globally more
often.

Example 2 Given a corpus C′ and a text instances
Y = {”cde”} ∈ C′ assigned with label 1. Let
us consider that "d" would be the token with the
highest score that occurs more often in instances
assigned with label 0 ∈ C′, Y is removed from C′.

Downstream Task For the evaluation of our
methods we fine-tune our models on a multi-class
classification task targeting Socially Unacceptable
Discourse (SUD), as defined in Section 3.1.

The model architecture comprises a pretrained
encoder that produces contextualized token repre-
sentations, which are aggregated and passed to a
lightweight classification head, a linear projection
followed by a softmax activation, to yield a proba-
bility distribution over the target classes. Training
is conducted using the standard cross-entropy loss
between predicted distributions and ground-truth
labels (Devlin et al., 2019; Clark et al., 2020; Zhang
et al., 2023; Yang et al., 2023a; Moon et al., 2020;
Sun et al., 2019).

4 Experimental Setup

In this section, we present the experimental
framework employed to evaluate our artifact-
aware pretraining approach, detailing the datasets
and model configurations. Model training and
evaluation were carried out using key libraries
such as transformers, datasets, PyTorch, and
TensorFlow. Comprehensive information on pack-
age versions and the computational environment is
available in our repository to facilitate reproducibil-
ity: https://github.com/rayaneghilene/MLM
_Pretraining.

4.1 Datasets

We utilize the GSUD dataset introduced by
Carneiro et al. (2023), which aggregates 13 pub-
licly available English-language datasets spanning
up to 12 SUD classes (see Table 4 in the appendix).

The full corpus comprises approximately 500K in-
stances, with a significant imbalance across classes.
The neither class accounts for over 70% of the
samples, while individual SUD categories vary in
frequency. By combining sources that differ in
both discourse and annotation practices, GSUD cap-
tures substantial variation in the definition and ex-
pression of categories across contexts, providing a
demanding benchmark for multi-domain learning.
All datasets are publicly available and released un-
der permissive licenses. Our use of these datasets
is consistent with their original purpose, which
was primarily classification and moderation of hate
speech-related content. More details on the GSUD

dataset are found in the work of Carneiro et al.
(2023).

4.2 Models and Training Setup

We experiment with four transformer-based
models from the Hugging Face library:
bert-base-uncased (110M parameters),
bert-large-uncased (340M), roberta-base
(125M), and roberta-large (355M). All ex-
periments were conducted on an infrastructure
equipped with NVIDIA A100 GPUs (80 GB
memory) and 2 TB main memory, equipped with 2
AMD Milan EPYC 7543 processors (32 cores at
2.80 GHz).

MLM Pretraining Pretraining is conducted on
the GSUD corpus (∼155K samples), to which we
apply stratified under-sampling of the dominant
neither class (10% retention).3 Hyperparameters
are tuned empirically. The final setup includes a
learning rate of 1× 10−5, weight decay of 0.001,
batch size of 128, and 5 training epochs.4

Downstream Classification Task Following pre-
training, models are fine-tuned on each single
dataset composing GSUD for multi-class text clas-
sification. We split data using the following ratio:
80% training, 10% validation, and 10% test using
stratified sampling. We employ the Hugging Face
AutoModelForSequenceClassification wrap-
per, to attach a fully connected classification head

3A secondary configuration was also evaluated consisting
of a focused subset containing only SUD-labeled instances
(∼120K samples), emphasizing domain-specific language.
However, as this configuration did not yield any noticeable
differences we omit to report the relative results.

4The hyperparameter search space included the following
configurations: learning rate ∈ {5 × 10−5, 2 × 10−5, 1 ×
10−5}, weight decay ∈ {0.1, 0.01, 0.001}, batch size ∈
{64, 128}, and number of epochs ∈ {3, 5}.
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Figure 3: Aggregated F1 Score Performance Across
Pretraining Paradigms and Experimental Conditions
for BERT-Base, RoBerta-Base, BERT-Large, and
RoBERTa-Large.

to the pretrained encoder. Input sequences are to-
kenized using the corresponding AutoTokenizer
for each model. Fine-tuning is conducted for three
epochs with a batch size of 16, a learning rate of
2× 10−5, and weight decay of 0.01. Each model
is fine-tuned and evaluated across 10 runs with dif-
ferent seeds. Model performance is reported as the
mean and standard deviation of the macro-averaged
F1-score on the held-out test set.

5 Results

In this section we present and discuss the results of
the proposed SUD classification framework.

5.1 Artifact-based Pretraining
Pretraining Strategy Evaluation Our first re-
search objective is to evaluate the effectiveness of
the different pretraining strategies discussed and
proposed in the paper. Figure 3 shows the mean
F1 score of SUD classification conducted with the
baseline models and different pretraining strate-
gies (Random Masking + Weighted Loss, Top-
k Masking + Weighted Loss, Random Mask-
ing, Top-k Masking) leveraging the proposed arti-
facts scores (PMI Figure 3(top) and BERTopic Fig-
ure 3(bottom)). Here, we report the global mean
of the classification performed in all the dataset
reported in Table 4 across all masking proportions
(Top-k = 5%, 10%, 15%, 25%, 35%). Our re-
sults indicate that pretraining strategies incorporat-

Figure 4: F1 Score Performance of BERT-Base Across
Different Masking Percentages

ing Weighted Loss exhibit the best performance
across all the settings, confirming the hypothesis
that models reinforce their generalizability when
reconstructed loss is weighted according to the con-
text importance.

Masking Percentage Optimization Figure 4
presents the F1 scores of BERT-Base across differ-
ent masking percentages under Pretraining with
PMI and BERTopic artifact masking. Again,
weighted Loss strategies consistently outperform
their non-weighted counterparts, yielding optimal
performances at the 25% masking level. In general
we note that BERT-Base has performance either
on par, or superior than the other models. Hence,
in the following part of the evaluation, we solely
consider BERT-Base.

5.2 Dataset Curation via Token Diagnostics

To analyze the errors and individuate the effec-
tiveness of artifact-guided pretraining in learning
meaningful token representations, we analyse the
correlation between token-level statistical score and
reconstruction difficulty (model loss) in the whole
GSUD using the BERT-Base model. Figure 5 visu-
alizes mean token reconstruction loss as a function
of artifact extraction score (log scale), limited to
the top 25% of tokens per method. Each dot rep-
resents a single token. To quantify these relation-
ships, we compute Pearson correlation (r) between
reconstruction loss and the log-transformed artifact
scores. For the Noise-Driven score, we observe a
strong negative correlation (r = −0.64), indicating
that tokens with higher importance scores tend to
be reconstructed more accurately in our framework.
This suggests that tokens frequently associated with
noisy labels are well reconstructed by the MLM
reflecting the model’s ability to encode patterns
that are informative for reconstructing these arti-
facts. In contrast, BERTopic (r = 0.01) and PMI
(r = 0.03) show no correlations with reconstruc-
tion loss, indicating a weaker association between
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Figure 5: Mean token reconstruction loss vs. artifact extraction score (log scale). Each dot represents a single
artifact from the top 25% of scores.

their frequency and model uncertainty during pre-
training.

Dataset-Specific Curation We begin by evaluat-
ing our curation strategy within each dataset inde-
pendently, leveraging the proposed scores vs. loss
diagnostics. Specifically, we curate our dataset
by flagging sentences containing high-scoring to-
kens selected by the following thresholds (depicted
in Figure 5): PMI ≥ 0.4, BERTopic ≥ 0.6, and
Noise-Driven Score ≥ 0.2 or ≥ 0.4. These values
were selected to retain only the most salient tokens
based on distributional breakpoints and qualitative
review. Thresholds are reported here in raw form,
while log-transformed values are used for visual-
ization in plots. We then apply the token-level
diagnostics described in Section 3.4 to curate the
datasets with the two types of intervention: (1) Re-
labeling, and (2) Filtering prior to perform SUD
classification.

Table 1 presents the performance impact of each
method across 13 datasets. We observe that cura-
tion strategies yield mixed results: in datasets such
as Founta, Gab, and Hateval, both relabeling and
filtering significantly improve performance, sug-
gesting that model errors were at least partly driven
by annotation inconsistencies or label noise. Con-
versely, for datasets such as Davidson and Olid,
the gains are modest or neutral, and aggressive fil-
tering thresholds can even lead to degradation. Im-
portantly, we found that certain datasets exhibited
unexpected performance drops under these inter-
ventions, particularly Fox and Grimminger.

Large Scale Curation We extend our analysis
considering SUD classification in the complete
(GSUD ) corpus. Such scenario is challenging, as it
introduces further annotation noise due to hetero-
geneous labeling criteria of different sources. We
apply the same token-level relabeling and filtering
methods described in the previous experiment. Ta-
ble 2 (left) shows the absolute F1 scores for each

Figure 6: Percentage Frequency of Selected Tokens by
Noise-Driven Method across Datasets

method on the GSUD corpus (∼155K samples) (we
apply stratified under-sampling of the dominant nei-
ther class (10% retention) as suggested in (Carneiro
et al., 2023)). Relabeling with noise-driven diag-
nostics at a 0.2 threshold performs best, achieving
an F1 score of 66.9. Table 2 (right) reports the
relative differences from the baseline. The same
method yields the highest gain (+11.2), followed by
BERTopic (+8.1). Filtering methods show smaller
but consistent improvements. These results indi-
cate that our token-based techniques are effective
not only for individual datasets but also when ap-
plied to a large scale scenario, better resolving
cross-dataset inconsistencies.

We also conducted a manual verification SUD
Instance relabelling in the Appendix

5.3 Human-Guided Explainable Approach

While applying automatic relabeling and filtering
strategies by automatically filtering noisy instances,
we observe that even limited interventions could
lead to notable drops in performance on certain
datasets, such as Grimminger and Fox as shown
in Table 1. To understand this, we analyze token
distributions depicted in Figure 6, which displays
the normalized frequency of selected tokens in each
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Dataset Baseline Relabeling Filtering
Noise-Driven ≥ 0.2 Noise-Driven ≥ 0.4 BERTopic ≥ 0.6 PMI ≥ 0.4 Noise-Driven ≥ 0.2 Noise-Driven ≥ 0.4 BERTopic ≥ 0.6 PMI ≥ 0.4

Davidson 76.31.2 73.32.2 75.82.3 75.51.6 76.31.2 72.23.7 75.8 1.5 76.51.7 76.31.2
Founta 76.30.7 79.91.5 78.60.9 76.7 0.6 76.30.7 79.6 1.6 78.4 0.9 75.90.7 76.30.7
Fox 67.02.7 60.24.6 58.73.1 64.5 0.7 66.82.7 55.6 6.3 62.3 4.2 64.54.3 66.92.7
Gab 90.00.3 95.20.3 93.20.5 90.4 0.5 90.30.4 93.1 0.5 91.8 0.5 90.40.6 90.00.3
Grimminger 72.52.5 52.74.5 67.85.8 70.1 0.3 72.22.2 58.7 3.7 68.95.5 72.13.6 72.42.5
Hasoc2019 46.71.8 45.23.4 42.12.4 44.1 3.3 46.71.8 43.5 3.8 44.1 2.9 46.01.3 46.71.8
Hasoc2020 56.42.2 53.13.9 54.32.3 54.0 2.0 53.42.2 58.1 3.6 52.8 2.2 56.72.9 56.42.2
Hateval 77.01.0 87.10.7 84.50.7 77.7 1.3 77.01.0 84.9 1.8 80.9 1.2 77.30.5 77.01.0
Jigsaw 55.11.0 63.62.0 61.31.1 57.9 0.9 54.61.2 60.1 2.7 58.2 1.2 55.40.9 54.71.0
Olid 78.01.0 79.71.5 78.81.0 77.3 1.1 77.41.0 80.3 2.2 77.7 1.3 77.73.6 77.51.0
Reddit 84.80.9 82.51.5 86.51.2 84.5 0.6 84.90.7 83.7 1.8 86.4 1.3 85.10.8 84.90.8
Stormfront 77.91.7 63.64.2 70.92.0 75.9 0.2 77.81.8 69.1 3.7 75.2 2.5 78.12.2 77.91.7
Trac 74.60.6 80.41.4 78.21.2 74.9 1.3 74.70.5 79.1 0.9 77.5 1.3 75.01.4 74.11.3

Table 1: Performance comparison of our relabeling and filtering methods at a dataset level. Scores are averages of
10 runs with different seeds, while subscripts indicate standard deviation. We depict scores above the baseline in
bold.

Method Relabeling Filtering
Noise-Driven (≥ 0.2) 66.91.6 62.21.4

Noise-Driven (≥ 0.4) 62.81.1 61.41.3

BERTopic (≥ 0.6) 65.10.5 60.70.6

PMI (≥ 0.4) 60.10.7 60.20.4

Table 2.1: F1 scores for relabeling and filtering methods.

Method Relabeling Filtering
Noise-Driven (≥ 0.2) +11.1 +3.3
Noise-Driven (≥ 0.4) +4.3 +2.0
BERTopic (≥ 0.6) +8.1 +0.8
PMI (≥ 0.4) -0.2 +0.0

Table 2.2: Relative differences from baseline.

Table 2: Comparison of relabeling and filtering methods
(left) on a class-balanced subset of the GSUD corpus in
F1 scores and their relative differences from baseline
(right). Scores are averages of 10 runs with different
seeds, while subscripts indicate standard deviation.

dataset, for which the ND score is greater than
or equal to 0.4. We observe that salient tokens
potentially related to SUD (e.g., b*tch, f*cking)
are under-represented in Grimminger and Fox,
suggesting that previously repaired instances con-
tain neutral language. Guided by such explana-
tion, we restrict the interventions to tokens with
high support and semantic relevance to SUD. In
this experiment, we also consider token ranking
using BERTopic-based score. This selective ap-
proach leads to more consistent improvements in
ten datasets as reflected in Table 3.

We also perform a manual verification of SUD
instance relabelling (See section 7 in the appendix).

6 Conclusion

The results of this study offer several insights into
the role of SUD artifacts in guiding pretraining and
improving dataset quality for the task of SUD clas-
sification. While standard masked language model-
ing provides only limited improvements in down-

Dataset Baseline Relabeling Filtering
ND ≥ 0.2 ND ≥ 0.4 BT ≥ 0.6 ND ≥ 0.2 ND≥ 0.4 BT ≥ 0.6

Davidson 76.31.2 75.51.4 77.32.1 76.51.0 76.21.7 76.61.8 76.51.0
Founta 76.30.7 78.40.5 78.20.7 78.10.7 78.21.0 77.80.5 77.90.7
Fox 67.02.7 67.24.1 70.63.6 70.33.4 65.75.2 70.43.6 70.63.6
Gab 90.00.3 92.40.3 91.00.4 90.80.4 92.20.4 91.00.5 90.80.4
Grimminger 72.52.5 68.43.3 72.73.2 72.53.0 71.45.2 72.63.1 72.63.1
Hasoc2019 46.71.8 48.52.5 46.42.0 46.02.0 47.82.4 45.62.0 46.02.0
Hasoc2020 56.42.2 58.24.3 56.21.7 56.21.7 56.72.7 56.21.7 56.21.7
Hateval 77.01.0 82.60.9 82.20.9 81.80.9 83.30.7 82.50.9 81.80.9
Jigsaw 55.11.0 64.51.5 58.20.9 58.40.9 60.50.8 58.71.1 58.40.9
Olid 78.01.0 80.10.8 77.70.7 77.60.7 78.61.1 77.70.7 77.60.7
Reddit 84.80.9 86.71.0 85.70.9 85.90.7 86.40.8 85.11.1 85.90.7
Stormfront 77.91.7 76.32.5 78.11.8 78.11.8 77.82.1 78.11.1 78.11.8
Trac 74.60.6 75.21.6 75.10.7 75.10.7 75.41.2 75.20.6 75.20.7

Table 3: Comparison of F1 scores (meanstd) across
datasets with different noise-handling strategies: base-
line (original labels), relabeling using Noise-Driven
(ND) and BERTopic (BT) approaches, and filtering
based on noise scores.

stream performance across model architectures, in-
troducing artifact-weighted loss consistently yields
better results. By assigning greater importance to
semantically important tokens, the model is encour-
aged to focus on contextually challenging regions.
Beyond model performance, our curation strategy,
based on token-level relabeling and filtering, proves
valuable for interpretability. With minimal changes
to the data, the method reveals annotation incon-
sistencies, offering a lightweight mechanism for
surfacing potential labeling issues. This enables
more transparent error analysis and targeted refine-
ment.

7 Limitations

While our artifact-guided curation framework
demonstrates clear potential, it can further evolve
to better support human understanding during an-
notation. Although our approach effectively sur-
faces tokens in ambiguous or noisy environments
through artifact-based heuristics, it may overlook
subtle linguistic inconsistencies or contextual er-
rors that can only be reliably detected by human
annotators. As a result, a dedicated annotation
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campaign supported by our solution remains nec-
essary to validate and complement our dataset cu-
ration methods. Moreover, we plan to extend the
human-in-the-loop approach to the GSUD corpus,
increasing our ability to assess the method’s effec-
tiveness in this setting, where tailored adaptation
and computational challenges need to be addressed.
Finally, the token selection thresholds, though in-
formed by distributional patterns and qualitative
assessment, remain heuristic. Future work could in-
vestigate more principled, data-driven approaches
to enhance the robustness and generalizability of
the dataset curation framework.
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Językoznawczy Tertium, 8:54–71.

Endang Wahyu Pamungkas and Viviana Patti. 2019.
Cross-domain and cross-lingual abusive language de-
tection: A hybrid approach with deep learning and
a multilingual lexicon. In Proceedings of the 57th
Annual Meeting of the Association for Computational

14880

https://doi.org/10.18653/v1/W18-5117
https://doi.org/10.18653/v1/W18-5117
https://doi.org/10.1016/J.IPM.2021.102643
https://doi.org/10.1016/J.IPM.2021.102643
https://doi.org/10.1016/J.IPM.2021.102643
https://arxiv.org/abs/2010.01825
https://arxiv.org/abs/2010.01825
https://doi.org/10.1007/s41060-024-00650-6
https://doi.org/10.1007/s41060-024-00650-6
https://doi.org/10.18653/v1/2021.nlp4if-1.3
https://doi.org/10.18653/v1/2021.nlp4if-1.3
https://doi.org/10.18653/v1/2021.nlp4if-1.3
https://arxiv.org/abs/2012.10289
https://arxiv.org/abs/2012.10289
https://doi.org/10.1007/s40747-021-00608-2
https://doi.org/10.1007/s40747-021-00608-2
https://api.semanticscholar.org/CorpusID:229298052
https://api.semanticscholar.org/CorpusID:229298052
https://arxiv.org/abs/1911.00068
https://arxiv.org/abs/1911.00068
https://doi.org/10.7592/Tertium.2023.8.2.245
https://doi.org/10.7592/Tertium.2023.8.2.245
https://doi.org/10.7592/Tertium.2023.8.2.245
https://doi.org/10.18653/v1/P19-2051
https://doi.org/10.18653/v1/P19-2051
https://doi.org/10.18653/v1/P19-2051


Linguistics: Student Research Workshop, pages 363–
370, Florence, Italy. Association for Computational
Linguistics.

Jing Qian, Anna Bethke, Yinyin Liu, Elizabeth Belding,
and William Yang Wang. 2019. A benchmark dataset
for learning to intervene in online hate speech. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4755–
4764, Hong Kong, China. Association for Computa-
tional Linguistics.

Alan Ramponi and Sara Tonelli. 2022. Features or spu-
rious artifacts? data-centric baselines for fair and
robust hate speech detection. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 3027–3040, Seat-
tle, United States. Association for Computational
Linguistics.

N Reimers. 2019. Sentence-bert: Sentence embed-
dings using siamese bert-networks. arXiv preprint
arXiv:1908.10084.

Joni Salminen, Maximilian Hopf, Shammur Chowdhury,
Soon-Gyo Jung, Hind Almerekhi, and Jim Jansen.
2020. Developing an online hate classifier for multi-
ple social media platforms. Human-centric Comput-
ing and Information Sciences, 10:1.

Maarten Sap, Saadia Gabriel, Lianhui Qin, Dan Juraf-
sky, Noah A. Smith, and Yejin Choi. 2020. Social
bias frames: Reasoning about social and power im-
plications of language. Preprint, arXiv:1911.03891.

Rohit Sridhar and Diyi Yang. 2022. Explaining toxic
text via knowledge enhanced text generation. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 811–826, Seattle, United States. Association
for Computational Linguistics.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi
Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao
Tian, and Hua Wu. 2019. Ernie: Enhanced rep-
resentation through knowledge integration. ArXiv,
abs/1904.09223.

Steve Durairaj Swamy, Anupam Jamatia, and Björn
Gambäck. 2019a. Studying generalisability across
abusive language detection datasets. In Proceedings
of the 23rd conference on computational natural lan-
guage learning (CoNLL), pages 940–950.

Steve Durairaj Swamy, Anupam Jamatia, and Björn
Gambäck. 2019b. Studying generalisability across
abusive language detection datasets. In Proceedings
of the 23rd Conference on Computational Natural
Language Learning (CoNLL), pages 940–950, Hong
Kong, China. Association for Computational Linguis-
tics.
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Appendix

Datasets
In Table 4, we report the source and metadata of all datasets used in the empirical evaluation of our
solution.

Dataset Source Sample Type # Samples Labels
Davidson Davidson et al. (2017) Tweets 25,000 hate, offensive, neither
Founta Founta et al. (2018) Tweets 100,000 abusive, hate, neither
Fox Gao and Huang (2017) Threads 1,528 hate, neither
Gab Kocon et al. (2021) Posts 34,000 hate, neither
Grimminger Grimminger and Klinger (2021) Tweets 3,000 hate, neither
HASOC2019 Mandl et al. (2019) Facebook, Twitter 12,000 hate, offensive, profane, neither
HASOC2020 Mandl et al. (2020) Facebook posts 12,000 hate, offensive, profane, neither
Hateval Basile et al. (2019) Tweets 13,000 hate, neither
Jigsaw Van Aken et al. (2018) Wikipedia talk pages 220,000 identity hate, insult, obscene, severe toxic, threat, toxic, neither
Olid Zampieri et al. (2019) Tweets 14,000 offensive, neither
Reddit Yuan and Rizoiu (2022) Posts 22,000 hate, neither
Stormfront De Gibert et al. (2018) Threads 10,500 hate, neither
Trac Kumar et al. (2018) Facebook posts 15,000 aggressive, neither

Table 4: Summary of datasets used in this study Carneiro et al. (2023).

Manual Verification of SUD Instance Relabelling
To qualitatively evaluate the proposed Dataset Curation method (Section 5.2), we conducted a manual
review of a representative sample. In Tables 5 and 6 we present the manual verification of instances
identified by our token-driven diagnostic algorithms (Noise-Driven and BERTopic Scores). Each row
lists the sentence (Instance), the salient Token triggering the flag, the original Ground Truth label, the
suggested Relabeling, the Dataset source, and the outcome of Manual verification.

For this inspection, we applied a token-driven extraction strategy, selecting sentences linked to the
most salient tokens (Noise-Driven score ≥ 0.4, BERTopic score ≥ 0.6). Our findings indicate that the
framework reliably identifies annotation inconsistencies and borderline cases that benefit from closer
human scrutiny.

In many instances, the method identifies clear annotation errors that warrant relabeling:

• Table 5 (18): “and this retarded bitch has over k followers” (Neither → Hate)

In other cases, relabeling is suggested where the presence of vulgar language makes the distinction
between socially unacceptable and acceptable content ambiguous, requiring human judgment:

• Table 6 (2): "fuck all that bullshit who tf is young crazy ep dropping this april stay tuned" (Neither
→ Abusive)

Occasionally, the algorithm produces incorrect relabelings showing that even those cases allow us to
identify spurious correlations, where tokens typically associated with SUD may in fact occur in a simple
vulgar context:

• Table 5 (5): “frustration can be a bitch” (Neither → Offensive)

Overall, these results demonstrate that our method can serve as an effective diagnostic tool, comple-
menting human judgment and aiding annotators in refining datasets with improved precision.
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Instance Token Ground Truth Relabeling Dataset Manual verification

1. all of kate uptons leaked nudes today amp more bitch lo bitch Neither Offensive Davidson Correct
2. mouth fucking for two bitches fucking Neither Abusive Founta Correct
3. my favorite episode of friends is the one where blacks mysteriously
vanish and unemployed white people find affordable ho

people Neither Offensive Davidson Correct

4. it is u and sickular mind people people Neither Aggressive Trac Correct
5. frustration can be a bitch bitch Neither Offensive Davidson Incorrect
6. you do and so does sb its about forced deviance without that no
sense would be possible

would Hate Neither Fox Correct

7. so and his wife get a payout that was intended for small business
but individuals dont get monetary relief

get Hate Neither Grimminger Correct

8. that would suck would Profane Neither Hasoc2020 Correct
9. look like merkel just want to get laid like Hate Neither Fox Incorrect
10. im not doing this goddamn im Insult Neither Jigsaw Correct
11. we know the real too and america cant survive four more years know Offensive Neither Hasoc2019 Correct
12. whoever the last bitch you was fucking with tell her its over fucking Neither Hate Hateval Correct
13. he is hu and no one has checked on him one Offensive Neither Olid Correct
14. if u acted like a hoe after we broke up im not wrong for thinking u
were a hoe all along

like Neither Offensive Davidson Correct

15. im with you too what im Hate Neither Reddit Correct
16. hell to have a teacher like this like Hate Neither Stormfront Correct
17. laughing my fucking ass off beechhouse of cards is collapsing fucking Neither Hate Grimminger Incorrect
18. and this retarded bitch has over k followers bitch Neither Hate Gab Correct
19. im ready are you vs im Hate Neither Grimminger Correct
20. i m not sure you should assume im not corrupt joe biden im Hate Neither Grimminger Correct
21. this bitch thincc she dress coding me bitch Neither Offensive Davidson Correct

Table 5: Manual verification of instances flagged by our token-driven diagnostic algorithm (Noise-Driven Score).
Columns show the sentence (Instance), salient Token, original Ground Truth, suggested Relabeling, Dataset, and
Manual verification outcome (green = correct, red = incorrect).

Instance Token Ground Truth Relabeling Dataset Manual verification

1. miserable mahas pathetic pattys amp bullshit beckys bullshit Neither Abusive Founta Correct
2. fuck all that bullshit who tf is young crazy ep dropping this april
stay tuned

bullshit Neither Abusive Founta Correct

3. im so mad that it was allowed for him to be railroaded out on
bullshit but brian williams is still out there

bullshit Neither Abusive Founta Correct

4. one pathetic piggy could barely hit before he creamed his pants try
harder bitches this is just pathetic

piggy Neither Abusive Founta Correct

5. but yall make the mutual decision to have sex on the first date but
shes trash what kind of math

math Neither Offensive Davidson Correct

6. leabian gets butt fucked and pussy eaten butt Neither Abusive Founta Correct
7. the soviets managed to accomplish total usurpation criminalization
radicalization and grabbed under kgbists total mob monopolization

criminal Hate Neither Founta Correct

8. all pakistani people are again in electronic indian journal its prove
that they dont like their country rather merge with original country and
stop killing both sides of army rather do on original criminal british
people

criminal Neither Aggressive Trac Correct

9. by being a spoiled entitled ghetto head that really screams feminist ghetto Neither Offensive Olid Correct
10. speech is like boring song where you go out and visit wash room boring Neither Aggressive Trac Incorrect
11. as i commented a few days ago on this thread massive race or
ethnic mixing tends to preceed massive race or ethnic war

thread Hate Neither Stormfront Correct

12. vip highdef bignipples gt gt gt nipples Abusive Neither Founta Incorrect
13. r u fucking kidding me kidding Neither Abusive Founta Incorrect
14. go eat some more burgers butthead butthead Neither Offensive Olid Correct
15. nasty little butt slut nicole moore butt Neither Abusive Founta Correct
16. niggas dont be savages they just be broke niggas with anger
problems

niggas Neither Hate Founta Correct

17. what issssss that anger its not a conclusion to be right anger Aggressive Neither Trac Correct

Table 6: Manual verification of instances flagged by our token-driven diagnostic algorithm (BERTopic Score).
Columns show the sentence (Instance), salient Token, original Ground Truth, suggested Relabeling, Dataset, and
Manual verification outcome (green = correct, red = incorrect).
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