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Abstract

Emotion context sensitivity—the ability to ad-
just emotional responses based on contexts—is
a core component of human emotional intelli-
gence. For example, being told, “You can come
with me if you want,” may elicit joy if the desti-
nation is a mall, but provoke fear if the destina-
tion is a trap house. As large language models
(LLMs) are increasingly deployed in socially
interactive settings, understanding this human
ability becomes crucial for generating context-
appropriate, emotion-aware responses. In this
work, we introduce TRACE, a novel benchmark
to evaluate LLMs’ understanding of emotion
context sensitivity of humans. This benchmark
consists of 1,626 social scenarios and com-
prises two complementary tests: a sensitivity
test, which measures whether models can de-
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tect emotional shifts caused by context changes,
and a robustness test, which evaluates whether
models can maintain stable emotion predictions
when context changes are emotionally irrele-
vant. Each scenario pair keeps the core event
constant while systematically varying contex-
tual details—time, place, or agent—based on
insights from behavioral theory and emotion
psychology. Experimental results show that
even the best-performing LLMs lag behind hu-
man performance by 20% in the sensitivity test
and 15% in the robustness test, indicating sub-
stantial room for improvement in context-aware
emotional reasoning.

1 Introduction

Emotion context sensitivity—the capacity for an
individual to shift emotional responses according
to contextual changes—is a foundational compo-
nent of human emotional intelligence (Coifman and
Bonanno, 2009, 2010). Emotional responses here
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Figure 1: Comparison between existing emotional in-
telligence benchmarks and our TRACE. (a) Existing
benchmarks pair each event with a single context. (b)
TRACE pairs the same event with two different contexts.

encompass both the internal experience and exter-
nal expression of emotion. This capacity enables
adaptive behavior by eliciting emotions that are
appropriate to contextual demands. For example,
being told, “You can come with me if you want,”
may elicit joy if the destination is a mall, but pro-
voke fear if the destination is a trap house. Such a
fear emotion helps humans avoid potential danger
or prepare for self-protection (Steimer, 2002). In
other words, even when the core event (e.g., being
offered to accompany someone) remains the same,
emotional responses can differ depending on the
context.

With the rapid progress of large language mod-
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els (LLMs), Al systems have been increasingly ap-
plied to tasks that involve social interaction with hu-
mans (Rashkin et al., 2019; Goubet and Chrysikou,
2019; Liu et al., 2020; Zhou et al., 2021; Kim
et al., 2023). Consequently, it has become signif-
icantly important for these systems to understand
human emotion context sensitivity in order to gener-
ate context-appropriate, emotion-aware responses.
Despite the growing importance of this ability, no
existing benchmark has been specifically designed
to evaluate how well LLMs understand context-
dependent emotional responses. Prior benchmarks
(Demszky et al., 2020; Paech, 2023; Sabour et al.,
2024) have primarily focused on general emotion
recognition without explicitly disentangling the in-
fluence of contextual variations on emotional re-
sponses (See Figure 1).

As a first step toward understanding human emo-
tion context sensitivity, we introduce TRACE—a
novel benchmark designed to assess whether LLMs
can accurately trace how emotions shift of humans
in response to contextual changes, a core compo-
nent of emotional intelligence. To comprehensively
evaluate this capacity, TRACE comprises two com-
plementary components: a sensitivity test and a ro-
bustness test. The sensitivity test assesses whether
LLMSs can correctly capture shifts in a character’s
emotion in response to changes in the surrounding
context. In contrast, the robustness test evaluates
whether models can maintain emotion predictions
consistently when context changes are irrelevant
to the character’s emotional experience. Together,
the two components provide a more comprehensive
assessment of models’ understanding of context-
sensitive emotional responses, particularly those
pertaining to emotional experience—our primary
focus in this study.

Specifically, each example in both tests consists
of a pair of scenarios in which the core event re-
mains constant, while specific contextual details
are varied. Building on prior work in behavioral
theory and emotion research (Burke et al., 2009;
Greenaway et al., 2018), we manipulate three key
context dimensions—time, place, and agent—that
have been identified as central in shaping human be-
havior, cognition, and emotional responses. Conse-
quently, the sensitivity test includes scenario pairs
where the contextual variation is intended to elicit
different target emotions, whereas the robustness
test includes pairs where the variation is designed
to leave the target emotion unchanged.

We evaluate a range of open- and closed-source

LLMs on TRACE. Results show that even the latest
models fall significantly short of human perfor-
mance in understanding emotion context sensitivity.
Specifically, the best-performing model lags be-
hind human accuracy by approximately 20% in the
sensitivity test and 15% in the robustness test. To
summarize, our contributions include:

* We introduce emotion context sensitivity as a
new perspective in computational emotional
understanding, inspired by psychological the-
ory.

* We propose TRACE, a novel benchmark for
systematically evaluating whether LLLMs can
track emotional responses across varying con-
texts.

* Our experimental results show that even state-
of-the-art LLMs fall significantly short of
human-level performance, highlighting the
need for further advancement in emotional
intelligence modeling.

2 Related Works

Our work is closely related to the prior works that
have assessed the emotional understanding capa-
bility of models by constructing dedicated bench-
marks. For example, DailyDialog (Li et al., 2017),
EmotionLines (Hsu et al., 2018), and MELD (Po-
ria et al., 2019) are dialogue datasets proposed to
test the ability of models to recognize emotions
in conversations. GoEmotions (Demszky et al.,
2020) is a dataset covering a broader range of emo-
tions, constructed to evaluate how well the models
understand subtler differences between emotions.
EmoBench (Sabour et al., 2024) contains QAs that
require LLMs to predict emotions based on thor-
ough reasoning rather than relying on frequent or
explicit patterns. In addition, SECEU (Wang et al.,
2023b) and EQ-Bench (Paech, 2023) focus on as-
sessing emotional intelligence through compound
emotion reasoning and scalar estimation, respec-
tively. In contrast, benchmarks such as SociallQA
(Sap et al., 2019) and CICERO (Ghosal et al., 2022)
evaluate models’ social commonsense reasoning,
where emotional inference arises as a secondary
component within broader social contexts.

In contrast to prior benchmarks, our work is the
first to explicitly assess whether LLMs understand
emotion context sensitivity—that is, how subtle
contextual shifts can lead to meaningful emotional
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Figure 2: Data collection pipeline. Crowdworkers first identify the pivot character p in the scenario and determine
if p’s emotions could change when the contexts related to time, place, or agent in the scenario are altered (Step
1). In both cases, crowdworkers modify the contexts in the scenario to collect two distinct scenarios (s1, s2) (Step
2), along with the corresponding emotion(s) (Step 3). Next, we add adversarial distractors using GPT-40 (OpenAl,
2024a) via the OpenAl API (Step 4), and then the collected data is validated by other workers (Step 5). Data that
passes this validation process belongs to either sensitivity or robustness test, depending on whether the emotion of p

is deemed adjustable in Step 1.

Context  Sensitivity  Robustness  Total
Time 278 260 538
Place 242 206 448
Agent 398 242 640
Total 918 708 1,626

Table 1: Distribution of scenarios across context types.
See Appendix F for specific subcategories of each con-
text type.

changes. By isolating changes in time, place, or
agent, TRACE assesses LLMSs’ ability to understand
the emotional impact of specific types of contextual
variation, identifying which dimensions pose the
greatest challenge.

3 TRACE Benchmark

3.1 Overview of TRACE

TRACE is a benchmark designed to assess how well
LLMs comprehend emotion context sensitivity of
humans. To achieve this, our benchmark consists
of two complementary tests: the sensitivity test and
the robustness test. The sensitivity test examines
whether a model correctly captures emotional shifts
when meaningful context changes occur, while the
robustness test ensures that the model maintains
predictions when the context change is irrelevant
to emotional shifts. Together, the two tests allow
us to examine whether the model accurately tracks
emotional shifts resulting from context changes, or
merely reacts to the context change.

To support these evaluations, the benchmark
comprises a total of 1,626 scenarios, systematically

curated through structured annotation, adversarial
distractor selection, and rigorous validation, as de-
tailed in Section 3.2. Detailed dataset statistics are
provided in Table 1.

3.2 Data Collection

Here, we detail the data collection process, which
involved structured scenario annotation (Steps 1-3),
adversarial distractor addition (Step 4), and rig-
orous validation (Step 5). To ensure high-quality
annotations, we employed workers on Amazon Me-
chanical Turk (MTurk) with a qualification test.
Further details on the quality control procedures
can be found in Appendix A.

Step 1: Scenario Classification. We first ex-
tracted seed scenarios from the Social IQA dataset
(Sap et al., 2019), which provides a diverse set of
scenarios involving social interactions. Qualified
crowdworkers then identified the pivot character p
in each scenario and classified the scenario into one
of two categories: those likely to result in an emo-
tional change for p when a contextual dimension
(time, place, or agent) is altered, and those unlikely
to do so.

Step 2: Context Modification. To generate sce-
nario pairs for both tests, workers either altered the
contextual aspect of each scenario or added new
contextual details to it, based on its classification
in Step 1. The modification process was designed
to align with the specific objectives of each test.

Step 2.1: Sensitivity Test. For the sensitivity
test, workers modified contextual details such that
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the p’s emotional response would differ between
the two versions. As a result, the two modified sce-
narios, s1 and so, were annotated with different
emotion labels. This design allows us to evaluate
whether the model understands that changes in con-
text can lead to changes in a p’s emotional state.

Step 2.2: Robustness Test. For the robustness
test, workers modified contextual details while pre-
serving the p’s emotional state. Thus, s; and sg
in these pairs shared the same correct emotion la-
bel. This design evaluates whether the model can
maintain consistent emotion predictions when con-
text changes are irrelevant to the p’s emotional
response.

Step 3: Taxonomy-based Emotion Labeling.
To ensure consistent emotion labeling, we pro-
vided crowdworkers with a predefined emotion tax-
onomy rather than allowing free-form responses.
Free-form labeling often leads to inconsistencies,
as a single emotional state can be described in di-
verse ways (e.g., “sad,” “down,” “depressed”), lead-
ing to lower agreement and ambiguous evaluation.
By constraining the label space, we improved an-
notation agreements among workers and enabled
clear comparisons between model predictions and
ground truth.

We initially adopted Plutchik’s Wheel of Emo-
tions (Plutchik, 1982), a structured taxonomy
of eight basic emotions with varying intensities.
While this framework also includes compound emo-
tional states, only the basic emotions are differen-
tiated by intensity. This lack of finer-grained dis-
tinctions of compound emotions could lead to am-
biguous labeling, as annotators are forced to map
nuanced emotions to rough categories. To address
this limitation, we expanded the taxonomy to in-
clude 64 emotions, enabling more nuanced differ-
entiation across a wider range of emotional states.
Crowdworkers annotated p’s emotional response
for each scenario based on this extended taxonomy,
resulting in more consistent and fine-grained emo-
tion labels across the dataset. See Appendix B for
details.

Step 4: Distractor Addition. To create a
multiple-choice question using the scenario, we
added distractor labels to the scenario. To make the
task more challenging and discourage cue-based
shortcuts, inspired by the adversarial framework of
Zellers et al. (2019), we balanced two competing
objectives in selecting distractors: (1) they should

be emotionally distinct from the correct label, and
(2) plausible enough to mislead the model.

As a first step, we organized the 64-category
emotion taxonomy into a tabular format. We then
applied a rule-based filtering method to remove dis-
tractor candidates that were too close to the correct
emotion—specifically, any emotions within two
adjacent cells were excluded.

Next, we incorporated a model-based selection
step to identify distractors likely to mislead the
model. We provided the filtered emotion taxonomy
and the scenario to the LLM, and prompted it to se-
lect the top three plausible emotions. This process
was repeated three times, and the most frequently
selected emotions were used as distractor candi-
dates. Following prior work (Sap et al., 2019), we
additionally included one distractor drawn from the
other scenario in the same pair, as the two are con-
textually similar and thus emotionally confusable.
As a result, we used the top two model-selected
emotions for the sensitivity test, and the top three
for the robustness test. Detailed prompts are pro-
vided in Table 9.

Step 5: Validation. To ensure the benchmark’s
quality and reliability, we conducted a two-round
rigorous validation process on the modified sce-
nario pairs. In the first round, three carefully se-
lected outstanding crowdworkers independently an-
swered each multiple-choice question. If all three
unanimously selected the correct label, the scenario
was accepted. Otherwise, the emotion label and
context were reviewed and revised through expert
consensus.

In the second round, revised scenarios were re-
evaluated by a new group of crowdworkers. If the
correct label was unanimously selected, the sce-
nario was retained in the final benchmark; other-
wise, it was discarded. By doing so, while emo-
tional responses may vary across individuals, we
constructed the benchmark to minimize such sub-
jectivity and enable consistent and reliable evalua-
tion.

4 Experiment

In this section, we evaluate recent LLMs on the
TRACE benchmark and thoroughly investigate their
limitations.

4.1 Baseline Models

In the experiment, we employ 9 widely used LLMs
to establish our baselines. For open-source LLM:s,
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Model Prompt Sensitivity Robustness Avg.
Accy, Accy Accy, Accy Acc,, Accy
Random - 6.3 25.0 6.3 25.0 6.3 25.0
Open-source LLMs
Llama-3.2-1B (MetaAl, 2024) 6.5 25.4 8.2 27.0 73 26.1
Llama-3.2-3B (MetaAl, 2024) 34.0 60.6 54.2 66.4 42.8 63.1
Llama-3.1-8B (Dubey et al., 2024) Base 449 68.7 66.4 76.7 54.2 72.2
Gemma-2-2B (Riviére et al., 2024) 11.8 343 12.7 323 12.2 335
Gemma-2-9B (Riviere et al., 2024) 55.6 74.9 66.7 774 60.4 76.0
s1-32B (Muennighoff et al., 2025) 523 73.6 70.3 79.4 60.1 76.1
Llama-3.2-1B (MetaAl, 2024) 235 50.0 26.8 49.7 25.0 49.9
Llama-3.2-3B (MetaAl, 2024) 342 61.1 49.2 66.5 40.7 63.5
Llama-3.1-8B (Dubey et al., 2024) CoT 475 69.4 61.3 754 53.5 72.0
Gemma-2-2B (Riviére et al., 2024) 29.6 574 40.1 58.6 342 579
Gemma-2-9B (Riviere et al., 2024) 48.1 69.8 56.5 71.0 51.8 70.4
s1-32B (Muennighoff et al., 2025) 50.6 71.6 55.1 71.4 522 71.1
Closed-source LLMs
GPT-3.5-Turbo (OpenAl, 2023) 39.7 65.7 65.8 75.7 51.0 70.0
GPT-40 (OpenAl, 2024a) Base 59.7 76.8 74.6 83.3 66.2 79.6
Claude 3.5 Sonnet (Anthropic, 2024) 63.6 79.5 74.9 84.7 68.5 81.8
ol (OpenAl, 2024b) 65.8 81.6 77.4 85.5 70.8 83.3
GPT-3.5-Turbo (OpenAl, 2023) 423 65.7 59.9 72.7 49.9 68.8
GPT-40 (OpenAl, 2024a) CoT 62.7 79.6 72.9 84.3 67.2 81.7
Claude 3.5 Sonnet (Anthropic, 2024) 61.4 78.9 69.2 81.9 64.8 80.2
ol (OpenAl, 2024b) 66.2 81.9 79.1 87.3 71.8 84.3
Human - 86.3 93.1 95.7 97.1 90.7 95.0

Table 2: The performances of LLMs on TRACE. For each prompting method (i.e., Base and CoT), the best results

among LLMs are underlined.

we employ Llama 3.1 (8B) (Dubey et al., 2024),
Llama 3.2 (1B, 3B) (MetaAl, 2024), Gemma 2
(2B, 9B) (Riviere et al., 2024), and s1-32B (Muen-
nighoff et al., 2025). For closed-source LLMs, we
experiment with GPT-3.5-Turbo (OpenAl, 2023),
GPT-40 (OpenAl, 2024a), Claude 3.5 Sonnet (An-
thropic, 2024), and o1 (OpenAl, 2024b). Lastly, we
include a random choice baseline as a lower bound
for comparison.

4.2 Prompting Methods

We adopt two prompting methods following the
prior works (Sabour et al., 2024; Chen et al., 2024):
a vanilla prompting (Base) and Chain-of-Thought
(CoT) prompting. The Base prompting asks the
model to predict the emotion without any inter-
mediate reasoning, whereas the CoT prompting
encourages step-by-step reasoning by appending
“Let’s think step by step.” The prompt details are
shown in Table 10 and 11.

4.3 Human Evaluation

Following the prior works (Zellers et al., 2019; Bisk
et al., 2020), we calculate human performance us-
ing a majority vote. Five qualified crowdworkers

answered each scenario, and the final answer was
determined by majority vote. This aggregated hu-
man prediction is used as an upper-bound baseline.
More detailed setups and results for the human
evaluation are provided in Appendix G.

4.4 Evaluation Metrics

Following Fu et al. (2023), we use two evalua-
tion metrics: pair-wise accuracy (Accp) and query-
wise accuracy (Accy). Accy, is counted only when
a model correctly predicts emotions for both sce-
narios in the pair, making it a stricter metric. In
contrast, Acc, assigns credit for each correctly pre-
dicted scenario. Detailed formulations of these met-
rics are provided in Appendix D.

4.5 Main Results

We present our results in Table 2. The experimen-
tal results show that the recent LLMs significantly
underperform compared to the human performance
on TRACE. Even the best-performing model, o1,
significantly underperforms humans. Specifically,
it achieves 66.2% Acc,, and 81.9% Acc, on the sen-
sitivity test, falling short of human performance by
20.1% and 11.2%, respectively. On the robustness
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Model Time Place Agent Avg.
Random 6.3 6.3 6.3 6.3
Open-source LLMs
Llama-3.2-1B (2024) 29 107 6.5 6.5
Llama-3.2-3B (2024) 309 364 347 340
Llama-3.1-8B (2024) 36.0 545 452 449
Gemma-2-2B (2024) 94 19.0 9.0 118
Gemma-2-9B (2024) 46.8 653 558 556

s1-32B (2025) 482 537 533 523
Closed-source LLMs

GPT-3.5-Turbo (2023) 353 413 417 397

GPT-40 (2024a) 51.1 66.1 61.8 59.7
Claude 3.5 Sonnet (2024) 604 67.8 633 63.6
ol (2024b) 56.8 73.6 673 658
Human 828 84.0 923 863

Table 3: The performances of LLMs on the subsets of
the sensitivity test, each representing a distinct context
type. We report the results on the robustness counterpart
in Table 6. The performance is measured by Acc,,.

test, ol reaches 79.1% Acc, and 87.3% Accy, still
lagging behind humans by 16.6% and 9.8%. These
results indicate that while recent LLMs have shown
notable performance on a wide range of NLP tasks,
understanding the emotion context sensitivity of
humans is still challenging. Additional results for
open-source LL.Ms with larger sizes are shown in
Appendix H.

4.6 Context Type Analysis

Our experimental results in Section 4.5 reveal that
LLMs exhibit substantial difficulties in capturing
the influence of context changes on emotional re-
sponses. However, it remains unclear whether these
difficulties occur uniformly across all types of con-
text or are particularly pronounced in a specific
type. To investigate this further, we separately as-
sess model performance across three distinct cate-
gories of context: time, place, and agent.

As shown in Table 3, capturing emotional shifts
induced by changes in time context is most chal-
lenging for both humans and LLMs. Previous re-
search suggests that temporal perception varies sub-
stantially across individuals and is influenced by
personal factors such as age and sex (Hancock and
Rausch, 2010). This individual variability in tempo-
ral construal may underlie the observed difficulty.
Additionally, we observe a notable disparity be-
tween human and model performance with respect
to agent context changes. This gap suggests that
LLMs, unlike humans, struggle to capture the com-
plex interplay between emotional responses and

—8— Gemma-2-9B
—o— s1-32B

GPT-40 —8— ol
—0— Claude 3.5

| Human Performance

N :;:74“§<:><2
50 1

0-shot

Accp (%)

2-shot 4-shot 6-shot 8-shot  10-shot

Figure 3: Results of few-shot in-context learning. We
report the results on the robustness test in Figure 7. The
performance is measured by Acc,,.

agent contexts. These observations suggest that,
among various types of context, enhancing LLMs’
ability to understand the influence of agent context
on emotional responses may be especially impor-
tant for developing a human-level understanding of
emotion context sensitivity. Additional breakdown
of the results across emotion labels can be found in
Table 8.

4.7 Effect of Advanced Prompting Strategies

While vanilla prompting and CoT prompting in Sec-
tion 4.5 establish a baseline for evaluating LLMs,
recent studies indicate that advanced reasoning
strategies can substantially influence the LLMs’
performance. Thus, it remains unclear whether the
observed performance gap between LLMs and hu-
mans arises from fundamental deficits in their emo-
tion comprehension or from insufficient utilization
of their capabilities due to suboptimal prompting
strategies. To investigate this, we further examine
whether the following advanced prompting strate-
gies can mitigate the observed deficiencies.

In-context Learning. We first conduct few-shot
in-context learning (Brown et al., 2020) experi-
ments using 2-, 4-, 6-, 8-, and 10-shot settings.
For each setting, we randomly sample scenario
pairs from TRACE as a demonstration and evaluate
the models on the remaining ones. We report me-
dian performance after repeating this process three
times. As shown in Figure 3, few-shot in-context
learning yields performance improvements across
most models. However, these improvements remain
marginal and significantly below human-level per-
formance, suggesting that the observed limitations
are not merely due to unfamiliarity with the task,
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Figure 4: The performances of LLMs on the sensitivity test, with different prompting methods. We report the results
on the robustness counterpart in Figure 6. The performance is measured by Acc,,.

but reflect an inherent deficiency in the models’
ability to understand emotion context sensitivity.

CoT variants. We further apply the follow-
ing CoT variants to both open-source models
and closed-source models. 1) Plan-and-Solve (PS)
(Wang et al., 2023a) prompts LLMs to plan to di-
vide the task into smaller subtasks, and then carry
out the subtasks according to the plan. 2) Self-Ask
(Press et al., 2023) prompts LLMs to decompose
complex questions into sub-questions and answer
them before answering the main question. 3) Self-
consistency CoT (SC-CoT) (Wang et al., 2023c)
samples multiple reasoning paths and then selects
the most consistent answer by marginalizing out
these reasoning paths.

As shown in Figure 4, most structured reason-
ing methods, except for SC-CoT, result in mini-
mal to no improvement, and sometimes even de-
grade performance, particularly in smaller models.
While SC-CoT provides a slight gain, even the best-
performing model using this method still trails hu-
man performance by nearly 20%. Taken together,
these findings suggest that current LLMs exhibit
the fundamental limitations in their capability for
understanding human emotion context sensitivity.

4.8 Qualitative Analysis

To uncover latent patterns and gain deeper insight
into LLM limitations, we conduct a qualitative anal-
ysis of incorrect predictions. This analysis consists
of two parts: an error pattern analysis based on 50
sampled errors to identify recurring failure types,
and a case study that highlights representative in-
stances of these failures. Together, they reveal how
and why models struggle to incorporate contextual
cues when reasoning about emotional responses.

I Overestimate
I Underestimate

Misinterpretation
I Ignorance

48.0

10-“
0_

Figure 5: Pattern analysis of model errors in TRACE.

Error Pattern Analysis. To uncover recurring
failure modes, we conducted a manual analy-
sis of 50 incorrect predictions generated by the
ol model with CoT prompting. Each error was
categorized by examining the model’s reasoning
path—specifically, how it incorporated (or failed
to incorporate) contextual information when infer-
ring emotional states. Based on this analysis, we
defined four major error types: Overestimate (i.e.,
overinterpreting the emotional impact of context),
Underestimate (i.e., underestimating or overlook-
ing the emotional impact of context), Misinterpreta-
tion (i.e., misinterpreting the direction of emotional
impact caused by contextual changes), and Igno-
rance (i.e., failing to reflect the effect of contextual
change in the reasoning process).

The distribution of error types was as follows:
14% were classified as context overestimates, 48%
as underestimates, 32% as misinterpretations, and
6% as context ignorance. These results suggest that
current models tend to underestimate or misjudge
how contextual changes affect emotional states.
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Example #1

Scenario 1 Sydney became sick the day before an important job interview.

Reasoning Sydney became sick right before an important job interview, which is typically a high-stake situation that a person would want to perform well
in. “Sadness” could occur, but most would first worry about how the illness might affect their preparation and performance . “Awe” doesn’t
seem appropriate here, as there is no indication of wonder or amazement relating to the situation. “Relief” would only make sense

if Sydney did not want to attend the interview . However, being sick right before a critical interview more likely escalates concern rather than
providing comfort. “Anxiety” aligns strongly with the uncertainty about whether they can attend or do well in the interview while feeling unwell,
reflecting the stress and worry Sydney would probably experience.
Prediction / GT ~ Anxiety / Anxiety
Scenario 2 Sydney became sick the day after an important job interview.
Reasoning Sydney may be worried about whether the inferview went well and how her sudden illness might affect her upcoming opportunities or

her ability to follow up on the interview. Doubts and concerns about her performance or the interviewer’s decision could amplify her stress.

Feeling sick right after such an important event often fuels uncertainty: she cannot be sure whether she presented herself in the best light, and

now she might fear follow-up interviews while she’s unwell. Hence, the predominant emotion is likely Anxiety.

Prediction/ GT ~ Anxiety / Sadness X

Example #2
Scenario 1 Kai got out of a muddy pond. Kai got the dirty water off their chest during the mud festival.
Reasoning Kai participated in a mud festival, which is typically a fun, playful environment . While getting muddy might be temporarily uncomfortable,
the overall atmosphere is usually lighthearted . Kai successfully got the dirty water off, suggesting relief from discomfort. Mud festivals are
generally associated with enjoyment and celebration rather than fear, frustration, or disapproval .
Prediction/ GT ~ Joy / Joy
Scenario 2 Kai got out of a muddy pond. Kai got the dirty water off their chest before her wedding.
Reasoning Disapproval would imply a moral or ethical judgment, which doesn’t necessarily fit Kai’s situation. She likely wouldn’t be dis-
approving of herself or her circumstances; the muddy pond was an accident. Frustration is possible initially because getting
muddy right before a wedding can be aggravating .  However, since she managed to clean up “just before” the wedding, any lingering
frustration would probably be overshadowed by relief. =~ Fear might occur if  she worried about ruining her dress or the ceremony,
but once clean, fear would subside. Joy seems most likely the final emotion. Having successfully removed the mud in time,
Kai would feel relieved and happy that her wedding could proceed smoothly, leading to an ultimate feeling of joy.
Prediction / GT ~ Joy / Frustration X

Table 4: Case study of ol’s predictions. Scenario contexts are underlined, while salient words conventionally
associated with emotions (e.g., festival-joy, interview-anxiety) are marked in bold italics and blue. The reasoning
associated with the salient words is highlighted in light blue for emphasis. “GT” denotes a ground-truth answer.

Case Study. While our error pattern analysis cat-
egorizes common types of failure based on model
predictions, it does not fully reveal the internal
reasoning processes that lead to these errors. To
better understand how models arrive at their pre-
dictions, we manually and thoroughly analyze the
CoT reasoning trajectories. CoT explicitly elicits
intermediate reasoning steps, enabling us to assess
whether models follow contextually appropriate
reasoning paths or exhibit systematic biases.

A recurring issue we observe is that LLMs
tend to over-rely on emotionally salient keywords.
Rather than performing structured reasoning based
on the full context, models often latch onto emo-
tionally salient words—such as interview, festival,
or wedding—and generate reasoning paths that
reflect conventional emotional associations (e.g.,
interview-anxiety, festival-joy). This leads to cor-
rect predictions when the emotional connotation
aligns with the actual context, but fails when it does

not.

For instance, as shown in Table 4, scenario 1 of
each example shows that the model correctly rea-
sons about emotional responses when the context
supports the conventional association. In contrast,
in scenario 2, the model ignores conflicting contex-
tual cues and instead generates explanations that
reflect stereotypical associations, resulting in incor-
rect predictions.

5 Conclusion

We present the first systematic study to assess the
extent to which LLMs understand emotion context
sensitivity—a key component of human emotional
intelligence. Grounded in behavioral theory and
emotion psychology, we define time, place, and
agent as three core contextual dimensions, and use
them to construct TRACE—a controlled benchmark
that isolates each type of context change to assess
whether LLMs can track emotional responses. Our
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analysis on TRACE results in three key findings.
First, current LLMs exhibit a large performance
gap relative to humans in understanding emotion
context sensitivity. Second, even with advanced
prompting techniques, models show limited im-
provement, suggesting an inherent limitation in
processing how contextual cues shape emotional
responses. Third, LLMs struggle to account for in-
dividual differences in emotional experience, as
evidenced by their pronounced performance gap
in agent-modified contexts. We hope that TRACE
serves as a challenging benchmark for future re-
search in the emotional intelligence of Al and facili-
tates the development of models capable of context-
aware emotional reasoning.

6 Limitations

While TRACE provides a systematic evaluation of
the LLMs’ capability in understanding emotion
context sensitivity of humans, it has several limita-
tions that future research should address.

First, TRACE reflects individual differences in
only a subset of scenarios. To clearly attribute emo-
tional changes to each context dimension, we de-
signed the benchmark such that only one type of
context is modified at a time. However, even the
same contextual changes in time or place can lead
to different emotional responses depending on per-
sonal factors, such as cultural background (Green-
away et al., 2018). Therefore, this design choice can
make the character’s emotional state ambiguous in
scenarios without agent-specific context. This issue
is reflected in lower human performance for non-
agent context types compared to agent-modified
scenarios.

Second, TRACE is limited to the textual modal-
ity. We adopted this design to isolate failures in
understanding of emotion context sensitivity from
those arising due to difficulties in processing non-
textual modalities (Kervadec et al., 2021; Lao et al.,
2023; Tong et al., 2024). However, this comes at
the cost of overlooking the inherently multimodal
nature of contextual cues, which are often conveyed
through visual, auditory, and other sensory signals
in real-world scenarios.

Third, our benchmark focuses solely on affec-
tive experience—that is, whether LLMs can infer
emotional states given a specific context—while
other important components of emotion context
sensitivity, such as emotional expression and regu-
lation, remain unaddressed. We intentionally limit

our scope to affective experience as a first step;
however, it inevitably restricts a more comprehen-
sive evaluation of LLMs’ understanding of emotion
context sensitivity.

Lastly, we acknowledge that the benchmark
skews towards US residents. As such, the col-
lected scenarios may reflect emotional experiences
more common to this group. Therefore, future work
should prioritize collecting scenarios from under-
represented populations in order to assess LLMs’
understanding of the emotion context sensitivity
of humans in these groups. This, however, poses a
notable challenge, given the current demographic
distribution of workers on crowdsourcing platforms
and the additional complexity of designing data col-
lection forms in languages other than English.
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Appendix

A Human Annotation Quality Control

To ensure high-quality annotations, we employed
workers on MTurk with a qualification test. 19% of
the candidates passed the qualification test and pro-
ceeded to the data collection pipeline. Furthermore,
we continuously monitored the quality of submit-
ted work, revoking qualifications for workers who
repeatedly submitted low-quality data. Figure 12
shows the excerpt from HIT instructions of the
qualification test, and Table 5 summarizes the de-
mographic information of workers who passed the
qualification test. We include only individuals over
the age of 20 to ensure emotional maturity, the abil-
ity to stabilize emotions (Joy and Mathew, 2018).
We informed all the workers of the purpose of our
study, and the workers provided their consent to
participate in the project. Each task was compen-
sated at $9.03 per hour, which is above the U.S.
federal minimum wage.

B Details of Emotion Taxonomy
Construction

In this section, we detail the construction of the
emotion labeling taxonomy used in data collec-
tion. Our taxonomy is grounded in Plutchik’s
Wheel of Emotions (Plutchik, 1982), a widely used
framework in psychological literature. Specifically,
Plutchik’s Wheel proposes a total of 32 emotions,
comprising eight basic emotions, eight stronger and
eight milder variants of those basic emotions, and
eight compound emotions (i.e., dyads) formed by
combining pairs of adjacent basic emotions. While
this model provides a structured foundation, it lacks
intensity variations for the eight compound emo-
tions. This absence may introduce ambiguity dur-
ing annotation, as annotators have no clear refer-
ence points for differentiating intensity levels in
these cases.

To fill this gap, we expanded the taxonomy
using 280 emotion words from WordNet-Affect
(Strapparava and Valitutti, 2004), a lexical resource
that offers broad coverage of affective vocabulary.
Based on this pool, we consulted experts to iden-
tify high- and low-intensity variants for the eight
compound emotions, resulting in 16 new emotion
labels that introduce intensity distinctions previ-
ously missing from the original model. If multiple
candidate words were available for a given emo-
tion, we selected the most frequently used term. In

addition, during the qualification test, annotators
occasionally labeled emotions not present in the
taxonomy. Among these, several terms appeared
consistently across multiple annotators. We incor-
porated the most commonly mentioned of these
into the taxonomy, grouping them into two supple-
mentary categories—Extreme Emotions and Other
Emotions—which brought the total number of emo-
tion labels to 64. Figure 11 shows the complete
taxonomy of emotions used to construct TRACE.

C Observer-based Evaluation in TRACE

In this study, we adopt an observer-based evalua-
tion framework for TRACE, where LLMs are tasked
with analyzing scenarios from a third-person per-
spective during evaluation. A natural question may
arise: why choose this approach over alternatives
such as role-playing frameworks?

We adopt the observer-based framework for two
primary reasons. First, we believe this approach
more accurately reflects the typical setting in which
current LL.Ms operate: they are generally expected
to analyze and interpret situations from an external
perspective, rather than simulate internal emotional
states. Second, prompts framed from an observer’s
viewpoint tend to be less ambiguous and easier for
LLMs to process. In contrast, role-playing tasks
introduce additional challenges, such as defining
fictional characters with only minimal contextual
information (Han et al., 2022). Nevertheless, we
consider role-playing a promising direction for fu-
ture research, as it may offer complementary in-
sights into LLMs’ capacity for contextual emotion
understanding.

D Definition of Evaluation Metrics

In this section, we formally define the two evalu-
ation metrics used in our experiments: pair-wise
accuracy (Accp) and query-based accuracy (Accy).
Let o; (i = 1,2) denote the emotion predicted by
the LLLM for the pivot character p in scenario s;,
and let y; be the correct label among the four emo-
tion options. The metrics are computed as follows:

np

1
Acep = — > (o1; = y1;] x L[ogj = yy]),
P j=1
1 &
Accg = 5~ > (Lo = yus] + Logj = ya50),
P j=1

)
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Age | Gender | Education | Economic class | Location
20-29 343% | Female 47.8% | High-school or equivalent 6.0% | Lower 9.0% | US 97.0%
30-39  26.9% | Male 52.2% | Some college (no degree) 6.0% | Working 43.3% | non-US 3.0%
40-49  23.9% Bachelor’s degree 67.2% | Middle 35.8%

50-59 11.9% Graduate degree 20.8% | Upper-middle 11.9%
60- 3.0%

Table 5: Breakdown of crowdworker demographics by age, gender, education, economic class, and location.

Model Time Place Agent Avg.
Random 6.3 6.3 6.3 6.3
Open-source LLMs
Llama-3.2-1B (2024) 54 107 9.1 8.2
Llama-3.2-3B (2024) 562 583 48.8 542
Llama-3.1-8B (2024) 662 67.0 66.1 664
Gemma-2-2B (2024) 11,5 146 124 127
Gemma-2-9B (2024) 654 650 694 66.7
s1-32B (2025) 715 68.0 68.6 69.5

Closed-source LLMs
GPT-3.5-Turbo (2023) 677 670 628 65.8

GPT-40 (2024a) 83.1 67.0 719 746
Claude 3.5 Sonnet (2024) 83.1 73.8 669 749
ol (2024b) 754 835 744 774
Human 95.2 962 957 95.7

Table 6: The performances of LLMs on the subsets of
the robustness test, each representing a distinct context
type. Performance is measured by Acc,. Second-best
results are underlined.

where n,, denotes the number of scenario pairs.

E Results on the Robustness Test

Here, we present results on the robustness test, in-
cluding an analysis of performance across different
context types and the effect of advanced prompting
strategies.

Context Type Analysis. In Table 6, we observe
a similar pattern of model vulnerability: LLMs ex-
hibit the lowest performance in scenarios involving
changes in time and agent context. Interestingly, hu-
man annotators achieve near-ceiling performance
(above 95%) across all context types, suggesting
that context changes unrelated to emotion are gen-
erally unambiguous to humans. These results un-
derscore the importance of enhancing models’ ro-
bustness to misleading yet emotionally irrelevant
context shifts.

Advanced Prompting Strategies. We evalu-
ated the effects of advanced prompting strate-
gies—including few-shot in-context learning and
CoT variants—on the robustness test. As shown in

Figure 6 and Figure 7, both types of prompting tend
to degrade performance across most models. This
trend suggests that increased reasoning, rather than
helping models ignore irrelevant context changes,
often leads them to overestimate these changes and
produce incorrect emotional predictions. In particu-
lar, smaller models are more prone to this overesti-
mation behavior. Notably, ol is the only model that
benefits from these prompting strategies, showing
consistent performance improvements. While the
precise reason remains unclear, future investigation
of this phenomenon may help reveal the reason-
ing capabilities required for understanding human
emotion context sensitivity.

Overall, the findings suggest that emotional con-
text robustness requires the ability to selectively
reason about emotionally relevant cues—an ability
that current LLMs often lack.

F Subcategory Analysis of Contexts

In this section, we provide additional details on
three context types used in TRACE: time, place,
and agent. While these high-level categories were
designed based on psychological literature (Burke
et al., 2009; Greenaway et al., 2018), their broad
scope raises a natural question: does the dataset
sufficiently capture meaning diversity within each
context type?

As a response, we analyzed the collected data
using subcategories identified in prior research. For
the time context, we adopted four temporal dimen-
sions from (Zhou et al., 2019): duration (how long
an event takes), temporal ordering (temporal order
of events), typical time (when an event happens),
and frequency (how often an event occurs). For
the place context, we focused on concrete physical
settings such as parks, offices, and airports. For the
agent context, inspired by Greenaway et al. (2018),
we encouraged workers to include details related
to demographics, personality traits, situational ap-
praisals, and social relationships.

Figure 9 shows the distribution of these subcate-
gories within the time and agent contexts. The re-
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Figure 6: The performances of LLMs on the robustness test, with different prompting methods. The performance is

measured by Acc,,.
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Figure 7: Results of LLMs with few-shot in-context
learning on the robustness test. Each setting is evaluated
three times, and the median performance is reported.

sults confirm that our dataset reflects a wide range
of psychologically meaningful variations within
each context type, addressing concerns about over-
generalization in our design.

G Human Performance Measurement

We report human performance measured under dif-
ferent settings in the main text and the appendix,
respectively.

Details of Human Performance Measurement in
Main Text In the first experiment, we randomly
assigned five different crowdworkers to each of
the 300 scenarios sampled from our benchmark.
Following the setup commonly used in prior work
(Zellers et al., 2019; Bisk et al., 2020), final an-
swers were aggregated via majority vote, and the
resulting accuracy was used as the reference for
human performance in Section 4.

Individual Variability in Human Performance
To examine individual variability in human per-
formance, we conducted an additional experiment

95
90
85
80
75 A
i —
70 =
65 - =
601 B2 =3
55 . : : : T T
I ”9’% &,b‘o 2 e ,b((o
v < & &
ﬂ({b %) [ ’b\) \2\\3
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(a) Accp
100
95 | %
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——
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& ° © N &
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Figure 8: Distribution of the overall performances of
LLMs and humans. The results for LLLMs are based on
10 different runs. We use Acc, and Acc, as evaluation
metrics for subplots (a) and (b), respectively.

focusing on differences across crowdworkers. In
this experiment, 10 crowdworkers from the initial
human performance measurement were each asked
to independently complete the same set of 60 ran-
domly selected scenarios from TRACE. This setup
allowed us to measure the variance in human perfor-
mance and whether model performance is statisti-
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Figure 9: Distribution of subcategories in the (a) time and (b) agent contexts.

cally distinguishable from that of humans. Figure §
summarizes individual human performances. Acc,
scores ranged from 80.0% to 93.3% (SD: 4.1%),
and Acc, scores ranged from 90.0% to 96.7% (SD:
2.0%), indicating notable variability across crowd-
workers. This variation reflects individual differ-
ences in emotional understanding ability, as re-
ported in a prior study (Wang et al., 2023b). Despite
this, crowdworkers consistently outperform LLM:s.
A two-sample t-test confirms that the performance
gap is statistically significant (p < 0.05).

Figure 13 shows an excerpt from the MTurk HIT
instructions used in the human evaluation. Each
task was compensated at $9.03 per hour, which is
above the U.S. federal minimum wage.

H Additional Results for Larger
Open-source LLMs

To further investigate how state-of-the-art LLMs
understand emotion context sensitivity of humans,
we present the additional results for the larger open-
source models, Llama-3-70B (MetaAl, 2024) and
Mixtral 8x7B (Jiang et al., 2024), in Table 7. As
shown, both models perform notably below human
levels in both sensitivity and robustness tests, con-
sistent with the findings in Table 2. These results
show that understanding the emotion context sen-
sitivity of humans remains a substantial challenge
even for larger open-source models.

I Statistical Analysis of Collected Data

To better understand the characteristics of our
dataset, we conduct a statistical analysis on the dis-
tribution of emotions and contextual dimensions.
Figure 10 presents the overall distribution of emo-
tions in our dataset, showing the relative frequency
of each emotion category.

Joy
Pride

Anxiety

Relief

Gratitude
Annoyance
Frustration
Concern
Determination
Anticipation
Comfortableness
Surprise

Anger

Fear

Interest
Exhaustion
Serenity

Guilt
Embarrassment
Sadness

Grief

Optimism
Ecstasy
Discouragement
Shame
Sympathy

Trust

Vigilance
Acceptance
Devotion
Confusion
Remorse

Love

Suspicion
Displeasure
Admiration
Helplessness
Indifference

Emotion

Terror
Amazement
Awe
Oppression
Rage
Impatience
Boredom
Disgust
Intimidation
Passion
Disapproval
Distraction
Pensiveness
Sanguinity
Contempt
Jealousy
Lonesomeness
Favor
Reverence
Loathing
Submission
Surrender
Unfriendliness Robustness

B Sensitivity
6
)
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8

Figure 10: Emotion distribution in TRACE.

J Crowdsourcing for Data Collection

To collect high-quality annotations for our dataset,
we conducted a crowdsourcing task using MTurk.
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Model Prompt Sensitivity Robustness Avg.
Acc,, Accy Acc, Accy Acc,, Accy

Llama-3-70B (MetaAl, 2024) Base 60.6 78.3 72.6 82.1 65.8 80.0

Mixtral 8x7B (Jiang et al., 2024) 40.7 64.8 57.1 70.6 47.8 67.3

Llama-3-70B (MetaAl, 2024) CoT 61.4 79.5 74.0 83.7 66.9 81.3

Mixtral 8x7B (Jiang et al., 2024) 42.0 65.4 59.1 71.1 494 67.9

Table 7: The performances of additional open-source LLMs on TRACE.
Basic emotions Mixed emotions
Ecstasy Joy Serenity Devotion Love Favor
Admiration Trust Acceptance

Vigilance Anticipation Interest

Passion Optimism Sanguinity
High <----- Intensity ----- > Low High <----- Intensity ----- > Low
Extreme emotions
Woe
Others
Gratitude Indifference Sympathy Displeasure
Impatience  Comfortableness  Lonesomeness Confusion

Figure 11: Emotion taxonomy in TRACE.

Examples of HITs are shown in Figure 12, Figure
13, and Figure 14. The full crowdsourcing interface
will be made available on GitHub.

K Experiment Prompts

Table 10 and Table 11 present the prompts used
in our experiments. We designed these prompts
to effectively assess how well LLMs understand
emotion context sensitivity of humans across differ-
ent contextual variations. Each prompt was care-
fully crafted to maintain consistency while ensur-
ing that models receive sufficient information to
make context-aware emotional predictions.
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®

Previewing Answers Submitted by Workers

This message is only visible to you and will not be shown to Workers.

You can test completing the task below and click "Submit" in order to preview the
data and format of the submitted results.

Introduction Process Examples Incorrect Examples Payment policy Workspace

Qualification Test Process

The test process involves:

1. Adding or modifying a context within a given scenario to elicit different
emotions.

2. Annotating the emotions evoked in both scenarios.

Template for Qualification Test

Event:

Lora saw her husband sleeping with her baby on the couch and the mess in
the living room

1) Central Character:

Lora

2) Context Type:

* Choose one context type from Time/Place/Agent to add or change in the
event.

* You can find more detailed information below.

Place

3) Scenarios

* Add or alter only contextual factors to create two scenarios of eliciting
distinct emotions.

#1:

Figure 12: Excerpt from MTurk HIT instructions: Qualification test.
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®

Previewing Answers Submitted by Workers

This message is only visible to you and will not be shown to Workers.

You can test completing the task below and click "Submit" in order to preview the
data and format of the submitted results.

Introduction Examples Workspace

Scenario #1:
${scenario_text_1}
Central Character:

${character_text_1}

* What is the emotion that the central character feel in this
scenario?

Emotion:

O ${emo_option_1_1}

O ${emo_option_1_2}

O ${emo_option_1_3}

O S${emo_option_1_4}

Scenario #2:

${scenario_text_2}

Central Character:

${character_text_2}

* What is the emotion that the central character feel in this
scenario?

Figure 13: Excerpt from MTurk HIT instructions: Human evaluation.
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Previewing Answers Submitted by Workers

This message is only visible to you and will not be shown to Workers.

You can test completing the task below and click "Submit" in order to preview the
data and format of the submitted results.

Introduction Process Examples Payment policy Workspace

Emotion Types

Basic emotions Mixed emotions

Ecstasy Joy Serenity Devotion Love Favor

Vigilance ‘ Anticipation ‘ Interest Passion Optimism Sanguinity

High <----- Intensity ----- > Low High <----- Intensity ----- > Low

Extreme emotions

Others
Gratitude Indifference Sympathy Displeasure
Impatience ~ Comfortableness  Lonesomeness Confusion

You have to choose one emotion within the above list.

* Basic emotions represent various intensities of feelings derived from eight core emotions.
(e.g., joy, anger)

* Mixed emotions occur when a person experiences two or more emotions simultaneously,
often of opposite valence (e.g., one positive and one negative).

Workspace

Event:
S{event_text}

1) Central Character:

Figure 14: Excerpt from MTurk HIT instructions: Data collection.
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Emotion \Gemma—2—9B s1-32B  GPT-40 Claude 3.5 ol

Joy 91.0 88.5 98.4 96.7 95.1

Pride 79.0 83.2 88.2 89.1 87.4
Anxiety 85.8 59.3 74.3 85.0 88.5
Relief 87.6 91.0 93.3 83.1 93.3
Gratitude 88.8 97.5 92.5 93.8 95.0
Annoyance 79.2 68.1 81.9 88.9 86.1

Frustration 95.2 90.5 82.5 84.1 87.3
Concern 72.4 60.3 70.7 74.1 77.6
Determination 47.4 50.9 59.6 64.9 68.4
Anticipation 83.3 81.5 79.6 83.3 81.5
Comfortableness 81.0 83.3 88.1 88.1 90.5
Surprise 45.7 45.7 71.4 514 62.9
Anger 75.8 75.8 90.9 81.8 90.9
Fear 75.8 60.6 66.7 84.8 84.8
Interest 57.6 60.6 72.7 69.7 63.6
Exhaustion 68.8 84.4 90.6 78.1 93.8
Serenity 75.0 96.9 87.5 93.8 87.5
Guilt 75.0 89.3 78.6 92.9 82.1

Embarrassment 67.9 67.9 64.3 71.4 89.3
Sadness 88.9 85.2 88.9 88.9 85.2
Grief 87.5 83.3 87.5 83.3 83.3
Optimism 87.5 87.5 83.3 83.3 79.2
Ecstasy 81.8 95.5 773 90.9 90.9
Discouragement 81.0 85.7 66.7 81.0 81.0
Shame 71.4 66.7 66.7 71.4 85.7
Sympathy 52.4 66.7 81.0 90.5 81.0
Trust 47.6 76.2 52.4 85.7 66.7
Vigilance 52.4 57.1 66.7 61.9 57.1

Acceptance 65.0 90.0 55.0 85.0 75.0
Devotion 65.0 70.0 60.0 60.0 50.0
Confusion 61.1 50.0 722 88.9 77.8
Remorse 75.0 87.5 68.8 81.3 68.8
Love 86.7 93.3 93.3 86.7 93.3
Suspicion 429 429 78.6 78.6 85.7
Displeasure 92.3 92.3 84.6 92.3 84.6
Admiration 58.3 75.0 91.7 58.3 91.7
Helplessness 66.7 58.3 58.3 58.3 83.3
Indifference 50.0 333 75.0 333 50.0
Terror 83.3 83.3 91.7 75.0 91.7
Amazement 70.0 50.0 50.0 40.0 70.0
Awe 60.0 70.0 40.0 70.0 70.0
Oppression 70.0 60.0 80.0 90.0 40.0
Rage 50.0 50.0 50.0 60.0 80.0
Impatience 44 .4 44.4 44 .4 55.6 33.3
Boredom 87.5 100.0 87.5 87.5 100.0
Disgust 87.5 50.0 87.5 100.0 87.5
Intimidation 75.0 87.5 62.5 75.0 87.5
Passion 62.5 62.5 75.0 62.5 50.0
Disapproval 57.1 85.7 100.0 100.0 100.0
Distraction 71.4 57.1 71.4 85.7 85.7
Pensiveness 71.4 42.9 57.1 28.6 42.9
Sanguinity 83.3 83.3 66.7 83.3 66.7
Contempt 20.0 60.0 60.0 60.0 60.0
Jealousy 60.0 60.0 80.0 80.0 100.0
Lonesomeness 40.0 60.0 40.0 80.0 80.0
Favor 100.0 100.0 100.0 75.0 100.0
Reverence 75.0 100.0 100.0 75.0 100.0
Loathing 100.0 100.0 50.0 50.0 100.0
Submission 0.0 0.0 100.0 100.0 100.0
Surrender 100.0 100.0 100.0 100.0 100.0
Unfriendliness 0.0 0.0 0.0 0.0 0.0

Table 8: Breakdown of results on TRACE across emotion labels. We use Acc, as an evaluation metric because Acc,,
for each emotion label is not defined.
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System Prompt

You are a helpful assistant.

User Prompt

Scenario: [scenario]

Question: What emotions would [subject] ultimately feel in this situation?

Choices: [choices]

Directly choose the top 3 emotions that the individual is most likely to feel within the choices.

Table 9: Prompts we used in distractor generation.

System Prompt

**Instructions®*

In this task, you are presented with a scenario, a question, and multiple choices. Please carefully analyze the scenario and
take the perspective of the individual involved.

**Note**

Provide only one single correct answer to the question and respond only with the corresponding letter. Do not provide
explanations for your response.

User Prompt

Scenario: [scenario]
Question: What emotion(s) would [subject] ultimately feel in this situation?
Choices: [choices]

Answer

Answer (Only reply with the corresponding letter numbering):

Table 10: Prompts for vanilla prompting we used in our experiments.

System Prompt

**Instructions®*

1. *#*Reason**: Read the scenario carefully, paying close attention to the emotions, intentions, and perspectives of the
individuals involved. Then, using reason step by step by exploring each option’s potential impact on the individual(s) in
question. Consider their emotions, previous experiences mentioned in the scenario, and the possible outcomes of each choice.
2. ¥*Conclude** by selecting the option that best reflects the individual’s perspective or emotional response. Your final
response should be the letter of the option you predict they would choose, based on your reasoning.

*ENote**

The last line of your reply should only contain the letter numbering of your final choice.

User Prompt

Scenario: [scenario]
Question: What emotion(s) would [subject] ultimately feel in this situation?
Choices: [choices]

Answer

CoT — Answer: Let’s think step by step.

PS — Answer: Let’s first understand the problem and devise a plan to solve the problem. Then, let’s carry out the plan to
solve the problem step by step.

Self-Ask — Answer: Break the original question into sub-questions. Explicitly state the follow-up questions, and the answers
to the follow-up questions. Aggregate the answers to the follow-up questions and write the answer in the end as “Final
Answer: [answer]”.

Table 11: Prompts for advanced prompting strategies we used in our experiments. For Self-Ask, we follow the
prompt design in Xu et al. (2024).
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