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Abstract

Data-efficient training requires strong induc-
tive biases. To the extent that transformer at-
tention matrices encode syntactic relationships,
we would predict that knowledge distillation
(KD) targeting attention should selectively ac-
celerate syntax acquisition relative to conven-
tional logit-based KD. To test this hypothesis,
we train GPT-2 student models on datasets rang-
ing from 10K to 5M sentences using both dis-
tillation methods, evaluating them on both syn-
tactic benchmarks and perplexity. Surprisingly,
while logit-based KD dramatically improves
data-efficiency, attention-based KD provides
minimal benefit even for syntactic tasks. This
suggests that output distributions provide suf-
ficient supervisory signal for syntax acquisi-
tion, indicating that syntactic knowledge may
be distributed throughout the network rather
than localized in attention patterns.'

1 Introduction

Modern language models successfully capture
many aspects of human linguistic abilities, from the
fundamentals of grammar (Warstadt et al., 2020;
Linzen and Baroni, 2021; Hu et al., 2024) to more
sophisticated uses of world knowledge (Ivanova
et al., 2024; Yamakoshi et al., 2023). However,
they achieve these capabilities only after training
on vastly more data than human children receive
during language acquisition (Frank, 2023), motivat-
ing research into inductive biases (Warstadt et al.,
2023), predispositions that guide learning toward
particular solutions with less data. These biases
include architectural modifications (Sartran et al.,
2022), curriculum learning strategies (Diehl Mar-
tinez et al., 2023), training objectives (Ahuja et al.,
2025), and specialized weight initialization tech-
niques (Bencomo et al., 2025).

!Code is available at https://github.com/
taka-yamakoshi/attention_structures.
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Figure 1: We compare knowledge distillation through
logits and attention matrices as a form of inductive bias.
We hypothesize that syntactic structures reflected in at-
tention could provide an inductive bias that selectively
enhances the student’s performance in syntactic phe-
nomena.

In this paper, we use knowledge distillation to
study which aspects of a model’s learned represen-
tations are most critical for scaffolding particular
linguistic capabilities. We focus specifically on
learning syntax — an ability classically theorized
to require strong (innate) biases (Chomsky, 1965;
McCoy et al., 2020). Previous research has shown
that syntactic information is encoded in the atten-
tion mechanism of transformer models (Clark et al.,
2019; Ravishankar et al., 2021), and that constrain-
ing these attention matrices can serve as an effec-
tive inductive bias for syntax (Nguyen et al., 2020;
Qian et al., 2021; Yoshida and Oseki, 2022; Sartran
et al., 2022).

If syntax is primarily localized in attention matri-
ces, then KD targeting these representations should
be sufficient to transfer syntactic abilities, poten-
tially even outperforming conventional logit-based
distillation. Moreover, if attention serves as the
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primary locus of syntactic information, we would
predict that attention-based KD should show se-
lective advantages for syntactic tasks relative to
general language modeling performance, provid-
ing a targeted inductive bias for syntax acquisi-
tion under data-limited conditions. In other words,
we use distillation as an analytical tool to probe
whether syntactic knowledge is indeed localized
in specific model components or distributed more
broadly throughout the network (Figure 1).

To investigate these two possibilities, we
conducted controlled experiments using a pre-
trained GPT-2 model (Radford et al., 2019) as
teacher, training architecturally-identical students
on datasets ranging from 10K to SM sentences. Our
contributions are twofold. First, we demonstrate
that conventional logit-based distillation drastically
reduces the amount of data required for learning
syntax, reaching teacher-level performance with
only 500K sentences of training data. Second,
surprisingly, attention-based KD provides limited
benefit for syntactic tasks despite prior evidence
that these matrices encode syntactic structure. Our
work illustrates how knowledge distillation can
serve as a powerful analytical tool for understand-
ing which aspects of a model’s representations are
effective for achieving data-efficiency with respect
to specific linguistic capabilities.

2 Related Work

2.1 Knowledge distillation

Knowledge distillation consists of three main ap-
proaches (Gou et al., 2021): response-based KD,
which aligns the output distributions of teacher and
student models; feature-based KD, which matches
internal representations to transfer detailed com-
putational patterns; and relation-based KD, which
preserves relational structures across multiple sam-
ples. In this work, we employ both response-based
KD through logits and feature-based KD through
attention to investigate their relative effectiveness
for transferring syntactic knowledge.

While KD was initially developed for model
compression, its applications have been expanded
in several directions. For example, Furlanello et al.
(2018) demonstrated that distilling knowledge to
a student of identical architecture can actually im-
prove performance. Others have used KD to fa-
cilitate transfer between architecturally different
models (Kuncoro et al., 2019, 2020; Abnar et al.,
2020), showing that inductive biases from special-

ized architectures can be distilled into more general
ones. Finally, recent work has explored KD for
data-efficient training, using ensembles of teacher
models to improve student performance on limited
data (Timiryasov and Tastet, 2023; Samuel, 2023;
Yam and Paek, 2024). Our approach maintains
architectural consistency between teacher and stu-
dent, and uses a single pre-trained model as the
teacher, in order to isolate the effects of different
distillation mechanisms on syntactic competencies.

2.2 How transformers represent syntax

Understanding how transformers capture syntac-
tic structures has been a central question in inter-
pretability research. Numerous studies have identi-
fied attention matrices as repositories of syntactic
information, with certain attention heads specializ-
ing in tracking specific syntactic relations (Clark
et al. 2019; Vig and Belinkov 2019; Htut et al.
2019; Ravishankar et al. 2021; Lee et al. 2024,
cf. Hassid et al. 2022). Others have shown that
incorporating explicit syntactic guidance into at-
tention patterns can improve performance on syn-
tactic tasks (Strubell et al., 2018; Sachan et al.,
2021; Bugliarello and Okazaki, 2020; Wang et al.,
2019b; Bai et al., 2021; Chen et al., 2024). Recent
work has also investigated the data requirements
for acquiring syntactic knowledge, with some stud-
ies finding that pre-training on small, developmen-
tally plausible corpora can lead to syntax acquisi-
tion with the right inductive biases (Warstadt et al.,
2023; Huebner et al., 2021). However, the precise
mechanisms through which transformers acquire
syntactic knowledge, and the relative contributions
of different elements of the architecture, remain
open questions.

3 Approach

We ask whether distillation through attention pro-
vides a stronger inductive bias for syntax acquisi-
tion compared to conventional distillation through
logits. To investigate this question, we conducted
controlled experiments using an identical GPT-2
small architecture (Radford et al., 2019) for both
the teacher and student models. We focused on
GPT-2 small as it is the smallest available pre-
trained language model with adequate performance,
enabling feasible experiments. The teacher model
was a fully pre-trained GPT-2, while the student
models were trained from scratch on different sub-
sets of the BabyLLM dataset (Warstadt et al., 2023),
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ranging from 10K to 5M sentences. By varying the
dataset size, we assessed how different distillation
methods affect data efficiency. All results reported
are averages across three random seeds. Complete
training details are provided in Appendix A.

3.1 Distillation via logits

We first established the baseline effectiveness of
conventional KD through output distributions. Fol-
lowing Kim and Rush (2016), we implemented
word-level KD where the student model learns to
match the teacher’s output probability distributions.
Let P;(w|w<;) and Ps(w|w<;) be the conditional
probability of the word w at the ¢-th token calcu-
lated by the teacher and the student model respec-
tively. The auxiliary loss for distillation L)t for
each sentence with length N was defined as

N
1
Liogits = N E E Py(w|w<;) log Ps(w|w<;),
=1 wevVv

where V' is the vocabulary. This formulation is
equivalent to calculating the forward KL diver-
gence between teacher and student distributions
at each token position and taking the average. This
auxiliary loss was then added to the standard cross-
entropy loss Lcg with a coefficient « controlling
the strength of distillation:

L=Lcg+ O‘fclogit&

Based on preliminary experiments testing different
values of o (Figure S1), we found that aw = 10 led
to optimal performance and fixed it at this value for
all logit-based distillation experiments.

3.2 Distillation via attention

To test our hypothesis that attention matrices might
provide a stronger inductive bias for syntax acqui-
sition, we implemented feature-based KD targeting
the attention mechanisms directly. Previous stud-
ies have shown that KD through attention matrices
is an effective method to perform model compres-
sion both in computer vision (Zagoruyko and Ko-
modakis, 2017; Wang et al., 2022; Li et al., 2024)
and natural language processing (Aguilar et al.,
2020). Following these studies, we calculated the
auxiliary loss L4, as the mean squared error be-
tween the attention matrices of the teacher and the
student. Let A;(l, h) and A4(l, h) be the attention
matrices of the head h at layer [ calculated by the

teacher and the student model, respectively.

11 L H
Lotin = =7 > > MSE(4(I,h) — As(1, h)),
LH =1 h=1

where L and H are the number of layers and heads.
As with logit-based distillation, this auxiliary loss
was added to the cross-entropy loss with a coef-
ficient @ = 1, based on preliminary experiments
(Figure S1).

3.3 Evaluation

To test our hypothesis about the relative effective-
ness of different distillation approaches for syntax
acquisition, we evaluated models on both syntactic
benchmarks and a conventional language modeling
metric. If attention matrices encode critical syntac-
tic information not fully captured in output distribu-
tions, then attention-based distillation should show
selective advantages on syntactic tasks, especially
when training data is limited. For syntactic eval-
uation, we used three datasets based on minimal
pairs:

* Linzen (Linzen et al., 2016; Gulordava et al.,
2018) tests subject-verb agreement across var-
ious syntactic constructions.

e BLiMP (Warstadt et al., 2020) tests 67 dis-
tinct tasks across 12 syntactic phenomena.

* Zorro (Huebner et al., 2021) tests simple syn-
tactic tasks that align with the developmental
nature of our training data.

For each item in these benchmarks, we com-
puted the log probability of both sentences and
counted the model as correct if it assigns a higher
probability to the grammatically acceptable variant.
To ensure we capture overall language modeling
capability (beyond syntax), we also measured per-
plexity on the BabyLM test split. This dual eval-
uation allows us to distinguish between general
improvements in language modeling and selective
enhancements in syntactic competence, helping to
determine whether different distillation methods
provide domain-specific inductive biases or gen-
eral learning benefits.

4 Results

Before testing the effects of KD on syntactic per-
formance, we check how well each KD approach
achieves its objective. As shown in Figure S2, logit-
based KD successfully enables the student model
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Figure 2: Performance of the students trained on datasets with different sizes. Linzen, BLiMP, and Zorro are
targeted syntactic evaluations, while perplexity quantifies general language modeling performance. Bands show the
bootstrapped 95% CI across three random seeds. Dashed lines indicate the performance of the teacher.

to achieve a much lower KL divergence from the
teacher model, and attention-based KD enables the
student model to achieve a much more similar at-
tention pattern to the teacher model. Next, we turn
to our main question: how does each KD method
affect the linguistic abilities of the student models?

4.1 Logit-based KD improves data efficiency

Figure 2 shows the performance of students trained
with and without logit-based KD, across varying
dataset sizes. Baseline student models require SM+
sentences to approach teacher performance on syn-
tactic benchmarks without any distillation. Logit-
based KD resulted in substantial improvements on
both syntactic benchmarks and perplexity. With
just 500K sentences (approx. SM tokens), the stu-
dents approached the performance of the teacher.
The impact of logit-based KD was particularly pro-
nounced with smaller datasets, where inductive
biases are most crucial. For models trained on just
50K-100K sentences, KD provided a >20% boost
in performance on the Linzen benchmark, elevating
models from chance-level performance (50%).
Interestingly, some students outperformed the
teacher on the Zorro benchmark. This may re-
flect the domain alignment between the student’s
training data and the benchmark, which uses the
vocabulary from the BabyLLM dataset, whereas the
teacher’s training data was a general Internet-based
corpus. This result suggests that distillation can
combine the teacher’s knowledge and the domain-
specific property of the student’s training data.

4.2 Attention-based KD has limited effect

Contrary to our hypothesis that attention matrices
provide a stronger inductive bias for syntax acqui-
sition, Figure 2 shows that attention-based KD of-
fered limited benefits compared to logit-based KD,
even though it leads to better alignment in attention
(Figure S2). This pattern held consistently across
all dataset sizes tested, suggesting that the syntac-
tic information encoded in attention matrices may
not provide substantial advantages beyond what is
already captured in output distributions. Moreover,
attention-based KD had higher perplexity than the
baseline without KD for the smallest dataset, sug-
gesting attention loss may create conflicting gradi-
ents with the language modeling objective.

To determine whether attention-based KD ben-
efits particular aspects of syntax, we performed
fine-grained evaluations across grammatical phe-
nomena. Figure S3 breaks down performance by
tasks, and Figure S4 by phenomena, for the BLiMP
benchmark. Despite considerable variation in the
teacher’s performance across these tasks and phe-
nomena, the relative performance pattern of dif-
ferent distillation approaches remained remarkably
consistent. Interestingly, however, attention-based
KD was competitive with logit-based KD in some
phenomena, particularly in ellipsis. Similar pat-
terns, including the competitive performance of
attention-based KD in ellipsis, were also observed
for the Zorro benchmark (Figure S5).
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Figure 3: Combining both distillation types does not outperform logit-based distillation alone. Each point represents
a single run. All runs were done on the 100K-sentence dataset. Dashed lines indicate the teacher’s performance.

4.3 Logits may encode sufficient syntactic
information

One possible explanation for these findings is that
logit-based distillation might indirectly align atten-
tion patterns, making explicit attention distillation
redundant (Hewitt and Manning 2019; Murty et al.
2022; Wu et al. 2024; Simon et al. 2025). A prelim-
inary analysis supports this hypothesis: when both
KD methods are combined in the same objective,
performance remains similar to purely logit-based
KD (Figure 3), suggesting no unique contribution
from attention. If output distributions provide suffi-
cient signal to scaffold data-efficient syntax learn-
ing, it is possible that syntax might be distributed
throughout the network rather than being localized
primarily in attention patterns.

5 Discussion

Our results reveal a striking contrast in the ability to
improve data-efficiency among different KD meth-
ods. While KD via logits enabled student models
to achieve teacher-level syntactic performance with
just 500K sentences, KD via attention matrices —
despite their capacity to encode syntactic structures
— offered only marginal benefits.

Our results contrast with previous studies show-
ing the benefits of attention distillation (Aguilar
et al., 2020; Wang et al., 2020). We identify two
potential sources of this divergence: the evalua-
tion metric, and the training objective. First, we
specifically focused on syntactic task performance,
whereas prior work used more general benchmarks
such as SQuAD and GLUE. This raises the pos-
sibility that attention patterns may actually be
more important for semantics than purely syntac-

tic processing. Second, previous studies focused
on model compression (reduction in parameter
counts), which is different from our objective (re-
duction in training set size, using identical model
architectures for the teacher and student). For the
compression objective, explicit attention alignment
may help compensate for reduced capacity, but may
be unnecessary (or hurt performance) when the size
of the student model is equal to the teacher model.

One key advantage of KD is that it requires min-
imal assumptions about the specific form of induc-
tive biases. In fact, our results demonstrate that
strong syntactic performance can be achieved with-
out relying on explicit grammatical rules. On the
other hand, KD-based approaches present certain
challenges. KD can be computationally intensive,
requiring forward passes through the teacher model
for the entire training dataset (see Appendix B for
the rough estimates), and the inductive biases trans-
ferred via KD are less interpretable than those from
explicit grammar-based approaches (Sartran et al.,
2022).

Taken together, our findings highlight how
feature-based KD can serve as a powerful analyti-
cal tool to investigate which features are necessary
or sufficient for specific capabilities. Effective dis-
tillation through a particular feature suggests that
it contains enough information to serve as an in-
ductive bias for the target capability. Our results
suggest that the information contained in attention
matrices was not a strong enough inductive bias
for syntax acquisition, but future work must sys-
tematically compare different feature-based KD
methods to better understand how different linguis-
tic competencies are encoded within transformer
representations.
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Limitations

Our evaluation focused specifically on syntactic
benchmarks, motivated by previous work showing
that attention matrices encode syntactic informa-
tion and that syntactically-guided attention con-
straints serve as effective inductive biases. While
this targeted approach allowed us to directly ad-
dress questions about syntax acquisition, it limits
the generalizability of our findings to other linguis-
tic competencies. Different aspects of linguistic
knowledge may be encoded preferentially in differ-
ent components of transformer architectures, and
distillation methods might show varying effective-
ness across other linguistic domains, from seman-
tics and pragmatics to discourse representation. Fu-
ture work should evaluate attention-based KD on a
broader range of benchmarks spanning diverse ca-
pabilities, such as SuperGLUE (Wang et al., 2019a)
for language understanding and EWOK (Ivanova
et al., 2024) for world knowledge. A more com-
prehensive evaluation would allow researchers to
determine whether the relative efficacy of differ-
ent distillation methods varies across linguistic do-
mains. It’s possible that attention-based KD might
provide stronger benefits for capabilities other than
syntax, such as long-range semantic dependencies
or pragmatic reasoning.

Moreover, there may be cross-linguistic differ-
ences in the way linguistic knowledge is encoded
in the transformer architecture. For example, lan-
guages with richer morphology may benefit more
from the structural information in the attention,
while languages with a more flexible word order
may benefit less. Future work should include non-
English languages to test these hypotheses.

We acknowledge that there can be multiple ways
to implement attention-based KD, and that our anal-
ysis does not rule out the possibility of other, more
effective methods. We experimented with an al-
ternative method by performing kernel density es-
timation using a precomputed batch of attention
matrices, which did not outperform the reported
method. Other methods include specifically tar-
geting a subset of attention heads or dynamically
mapping attention matrices from multiple heads
instead of a one-to-one match (as in Zhao et al.
(2024)). Detailed exploration of these other meth-
ods will be left to future work.

Additionally, our experiments used a single pre-
trained model (GPT-2) as the teacher. Explor-
ing different teacher architectures and model sizes

would help determine the generalizability of our
findings across different model families and capa-
bilities. Finally, our exploration of feature-based
distillation was limited to attention matrices; future
work could investigate other internal representa-
tions such as hidden states, feed-forward network
activations, or combinations of these features.

Ethics Statement

All datasets (BabyLM, Linzen, BLiMP, and Zorro)
and the model (GPT-2) used in this paper were em-
ployed according to their intended usage. BabyLM
consists of the following publicly available datasets
(Warstadt et al., 2023):

CHILDES? (MacWhinney, 2000)

e British National Corpu53 (Consortium, 2007)

Children’s Book Test (Hill et al., 2016)

Children’s Stories Text Corpus (Bensaid et al.,
2021)

* Project Gutenberg (Gerlach and Font-Clos,
2020)

OpenSubtitles (Lison and Tiedemann, 2016)
* QED (Abdelali et al., 2014)

» Wikipedia

» Simple English Wikipedia

» Switchboard Corpus (Godfrey et al., 1992)

While we used knowledge distillation to distill
the inductive biases required for data-efficient syn-
tax learning, KD can also transfer the biases embed-
ded in the teacher. When training student models
using KD, we need to consider the biases of the
teacher as well as those in the training dataset.
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A Training details

Table S1 shows hyperparameters used in our exper-
iments. The BabyLLM preprocessing pipeline* was
used to clean the dataset. Since the dataset has one
sentence per line, we used the number of sentences
as the measure of dataset size rather than the num-
ber of words or tokens. All train runs had the same
number of training steps (156,250 steps) except for
those for the largest dataset size (5,000,000 sen-
tences), which had 312,500 steps to make sure the
model sees the entire dataset more than once. We
used AdamW optimizer (Loshchilov and Hutter,
2019) with a linear warm-up for 1% of the total
number of training steps.

We used Hugging Face transformers (version
4.45.2; Apache License 2.0) (Wolf et al., 2020)
and PyTorch (version 2.4.1; BSD-style license )
(Ansel et al., 2024) to train and evaluate models.
We used the original OpenAl checkpoint provided
by Hugging Face transformers® as the teacher.
Experiments took approximately 750 GPU hours
with NVIDIA RTX A6000 GPUs.

B Computational costs

Since we used the same model size for both the
teacher and the student, our KD experiment re-
quired twice the amount of compute compared

4https ://github.com/babylm/babylm_data_
preprocessing

5https ://github.com/pytorch/pytorch/blob/main/
LICENSE

®https://huggingface.co/openai-community/gpt2

n_layers 12
n_heads 12
hidden_size 768
intermediate_size | 3072
max # tokens 128
batch size 32
learning rate 0.0002

Table S1: Hyperparameters

with a simple language model training. Regarding
the difference between logit-based and attention-
based KDs, there was minimal empirical difference
in training time (both took 15 hours using RTX
A6000). Theoretically, logit-based KD adds 32
MFLOPs to the standard forward pass of GPT-2,
whereas attention-based KD adds 7.1 MFLOPs.
The difference stems from (1) different numbers
of entries in each representation, and (2) different
numbers of operations involved in calculating the
loss, both of which are higher for logit-based KD.
First, logits have (sequence length)*(vocabulary
size)=128*%50257=6.4M entries and attention ma-
trices have (sequence length)*(sequence length)*(#
layers)*(# heads)=128*128*12*12=2.4M entries.
Second, logit-based KD takes five operations: soft-
max for the teacher (exponential+sum+division),
multiplication, and sum, whereas attention-based
KD takes three operations: subtraction, square, and
sum, resulting in the above estimates.
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Figure S1: Choosing the best regularization coefficient for logit-based KD (top row) and attention-based KD (bottom

row). We used the training set size of 100,000 sentences. Each point shows the result of a single run. Dashed lines
show the teacher’s performance.
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Figure S2: Auxiliary losses evaluated on the BLiMP dataset. We randomly selected 3 items from each task
(3*67=201 in total). Unlike attention-based knowledge distillation, logit-based knowledge distillation does not align
the internal computations, which leaves the possibility that similar attention patterns are implemented in both the
teacher and the student by different attention heads. To account for this, we calculated the loss using the attention

matrices averaged across layers and heads (middle), in addition to the loss used in training (left) as described in
Section 3.2. Y-axis of the left two panels are on the log scale.
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Figure S3: Performance on BLiMP split into tasks. Ribbons show the bootstrapped 95% CI across three random
seeds. Dashed lines show the teacher’s performance.
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Figure S4: Performance on BLiMP split into phenomena. Ribbons show the bootstrapped 95% CI across three
random seeds. Dashed lines show the teacher’s performance.
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Figure S5: Performance on Zorro split into tasks. Ribbons show the bootstrapped 95% CI across three random
seeds. Dashed lines show the teacher’s performance.
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