Invoke Interfaces Only When Needed: Adaptive Invocation for Large
Language Models in Question Answering

Jihao Zhao! Chunlai Zhou!

Daixuan Li!

Shuaishuai Zu! Biao Qin'*

'School of Information, Renmin University of China, Beijing, China

Abstract

The collaborative paradigm of large and small
language models (LMs) effectively balances
performance and cost, yet its pivotal challenge
lies in precisely pinpointing the moment of
invocation when hallucinations arise in small
LMs. Previous optimization efforts primarily
focused on post-processing techniques, which
were separate from the reasoning process of
LMs, resulting in high computational costs and
limited effectiveness. In this paper, we pro-
pose a practical invocation evaluation metric
called AttenHScore, which calculates the ac-
cumulation and propagation of hallucinations
during the generation process of small LMs,
continuously amplifying potential reasoning er-
rors. By dynamically adjusting the detection
threshold, we achieve more accurate real-time
invocation of large LMs. Additionally, consid-
ering the limited reasoning capacity of small
LMs, we leverage uncertainty-aware knowl-
edge reorganization to assist them better cap-
ture critical information from different text
chunks. Extensive experiments reveal that our
AttenHScore outperforms most baselines in en-
hancing real-time hallucination detection capa-
bilities across multiple QA datasets, especially
when addressing complex queries. Moreover,
our strategies eliminate the need for additional
model training and display flexibility in adapt-
ing to various transformer-based LMs. Our
code is available at https://github.com/
Robot2050/AttenHScore.

1 Introduction

With the profound study of the scaling law (Ka-
plan et al., 2020) and the density law (Xiao et al.,
2024), the development and application of lan-
guage models (LMs) have exhibited a diversified
pattern. In this context, the remarkable perfor-
mance of large language models (LLMs) such as
GPT-40 in reasoning tasks has attracted significant

*Corresponding author: ginbiao@ruc.edu.cn

attention (Hosseini et al., 2023). However, due
to their complex structures and massive parameter
scales, these LLMs consume considerable computa-
tional resources during training and inference. Con-
sequently, many of these LLMs are only available
through paid API services, undoubtedly increasing
their monetary cost. Meanwhile, small language
models (SLMs), with their lightweight architec-
tures and efficient inference capabilities (Zhang
et al., 2024), demonstrate significant advantages in
specific scenarios, such as real-time responses on
edge devices (Khiabani et al., 2025) and rapid pro-
cessing of simple tasks (Li et al., 2024). Neverthe-
less, when faced with higher-level tasks requiring
complex semantic understanding, the capabilities
of SLMs appear to be inferior compared to those
of LLMs (Wang et al., 2024).

To balance performance and cost while enhanc-
ing overall efficiency, a new paradigm of collabo-
ration between large and small LMs has emerged
from the perspectives of cost-effectiveness and re-
source optimization. This paradigm aims to fully
leverage the advantages of LLLMs in handling com-
plex tasks while exploiting the efficiency of SLMs
in simple problem scenarios, thus achieving op-
timal resource allocation and efficient task pro-
cessing. As illustrated in Figure 1, we conduct
retrieval-based question answering (QA) experi-
ments utilizing two LMs, one large and one small,
across five datasets from Longbench (Bai et al.,
2023), to evaluate the performance of both LMs in
scenarios without retrieval, and with top-5, top-10,
top-15 retrieval results. LLM exhibits overall supe-
rior performance, but the gap between it and SLM
is remarkably narrow on certain datasets. Under
these circumstances, researchers have mainly pro-
posed two strategies: routing and cascading. The
core mechanism of the former lies in accurately
directing user queries to a specific model based
on criteria provided by specially trained models
(Aggarwal et al., 2023; Ding et al., 2024b). Com-
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Figure 1: Performance of large and small LMs on different QA datasets in the RAG scenario. Including 1:
2WikiMultihopQA, 2: MultiFieldQA-en, 3: Qasper, 4: MultiFieldQA-zh and 5: HotpotQA.

paratively, the latter exhibits a more flexible and
phased processing mode. According to this strat-
egy, user queries are first sent to SLMs for initial
processing. Then, based on the output results of
these models, the system determines whether fur-
ther in-depth reasoning by LLMs is necessary (Yue
et al., 2023; Ramirez et al., 2024).

Based on the aforementioned research, we find
that routing strategies require the introduction of
auxiliary models for decision-making during im-
plementation, which contradicts the initial goal of
simplicity and efficiency. More importantly, these
auxiliary models not only require specialized train-
ing but also often rely on specific datasets (Sakota
et al., 2024; Ding et al., 2024b), potentially lim-
iting their versatility across different tasks. In
view of this, we have chosen to adopt a cascad-
ing strategy, where the main technical challenge
lies in accurately determining when hallucinations
occur in SLMs. Currently, research on halluci-
nation detection in LMs primarily focuses on the
post-reasoning phase (Manakul et al., 2023; Zhang
et al., 2023; Li et al., 2023). However, such meth-
ods exhibit significant limitations when integrated
into the practical LLMs applications. The primary
issue is that these post-processing methods often
incur high computational costs and notable delays.
For instance, cutting-edge detection methods typ-
ically utilize LL.Ms such as ChatGPT, OPT, etc.
(Zhang et al., 2023), making the cost of halluci-
nation detection comparable to or even more ex-
pensive than LLMs reasoning tasks. What’s more,
post-processing methods are independent of the
reasoning process (Shi et al., 2022; Wang et al.,
2022), thus they cannot delve into the origins and
evolution of hallucinations within each LMs.

Seeking to surmount the outlined restrictions,
we shift the focus of optimizing LMs invocations

towards understanding their existing available sig-
nals, rather than training and running more auxil-
iary models. This paper proposes a practical invo-
cation evaluation metric, AttenHScore, designed
to calculate the accumulation and propagation of
hallucinations during the generation process of
SLMs. By continuously amplifying potential error
points, this metric enables more skillfully identify
deviations between generated content and facts,
thereby improving the detection accuracy of hal-
lucinations. Furthermore, from the perspective of
retrieval-augmented generation (RAG), we guide
SLMs to evaluate the uncertainty between queries
and different text chunks, optimizing the informa-
tion arrangement by moving more relevant content
from the retrieval to the front of the prompt, thereby
further assisting SLMs in capturing key informa-
tion and enhancing their accuracy in QA tasks.

The main contributions of this work are as fol-
lows:

* We propose a method for optimizing LMs in-
vocation based on the uncertainty of generated
text. The core technology lies in the thorough
consideration of accumulation and propaga-
tion effects of hallucinations, thereby achiev-
ing unsupervised, real-time and plug-and-play
invocation optimization.

* In the realm of retrieval-based QA, we fully
utilize the chain-of-thought reasoning capa-
bility of generative LMs and guide text re-
ranking through an uncertainty evaluation
mechanism to precisely optimize information
arrangement.

To validate the effectiveness of our method,
we test it on four QA datasets utilizing three
different LLMs and conduct an in-depth anal-
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ysis of the proposed method through multi-
dimensional experiments.

2 Related Works

Collaboration of SLMs and LLMs The joint
application of LLMs and SLMs has recently
emerged as a technological approach, achieving
breakthroughs in multiple research areas (Ma et al.,
2023; Ding et al., 2024a; Min et al., 2024). In the
studies by Sakota et al. (2024) and Lu et al. (2023),
they proposed training an auxiliary model to esti-
mate the success rate of invoking LLMs. Chen et
al. (2023) introduced a cascade strategy, utilizing
an auxiliary model to predict the accuracy of out-
puts from SLMs. Additionally, Yue et al. (2023)
suggested repeatedly invoking SLMs to perform
inference tasks, while research by Ramirez et al.
(2023) indicated that the margin of a knowledge-
distilled model has the potential to enhance the effi-
ciency of calls made to LLMs. Later, Ramirez et al.
(2024) proposed the Margin Sampling approach,
which identifies hallucinations by computing the
margin between the most likely first and second
tokens. However, the above methods are more suit-
able for short answer generation tasks, while the
direct judgment of long answer generation is still a
gap and more challenging.

Hallucination Detection The concept of hal-
lucination, which originally emerged from the
fields of pathology and psychology (Macpherson,
2013), has been subsequently adopted and applied
in the domain of Natural Language Processing
(Maynez et al., 2020). The occurrence of hallu-
cinations is widespread in deep learning models
utilized for a range of text generation tasks (Dziri
et al., 2022; Su et al., 2022). It is defined as the
generation of content that lacks practical signifi-
cance or deviates from the provided source mate-
rial (Ji et al., 2023). With the widespread adoption
of LLMs in various applications, the issue of hal-
lucinations arising from these LMs has garnered
significant attention from researchers (Shen et al.,
2023; Becker et al., 2024). In this context, Min et
al. (2023) introduced the FactScore method, which
leverages knowledge sources to verify the accuracy
of each atomic fact in the generated text. Further-
more, Manakul et al. (2023) presented SelfCheck-
GPT in their study, a black-box technique for hal-
lucination detection. Despite those advancements,
their methods still possess certain limitations. They
either rely on external knowledge bases or require

the analysis of multiple responses sampled from
LMs, which undoubtedly increases resource con-
sumption and reduces efficiency.

3 Optimizing the Adaptive Invocation
Interface for LLMs

Our design philosophy is to "maximize the success
rate of SLMs and minimize the need for LLM in-
vocations", thereby embodying the idea of "Invoke
Interfaces Only When Needed". We achieve this
goal through a two-stage strategy that combines
"pre-event optimization" with "post-event quality
control":

Re-ranking: This module aims to reduce the
likelihood of SLMs generating hallucinations at
the source. As we pointed out in the paper, SLMs
have limited capabilities in processing long texts
and extracting key information. By re-ranking the
input information and placing the most critical con-
tent at the forefront, we can significantly optimize
the working environment for SLMs, thereby proac-
tively minimizing scenarios that might necessitate
LLM invocations.

Hallucination Detection: When "pre-event opti-
mization" is still insufficient to completely avoid
errors, this module serves as a safety net. It is re-
sponsible for real-time monitoring of SLM outputs
to precisely identify moments when LLM invoca-
tions are truly necessary.

3.1 Problem Definition

In this paper, we focus on predicting the mapping
relationship between elements in the input space
X and their corresponding labels in the output
space Y. Here, (21, ...,24) ~ X represents the
response generated by SLMs upon a user query,
while (0,1) ~ Y denotes the decision flag indicat-
ing whether to invoke LLMs. We transform the
system into the predictor f : X — Y. For each
incoming X, we determine whether to call LLMs
based on the hallucination detection strategy. The
entire procedure is outlined in Algorithm 1.

3.2 Real-time Hallucination Detection

Our work is grounded in a key insight: halluci-
nations are not instantaneous and isolated errors
but rather a conductive and gradually accumulat-
ing dynamic process. The uncertainty signals from
individual tokens are often weak and ambiguous.
However, when these signals appear continuously
and are amplified along the inference chain, they
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constitute a strong warning that hallucinations are
about to occur.

Based on the aforementioned in-depth analysis,
we ascertain that current methods relying on post-
processing or uncertainty measures are inadequate
for detecting hallucinations in collaborative large
and small LMs systems. Given this limitation, we
address the issue from the perspective of sequence
generation in SLMs. Observing the accumulation
and propagation of hallucinations during the token-
by-token generation process, we propose the At-
tenHScore evaluation metric to quantify these char-
acteristic, thereby providing valuable guidance for
hallucination detection. As illustrated in Figure 2,
we define this metric as follows:

K K
H=> al; == a;logpmas(ri) (1)
=1 =1

where prq. (i) represents the maximum probabil-
ity of generating token z; at position ¢, I; denotes
the degree of uncertainty for that token, and a; sig-
nifies the accumulation and propagation weight of
hallucination designed for each I;, which is specifi-
cally calculated as:

a; = Pmaz (i) Atten(x;) 2)

Specifically, Atten(x;) is used in attention-based
models to measure the degree of attention the LM
pays to each token, reflecting which tokens are
more important and relevant for answering in the
current processing step. By multiplying ppqz(2;)
and the attention score, we obtain a weight that
comprehensively reflects the degree of attention
and confidence of the token during model process-
ing. Therefore, the above two steps of accumula-
tion and multiplication together highlight the hal-
lucinations of LMs during generation more effec-
tively.

If the generated text is long, we preset a value K,
calculate an AttenHScore value for every K tokens,
and take the maximum as the object to compare
with the threshold to determine whether to invoke
the LLM:

Srupr = max{H, H,...,Hy,} 3)

In addition, we conduct a comprehensive design
for the computation of Atten(z;). Initially, we in-
tegrate the softmax function with the mask function
to generate the attention weight matrix M:

-
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Figure 2: Overview of our hallucination detection and
collaborative framework.

where () represents the query matrix, R stands for
the key matrix, and dj, denotes the dimensionality
of a key vector. Following this, for a given token x;,
we determine its corresponding maximum attention
value by searching through all elements M} ; where
j > 1. Lastly, to further enhance the influence
of attention scores in the overall evaluation, we
employ an exponential function to amplify them:

Atten(z;) = exp (m&x M]Z> 5)
j>i

Through this approach, we ensure that the atten-
tion mechanism plays a more prominent role in
the evaluation. It is worth noting that in Eq. (5),
we choose max to calculate attention scores, rather
than basing on a specific layer or taking an average.
This is because we believe that doing so may be
affected by special cases and reduce the perception
of key content, thereby affecting our final detection
performance. This is experimentally confirmed in
Section 4.6.

3.3 Dynamic Threshold

Setting a threshold for decision criteria is a com-
mon requirement across all strategies, and we intro-
duce a dynamic threshold mechanism. Specifically,
we first utilize the results of the first five queries to
calculate an initial threshold. During this process,

1521



we do not evaluate whether these five queries trig-
ger the LLM, but only obtain output results from
the SLM. Subsequently, at each new query, we
incorporate the hallucination score of the current
query into the historical records and recalculate the
average hallucination score of all processed queries,
using this as the updated threshold.

3.4 Re-ranking Strategy based on Uncertainty
Evaluation

In long text processing scenarios, SLMs often face
challenges in extracting effective information, lead-
ing to inefficient utilization of key information. Ad-
ditionally, these SLMs exhibit a significant position
bias phenomenon in long texts, where they tend to
focus more on the beginning of the prompt and
easily overlook information in the middle (Jiang
et al., 2023). Therefore, we introduce auxiliary
mechanisms for SLMs to enhance their informa-
tion utilization capabilities.

Given a query, we are able to retrieve multiple
associated text chunks. For each text chunk, we
guide SLMs to perform reverse thinking, which
involves generating the corresponding query based
on the text content. Afterwards, we quantify the
uncertainty of this generation process using the
following method:

G=— Z Atten(z;) log p(x;) (6)

r,eX

where X represents the token set of the known
query. This approach takes full advantage of the
powerful reasoning capabilities and deep under-
standing of structural nuances inherent in current
LMs. Experimental results presented in Section 4.5
suggest that this method possesses generalization
capabilities, enabling it to more accurately filter out
noisy or incomplete information when compared
to prevailing benchmark models.

By integrating the various strategies we pro-
posed, real-time hallucination detection and re-
ranking are achieved within a large and small LMs
collaboration system without the need for addi-
tional model training. This process is unsupervised,
namely, our methods do not require manual super-
vision or labeled data for training. More mean-
ingfully, our methods are universally applicable to
all transformer-based LMs, truly embodying the
plug-and-play principle and showcasing flexibility.

Algorithm 1 Adaptive Invocation for LLMs in QA

Input: SLM generator Mg, LLM interface M,
User query @);, Initial threshold 6
Output: Decision y € {0, 1} for LLM invocation,
Response R
1: while new user query Q; arrives do
M(Q;) generate candidate tokens X =
{z1,...,z4} — logits, attentions

3 if © < 5 then

4 y<« 0,R(Q;) + X

5 else

6: Calculate Atten(z;)

7 Gradually calculate Hy, Ho, ..., H,
8 SRHD]%maX{Hl,HQ,...,Hn}
9: if Spgpr < 0 then

10: y<« 0,R(Q;) + X

11: else

12: y < 1, R(Q;) + M(Q;)

13: end if N

14: Upadte 6 + 2=y SR1DI(X) SRnHD’(X’“)

15:  endif

16: end while

4 Experiment

4.1 Datasets and Metrics

We adopt four highly recognized QA datasets
for evaluation, including two open-book conver-
sational datasets: CoQA (Reddy et al., 2019) and
SQuAD (Rajpurkar, 2016), and two closed-book
QA datasets: TriviaQA (Joshi et al., 2017) and Nat-
ural Questions (NQ) (Kwiatkowski et al., 2019).
CoQA is sourced from seven different domains,
with each dialogue involving two crowd work-
ers engaging in a question-and-answer exchange
around a passage (Reddy et al., 2019). SQuAD is
renowned for its large scale and high quality, with
its origins in Wikipedia articles (Rajpurkar, 2016).
TriviaQA is a reading comprehension dataset that
comprises question-answer-evidence triplets (Joshi
et al., 2017). NQ contains authentic queries posed
by users to Google Search, along with answers
sourced from Wikipedia (Kwiatkowski et al., 2019).
On the other hand, the actual answers in the CoQA
and SQuAD datasets are often longer, whereas an-
swers in the TriviaQA and NQ datasets tend to be
in the form of single or few-word responses. For
evaluation metrics, we follow the prior work of Ren
et al. (2022) and Chen et al. (2024) by utilizing
the area under the receiver operator characteristic
curve (AUROC) and accuracy (ACC). Specifically,
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Dataset CoQA SQuAD TriviaQA NQ
Method AUCs AUCr ACCr | AUCs AUCr ACCr | AUCs AUCr ACCr | AUCs AUCr ACCr
Llama3-8B-Instruct

CPerplexity 0.5783 05509 0.5251 | 04745 04645 04782 | 0.8431 08342 07525 | 0.7700 07694 0.6742
Energy 0.4212 0.3797 0.4025 | 0.4297 0.4129 0.4497 | 0.7204 0.6920 0.6547 | 0.6551 0.6440 0.6111
AVG-Range 0.5344 0.5033 0.5068 | 0.4609 0.4516 0.4821 | 0.8277 0.8229 0.7473 | 0.7492 0.7555 0.7172
LN-Entropy 0.6732 0.6668 0.6280 | 0.6113 0.6134 0.6179 | 0.8189 0.8177 0.7518 | 0.7490 0.7553 0.6640
LexicalSimilarity 0.7602 0.7614 0.7041 | 0.6365 0.6341 0.5562 | 0.7838 0.7746 0.7412 | 0.7354 0.7321 0.7172
EigenScore 0.7910 0.8014 0.7328 | 0.7359 0.7417 0.6741 | 0.7941 0.7783 0.7410 | 0.7599 0.7587 0.6801
AttenHScore (Ours) 0.8330 0.8706 0.8097 0.8715 0.9024 0.8176 | 0.8334 0.8388 0.7513 | 0.7650 0.7871 0.7072

Vicunal.5-7B

Perplexity 04701 03292 03492 | 05143 02610 03109 | 0.8184 08108 0.7366 | 0.6794 0.6794 0.6427
Energy 0.3817 0.2139 0.2307 | 04273 0.1648 0.1791 | 0.7316 0.7147 0.6632 | 0.5767 0.5613 0.4947
AVG-Range 0.4624 0.3128 0.4154 | 0.5164 0.2645 0.3591 | 0.7859 0.7820 0.7165 | 0.6395 0.6344 0.6615
LN-Entropy 0.5221 0.4274 0.3739 | 0.5672 0.4331 0.5383 | 0.7962 0.7974 0.7339 | 0.6792 0.6895 0.6593
LexicalSimilarity 0.5876 0.5518 0.4894 | 0.5656 0.4650 0.5530 | 0.7870 0.7833 0.7385 | 0.7279 0.7441 0.7443
EigenScore 0.6500 0.6648 0.5165 | 0.6441 0.6315 0.5309 | 0.7979 0.7880 0.7402 | 0.7557 0.7748 0.6825
AttenHScore (Ours) 0.7503 0.8481 0.7840 0.7193 0.8085 0.7212 | 0.8178 0.8338 0.7467 | 0.7524 0.7949 0.6958

Llama2-13B-Chat-HF

CPerplexity 0.5423 05272 05108 | 04830 04638 04504 [ 0.8111 08142 07422 | 0.6944 0.6942 0.6463
Energy 0.4380 0.3993 0.4596 | 0.4102 0.3890 0.4167 | 0.6976 0.6888 0.6545 | 0.6229 0.6133 0.5507
AVG-Range 0.5243 0.5075 0.5569 | 0.4651 0.4451 0.4612 | 0.7936 0.8002 0.7276 | 0.6570 0.6562 0.6620
LN-Entropy 0.6005 0.6018 0.5867 | 0.5938 0.5904 0.5778 | 0.7729 0.7855 0.7208 | 0.6849 0.6931 0.6169
LexicalSimilarity 0.7155 0.7331 0.6593 | 0.6536 0.6667 0.6623 | 0.7439 0.7466 0.7303 | 0.7286 0.7373 0.6928
EigenScore 0.7509 0.7809 0.7120 | 0.7364 0.7585 0.6670 | 0.7512 0.7502 0.7265 | 0.7477 0.7645 0.6717
AttenHScore (Ours) 0.8369 0.8982 0.8320 0.8544 0.9032 0.8322 | 0.8036 0.8221 0.7442 | 0.7423 0.7785 0.6978

Table 1: Main experimental results are presented in four QA datasets. The best result is in bold, and the second best

result is underlined.

AUCs denotes the AUROC score with sentence
similarity serving as the measure of correctness,
while AUCr represents the AUROC score with the
Rouge-L score as the correctness measure, and
ACCr follows similarly.

4.2 Baselines

We undertake a comparative analysis of our pro-
posed approach with the prevalent uncertainty-
based techniques, namely Length-normalized En-
tropy (LN-Entropy) (Malinin and Gales, 2020), the
consistency-based metric Lexical Similarity (Lin
et al., 2022) as well as EigenScore (Chen et al.,
2024), which utilizes the eigenvalues of the re-
sponse covariance matrix to quantify semantic con-
sistency or diversity in the dense embedding space.
All three aforementioned methods require SLMs to
generate multiple answers to the same question. In
addition, we introduce three comparison methods
that only require SLMs to generate an answer once.
Perplexity evaluates the rationality of text genera-

tion by calculating the predictive probability dis-
tribution of SLMs (Ren et al., 2022). AVG-Range
assesses credibility by measuring the average differ-
ence between the highest and lowest probabilities
in the probability distribution of each token output
by SLMs (Ramirez et al., 2024). Energy score (Liu
et al., 2020), a popular out-of-distribution detection
method, is tested for its applicability in hallucina-
tion detection. Our methodology also adheres to
the paradigm of single-pass model generation.

4.3 Implementation Setting

In experiments aimed at detecting hallucinations
for collaboration, we primarily employ three LMs
with the following hyperparameter settings: tem-
perature at 0.5, top-p at 0.99, top-k at 5, and the
number of generations set to 10. When assessing
the correctness of generated answers, we adopt two
commonly used methods: Rouge-L (Lin, 2004) and
semantic similarity (Reimers, 2019). The former
employs the threshold of 0.5, while the latter uti-
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Methods ERNIE-3.5 Qwen-Plus

Qwen-Turbo Deepseek-v3 Qwen-72B  Qwenl.5-72B Qwen2-57B R1-LLama-70B R1-Qwen-32B

Initial Score with Only Vicuna-7B-v1.5: 13.25; Score After Our Re-ranking Process: 16.62.

With Large-Small Language Model Collaboration

Perplexity 17.82 17.01 20.31 17.27 18.76 19.14 18.02 17.51 17.69
Random 21.05 18.9 22.61 19.53 20.89 22.16 20.28 20.72 20.28
AVG_Range 2233 20.87 23.49 20.39 21.93 22.59 21.62 21.65 21.34
AttenHScore 24.91 23.27 26.23 22.82 24.95 25.71 23.69 23.76 24.03
For Reference: Scores Obtained by Exclusively Utilizing Interfaces of Various Large Language Models.

LLMs 2512 225 un 0o 2605 2745 39 2365 235

Table 2: We report the metric F1 score of QA performance under three scenarios: SLM only, large-small LM

collaboration, and LLM only.

lizes the nli-roberta-large model with the threshold
set to 0.9. Moreover, in conducting collaborative
experiments between small and large LMs, we se-
lect Vicuna-7B-v1.5 as the SLM and incorporated
nine distinct LLM interfaces to participate in the
experiments. We incorporate RAG techniques, us-
ing bge-large-en-v1.5 as the retriever and setting
the number of retrieved text chunks to 10. Detailed
experimental setup information can be found in
Appendix A.3.

4.4 Main Results

In this section, we first conduct a comprehensive
evaluation of the key component for detecting hallu-
cinations in SLMs within the collaborative system
of large-small LM on the hallucination benchmark
(Chen et al., 2024). Subsequently, we integrate At-
tenHScore into the entire system and evaluate its ac-
curacy in determining interface calls by comparing
various real-time hallucination detection methods.

4.4.1 Overall Results of the Hallucination
Detection Component

To comprehensively validate the effectiveness of
our proposed AttenHScore, we conduct experi-
ments exploiting three LMs and four widely-used
QA datasets. In designing the experiments, we
not only consider the diversity of baseline meth-
ods but also emphasize the comprehensiveness of
evaluation metrics to ensure the objectivity and ac-
curacy of assessment results. The experimental
results, as presented in Table 1, demonstrate that
our AttenHScore achieves significant performance
improvements on both CoQA and SQuAD datasets.
Specifically, our method outperforms other base-
line methods across various evaluation metrics and
exhibits stable improvements across different LMs.
On TriviaQA and NQ datasets, we observe that the
methods based on perplexity and AVG-Range ex-

hibit larger variations in performance compared to
their performance on CoQA and SQuAD. This is
related to the fact that answers in the TriviaQA and
NQ datasets are generally simpler and shorter. Our
proposed method exhibits superior performance
when handling complex questions. With respect to
simpler questions, its performance is comparable
to that of state-of-the-art methods.

4.4.2 Collaborative Performance of LLMs
and SLMs in QA

By integrating our proposed model hallucination
discrimination method and re-ranking strategy into
the large-small LMs collaboration system, we con-
duct further experiments on the MultiFieldQA-zh
from the Longbench benchmark (Bai et al., 2023),
with the specific setup detailed in Appendix A.3.
The results in Table 2 show that simply reordering
the retrieved content before inputting it into SLMs
achieves significant performance improvement of
3.37. This indicates that SLMs encounter infor-
mation overload issues when processing lengthy
contexts, and optimizing the semantic relevance
of the input sequence can effectively alleviate the
limitations of their attention mechanisms.

Under the condition of limiting the total number
of LLMs calls to 40%, we compare the impact of
four real-time detection and calling methods on per-
formance improvement and find that AttenHScore
method performs more prominently in terms of en-
hancing performance. It is worth noting that in the
four columns, we find the performance of model
collaboration to be slightly better than using the
LLM alone. This finding is consistent with the
observation results presented in Figure 1. It also
indicates that when dealing with certain RAG prob-
lems, the performance of SLMs is comparable to
or even better than that of LLMs.
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Figure 3: Performance comparison between the re-
ranking method based on uncertainty evaluation and
commonly used re-ranking models. Among them, the
one starting with G represents our approach, and the
rest of the models are all from huggingface.

4.5 Comparison and Reflection on Re-ranking

In long text scenarios, SLMs struggle with informa-
tion extraction and show a position bias, thus we
introduce auxiliary mechanisms to enhance their
capabilities. As shown in Figure 3, after retrieving
the top-15 text chunks, we evaluate the relevance of
the rearranged top-10 content. By comparing our
proposed re-ranking method based on uncertainty
G with four existing re-ranking models, experi-
mental results clearly demonstrate the excellent
performance of our approach on the MRR@10,
Hits@2, and Hits @4 metrics, indicating that our
uncertainty can fully utilize the reasoning capa-
bilities of LMs to more accurately identify texts
relevant to the question. On the Hits@ 10 metric,
our method slightly outperforms the most advanced
re-ranking model, which is due to the incomplete
retrieval results of top 15. In addition, we find that
there is little difference in performance between
using max, avg, and last-token to calculate atten-
tion scores, with max performing slightly better.
Meanwhile, stronger LMs assisting uncertainty can
further improve the performance of rearrangement.

4.6 Ablation studies

The calculation methods of attention scores exhibit
diversity, and we specifically test three methods
listed in Table 3. Experimental results reveal that
the performance achieved using the max method
surpasses that of the last-token and avg methods
in both types of LMs. This superiority is primar-
ily attributed to the fact that the max method is
more effective in capturing the most prominent and
critical information within the text sequence. In

contrast, the last-token method tends to overly fo-
cus on the tail information of the sequence while
neglecting other important elements, and the avg
method tends to dilute the significance of key infor-
mation due to averaging processing. This finding
aligns with our proposed approach of detecting
from the perspective of hallucination accumulation
and transmission.

Dataset CoQA SQuAD
Attention AUCs ACCr AUCr | AUCs ACCr AUCr
Llama3-8B-Instruct
Clast-token  0.8226  0.8564 0.7948 | 0.8580 0.8864 0.8050
avg 0.8308 0.8673 0.8065 | 0.8678 0.8980 0.8176
max 0.8330 0.8706 0.8097 | 0.8715 0.9024 0.8176
Vicunal.5-7B
lasttoken 07473 08412 07675 | 07176 08014 07279
avg 0.7491 0.8454 0.7792 | 0.7190 0.8059 0.7181
max 0.7503 0.8481 0.7840 | 0.7193 0.8085 0.7212

Table 3: Analysis of differences in three attention score
calculation methods under different models.

AUCs SentenceSimilarity Rouge-L
Method 0.7 0.8 0.9 0.3 0.5 0.7
Llama3-8B-Instruct
CPerplexity 0.5178 04898 04745 | 05528 05078 0.4937

Energy 0.4702 0.4423 0.4297 | 0.4885 0.4462 0.4333
AVG-Range 0.5016 0.4749 0.4609 | 0.5369 0.4957 0.4819
LN-Entropy 0.6185 0.6087 0.6113 | 0.6490 0.6288 0.6231
LexicalSimilarity 0.6549 0.6442 0.6365 | 0.6821 0.6640 0.6507
EigenScore 0.7303  0.7327 0.7359 | 0.7433  0.7397 0.7381
AttenHScore 0.8207 0.8498 0.8715 | 0.8373 0.8618 0.8733

Table 4: Impact of correctness thresholds on hallucina-
tion detection performance.

4.7 Hyper-parameter Sensitivity Analysis

Utilizing the Llama3-8B-Instruct model, we exe-
cute comprehensive ablation experiments on the
SQuAD dataset. The experimental results, shown
in Table 4, clearly demonstrate that different thresh-
olds for correctness metrics have a significant im-
pact on the final performance of hallucination detec-
tion. More importantly, our proposed AttenHScore
exhibits superior performance compared to other
baseline methods across various threshold settings.

On the other hand, we also carry out experiments
on the decoding sampling hyperparameters of LMs,
with specific results presented in Figures 4 and
5. Experimental data reveals that our approach
shows remarkable robustness across a wide range
of parameter configurations.
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Furthermore, considering the variability in the
length of answers generated by SLMs, we intro-
duce a preset token count K during the calculation
of hallucinatio, as specifically illustrated in Fig-
ures 6 and 7. Our approach involves calculating an
AttenHScore value for every K tokens, and then se-
lecting the maximum AttenHScore computed from
the entire answer generated by SLMs as the basis
for evaluation. Through observation, we find that
system performance reaches an optimum when K
is set between 10 and 20. Further details of the
experimental design and analysis are provided in
Appendix A.4.

5 Conclusion

Amidst the drive for efficiency and resource op-
timization, this study delves into the challenges
of hallucination detection and prompt re-ranking
within the collaboration of large and small LMs.
We introduce a novel invocation discriminant met-
ric, AttenHScore, which quantifies the accumula-
tion and propagation of hallucinations in SLMs
generations, enabling more precise detection of
potential reasoning errors. Additionally, within a
retrieval-based QA context, we steer SLMs to as-
sess the uncertainty of queries relative to various
text chunks, thereby achieving superior re-ranking
and enhanced accuracy. Extensive experiments
across four datasets reveal that our proposed real-
time, plug-and-play detection methodology and
re-ranking strategy strike an effective balance be-
tween cost and performance, eliminating the need
for domain-specific knowledge or model training.
We anticipate that our insights will inspire fur-
ther researches into hallucination detection and re-
ranking, ultimately promoting the development of
collaboration between large and small LMs.

Limitations

We acknowledge certain limitations, particularly
in relying on the internal states of the LLM for
hallucination detection. While this approach can
identify hallucinations to some extent, there is still
room for improvement in its accuracy. Future work
will focus on deeper exploration of the LLMs’ in-
ternal states to further enhance the precision and
reliability of hallucination detection. Additionally,
despite demonstrating good performance in com-
plex query tasks, there may still be deficiencies
in handling extremely complex tasks or those re-
quiring deep semantic understanding. For instance,

tasks involving multi-hop reasoning or strong do-
main relevance may not be fully addressed by the
current invocation strategy. The primary objective
of this paper is to further enhance the performance
of the current large-small LM collaboration system
through more accurate hallucination detection tech-
niques. We will next concentrate on overcoming
the limitations of existing methods to achieve a
more efficient and reliable collaboration system.
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A Appendix

A.1 Hallucination Detection and Uncertainty
Evaluation

The concept of "hallucination" originally stems
from the research domains of pathology and psy-
chology, where it is defined as the perception of en-
tities or events that do not exist in reality (Macpher-
son and Platchias, 2013). In the field of natural
language processing (NLP), hallucination typically
manifests as the generation that appears nonsen-
sical or contradicts the original content (Maynez
et al., 2020). Broadly speaking, hallucinations aris-
ing in NLP tasks can be classified into two major
categories: intrinsic hallucination and extrinsic hal-
lucination (Li et al., 2022; Ji et al., 2023). The
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former refers to the conflict between the output
content of LLMs and the original input informa-
tion, while the latter refers to the generated content
that cannot be verified by the original content.

As LLMs become increasingly adept at generat-
ing human-like text, distinguishing between accu-
rate and hallucinated content has become a critical
issue. Current research on hallucination detection
requires access to the model’s output content, latent
states, or distributional features, and uncertainty as-
sessment strategies based on the latter two have
become an important research direction.

Fadeeva et al. (2024) introduce token-level and
claim-conditioned uncertainty for fact-checking
and entity -level detection. Varshney et al. (2023)
detect hallucinations by identifying tokens with low
confidence, utilizing an active detection and mitiga-
tion pipeline. The analysis of Snyder et al. (2024)
involves examining softmax output probabilities,
attention mechanisms, and gradients to identify
early signs of hallucinations. The following ap-
proaches estimate uncertainty regarding meaning,
rather than surface form, by considering entropy
or semantic similarity over output distributions or
samples. Semantic entropy (Farquhar et al., 2024),
representing uncertainty at the meaning level, is in-
troduced to robustly detect confabulations. MARS
(Bakman et al., 2024), a method that weights tokens
based on semantic context in uncertainty scoring,
is employed. Nikitin et al. (2024) propose a se-
mantic similarity-based uncertainty quantification
method for LLMs, where kernel language entropy
is exploited to assess uncertainty via von Neumann
entropy over semantically-clustered model outputs.
This field acknowledges high-certainty hallucina-
tions and calibration as key unresolved challenges,
pushing for a deeper introspective and semantics-
based analysis. Our detection pipelines integrate
probability features, content perception, and atten-
tion mechanisms to form a comprehensive signal.

A.2 Analysis of Real-Time Capability

The calculation of AttenHScore is based on the
attention weights and generation probabilities pro-
duced by the model itself during the generation
process. This information is naturally generated
during inference and requires no additional com-
putation. We simply leverage this readily available
information for judgment, and the process is nearly
instantaneous, thus the method introduces no addi-
tional time delays. Furthermore, our method is sig-
nificantly more efficient compared to approaches

that necessitate model training or multiple genera-
tions.

We highlight the following advantages exhibited
by our method: (1) Unsupervised: As an evalu-
ation metric for invocation, AttenHScore can be
directly calculated without relying on any detector
training process, simplifying the evaluation work-
flow. (2) Real-time: Compared to current post-
processing methods, AttenHScore, as a real-time
invocation detection metric, ensures the efficient
evaluation process. (3) Plug-and-play: Designed as
a lightweight algorithm, AttenHScore can be eas-
ily integrated into any existing Transformer-based
LMs.

A.3 Detailed Experimental Setup for
Reproducibility

All language models utilized in this paper em-
ploy the chat or instruct versions where multiple
versions exist, and are loaded in full precision
(Float32). The vector database is constructed using
Milvus, where the embedding model for English
texts is bge-large-en-v1.5', and bge-base-zh-v1.52
for Chinese texts. To more effectively verify the
effectiveness of the component designed for detect-
ing small-model hallucinations in the collaborative
system of large-small LMs, we utilize three SLMs
of different types and sizes: Llama3-8B-Instruct?,
Vicunal.5-7B%, and Llama2-13B-Chat-HF>. The
sentence embeddings of model generation and the
ground truth answer are extracted by the nli-roberta-
large model®.

In Table 2, we employ nine different LLM
interfaces to conduct large-small LM collabora-
tive experiments with Vicunal.5-7B. These in-
terfaces are as follows: ERNIE-3.57, Qwen-
Plus®, Qwen-Turbo®, Deepseek-v3?, Qwen-72B!0,
Qwenl.5-72B!'!, Qwen2-57B!?, DeepSeek-R1-

1https://huggingface.co/BAAI/bge—large—en—v1.
5

2https://huggingface.co/BAAI/bge—base—zh—v1.5

3https://huggingface.co/meta—llama/
Meta-Llama-3-8B-Instruct

4https://huggingface.co/lmsys/vicuna—7b—v1.5

5https://huggingface.co/meta—llama/
Llama-2-13b-chat-hf

6https://huggingface.co/sentence—transformers/
nli-roberta-large

7https://console.bce.baidu.com/qianfan

8https://bailian.console.aliyun.com/

9https://platform.deepseek.com/

https://huggingface.co/Qwen/Qwen-72B-Chat

11https://huggingface.co/Qwen/Qwen1.5—7ZB—Chat

12https://huggingface.co/Qwen/
Qwen2-57B-A14B-Instruct
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Distill-Llama-70B'3, and DeepSeek-R1-Distill-
Qwen-32B!3.  Our experimental setup involves
retrieving 10 relevant documents for each query
and having the SLM to generate responses accord-
ingly. Subsequently, different hallucination detec-
tion methods are utilized to monitor the generation
status of the SLM in real-time. If it is determined
that the SLM’s output contains hallucinations, the
corresponding LLM interface is invoked to answer
the question. Regarding text chunking operations,
we adopt the LLM-based chunking method (Zhao
et al., 2024).

A.4 Exploring Hyperparameter Settings for
Optimal Performance

Different hyperparameter settings may not only
serve as critical factors influencing model perfor-
mance, but also exert differential impacts on the
sensitivity of various detection methods. Conse-
quently, we conduct a systematic analysis of hyper-
parameters including temperature, top-k and K.

Experimental data reveals that various detection
methods exhibit relatively low sensitivity to the
top-k, whereas LN-Entropy, LexicalSimilarity, and
EigenScore demonstrate higher sensitivity to the
temperature. Extensive experiments in Figures 4
and 5 confirm that our approach shows remark-
able robustness across a wide range of parameter
configurations.

In the experimental section described in Figures
6 and 7, we conduct a detailed comparative anal-
ysis of the performance across different values of
K. The results indicate that the system achieves
optimal performance when K is set between 10
and 20 tokens.
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Figure 4: Performance sensitivity to temperature on
Dataset SQuAD.
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SQuAD.
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Figure 6: Performance sensitivity to K (Number of
tokens) on Dataset 2WikiMultihopQA.

A.5 Setting Method for Dynamic Threshold

We adopt an adaptive strategy for threshold setting.
Specifically, we first calculate the initial threshold
using the average hallucination score of the first
five queries. Subsequently, for each new query,
we incorporate the current query’s hallucination
score into the historical records and recalculate the
average hallucination score of all processed queries,
using this as the updated threshold.

_ 2i1 Srupi(Xi)
n

6

In real-world production environments, systems
are typically reused multiple times. We utilize the
outputs from the first five queries to calculate the
initial threshold. As each query is processed, the
system records and dynamically computes the aver-
age hallucination score of previously generated an-
swers in real time, thereby continuously adjusting
the threshold. The update mechanism of dynamic
threshold is independent upon the dataset.

For a strong model, which tends to produce
lower average scores, its dynamic threshold will
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Figure 7: Performance sensitivity to K (Number of
tokens) on Dataset MultiFieldQA-zh.

naturally be lower as well. Only when a question’s
score significantly exceeds this low baseline is it
classified as a hallucination. For a weak model,
which generates higher average scores, its dynamic
threshold will be correspondingly higher. The sys-
tem determines hallucations based on whether the
current score significantly surpasses this high base-
line.

Our dynamic threshold is not a fair yardstick
aimed at measuring the absolute difficulty of all
problems. Instead, it is an adaptive benchmark
that reflects the typical performance of the current
model when handling a recent stream of tasks. If
the system encounters a series of complex problems
in the initial stage, resulting in a relatively high av-
erage score, then a higher threshold is precisely
reasonable as it accurately reflects the model’s cur-
rent operational state. The system’s goal is to de-
termine whether the score of the current problem is
abnormal relative to the model’s own average per-
formance, rather than based on its absolute value.

The threshold is calculated based on the rolling
average of all processed problems. This means that
the influence of any early, occasional extreme high
scores will be continuously diluted as the number
of processed problems increases. In real-world sce-
narios where the system operates over an extended
period , the bias introduced by the initial few prob-
lems will become negligible.

A.6 Further Exploration of Large-Small LM
Collaboration

We conduct a more in-depth analysis and visual-
ization of the experiments on the collaboration
between large and small LLMs presented in Ta-
ble 2. As shown in Figure 8, we accumulate the
performance of SLMs, re-ranking, four real-time

collaboration strategies, and LLMs, where each
color represents the performance of a method un-
der the corresponding LM interface. The scores
of LLMs called separately and the collaboration
system using AttenHScore as the hallucination de-
tection component are relatively similar, indicating
that our metric is more effective in identifying hal-
lucinated information generated by SLMs. In Fig-
ure 9, we also demonstrate the performance trends
of different methods under some LLMs through
line charts. It can be observed that the overall data
displays an upward trend, and two charts even have
higher points at AttenHScore than when using only
the LLM, which more directly illustrates the supe-
riority of our method.
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Figure 8: Comparative snalysis of AttenHScore and other methods in large-small LM collaboration system.
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Figure 9: Performance variation trends of various large-small LM collaboration methods Under different LLM
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AttenHScore and 7: LLMs.
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