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Abstract

The rise of multimodal content on social plat-
forms has led to the rapid spread of com-
plex and persuasive false narratives, combin-
ing of text and images. Traditional rumor de-
tection models attempt to identify such con-
tent by relying on textual cues or employing
shallow multimodal fusion techniques. How-
ever, these methods often assume a simplis-
tic one-to-one alignment between modalities,
overlooking the richer hierarchical relation-
ships across modalities, failing to capture the
layered structure of meaning. In this paper, we
present RumorCone, a novel method that em-
ploys hyperbolic geometry in order to preserve
hierarchical, non-linear relationships, rather
than representing them at a flat semantic level.
First, RumorCone decomposes image and text
content into three levels: base, mid, and high-
level abstractions, and embeds them in hyper-
bolic space to model their tree-like semantic
structure. Second, a dynamic hyperbolic mul-
timodal attention mechanism aligns features
across modalities and levels, and a flexible fu-
sion strategy adjusts the contribution of each
modality based on alignment quality. Our ex-
periments indicate the importance of hierar-
chical semantic modeling for robust and inter-
pretable multimodal rumor detection.

1 Introduction

The rapid spread of rumors across social media
platforms has emerged as a serious societal chal-
lenge, particularly due to the complex nature of
multimodal content that integrates both textual and
visual elements. Recent advancements in multi-
modal rumor detection have demonstrated poten-
tial in utilizing multiple data sources; yet, cur-
rent models often fail to sufficiently represent the
semantic interactions between modalities, particu-
larly in aligning images with corresponding texts.
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However, a critical limitation is their failure to
model the hierarchical structure of visual seman-
tics, which is essential for correctly interpreting
an images meaning in conjunction with its textual
context.

Previous approaches, such as HSEN (Zhang
et al., 2023), HAGNN (Xu et al., 2023b), and
HMCAN (Qian et al., 2021) have introduced hi-
erarchical learning mechanisms to enhance image-
text alignment. These models look for to estab-
lish connections between textual and visual modal-
ities; they frequently model low-level interdepen-
dencies by treating the visual-linguistic paradigms
as one-to-one correspondences. In contrast, this
method neglects the rich dependencies that emerge
when the two modalities are looked at from a va-
riety of hierarchical semantic viewpoints. More
specifically, these models often ignore the com-
plex, non-linear, tree-like relationships that fre-
quently define real-world information in favour of
treating semantic features in a flat or linear manner.
This restriction is especially problematic in posts
that are emotionally charged or crisis-related, as
meaning is conveyed through layers of abstraction
that range from fine-grained factual details to gen-
eral emotional cues. Flattened representations col-
lapse these distinctions, leading to semantic mis-
matches and reducing model sensitivity to subtle
misinformation cues.

This challenge is clearly illustrated by the ex-
ample in Fig. 1, which demonstrates the impor-
tance of tree-like semantic hierarchies. In the Non-
rumor post, which depicts a real earthquake in Mo-
rocco, both the image and text features exhibit
strong consistency across three levels of abstrac-
tion. The image hierarchy progresses from low-
level cues (e.g., rubble, dust) to mid-level objects
(e.g., collapsed buildings) and finally to high-level
semantic context (e.g., natural disaster). The tex-
tual hierarchy mirrors this: from base-level emo-
tional cues (e.g., shocking or tragic), to mid-level
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Figure 1: Image and text features are modeled as
tree-like structures across three levels: base (low-level
cues), mid (object meanings), and high (overall con-
text). In the non-rumor, image and text are well
aligned across all levels. In the rumor, they are mis-
aligned, especially at higher levels. Hyperbolic space
captures and preserves these relationships inherent in
multimodal content, enabling the detection of semantic
misalignments that are characteristic of rumors.

descriptions of the event (e.g., earthquake in Mo-
rocco), and finally to abstract or factual framing
(e.g., references to disaster response or regional
impact). In contrast, the Rumor post pairs a vi-
sually unrelated image of a nebula with text about
a space-related event. While the base-level visual
(e.g., colors and light) may loosely attract atten-
tion, its mid- and high-level semantics do not align
with the textual claims, which themselves may es-
calate from generic surprise to fabricated factual
claims. These ambiguities, across both image and
text hierarchies, highlight a core issue in multi-
modal rumor detection: as the level of abstraction
increases, the semantic alignment between image
and text either strengthens or breaks down, signifi-
cantly impacting model performance.

This observation motivates the following hy-
pothesis:

H1:Semantic  hierarchies  between
modalities are more likely to align or
misalign as abstraction levels increase,
leading to more accurate classification
of rumors and nonrumors.

We argue that effectively detecting such nu-
anced manipulations requires explicit modeling of
semantic hierarchies, structured relationships that
connect an image to textual descriptions across
varying abstraction layers. Unlike existing ap-
proaches that focus on shallow feature fusion, this
perspective emphasizes the importance of seman-
tic structure in distinguishing authentic from de-
ceptive content.

To address these challenges, we propose Ru-
morCone, a novel multimodal rumor detection

framework that takes advantage of hierarchical se-
mantic alignment and hyperbolic geometry. Our
approach makes three primary contributions:

* We introduce a hierarchical semantic align-
ment module that explicitly models the
image-caption relationship across three lev-
els: generic emotional impression, mid-
level description, and specific factual de-
tail. This multi-layered perspective allows us
to track semantic consistency by preserving
non-linear, tree-like relationships in line with
our hypothesis (H1).

* We propose a novel cross-modal fusion strat-
egy in hyperbolic space, where text and im-
age features are combined at different lev-
els of abstraction. By using attention mech-
anisms in hyperbolic space, our model prior-
itizes the most relevant modality for each ru-
mor detection task, resulting in better perfor-
mance than traditional shallow feature fusion
techniques.

* We employ hyperbolic geometry, incorporat-
ing three specialized pathways: unimodal
processing, cross-modal attention interaction,
and hierarchical semantic correlation, pre-
serving their hierarchical relationships. Addi-
tionally, we design an adaptive feature mod-
ulation mechanism that adjusts the contribu-
tion of each modality based on its relevance,
improving the model’s ability to detect subtle
patterns.

2 Method

Our RumorCone' framework addresses our hy-
pothesis by explicitly modeling the hierarchical re-
lationships between image and text content across
multiple levels of semantic abstraction. Unlike
prior work that relies on flat semantic represen-
tations, RumorCone leverages hyperbolic geome-
try to preserve the natural tree-like structure of se-
mantic relationships. The proposed architecture,
shown in Fig. 2, consists of three main compo-
nents: (1) multimodal feature extraction at multi-
ple abstraction levels, (2) Multi-Modal Feature Fu-
sion in Hyperbolic Space (3) Parallel Processing
Pathways for rumor detection.

'The name RumorCone is inspired by MERUs entailment
learning method (Desai et al., 2023), where image features
are guided to stay within a cone-shaped region based on text
features.
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Figure 2: Overview of the RumorCone framework for multimodal rumor detection. The framework processes
text and image content through multiple semantic abstraction levels in hyperbolic space, measuring cross-modal
alignment and consistency to detect rumors. The hyperbolic embedding approach preserves the hierarchical nature
of semantic relationships, enabling detection of inconsistencies across abstraction levels that characterize manipu-

lated content.

2.1 Problem Definition

Let D = {(x},2?,y;)}, denote a dataset of N
social media posts, where x! represents the tex-
tual content, x; represents the visual content (im-
age), and y; € {0,1,2} is the class label with O
for rumors, 1 for non-rumors, and 2 for unverified
content. Addressing the limitations of flat seman-
tic representations identified in our introduction,
we incorporate multiple semantic abstraction lev-
els for each post, denoted as {a?"%, a9}, repre-
senting concrete, mid-level, and high-level seman-
tic abstractions of the content. The objective is to
learn a function f : (X! X" A) — Y that maps
the multimodal inputs and their abstractions to the
correct rumor classification.

2.2 Multi-Modal Feature Extraction

Hierarchical Textual Feature Extraction. To en-
able hierarchical semantic reasoning in text, we
construct three abstraction levels: base (original),
mid-level (50% compressed), and high-level (25%
compressed). Then, we employ the pre-train lan-
guage model BERT and an multi-layer perceptron
to obtain the correpsonding Euclidean embeddings
h} for each abstraction [ € (base,mid, high).
Then we employ Lorentzian exponential mapping
expg as used in MERU (Desai et al., 2023) to ob-
tain text representation in Lorentzian hyperbolic

space, defined as:
hflyp-l = eXpO(hf : aexp)> (1)

Meanwhile, we employ a MERU-style trans-
former encoder to extract complementary
textual features e/ for each abstraction
[ € (base,mid, high). And we also employ
Lorentzian exponential mapping to obtain the
MERU-style textual representation eflyp_l. These
embeddings are naturally suited for hyperbolic
geometry and further enrich hierarchical text
representations.

Hierarchical Image Feature Extraction. For
image content ¥, we use early and middle lay-
ers of a shared Vision Transformer (ViT) to obtain
low-level ey, . and mid-level features e ;, captur-
ing local and intermediate visual semantics. To
ensure a unified hyperbolic geometry across all
abstraction levels, we explicitly project and map
them into hyperbolic space using Lorentzian expo-
nential mapping:

& = expo(aj - W' - ¢f) @)

where, exp is the Lorentzian exponential map to
hyperbolic space, o’ is a learnable scaling param-
eter, W}’ is the projection matrix for level /. And
we employ the MERU model to directly obtain
the high-level hyperbolic embeddings éﬁigh, which
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uses a ViT backbone and outputs high-level repre-
sentations already embedded in Lorentzian hyper-
bolic space. Thus, this hierarchical representation
in hyperbolic space allows our model to capture
both local and global visual semantics while pre-
serving their hierarchical relationships through the
geometry of the space.

2.3 Multi-Modal Feature Fusion in
Hyperbolic Space

Intra-Modal Fusion in Hyperbolic Space. For
each modality, we aggregate hyperbolic embed-
ding representation across three levels by using
hyperbolic Mdbius addition operation @y in the
hyperbolic space, defined as:

F:;:Fggse@Han;id@HFf:?gh (3)

where m € {t,v}. Here we fuse the textual repre-
sentation hj, , and e}, derived from BERT
and MERU to obtain textual hyperbolic embed-
ding F = (hj,,, ;s €h,, 1)1, Where (, )1, denotes
the Lorentzian inner product. The visual hyper-
bolic embedding F}” for each abstract level is the
hierarchical image feature €;'.

Cross-Modal Fusion in Hyperbolic Space. To
integrate the hierarchical semantic features from
both modalities, we employ an attention-based
cross-modal fusion mechanism to obtain the fused
representation Fiyseq, computed as:

Flused = U(al)‘fattn(an)'i‘U(aQ)‘fattn(F;;l)a (4)

where, o(a1) and o(ag) are learnable parame-
ters that control the attention weights for the text
and image features, and the attention function
fattn(z> = GELU(LN(Wath + battn))-

2.4 Parallel Processing Pathways

2.4.1 Unimodal Detection Processing

We employ modality-specific processing pathways
to extract discriminative features from each in-
put stream independently before cross-modal fu-
sion. The unimodal detector module processes ex-
tract discriminative features from each modality,
which is formulated as F7' = MLP(F]), where
m € {a,t}, and MLP denotes a two-layer neural
network with batch normalization and ReLLU ac-
tivations. Then we aggregated the features from
individual modalities to obtain the fused unimodal
representation F; = FY, &y FY.

This approach preserves modality-specific infor-
mation that might otherwise be lost during cross-
modal fusion, contributing to the model’s robust-
ness when one modality carries more discrimina-
tive information than the other. This helps capture
complementary unimodal patterns that are critical
when one modality (e.g., text) is unreliable.

2.4.2 Cross-Modal Pathway Processing

The Cross Modal Processor (CMP) module em-
ploys hyperbolic multi-head attention to directly
model modality-aware interaction in Lorentzian
space. The fused embedding is processed with gy-
rovector operations, defined as:

Fo = Fiusea @ Dropout(MHA(F, F, F)) (5)

where F' = LN(Ffyseq), and LN() denotes nor-
malization while preserving hyperbolic geometry.
MHA(Q, K,V) = Concat(hy, ..., hy) is the hy-
perbolic multi-head attention function, where h; =
Attention(Q @ W2, K oy WX,V ogWY), 9m
denotes the Mobius matrix multiplication in hyper-
bolic space and h is the number of attention heads
(set to 8 in our implementation).

In the context of our hypothesis H1, the Cross
Modal Processor helps identify misalignments be-
tween textual and visual modalities across differ-
ent levels of abstraction by enabling rich cross-
modal interactions in the representation space.

2.4.3 Hierarchical Semantic Processing

The hierarchical semantic processing mechanism
processes both text and image features at multiple
levels of abstraction (Base, Mid, High) to detect
the characteristic inconsistency patterns in rumors.
The framwork of hierarchical semantic processing
is shown in Figure 3.

Hyperbolic Hierarchical Abstraction. These
representations at each level (F}, e;) are derived
from dedicated hyperbolic projection heads, as de-
fined in Sections 2.2 and 2.3. This structure al-
lows RumorCone to perform level-specific align-
ment using Lorentzian metrics, ensuring full com-
patibility with the hierarchical modeling required
by Hypothesis H1. The abstraction representation
for each modality is computed as:

F™ = GELU(LN(W;h + by)) (6)

where | € {base, mid, high} denotes each abstrac-
tion level and m € {¢,v}. These abstraction lev-
els directly model the hierarchical nature of seman-
tics, allowing us to represent content from generic
emotional impressions to specific factual details.
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Cross-Modal Alignment. Following our hypoth-
esis (H1), the cross-modal alignment module em-
ploys a cross-modal hyperbolic attention mecha-
nism to dynamically compute how text and image
features should attend to each other at each level.
The aligned features between text and image at
each abstraction level are computed as: A;; =
HypAtt(F}, &) and A,; = HypAtt(é}, F}). The
hyperbolic attention mechanism is defined as:

exp(—du(q, k;)/7)
s exp(—du(q, kjr)/T)

HypAtt(q, k) = > 5
j
(7

where dy represents hyperbolic distance and ®p
represents Mobius scalar multiplication.

Cross-Level Consistency. Cross-level consis-
tency ensures that textual and image features re-
main aligned across multiple abstraction levels.
The module computes the hierarchical consistency
by using the hyperbolic distance between text and
image features across different levels. First, the
uni-modality consistency across abstraction levels
is computed as : scbg‘;slfrtufin = dg (", Fm) and
seomstm — d (Fmy, Fymy), where m € {a, t}.
Second, the cross-modality consistency across ab-
straction levels is calculated as : s; = dg ([F}; éV)),
where | € {base, mid, high}.

This ensures that textual and visual features re-
main consistent across levels, which is critical for
detecting rumors that tend to show inconsisten-
cies between features across different levels. This
is because that inconsistencies across these levels
often indicate manipulated or fabricated content.
Bi-directional Hyperbolic Feature Integration.
To fully utilize both directions of cross-modal at-
tention mechanisms, we integrate not only the
abstracted features but also the attention outputs
from cross-modal alignment. This creates a more
balanced representation that captures both text-to-
image and image-to-text alignment patterns:

t it
Zt = P @ Ff @ Ay,
H,l H,l

(8)
Zy =P B ou ) @ A,
H,l H

where [ € {base, mid, high}, @y represents itera-
tive Mobius addition, ®y is Mobius scalar multi-
plication, and the attention weights are calculated

Qmu kj

as: ~
o — exp(—dp(ct, thz/T) )
> exp(—du(ct, Flt/)/T), 9)
8 exp(—du(cy, €])/T)

2 v exp(—du(cy, €)/7)
where ¢; and ¢, are learnable hyperbolic centroids
and o; and [3; are learned attention weights.

This enhancement ensures that both directions
of cross-modal attention contribute to the final rep-
resentation. The textual features Z!, now incorpo-
rate not only weighted abstracted text features but
also attention-weighted visual contexts that are rel-
evant to each textual component. Similarly, visual
features Z;, incorporate both weighted abstracted
visual features and attention-weighted textual con-
texts relevant to each visual component.
Consistency and Alignment Signal Processing.
Once the alignment and consistency between tex-
tual and visual features are obtained, we generate
semantic signals. The alignment and consistency
scores from H1 are fed into the Semantic Signal
Network. We generate modulation factors from
the consistency and alignment signals:

’yaa 7t7 7V - U(HprLP(SEU St') SV) (10)

where o is Sigmoid activation function, s, =

. . _ consist-t  ,consist-t _
[Sbase78mld7$hlgh]a St = [Sbase,mid78mid,high]’ Sy =
[Sbasemid Smid.men]- HYPMLP operates directly in

the hyperbolic manifold, defined as:

HypMLP(z) = og(W ®pu z ®r b),

om(x) = expy(o(logy(x))), (11)

where log, represents the logarithmic map from
the hyperbolic space to the Euclidean space.
Semantic Feature Layer. The semantic feature
layer module combines multiple feature transfor-
mations to obtain a unified representation. The for-
mulation is defined as:

Frc = 61 “Ya © HprLP(Zrtc Su Zrléz)+
B2 - Yeon-t © HprLP(ch)"’_

/83 * Yeon-v © HprLP(ZrUc)7 (12)

where (1, (2, and (3 are learnable parameters
that control the relative importance of each com-
ponent.

2.5 Final Fusion and Classification

The final fusion combines features from different
pathways denoted as Fy, Fg, and Fi. using a
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weighted fusion mechanism, which is formulated
as:

n
Zcom:WF(FUaFCaFrc) = ZwZQFU (13)
1=1

Here, w; are the learnable weights, and ® repre-
sents the element-wise multiplication. This inte-
gration ensures that the classification decision in-
corporates the full spectrum of semantic alignment
patterns identified by our framework. Then we
employ a hyperbolic-to-Euclidean transformation
to project the final fusion features z¢on to the Eu-
clidean space, defined as:

Zeue = HypToEuc(zeom) = MLP(logg (2com)),
(14)

where log, represents the logarithmic map from
the hyperbolic space to the Euclidean space, and
MLP is a multi-layer perceptron.

The final classification is performed by passing
the projected features through a Multi-Layer Per-
ceptron to the predicted label, defined as:

9 = Softmax(MLP(zeyc)). (15)

2.6 RumorCone Loss Function

The RumorCone framework is designed to model
semantic consistency across hierarchical abstrac-
tion levels using hyperbolic geometry. To sup-
port its unique contributions, such as cross-
modal alignment, geometry-aware learning, and
hypothesis-driven reasoning, we formulate a com-
posite loss function composed of four parts:
classification loss, contrastive consistency loss,
manifold-aware regularization, and a semantic
consistency term.

Focal Supervised Classification Loss To address
class imbalance and improve sensitivity to hard-to-
classify samples, we apply a focal cross-entropy
loss with class-balancing:

N
1
Les = N z; ayi(l - pi,yi)W 10g(pi,y¢)a (16)
1=

Here, p; 4, is the predicted probability of the true
class y;, ay, is the class-specific weight, and v is
the focusing parameter that emphasizes harder ex-
amples.

Cross-Modal Contrastive Consistency Loss To
preserve semantic consistency across modalities

and their fused representations, we introduce a
multi-part contrastive loss:

Econsist — Econtr(hta hv) + £contr(hta Zcom)
+£contr(hv> Zcom)a
(17)
where each term uses a temperature-scaled con-
trastive loss:

al exp(al by /7)

1
ﬁconm"(aa b) = _N Z log ZN

i=1 j—1 exp(aj b;/7) 7

(18)
This loss aligns embeddings of corresponding tex-
tual, visual, and joint representations, ensuring
consistent reasoning across abstraction levels.
Manifold-Aware Regularization To preserve the
structure of hyperbolic space representations, we
incorporate a geometry-aware loss that maintains
Lorentzian manifold constraints and ensures mean-
ingful embedding spread:

Lmanifold = MSE(<Zcom7 Zcom>£7 _1)+

1
>\spread : m Z exp(—a : dH(Zi’ Zj)) (19
1#]

where (-,-), is the Lorentzian inner product,
dp (2, z;) is the hyperbolic distance between
points z; and zj;, o is a temperature-like scaling
coefficient (default: o = 5), Agpread 18 @ weight-
ing term controlling the contribution of this regu-
larizer, MSE(-, -) ensures points lie on the Lorentz
manifold.

Semantic Consistency Loss To reflect Hypoth-
esis H1, stating that visual-semantic hierarchies
become increasingly aligned or misaligned as ab-
straction levels deepen, we define a hyperbolic
geometry-aware alignment loss. Let 2}, 2}’ denote
the Lorentz-projected text and image embeddings
at level | € {Base, Mid, High}. Define:

A; = —du(zy, 25r) + du(2p, 2),  (20)
The class-specific target slope ¢; is:
+1 ify; =0 (non-rumor)
ti=4¢ -1 ify; =1 (rumor) 21D
0 ify; =2 (unverified)
The final semantic consistency loss is:
| N
Lm = Zl (A —t:)?, (22)
1=
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This loss encourages increasing alignment for non-
rumors, increasing misalignment for rumors, and
a neutral slope for unverified content, consistent
with the semantic behaviors proposed in Hypothe-
sis H1.

Total Loss. The total training objective for Rumor-
Cone is the weighted sum of the four components
described above:

'Ctotal = *Ccls + Aconsist . *Cconsist (23)
+)\manifold ’ Emanifold + )\Hl : ['Hh

Here, Aconsist> Amanifold> and Ap are scalar hy-
perparameters used to balance the contribution of
each auxiliary objective relative to the supervised
classification loss. These are tuned via validation
to ensure stable convergence and generalization.

3 Experiment Settings and Results
Analysis

3.1 Datasets and Baselines

Datasets. We evaluated the RumorCone frame-
work on two multimodal rumor detection bench-
mark datasets: M R2-E and M R?-C, the mul-
timodal multilingual retrieval-augmented dataset
for rumor detection.

Baseline Methods. We compared RumorCone
with state-of-the-art methods across text-only
(BERT (Devlin et al., 2018), RoBERTa (Liu et al.,
2019)), image-only (ResNet (He et al., 2015), Vi-
sion Transformer (Dosovitskiy et al., 2021)), and
multimodal approaches (MVAE (Khattar et al.,
2019), CLIP (Radford et al., 2021), HSEN (Zhang
et al., 2023), HAGNN (Xu et al., 2023b), HM-
CAN (Qian et al., 2021), FSRU (Lao et al., 2024)),
AAR (Zheng et al., 2025)). We comprehensively
describe each baseline in Appendix D.

3.2 Evaluation Against Baseline Methods

To evaluate the effectiveness of the RumorCone
framework, we conducted comprehensive experi-
ments comparing it against several state-of-the-art
rumor detection models. Table 1 presents the per-
formance metrics across the M R?-E and M R2-
C datasets, offering insights into how our hyper-
bolic geometry-based approach compares to exist-
ing methods.

RumorCone consistently outperforms all base-
line methods, achieving an accuracy improvement
of 4.61% (86.71% vs. 82.10%) and F1 score im-
provement of 4.77% (86.76% vs. 81.99%) over
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the strongest baseline (HMCAN) on the M R?-
E dataset. For the M R2-C dataset, RumorCone
demonstrates competitive performance with an F1
score of 85.48%, showing a 2.59% improvement
over HMCAN (82.89%). Compared to the re-
cently proposed FSRU and AAR models, which
achieve F1 scores of 78.66% and 79.05% on M R?-
E respectively, RumorCone shows clear improve-
ments of over 7% in F1 score.

The performance gap between RumorCone and
flat-space models like CLIP (81.40% F1 on M R2-
E) validates our first hypothesis that posts main-
taining high semantic consistency between im-
age and caption across multiple abstraction lev-
els are more accurately classified in hyperbolic
space. This is further evidenced by our ablation
study, where the Euclidean-only variant achieved
only 81.55% F1 score compared to our full model.
RumorCone’s superior performance over hierar-
chical approaches like HSEN (80.37% F1) and
HAGNN (81.37% F1) confirms our second hy-
pothesis that explicit modeling of semantic incon-
sistencies across abstraction levels enhances ru-
mor detection. The substantial performance gap
between RumorCone and unimodal approaches
(BERT: 77.57% F1, ResNet: 75.12% F1) under-
scores the importance of multimodal reasoning in
rumor detection.

These results demonstrate that RumorCone’s in-
tegration of hyperbolic geometry with hierarchi-
cal semantic alignment provides a principled ap-
proach to detecting the subtle inconsistencies char-
acteristic of multimodal rumors, advancing the
state-of-the-art in this critical application domain.

3.3 Ablation Studies

To systematically evaluate the contribution of each
component in the RumorCone framework, we
conducted an extensive ablation study. Table
2 presents the performance metrics across both
datasets when removing or modifying key compo-
nents of our model architecture.

Geometry Analysis. We first evaluated the im-
pact of different geometric spaces on model per-
formance. = Removing the MERU hyperbolic-
Euclidean fusion module resulted in a 3.05%
decrease in F1 score on MR2?-E (86.76% vs.
83.71%), indicating the crucial role of our hybrid
geometric approach. The Euclidean Only vari-
ant achieved an F1 score of 81.55%, and the Hy-
perbolic Only variant performed even worse at
70.38% F1, confirming that neither space alone



Table 1: Performance comparison of RumorCone with baseline models on M R2-E and M R2-C datasets. Some

baselines are adapted from binary to multiclass for comparison.

MR?-E MR?-C
Baselines Method
Accuracy  Precision Recall F1 Accuracy  Precision Recall F1

Text-Based BERT (Devlin et al., 2018) 78.344+1.23 78.69+£1.11 77.02+1.01 77.57+1.13 82.42+1.07 79.214+0.98 77.45+0.86 78.05+1.18
s RoBERTa (Liu et al., 2019) 78.22+1.05 78.26+0.92 78.87+1.07 78.56+£0.92 83.64+0.88 80.43+0.95 78.774+0.89 78.5610.94
Image-Based ResNet (He et al., 2015) 74.83+1.07 76.22+1.23 74.37+1.02 75.124+1.23 72.33£1.10 65.1641.25 62.13£1.18 63.39+1.13
8 Vision Transformer (Dosovitskiy et al., 2021) 72.14+1.29 74.334+1.28 72.29+1.36 73.28+1.33 70.75+£1.26 64.54+1.24 62.24+1.14 64.89+1.23
MVAE (Khattar et al., 2019) 78.25+1.76 78.33+1.52 77.24+1.61 77.78£1.57 81.32+1.68 78.84+1.47 77.58+1.59 78.21%+1.53
CLIP (Radford et al., 2021) 81.294+1.22 82.05+1.27 81.06+1.32 81.40£1.22 83.87+1.25 81.77+1.31 81.294+1.23 80.54+1.29
Multimodal HSEN (Zhang et al., 2023) 80.14%1.11 81.29+1.08 79.45+1.02 80.37+1.07 84.23+1.01 82.0541.15 80.71£1.09 81.33+1.05
HAGNN (Xu et al., 2023b) 81.45+1.06 82.11+1.02 80.69+1.15 81.37£1.09 85.14£0.96 83.12+1.03 81.55+1.11 82.34+1.01
HMCAN (Qian et al., 2021) 82.10+1.18 82.84+1.13 81.14£1.09 81.99£1.11 85.87+1.09 83.75+1.06 82.08+1.13 82.89+1.05
FSRU (Lao et al., 2024) 80.31+0.40 77.85+0.35 79.50+0.38 78.66+£0.37 79.42+0.36 76.924+0.32 78.674+0.35 77.784+0.33
AAR (Zheng et al., 2025) 79.124+0.95 79.34+0.88 78.76+0.90 79.0540.92 79.01£0.91 79.254+0.87 78.54+0.89 78.89+0.90
RumorCone (Ours) 86.71+1.17 86.82+1.24 86.71+1.19 86.76+1.22 85.45+1.14 85.62+1.18 85.34+1.15 85.48+1.17

Table 2: Ablation study results for the RumorCone framework on M R?-E and M R2-C datasets.

MR*-E MR?*-C
Model Variant
Accuracy Precision Recall F1 Accuracy Precision Recall Fl1
w/o MERU 83.36 83.17 84.25 8371 82.18 81.95 83.04 82.49
Hyperbolic Only (MERU) 82.42 7529  66.07 70.38 81.17 7346 6492 68.95
Euclidean Only (BERT+CLIP)  81.29 82.05 81.06 81.55 79.84 80.73  79.52 80.12
RumorCone No Cross-Modal 66.02 73.73  66.02 69.66 64.78 72.16 6537 68.59
No RumorCone pathways 63.98 67.47 6398 65.68 62.24 65.89  62.73 64.25
No Semantic Levels 78.25 7833  77.24 77778  76.93 77.12 7598 76.54
Full Model 86.71 86.82 86.71 86.76 85.45 85.62 85.34 85.48

can effectively capture the complex semantic hi-
erarchies present in multimodal rumors. The
substantial drop with hyperbolic-only embeddings
suggests that while hyperbolic space efficiently
represents hierarchical structures, it must be com-
plemented by Euclidean space for optimal repre-
sentation learning.

Semantic Hierarchy Analysis. The "No Seman-
tic Levels" variant removed our hierarchical repre-
sentation, resulting in a significant F1 score drop
of 8.98% on M R?-E (86.76% vs. 77.78%). This
validates our hypothesis that explicitly modeling
multiple semantic abstraction levels significantly
enhances rumor detection performance. The hi-
erarchical approach allows the model to identify
inconsistencies that might be obscured at a single
level of representation.

Cross-Modal Processing Analysis. The most dra-
matic performance decline was observed in the
"No Cross-Modal" variant, with an F1 score of
merely 69.66% on M R?-E, representing a 17.10%
decrease from the Full Model. This substantial gap
demonstrates that cross-modal interactions are es-
sential for identifying the semantic inconsistencies
that characterize rumors. Similarly, the "No Ru-
morCone pathways" variant performed even worse
(65.68% F1), highlighting the critical importance

of our proposed multi-pathway architecture for ef-
fective rumor detection.

These ablation results conclusively demonstrate
that each component of the RumorCone frame-
work contributes substantially to its overall per-
formance. The hybrid geometric approach, multi-
level semantic representations, and cross-modal
pathways all play vital roles in capturing the sub-
tle inconsistencies present in multimodal rumors.
Particularly striking is the severe performance
degradation when removing cross-modal process-
ing components, which confirms that the ability to
align and verify content across modalities is the
cornerstone of effective rumor detection. The re-
sults empirically validate our theoretical hypoth-
esis (H1) regarding the importance of hierarchical
semantic alignment and the characteristic inconsis-
tencies in rumors across abstraction levels.

3.4 Performance on Low-Resource and
Multilingual Data

To assess generalization to low-resource and mul-
tilingual settings, we evaluated RumorCone on
a newly compiled dataset of 100 real-world so-
cial media posts collected from reputable fact-
checking platforms between 2024 - 2025. These
posts span five major languages: English, Chinese,
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Table 3: Performance of RumorCone and baselines on multilingual data with unified translation. Best results per

row are bolded.

Language Metric

MKV FSRU MVAE HSEN

HAGNN HMCAN RumorCone

Enlish Accuracy 0.74 0.76  0.72  0.73 0.75 0.77 0.79
g Fl Score 0.70 0.72 0.68  0.69 0.71 0.72 0.76
Bengali Accuracy 0.65 0.67 0.63  0.64 0.66 0.73 0.76
& Fl Score 0.60 0.63 058 0.60 0.62 0.77 0.73
Hindi Accuracy 0.61 0.64 0.60  0.59 0.63 0.77 0.71
Fl Score 0.56 059 055 0.54 0.58 0.61 0.67

Chinese Accuracy 0.69 0.70  0.67 0.68 0.72 0.70 0.70
F1 Score 0.73 0.71 0.69  0.69 0.70 0.72 0.68

Arabic Accuracy 0.58 0.61 057  0.59 0.60 0.61 0.67
F1 Score 0.55 0.60 0.54  0.56 0.58 0.65 0.71

Arabic, Bengali, and Hindi. Table 3 presents the
detailed results for all baselines, including accu-
racy and F1 scores.

All models experienced performance degrada-
tion on this out-of-distribution dataset, particularly
in low-resource languages such as Bengali and
Hindi. Misclassifications were often caused by id-
iomatic or culturally nuanced expressions in the
original captions, which became semantically am-
biguous after translation. This semantic abstrac-
tion drift at the mid-level led to inconsistencies
in cross-modal alignment and degraded prediction
performance. Applying unified translation before
hierarchical processing substantially improves per-
formance in low-resource languages, demonstrat-
ing the robustness of RumorCones hierarchical,
cross-modal semantic reasoning even in challeng-
ing multilingual settings.

These results demonstrate that RumorCone
maintains competitive performance across multi-
lingual and low-resource settings. Unified transla-
tion before hierarchical semantic abstraction mit-
igates semantic drift and enhances cross-modal
alignment, particularly for languages where id-
iomatic or culturally specific expressions are
prevalent.

3.5 Robustness to Partial or Noisy Modalities

To investigate RumorCone’s behavior under in-
complete or noisy multimodal inputs, we con-
ducted experiments on the M R2-E dataset with
randomly masked modalities. Specifically, 30% of
images or text inputs were masked to simulate real-
world degradation. Table 4 presents the resulting
performance metrics.

While performance drops with partial input, the
model remains reasonably effective. This is con-

Table 4: RumorCone performance under partial modal-
ity masking on M R2-E dataset.

Condition Acc.(%) Prec.(%) Rec.(%) F1(%)
Full Model 86.71 86.82 86.71 86.76
30% Text Masked 80.03 79.94 79.32  79.96
30% Image Masked 81.28 80.61 80.85 81.18

sistent with our ablation study showing the No
Cross-Modal variant leads to a large F1 drop
(69.66%, Table 2). RumorCones modality-specific
pathways and consistency-aware modulation dy-
namically weight each modality based on reliabil-
ity, mitigating but not fully eliminating the impact
of missing data.

4 Conclusion

In this paper, we presented the RumorCone frame-
work, a novel approach to multimodal rumor de-
tection that leverages hierarchical semantic align-
ment and hyperbolic geometry. The primary ob-
jective of RumorCone is to address the challenges
posed by the complex nature of multimodal con-
tent, particularly the misalignment between tex-
tual and visual features that characterize many
rumors. By modeling these semantic relation-
ships across multiple abstraction levels, the frame-
work improves the ability to detect subtle incon-
sistencies inherent in deceptive content. We in-
troduced and thoroughly evaluated RumorCone
on two benchmark datasets, M R2-E and M R?-
C, which incorporate both textual and visual con-
tent from various social media platforms. Our
experiments demonstrated that RumorCone out-
performs state-of-the-art methods in multimodal
rumor detection, achieving superior performance
across multiple evaluation metrics.
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Limitations

The RumorCone framework, though effective in
modeling hierarchical semantic graphs, is also
severely lacking. Its performance is heavily de-
pendent on having good quality translation in mul-
tilingual settings. In experiments, it reported a
sharp drop in accuracy for low-resource languages
without translation, indicative of its reliance on se-
mantic normalization. Although hyperbolic geom-
etry is useful for preserving abstraction and hierar-
chy, it has the drawback of optimization complex-
ity and scalability, particularly on large, noisy, or
imbalanced datasets.

Another key limitation comes from the in-
complete modality problem. In real-world so-
cial media posts, one or more of the modali-
ties (e.g., image, or text) would be missing or
corrupted. RumorCone’s performance degrades
against such partial inputs, and that implies the
need for more robust modality-invariant reasoning
techniques. Further, low-resource settings, espe-
cially under-represented languages, are both data-
poor and domain-mismatch issues since current
multilingual rumor corpora often skew heavily in
favor of English, and Chinese, leaving most world
languages poorly supported.

Finally, RumorCone lacks external fact-
checking or real-world factual verification system
integration, limiting its ability to anchor rumors
in verified sources. Although it captures rumors
through semantic and contextual signals, it fails
to cross-check against verified knowledge bases
or real-time fact stores, which precludes its use
in high-stakes scenarios where factual accuracy is
crucial.
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A Visualization of hierarchical semantic
processing

B Key Functions in RumorCone Method

The Lorentzian exponential mapping expg is de-
fined as:

(T e, sl
exp0<:c>—< R L e )

(24)

where spatial embeddings are scaled using hyper-
bolic sine to ensure correct curvature-based projec-
tion.

The hyperbolic attention mechanism is defined
as:

Attention(Q, K, V) = @ a; @ u;  (25)
j=1

_ exp(or - dalanky)
> i1 exp(—T - du(g, k1))

o (26)
where @ represents iterative Mobius addition, ®p
is Mobius scalar multiplication, and 7 is a tempera-
ture parameter controlling the softness of attention
weights.

The hyperbolic distance dp(q, k) between two
vectors ¢ and k is calculated by using the
Lorentzian metric, defined as:

la— k) )

dg(q, k) = arcosh (1 +2
(. k) ( T TaP = TF)
27

C Datasets

The M R? (Hu et al., 2023) dataset includes ru-
mors with both images and texts, providing evi-
dence from both modalities retrieved from the in-
ternet. It is divided into three categories: Content-
based Method, Propagation-based Method, and
Retrieval-based Method. In this study, we focused
on the Content-based Method. To address class im-
balance, we employed weighted sampling during
training to enhance model generalization across all
classes. The dataset M R?-E and M R2-C, sourced
from Twitter and Weibo, respectively.

D Baselines

We compared RumorCone against several state-of-
the-art methods across three categories:
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Figure 3: Visualization of hierarchical semantic processing mechanisms in RumorCone. The diagram illustrates:
(A) Within-level alignment between text and image at each abstraction level, (B) Cross-level consistency checks
within each modality and (C) RumorCone feature generation

1. Text-Only Methods: Text-based approaches computer vision by processing images as

rely solely on linguistic features for rumor
detection. BERT (Devlin et al., 2018) lever-
ages bidirectional transformer encoders pre-
trained on massive text corpora to extract con-
textual representations, enabling it to capture
semantic nuances and deceptive patterns in
textual content. RoBERTa (Liu et al., 2019),
an optimized extension of BERT with im-
proved pre-training methodology, offers en-
hanced performance through dynamic mask-
ing and larger batch sizes. While these
models achieve reasonable performance by
identifying linguistic deception signals, they
fundamentally cannot detect inconsistencies
between text and corresponding images, a
common characteristic of multimodal rumors.
Our experiments confirm this limitation, as
text-only approaches miss crucial visual ev-
idence that often contradicts false textual
claims.

. Image-Only Methods: Visual-based ap-
proaches focus exclusively on image ma-
nipulation detection. ResNet (He et al.,
2015) employs deep residual learning to ex-
tract hierarchical visual features, enabling
the identification of subtle visual manipu-
lation artifacts common in misleading con-
tent. Vision Transformer (Dosovitskiy et al.,
2021) adapts the transformer architecture to
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sequences of patches, effectively modeling
long-range dependencies in visual data that
may indicate tampering. However, these
approaches struggle to contextualize images
within their accompanying textual claims,
leading to high false positive rates when legit-
imate images are presented with misleading
captions. Without cross-modal reasoning ca-
pabilities, image-only methods demonstrate
significantly lower performance than multi-
modal approaches in our experiments.

. Multimodal Methods: Recent approaches
leverage both textual and visual informa-
tion for more comprehensive rumor detec-
tion. MVAE (Khattar et al., 2019) em-
ploys a multimodal variational autoencoder
to learn joint representations of text and im-
ages, significantly improving detection re-
liability over unimodal approaches. CLIP
(Radford et al., 2021) uses contrastive learn-
ing to align visual and language represen-
tations from 400 million image-text pairs,
enabling zero-shot transfer to rumor detec-
tion tasks. More specialized architectures in-
clude HSEN (Zhang et al., 2023), which en-
hances semantic alignment across modalities
through hierarchical feature extraction, and
HAGNN (Xu et al., 2023b), which models ru-
mor propagation using graph neural networks



with attention mechanisms. HMCAN (Qian
et al., 2021) combines multi-modal context
information and hierarchical textual seman-
tics, using BERT for text and ResNet for im-
ages fused through a multi-modal attention
network. FSRU (Lao et al., 2024) further
advances multimodal fusion by transforming
textual and visual features into the frequency
domain and applying cross-modal spectrum
co-selection for more discriminative repre-
sentations. Most recently, AAR (Zheng et al.,
2025) introduces adversarial arguments gen-
erated by multimodal large language models
to guide cross-attentional reasoning, achiev-
ing state-of-the-art results in fake news detec-
tion. While these approaches recognize the
importance of cross-modal reasoning, they
operate in Euclidean space, limiting their
ability to capture the hierarchical semantic re-
lationships that RumorCone explicitly mod-
els in hyperbolic space.

E Implementation details

E.1 Base, Mid and High-level abstraction for
Text

To support RumorCones hierarchical reasoning
mechanism, we generated two additional abstrac-
tion levels, Mid-level and High-level textual in-
puts, for each sample in the dataset, alongside the
original (Base-level) text. The abstraction process
is performed using a sentence-ranking approach
based on contextual centrality, computed using
embeddings from a multilingual BERT model.
Specifically, for each input text, we first perform
language-aware sentence segmentation. Then, sen-
tence embeddings are extracted using the aver-
age of the last hidden state from BERT. A doc-
ument embedding is computed as the mean of
all sentence embeddings, and sentence importance
scores are derived using cosine similarity with this
document embedding. Sentences are then ranked
by centrality and iteratively selected until a target
length threshold is met 50% of the original for
Mid-level abstraction, and 25% for High-level ab-
straction.

E.2 Hyperparameters for loss function

To ensure balanced optimization of RumorCones
multi-objective architecture, we empirically tuned
the loss weight hyperparameters using validation
performance on the M R2-E development set. Un-
less otherwise stated, the final values used across

all experiments were: Aconsist = 1.0, Ananifold =
0.1, and A1 = 1.0. The classification loss Lcls
was used as the primary supervision signal and
therefore kept unweighted. We found that these
values provided a stable trade-off between model
performance and convergence speed, while avoid-
ing overfitting to any single objective. The internal
weight Agpreqd 0 Linaniford Was fixed to 0.5, fol-
lowing prior work on hyperbolic regularization.

E.3 Model Architecture

The RumorCone architecture integrates pre-
trained modality-specific encoders (BERT-base-
multilingual-cased for text of size 768 and
ViT-Base-Patch16-224 for images), a MERU-
based hyperbolic fusion module with Transformer
L12_W512 text encoder and 512-size embed-
ding, hierarchical semantic layers of 3 levels
(base, mid, high) and 512-size features, and a
cross-modal integration module utilizing multi-
head self-attention (8 heads, 512-dim features).
The fusion module projects features to a 64-
dim hidden space and produces 3-class out-
puts. AdamW with component-specific learn-
ing rates (5e-6 for MERU, 2e-5 for main mod-
ules, le-5 for fusion), weight decay of 0.2, and
a one-cycle schedule with cosine annealing, 15%
warmup, and 1000 x decay are utilized for train-
ing. Mixed-precision training is performed with
batch size 32 for a maximum of 100 epochs
using early stopping (patience=10). The total
loss includes focal cross-entropy (weight=2.0),
adaptive class weights, contrastive consistency
loss (weight=0.5, temperature=0.07), cross-modal
contrastive loss (weight=0.2), hierarchical consis-
tency (weight=0.3), and Lorentz manifold-aware
regularization (weight=0.3), each balanced with
learnable weights.

E.4 Evaluation Metrics

We report accuracy, precision, recall, and macro
F1 score as our primary evaluation metrics, with
macro F1 being especially important due to class
imbalance. All experiments were conducted on
NVIDIA GPUs with a PyTorch implementation.

F Semantic Consistency and
Misalignment Patterns in RumorCone

In this section, we analyze the relationship be-
tween semantic consistency and misalignment pat-
terns across different levels of abstraction in mul-
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Figure 4: Cross-Modal Alignment scores for RumorCone and baseline models. The plot shows how well the
textual and visual features align across different abstraction levels.

timodal rumor detection. The visualizations pro-
vide key insights into how misalignment between
text and image impacts prediction accuracy, par-
ticularly in distinguishing between Rumor, Non-
rumor, and unverified content. These findings
align with the hypotheses proposed in the introduc-
tion 1 and support the need for models like Rumor-
Cone that can effectively handle complex semantic
alignments across various abstraction levels.

The Abstraction Level Misalignment Patterns
heatmap in Fig. 4 (A) shows that unverified con-
tent exhibits the highest misalignment at the base-
mid level (6.1), followed by rumor and non-rumor
content, while rumors, non-rumors, and unverified
content exhibit low misalignment at the mid-high
level. This suggests that these visual semantic
contents are more misaligned at lower abstraction
levels, while increased alignment at high abstrac-
tion levels indicates reduced ambiguity in the con-
tent from lower to higher levels. Our hypothesis
(H1) states that posts with greater semantic align-
ment across abstraction levels help classify rumors.
This observation aligns with the idea that rumors
involve emotional manipulation, leading to greater
misalignment between text and image.

The Cross-modal alignment across three hierar-
chical levels heatmap in Fig. 4 (B) further sup-
ports Hypothesis (H1), showing that Rumor con-
tent exhibits negative alignment at Base (-0.13)
but improves at Mid (0.0028) and High (0.18)
levels. This suggests that rumors, often emo-
tionally manipulative, show greater misalignment
at Base, where the content is more emotionally
charged, and better alignment at higher abstrac-
tion levels, where more context and detail are cap-

tured. These findings suggest that semantic con-
sistency increases with higher representational lev-
els and correlates positively with prediction accu-
racy, potentially indicating that more coherent in-
ternal representations emerge in deeper process-
ing layers. Particularly noteworthy in the emo-
tional manipulation detection heatmap in Fig. 4
(D) shows a higher misalignment ratio for Rumor
content (1.06 at Base/Mid ratio), further support-
ing the idea that rumors involve greater semantic
inconsistency. These findings highlight the impor-
tance of addressing misalignments across abstrac-
tion levels to improve further rumor detection and
support the development of frameworks.

The consistency vs. prediction accuracy plot in
Fig. 4 (C) further emphasizes the importance of
semantic alignment in improving prediction accu-
racy. Correct predictions consistently show higher
average consistency scores compared to incorrect
ones, highlighting the role of better alignment in
enhancing model performance. These insights un-
derscore the need for advanced frameworks like
RumorCone, which leverages hierarchical seman-
tic alignment and hyperbolic geometry to capture
the complex relationships between text and image.
By addressing these semantic misalignments, Ru-
morCone improves its ability to detect rumors, par-
ticularly those involving emotional manipulation,
and provides a more effective approach for multi-
modal rumor detection.

G Confusion Matrix Analysis

To evaluate the classification performance, we
present a confusion matrix in Fig. 5 that shows
how well RumorCone distinguishes between ru-
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mors, non-rumors, and unverified content. The
confusion matrix highlights the true positives,
false positives, true negatives, and false negatives,
providing a clear picture of the models effective-
ness in classifying the three categories. The confu-
sion matrices for M R2-C and M R?-E both show
strong performance in classifying Rumor, Non-
rumor, and Unverified posts, with M R?-E achiev-
ing an overall accuracy of 86.71% and M R2-C
achieving 85.45%. M R?-E demonstrates excel-
lent classification of Rumor posts with 87% ac-
curacy, while M R2-C excels even further, classi-
fying 95% of Rumor posts correctly. Both mod-
els also show strong performance for Unverified
content, with M R2-E achieving 92% and M R?-C
achieving 82%. This indicates that both models
are highly effective at identifying rumors and un-
verified content.

However, both models also show some misclas-
sifications, particularly between Non-rumor and
Unverified categories. M R2-E misclassified 16%
of Non-rumor posts as Unverified, while M R?-
C misclassified 14% of Unverified posts as Non-
rumor. Additionally, M R?-E has a higher rate of
misclassifying Non-rumor posts as Rumors (5%)
compared to M R2-C (8%), which also misclas-
sifies Non-rumors as Rumors but at a lower rate.
Despite these errors, the overall classification ac-
curacy remains high for both models.

In conclusion, bothM R2-C and M R2-E demon-
strate robust performance in detecting Rumor and
Non-rumor posts, with M R?-C showing slightly
better performance in the Rumor category. The
misclassifications between Non-rumor and Unver-
ified content highlight areas for improvement, but
overall, both models perform well across all cate-
gories. With further refinements in distinguishing
Non-rumor from Unverified content, both models
could achieve even higher classification accuracy.

H 3D Visualization of Fused
Embeddings in Hyperbolic Space

The 3D scatter plots in Fig. 6 for M R2-E and
M R?-C both illustrate the fused embeddings of
the final model’s output for three classes: Class
0 (Blue), Class 1 (Red), and Class 2 (Green). In
the plot for M R?-E, the classes are clearly sepa-
rated, with minimal overlap between the clusters,
indicating that the model effectively distinguishes
between the classes in the fused embedding space.
The distinct separation of the clusters suggests that

M R?-E has successfully captured the underlying
structure of the data across the modalities, result-
ing in high classification performance. As seen in
our interactive 3D visualization, this minimal over-
lap makes it clear that the classes are well differen-
tiated, something that would be more challenging
to observe in a 2D space. In contrast, the plot for
M R?-C shows considerable overlap between the
classes, particularly in the regions where Class 1
(Red) and Class 2 (Green) intersect. This suggests
that M R2-C may not have as distinct class separa-
tion as M R2-E, indicating that the model’s feature
fusion or embedding learning could benefit from
further refinement. The overlap implies that M R2-
C may struggle more with distinguishing between
certain classes, potentially requiring improved fea-
ture representation or clustering techniques. Over-
all, while M R2-E shows strong class differentia-
tion, M R2-C may need further optimization to en-
hance its ability to separate the classes effectively.
We have identified in interactive 3D visualization,
effectively highlights the differences for M R2-C,
demonstrating that the minimal overlap in the 3D
space provides clearer class separation, a distinc-
tion that would be more challenging to identify in
a 2D representation.

I Case Study

We examine four representative cases from two
different settings (M R?-E for English content,
M R?-C for Chinese content) to understand how
the multimodal model processes and classifies so-
cial media posts that pair images with text. In
Fig. 7 (Left), the post shows a cheerful image of
Mario, paired with a caption admiring the char-
acter design. The model accurately classifies this
as Unverified, assigning a high score of 0.58. De-
spite the harmless tone, the fictional nature of the
image and non-factual caption likely contributed
to the models uncertainty. This highlights the
models sensitivity to semantic context and verifi-
ability. Fig. 7 (Right) presents a post featuring
Garth Brooks and a vague statement. Although
the ground truth is Non-rumor, the model incor-
rectly predicts Unverified with a slightly higher
confidence (0.45). The ambiguity of the caption
and lack of concrete factual content may have con-
fused the model, indicating potential limitations in
understanding metaphor or sarcasm. As shown in
Fig. 8 (Left), the Chinese post combines a meme
image with an exaggerated caption about being
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(Left) and M R2-E (Right).

treated to drinks and meals. The model correctly
labels this as Unverified with a high score of 0.65,
recognizing the informal tone and unverifiable na-
ture of the claim. This case shows the models
ability to detect humor and exaggeration even in
a non-English context. Fig. 8 (Right) depicts a
serious post reporting radioactive contamination,
paired with a formal image of a government offi-
cial. The model classifies it as a Rumor with high
confidence (0.75), aligning with the ground truth.
The linguistic framing and alarming subject matter
likely contributed to this classification. This exam-
ple shows the models competency in identifying
potential misinformation based on contextual sig-
nals and high-risk content.

J Related Work

J.1 Multimodal Rumor Detection

Multimodal rumor detection has significantly ad-
vanced since 2014, primarily through the integra-
tion of textual, visual, and social context features
to enhance detection accuracy. Initial approaches,
such asaBoididou et al. (Boididou et al., 2014) and
Sabir et al. (Sabir et al., 2018) concentrated on
multimedia integrity verification, early methods,
like Jin et al. (Jin et al., 2017), used RNN-based
models with simple feature concatenation. Later,
Tian et al. (Tian et al., 2020) investigated semantic
retrieval with autoencoders. MARN was first pre-
sented by Wang et al. (Wang and Sui, 2021), who
combined BERT and ResNet-18 to improve cross-
modal interaction. Chen et al. (Chen et al., 2021)

132



Case Study - Mr2-E

Prediction Scores

True Class: Unverified
Predicted Class: Unverified

05 0.58

04 0.37

I love this render for the Mario RPG
remake, he's just a little guy T e Non-rumor

eeeeeeeeee

Case Study - Mr2-E

Prediction Scores

True Class: Non-rumor
Predicted Class: Unverified

0.45
o4 0.34
0.21

Garth Brooks likes to stick his
friends in low places. 00 Ramor

nnnnnnnn

Figure 7: English Case - Unverified Post with Fictional Game Character (Left) and Misclassified Non-rumor Post

(Right)

Case Study - Mr2-C

Image Prediction Scores

True Class: Unverified
Predicted Class: Unverified

0.65

FEMEBEH—MNGSEB TG o
FRITRIH— RSB RIZIMN—IRR 7
HIXHELNERRRRERE 00

=3
o

uuuuuuuuuuuuu

Case Study - Mr2-C

10

Prediction Scores

True Class: Rumor
Predicted Class: Rumor

- \ »,' -

IEEFHRET AR 2EIRE, BFRFEFARTTE
W TRATAHEA T TTA#AIN,. AR8ATIE
ARFEXHLF St =FR
= HHTERIS IR, AE T ARG &
BES 0o

04

02 0.17

Figure 8: Chinese Case Humorous Unverified Post (Left) and Rumor with News-style Structure (Right)

and Fu et al. (Fu and Sui, 2022) then added self-
attention and entity recognition for better fusion.
In 2023, models like TDEDA (Han et al., 2023a),
CMAC (Zou et al., 2023), CLKD-IMRD (Xu
et al., 2023a), MMRDF (Jiang et al., 2023), and
CLIP-guided learning (Zhou et al., 2023) intro-
duced adversarial learning, attention mechanisms,
and knowledge distillation. Further contributions
included MARBERTV2 for Arabic-language ru-
mor detection (Albalawi et al., 2023) and refined
attention-based methods from Wang et al. (Wang
et al., 2023b). Despite this progress, many models
continued to struggle with fine-grained semantic
alignment between modalities.

In 2024, several innovations aimed to address
these limitations. Guo et al. (Guo et al., 2024)
improved cross-modal fusion, while Li et al. (Li
et al., 2024b) introduced MKV for semantic map-
ping and Pang et al. (Pang et al., 2024) explored
topic-image alignment. CLIP-based multimodal
frameworks such as SARD (Yan et al.,, 2024)
further enhanced semantic integration. Zhou et
al. (Zhou et al., 2020a) worked on aligning seman-
tically similar and dissimilar modality pairs. Do-
main adaptation became a key focus through event-
invariant models like EANN (Wang et al., 2018),
MKEMN (Zhang et al., 2019), MDDA (Zhang
et al.,, 2021), and MDMN (Zhou et al., 2022),
while Ran and Jia (Ran and Jia, 2023) introduced
unsupervised cross-domain adaptation using con-

trastive learning and cross-attention. In parallel,
GCNs were adopted by Nanjiang et al. (Nanjiang
et al., 2022), Zhong et al. (Zhong et al., 2022), and
Sun et al. (Sun et al., 2023b) to combine structural
and content-based features, while propagation-
based detection gained popularity concurrently.
Azri et al. (Azri et al., 2021) used CNN-LSTM
architectures. Though most still worked in Eu-
clidean space without hierarchical abstraction or
hyperbolic modeling, alignment strategies like
SAFE (Zhou et al., 2020b), CARMN (Song et al.,
2021), co-attention networks (Wu et al., 2021),
and Bi-GRU with image captioning (Wang et al.,
2022) addressed semantic inconsistency.

From late 2024 to 2025, attention shifted
toward deeper semantic and structural integra-
tion. Advances included contrastive align-
ment (Zhang et al., 2024), deep visual-language
fusion networks (DVLFN) (Yang et al., 2023),
and knowledge-guided fusion (Sun et al., 2023a).
Cross-modality modeling for video content (Li
et al., 2024a), stance filtering (Sengan et al.,
2024), and contrastive feature learning (Zhou
et al., 2025) further pushed the field. Emotion-
and transformer-based approaches were explored
by Wang et al. (Wang et al., 2023a) and Lv et
al. (Lv et al., 2023), while generative and spectral
models such as MVAE (Khattar et al., 2019) and
FSRU (Lao et al., 2024) introduced new modeling
strategies.
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In comparison with these work, our proposed
RumorCone framework couples hierarchical se-
mantic abstraction and hyperbolic multimodal fu-
sion. Through enabling local fine-grained align-
ment and global structural coherence, RumorCone
corrects semantic disagreement and works stably
under low-context and noisy rumor detection sce-
narios.

J.2 Hierarchical Semantic Learning in
Multimodal Models

To better capture the multi-level semantics inher-
ent in multimodal data, several recent works have
proposed hierarchical learning mechanisms. Qian
et al. (Qian et al., 2021) proposed the Hierarchical
Multi-modal Contextual Attention Network (HM-
CAN) for fake news detection in 2021 by combin-
ing multi-modal context with hierarchical textual
semantics using BERT and ResNet to process text
and images, outperforming state-of-the-art meth-
ods. Zhang et al. (Zhang et al., 2023) (2023)
proposed the Hierarchical Semantic Enhancement
Network (HSEN) for fake news detection, enhanc-
ing text and image semantics using hierarchical
learning as well as improving inconsistency de-
tection. Ying et al. (Ying et al., 2021) simulta-
neously incorporated relations of both duplicate
and unique modalities and applied multilevel text
semantics. Han et al. (Han et al., 2023b) intro-
duced the Cascading Modular Multimodal Cross-
Attention Network (CMMCN) in 2023, enabling
deep fusion between vision features and text fea-
tures, overcoming other models with advanced
word-level and visual-object level interactions. In
2023, Xu et al. (Xu et al., 2023b) introduced Hi-
erarchically Aggregated Graph Neural Networks
(HAGNN), a GNN model aggregating text and
propagation structure features, and surpasses base-
line models on Weibo and CED datasets. In
2023, Gu et al. (Gu et al., 2023) employed cross-
modal co-attention to increase the combination of
text and image features to achieve better accu-
racy on Weibo and Twitter datasets. Despite these
advances, most of these approaches rely on Eu-
clidean space, where capturing tree-like or non-
linear relationships between semantic layers re-
mains limited.

J.3 Hyperbolic Embeddings and Geometric
Reasoning

Hyperbolic embeddings have been very beneficial
in computer vision for encoding hierarchical struc-

tures across various domains. Nickel et al. (Nickel
and Kiela, 2017) introduced Poincaré embeddings
that compress symbolic hierarchies more effec-
tively compared to their Euclidean equivalents.
Following that, Hao et al. (Guo et al., 2021)
extended hyperbolic embeddings to multi-modal
knowledge graphs with the help of hyperbolic
graph convolutions for enhanced entity alignment.
Hi-Mapper by Kwon et al. (Kwon et al., 2024)
enhances scene understanding via hierarchies of
visual information learned in hyperbolic space,
whereas Kong et al.’s HyperLearner (Kong et al.,
2024) blends synthetic captions with hyperbolic
learning for open-world object detection boost.
Similarly, Kim et al.’s HYPE method (Kim et al.,
2024) uses hyperbolic entailment to filter out noisy
image-text pairs to boost self-supervised learning.

Other notable contributions include Sinha et
al.’s HypStructure (Sinha et al., 2024), which in-
jects label hierarchies into learned features via hy-
perbolic regularization to generalize better. Dhin-
gra et al. (Dhingra et al., 2018) applied hyper-
bolic embeddings to unsupervised learning of text
representation, whereas Guo et al. (Guo et al,,
2022) addressed training problems in hyperbolic
neural networks by clipping Euclidean features,
enhancing robustness in classification. Khrulkov
et al. (Khrulkov et al., 2020) demonstrated dom-
inance of hyperbolic embeddings over Euclidean
and spherical embeddings in computer vision. Liu
et al. (Liu et al.,, 2020) proposed a hyperbolic
visual embedding network with better zero-shot
recognition via more compact embeddings. De-
sai et al. (Desai et al., 2023) introduced MERU,
a vision-language model to learn hierarchical en-
tailment relationships in Lorentzian space, a hy-
perbolic manifold extension.

Previous work mostly aims at vision-language
tasks or knowledge graphs, our RumorCone
framework is more general as it allows hierarchi-
cal hyperbolic modeling to enable cross-modal
misinformation detection with a novel fusion
mechanism.
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