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Abstract

Pre-trained vision-language models (VLMs),
such as CLIP, have demonstrated impressive
capability in visual tasks, but their fine-tuning
often suffers from bias in class-imbalanced
scenes. Recent works have introduced large
language models (LLMs) to enhance VLM
fine-tuning withsupplementaryy semantic in-
formation. However, they often overlook in-
herent class imbalance in VLMs’ pre-training,
which may lead to bias accumulation in down-
stream tasks. To address this problem, this
paper proposes a Multi-dimensional Dynamic
Prompt Routing (MDPR) framework. MDPR
constructs a comprehensive knowledge base
for classes, spanning multiple visual-semantic
dimensions. During fine-tuning, the dynamic
routing mechanism aligns global visual classes,
retrieves optimal prompts, and balances fine-
grained semantics, yielding stable predictions
through logits fusion. Extensive experiments
on long-tailed benchmarks, including CIFAR-
LT, ImageNet-LT, and Places-LT, demonstrate
that MDPR achieves comparable results with
current SOTA methods. Ablation studies fur-
ther confirm the effectiveness of our semantic li-
brary for tail classes and show that our dynamic
routing operates with a slight increase in com-
putational overhead, making MDPR a flexible
and efficient enhancement for VLM fine-tuning
under data imbalance. The codes are available
in https://github.com/Sha843/MDPR.

1 Introduction

Pretrained Vision-Language Models (VLMs), such
as CLIP (Radford et al., 2021), have demonstrated
remarkable capabilities in visual tasks by lever-
aging cross-modal knowledge and tuning (Khat-
tak et al., 2023; Zhou et al., 2022a). However,
fine-tuning of VLM under imbalanced downstream
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Figure 1: Illustration of how MDPR alleviate the bias.
To address the (a) unknown imbalance in the pre-
training of VLMs and (b) the long-tailed distribution in
downstream data, which jointly lead the (c) accuracy
bias in fine-tuning, (d) MDPR constructs comprehensive
knowledge using offline LLM generation, and designs a
dynamic prompt routing mechanism to enhancing fine-
tuning methods with de-biasing the predictions.

data exhibits significant bias (Wang et al., 2024),
i.e., models favor many-sampled class optimization
while under-performing on few-sampled classes, as
shown in Figure 1(b) and (c). This challenge of
learning from imbalanced data is not unique to
VLM fine-tuning and has been extensively studied
in various contexts. For instance, some works ex-
plore causal inference to disentangle robust features
from spurious correlations (Meng et al., 2025),
while others in federated learning tackle data het-
erogeneity across distributed clients through tech-
niques like feature space alignment (Qi et al.,
2025) and prototypical calibration (Qi et al., 2023;
Meng et al., 2024).Lately, Large language Models
(LLMs) are introduced to enhance VLM tuning,
which faces two fundamental questions: (1) What
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semantic information from LLMs is effective in
alleviating distributional bias? (2) How to leverage
augmented information during fine-tuning process?

To address VLMs’ bottlenecks in data-scarce
scenarios, prior works leverage LLMs for class-
level semantic enhancement, sample synthesis, and
open-world concept expansion. For semantic en-
hancement, LLMs generate discriminative prompts
to improve inter-class separability (Zheng et al.,
2024). For sample synthesis, LTGC (Zhao et al.,
2024) guides diffusion models to synthesize tail-
class samples. For concept expansion, PerVL (Co-
hen et al., 2022) and Custom Diffusion (Kumari
et al., 2023) enable open-set generalization via text
descriptions. However, these methods often over-
look intrinsic VLMs’ biases, leading to cumulative
bias during fine-tuning, and rely on static prompts
or costly generative models, limiting adaptability.

To enhance the effectiveness of LLM knowl-
edge in fine-tuning VLMs under imbalanced distri-
butions, we propose Multi-dimensional Dynamic
Prompt Routing (MDPR), as illustrated in Figure
1(d). Specifically, to address the implicit imbalance
present during the VLM pre-training phase, MDPR
firstly introduces a multi-dimensional prompt con-
struction strategy. During training, it leverages
zero-shot VLMs to extract and construct a prompt
pool for each class, capturing multiple distinct di-
mensions: general appearance, fine-grained appear-
ance, functionality, contextual information, and
differential features. This multi-faceted prompt
design helps mitigate prior biases for classes. Sub-
sequently, in the dynamic prompt routing stage, it
further alleviates the impact of imbalanced data
by implementing global visual-class alignment, dy-
namic routing-based visual-prompt matching, and
fine-grained semantic balancing. This process gen-
erates predictions from multiple perspectives, and
robust results are achieved through a logit fusion
mechanism. As an effective enhancement architec-
ture, the proposed MDPR can be flexibly integrated
with various VLM fine-tuning methods.

To evaluate the effectiveness of the proposed
MDPR, we conducted extensive experiments on
three long-tailed visual recognition benchmarks,
namely CIFAR-100-LT, ImageNet-LT, and Places-
LT. The experimental results demonstrate that
MDPR, through the comprehensive prompt con-
struction and dynamic routing mechanisms, effec-
tively mitigates class imbalance biases in both pre-
trained models and downstream data, achieving
robust performance improvements across head and

tail classes while maintaining high compatibility
with existing fine-tuning frameworks. The primary
contributions of this work are:

• We propose a plug-and-play framework for
VLM’s fine-tuning, termed MDPR, which
addresses the challenge of joint imbalance
through dynamic prompt routing, achieving
efficient performance enhancement.

• We propose a multi-dimensional prompt con-
struction approach, which systematically en-
hances the semantic understanding of VLMs
by integrating multiple semantic dimensions,
significantly mitigating inherent biases in pre-
trained models.

• We validate the versatility of MDPR with dif-
ferent tuning methods, and it improves perfor-
mance across three benchmarks with minimal
additional parameters or time, particularly en-
hancing recognition of tail classes.

2 Related Works

2.1 Pretrained Model Fine-tuning under
Long-tailed Distribution

Long-tailed data distributions challenge pretrained
model fine-tuning, often leading to a bias to-
wards head classes and impairing generalization
to tail classes. Traditional strategies such as
re-balancing (Shi et al., 2024; Tan et al., 2020;
Cui et al., 2019), information augmentation (Xu
et al., 2023; Li et al., 2024a), and Mixture-of-
Experts (MoE) models (Fedus et al., 2022; Zhang
et al., 2023) offer foundational solutions. More
recently, novel fine-tuning approaches for mul-
timodal pretrained models have been explored.
Cross-modal collaborative fine-tuning enhances
minority class representations via visual-semantic
contrastive learning and feature alignment (Chen
et al., 2024). Some works leverage text as privi-
leged information during training to guide visual
learning (Li et al., 2024b), while others explore
causal inference to disentangle spurious correla-
tions (Meng et al., 2025). Parameter-efficient
fine-tuning (PEFT) techniques, including adapter
tuning (Kim et al., 2024) and prompt tuning (Dong
et al., 2022), aim to adjust for minority classes with
minimal backbone alteration, mitigating overfitting.
Furthermore, knowledge transfer and distillation
leverage priors from large pretrained models, em-
ploying teacher-student paradigms or cross-domain
transfer to bolster tail class robustness (Rangwani
et al., 2024). While these fine-tuning strategies
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address long-tailed distributions from various an-
gles, many focus on re-weighting samples/losses
or adapting model parameters. In contrast, MDPR
introduces an explicit, structured semantic knowl-
edge base and a dynamic routing mechanism, offer-
ing a complementary pathway to directly enhance
the semantic understanding and discriminative ca-
pability for classes, especially those in the tail.

2.2 LLM-Enhanced Visual Representation
Learning with Limited Samples

Large Language Models (LLMs) have enriched vi-
sual learning in data-scarce scenarios like few-shot
and long-tailed recognition. Research primarily
explores three directions: Category semantic en-
hancement. For fine-grained or underspecified la-
bels, LLaMP (Zheng et al., 2024) employs LLMs to
generate descriptive prompts, improving inter-class
separability. ArGue (Tian et al., 2024) integrates
visual attributes and common sense semantics to
guide prompt refinement. These methods typically
yield a single, albeit enhanced, textual representa-
tion per class. MDPR, however, constructs a multi-
dimensional prompt pool for each class, capturing
diverse semantic facets, and dynamically selects
from this pool based on image context, offering
greater representational richness and adaptability.
Sample generation. In imbalanced settings, LLMs
produce detailed descriptions to steer text-to-image
(T2I) models for synthesizing tail-class samples, as
in LTGC (Zhao et al., 2024). A related data-centric
approach is adaptive data calibration, which re-
balances the training data by down-sampling head
concepts and synthesizing tail concepts (Song et al.,
2025). While effective for data augmentation, such
approaches often incur significant computational
overhead from generative models and may not di-
rectly enhance the VLM’s intrinsic understanding.

MDPR focuses on efficiently enriching the VLM
with pre-computed semantic knowledge, rather
than relying on external sample generation. Con-
cept expansion. LLMs facilitate modeling novel
concepts in open-world settings. PerVL (Cohen
et al., 2022) uses LLMs to generate personalized
descriptions, extending VLM vocabularies. These
methods primarily target open-set generalization
or T2I generation. MDPR, while also leveraging
LLM-derived knowledge, is specifically designed
as a plug-and-play module to improve fine-tuning
performance on closed-set, long-tailed recognition
tasks by dynamically routing pre-defined, multi-
faceted class semantics.

3 Method

3.1 Motivation
To alleviate biases in the fine-tuning of VLMs,
the proposed Multi-dimensional Dynamic Prompt
Routing (MDPR) routes a visual-semantic knowl-
edge base to enhance representation learning.

The core challenge in VLM fine-tuning arises
from issues caused by imbalanced word distribu-
tions in pre-training and visual-language misalign-
ment during fine-tuning.

In standard VLMs, the classification probability
for a class c given an image xb is formulated via a
softmax over logits:

P (y = c|xb) =
exp(⟨fi,b, f ct ⟩)∑C
j=1 exp(⟨fi,b, f

j
t ⟩)

(1)

However, due to factors like long-tailed pre-
training data, this probability is often implicitly
biased by the pre-training frequency N

pre
c of class

c. This can be modeled as an additive bias term in
the logit space, leading to a biased probability:

P(y = c|xb) ≈
exp(⟨fi,b, f ct ⟩+ α logN

pre
c )

∑C
j=1 exp(⟨fi,b, f

j
t ⟩+ α logN

pre
j )
(2)

where fi,b and f ct are the normalized image and
text features, respectively; C is the total number
of classes; Npre

c denotes the pre-training frequency
of class c; and α > 0 represents the bias strength.
The additive term α logN

pre
c systematically favors

head classes over tail classes.
Figure 2 shows the framework of MDPR, which

is designed to mitigate this bias from two funda-
mental principles. First, by constructing a multi-
dimensional semantic representation for each
class, we aim to dilute the uni-dimensional bias
inherent in any single description (f c

text). Second,
by employing a dynamic routing mechanism, we
make the final prediction dependent on the rele-
vance between the image and the diverse semantic
facets, rather than the static, frequency-based bias.
The subsequent sections detail how we implement
these principles. MDPR can serve as a plug-and-
play framework, capable of seamless integration
into existing fine-tuning methods.

3.2 Multi-dimensional Prompt Construction
To address potential inherent class biases in pre-
trained VLMs, MDPR designs a class-specific
prompt knowledge base spanning multiple seman-
tic dimensions. The knowledge base endows
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Figure 2: The framework of MDPR, which consists of two stages. The offline Multi-dimensional Prompt Con-
struction builds a knowledge-base for enhancing semantics. The online Dynamic Prompt Routing aggregates the
pre-learned knowledge to de-bias the predictions. Here we use CoOp (Zhou et al., 2022b) for an example.

VLMs with a deeper understanding of classes, es-
pecially for distinguishing similar classes or prior
tail classes in pre-training data.

3.2.1 Visual-Language Prompt Design
Since a single class name often fails to capture the
complex visual attributes of a class, especially for
rare or nuanced concepts, we propose a structured,
multi-dimensional prompt design. This design is
inspired by recent VLM/LLM research on attribute-
guided and context-aware prompting (Tian et al.,
2024; Zheng et al., 2024; Tan et al., 2024), and
also follows the cognitive process of human object
recognition. The five dimensions are chosen to
be complementary, constructing a comprehensive
semantic space from three key perspectives: (1)
Semantic Granularity (from coarse GA to fine-
grained FA); (2) Information Source (from intrin-
sic properties like GA, FA, FT to extrinsic context
CI); and (3) Class Relationships (from intra-class
commonality to inter-class distinctions DF).

Moreover, considering the prior bias inherent
in VLMs, we introduce the differential features
dimension. Given a dataset with C classes, we first
construct a confusion matrix K using CLIP’s zero-
shot predictions on the training set. For each class,
the most frequently confused class is selected as
the target for generating differential features. To
this end, the knowledge base includes the following
dimensions:
General Appearance (GA): Typical visual fea-
tures of the class (e.g., color, shape) (Tian et al.,
2022; Tan et al., 2024).

Fine-grained Appearance (FA): Specific local de-
tails and textures for distinguishing similar objects
(Zheng et al., 2024; Tan et al., 2024; Zhao et al.,
2024).
Functionality (FT): The primary function or pur-
pose of the object (Tian et al., 2024).
Contextual Information (CI): Common back-
ground environments or associated objects (Tian
et al., 2024; Zhao et al., 2024).
Differential Features (DF): Unique characteristics
by contrasting with a confusable class.

This structured approach systematically provides
the model with a more holistic understanding of
class semantics, enhancing its discriminative ca-
pabilities. The core of our method is not the
fixed number of dimensions, but a sufficiently rich
prompt pool that enables the model to dynami-
cally route the most relevant information. As our
ablation study (Table 5) shows, each dimension
provides indispensable, complementary informa-
tion. Further details on the prompt generation pro-
cess, including our structured query templates and
verification-retry loop to mitigate LLM errors, are
in Appendix B.

3.2.2 Knowledge Base Construction
The generated text prompts {pc,v} are encoded into
a knowledge base. The text encoder Et(·) of a
frozen CLIP model encodes each prompt pc,v into
a d-dimensional feature vector f c,vp = Et(pc,v).

These features form the multi-dimensional
prompt tensor Fp ∈ RC×Vdim×d. To obtain a gen-
eral class-level semantic representation, we average
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the features for each class c to get f cavg ∈ Rd:

f cavg =
1

Vdim

Vdim∑

v=1

f c,vp (3)

To introduce an inductive bias for routing, we
construct a prior alignment matrix M ∈ RC×Vdim .
An element M[c, v] represents the prior importance
of the v-th prompt for class c, defined by its cosine
similarity to a generic prompt (e.g., "a photo of a
[class name c]"):

M[c, v] = Sim(f c,vp , Et(prompt(c))) (4)

3.3 Dynamic Prompt Routing

The Dynamic Prompt Routing (DPR) module dy-
namically selects and aggregates relevant semantic
information from the knowledge base, conditioned
on the input image’s visual context.

3.3.1 Image-attentive Semantic Extraction
For an input image xb with label yb, its visual fea-
tures fi,b = Ei(xb) are extracted using the image
encoder Ei(·). A class-specific multi-head atten-
tion (C-MHA) module then computes attention
weights Wb,c

r and forms an attentive semantic fea-
ture f b,crb for each class c:

f b,crb ,W
b,c
r = C-MHA(fi,b,Fp[c, :, :],Fp[c, :, :])

(5)
where Fp[c, :, :] are the Vdim prompt features for
class c. This is performed for all classes in a matrix-
wise manner for efficiency.

This relevance-based routing mechanistically
contributes to de-biasing: it can increase the inter-
class margin for tail classes by leveraging discrimi-
native prompts (e.g., DF), and reduce the intra-class
variance for head classes by adaptively selecting
context-specific prompts (e.g., CI or FA).

3.3.2 Semantic-enhanced Class Prediction
The attentive semantic features are used to compute
semantic logits ŷrb. For an image b and class c, the
logit is:

ŷrb[b, c] = s · ⟨f b,crb , fi,b⟩ (6)

where s is a learnable temperature. These logits are
supervised by a dynamic semantic loss Lsem using
Compensating Logit Adjusted Loss (CLA) (Shi
et al., 2024) for imbalanced data:

Lsem = CLA(ŷrb,y) (7)

3.3.3 Regularization for Routing and
Representation

To further stabilize the de-biasing process de-
scribed above and enhance the quality of the
learned representations, we introduce a regulariza-
tion loss Lreg = λpaLpa + λkaLka, where λpa and
λka are weights of losses. The Lpa and Lka target
the attention routing strategy and the quality of
the generated dynamic semantic representations,
respectively:

The Prior Alignment Loss (Lpa) encourages
the learned attention weights Wr to align with the
prior importance matrix M, preventing the model
from overfitting to spurious correlations in the data.
It is formulated as:

Lpa =
1

B · C
B∑

b=1

C∑

c=1

(
1− Sim(Wb,c

r ,M[c, :])
)

(8)
The Knowledge Alignment Loss (Lka) uses

knowledge distillation to enhance the quality of
tail-class representations. It aligns the dynamic
semantic representation (student) with the globally-
averaged semantic representation (teacher). Let
zs = Proj(f b,ybrb ) and zt = Proj(fybavg), the loss is:

Lka = DKL(softmax(zs/T ) || softmax(zt/T ))
(9)

where yb is the ground-truth class and T is the
distillation temperature.

3.4 Training Strategy
The training objective of MDPR is to optimize the
model end-to-end via a multi-task loss function.
For clarity, the complete training procedure is sum-
marized in Algorithm 1 in the Appendix.

3.4.1 Learnable Parameters
The learnable parameters include: (1) Base VLM
Framework Parameters (e.g., CoOp’s context
vectors or MaPLe’s multi-level prompts); and (2)
MDPR Module Parameters (the C-MHA network
and the projection layer Proj(·)). The knowledge
base (Fp, favg,M) is fixed during training.

3.4.2 Optimization
The total loss function Ltotal is a weighted sum
of the base VLM loss, the semantic loss, and the
regularization losses:

Ltotal = λbaseLbase + λsemLsem + Lreg (10)

where λbase and λsem are the weights of losses, and
λbase is typically set to 1.0.
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Dataset #Class IR #Train #Test

CIFAR-100-LT 100
10 19,573

10,00050 12,608
100 10,847

ImageNet-LT 1,000 256 115,846 50,000
Places-LT 365 996 62,500 7,300

Table 1: Statistics of long-tailed datasets, where "#"
means the number of item.

3.5 Logits-fused Inference

During inference, MDPR combines predictions
from the base VLM pathway (logits ŷcb) and the
dynamic semantic pathway (logits ŷrb). The final
fused logits ŷfuse are computed as:

ŷfuse = (1− β) · ŷcb + β · ŷrb (11)

where β ∈ [0, 1] is a hyperparameter balancing
the two sources, typically set to 0.5 in our experi-
ments (Section 4.2.2). This fusion allows MDPR
to benefit from both the general representations of
the base VLM and the instance-specific insights
from the DPR module.

4 Experiments

To comprehensively evaluate the efficacy of MDPR,
we conduct extensive experiments on three long-
tailed image recognition benchmarks.

4.1 Datasets

Our experiments are conducted on three widely
adopted long-tailed image recognition benchmarks:
CIFAR-100-LT (Cao et al., 2019), ImageNet-LT
(Liu et al., 2019), and Places-LT (Liu et al., 2019).
Detailed statistics for these datasets are presented
in Table 1.

4.2 Experimental Settings

4.2.1 Evaluation Metrics
Following the evaluation protocol proposed in (Liu
et al., 2019), we report accuracies of all classes and
three class subsets: Many-classes (>100 images),
Medium-classes (20-100 images), and Few-classes
(<20 images). This detailed breakdown allows for
a more nuanced understanding of model behavior
across varying class data densities.

4.2.2 Implementation Details
Base VLM Framework and Backbone:
The MDPR is implemented and evaluated
on top of two prominent prompt learning
frameworks: CoOp (Zhou et al., 2022b) and

MaPLe (Khattak et al., 2023). These are re-
ferred to as MDPR-CoOp/Ours(CoOp) and
MDPR-MaPLe/Ours(MaPLe), respectively. All
experiments except the CPRL (Yan et al., 2024)
utilize the pre-trained CLIP ViT-B/16 model as the
visual backbone.
Training Hyperparameters: All models, includ-
ing our reproduced baselines, are trained using the
AdamW optimizer with a weight decay of 1×10−4.
The initial learning rate for learnable prompts and
MDPR-specific modules is set to 1×10−3, decayed
using a cosine annealing schedule over 20 epochs.
A batch size of 128 is used for all datasets. The
loss weights λbase, λsem, λpa, λka in Equation (10)
are determined through systematic tuning, with
λbase fixed at 1.0. The weights for Lsem and Lka
are linearly warmed up from 0 to their target values
over the first 5 epochs. The logit fusion coefficient
β (for combining logits ŷcb and ŷrb during infer-
ence, see Equation (11) is set to 0.5 by default. All
experiments were conducted on a single NVIDIA
RTX 3090 GPU. Further details on hyperparameter
tuning ranges, final selected values, and the KL
temperature T are provided in Appendix A.1.

4.3 Comparison Results
To comprehensively evaluate the MDPR frame-
work’s effectiveness in addressing long-tailed dis-
tributions, this section presents a comparative per-
formance analysis against a range of represen-
tative methods on CIFAR-100-LT, ImageNet-LT,
and Places-LT. The compared methods include
the Zero-Shot CLIP (ZS CLIP) (Radford et al.,
2021) baseline, a range of prompt tuning methods
(CoOp (Zhou et al., 2022b), CoCoOp (Zhou et al.,
2022a), MaPLe (Khattak et al., 2023), LASP (Bu-
lat and Tzimiropoulos, 2023), PLOT (Chen et al.,
2022)), the general VLM enhancement method
TextRefiner (Xie et al., 2025), and techniques de-
signed specifically for long-tail recognition such as
CPRL (Yan et al., 2024) and Candle (Shi et al.,
2024). All experiments were conducted under
fair conditions. MDPR integrated with CoOp and
MaPLe is denoted as Ours (CoOp) and Ours
(MaPLe). Detailed classification accuracies are
in Tables 2 and 3

The proposed MDPR framework substan-
tially enhances base VLM fine-tuning perfor-
mance, achieving consistent and significant
gains across all class groups and scenarios, par-
ticularly reaching SOTA levels for Few-shot
classes on multiple benchmarks. For instance,
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Model IR=10 IR=50 IR=100
All Many Med All Many Med Few All Many Med Few

CLIP-ViT-B/16 (ICML’21) 59.50 61.09 55.97 59.50 64.05 57.27 54.22 59.50 61.83 59.74 56.50
CoOp (IJCV’22) 70.88 75.06 61.58 65.70 79.63 58.44 50.50 64.34 79.43 64.51 46.53
CoCoOp (CVPR’22) 72.29 76.75 62.35 66.38 80.20 60.20 49.00 63.90 80.69 65.20 42.80
MaPle (CVPR’23) 81.98 84.58 76.19 77.09 87.34 71.98 65.39 74.09 88.14 73.46 58.43
PLOT++ (ICLR’23) 75.52 78.83 68.16 70.73 82.95 64.54 57.00 68.37 81.89 67.54 53.57
LASP (CVPR’23) 68.57 72.64 59.52 63.76 76.49 57.15 49.83 61.29 76.49 60.17 44.87
TextRefiner (AAAI’25) 74.22 78.12 65.55 67.70 81.83 62.51 47.33 64.32 83.00 66.03 40.53
CPRL (MM’24) 81.75 84.97 74.58 71.16 86.61 65.22 49.50 68.20 88.74 71.97 39.83
Candle (KDD’24) 75.77 76.71 73.68 73.14 77.15 70.17 70.78 72.42 76.14 72.54 67.93
Ours (CoOp) 76.25 78.51 71.23 72.44 81.76 67.93 61.50 70.33 81.17 70.57 57.40
Ours (Maple) 84.73 86.32 81.19 81.38 88.68 76.90 74.94 79.25 87.60 81.26 67.17

Table 2: Comparison results on CIFAR-100-LT dataset, where best results are bolded and suboptimal results are
underlined. According to the split standard of dataset, CIFAR-100-LT with IR=10 contains no few-sampled classes.

on the challenging CIFAR-100-LT (IR=100), Ours
(CoOp) and Ours (MaPLe) improve Few-shot ac-
curacy from CoOp’s 46.53% and MaPLe’s 58.43%
to 57.40% and 67.17%, respectively. On larger
datasets like ImageNet-LT and Places-LT, MDPR
also demonstrates strong efficacy; notably, Ours
(MaPLe) boosts Few-shot accuracy on Places-LT
by over 22% compared to MaPLe, securing top
performance in Overall, Medium-shot, and Few-
shot metrics on several datasets. These results ro-
bustly validate that MDPR, via structured multi-
dimensional semantics and image-conditioned dy-
namic routing, effectively supplements VLMs with
discriminative information, enhancing representa-
tion learning for balanced performance on long-
tailed data.

MDPR demonstrates universality and effec-
tiveness as an enhancement module across dif-
ferent base frameworks and datasets. While
MaPLe inherently outperforms CoOp on some
datasets, MDPR consistently delivers significant
gains when combined with either framework. The
substantial Few-shot improvement MDPR brings to
MaPLe on Places-LT (over 22%) compared to that
for CoOp (approx. 18%) suggests its particular ef-
fectiveness in unlocking the potential of advanced
frameworks under extreme imbalance. Further-
more, unlike some specialized long-tail methods
(e.g., Candle) that might excel on tail classes for
specific datasets at the cost of head/medium class
performance, MDPR promotes more balanced im-
provements.

MDPR’s relative advantage tends to be more
pronounced at higher imbalance ratios. Com-
paring results on CIFAR-100-LT across increas-
ing IRs shows that while all methods’ absolute
performance declines, MDPR’s (especially Ours
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Figure 3: Ablation results across datasets. Results of
other IR of CIFAR-100-LT see in Appendix C.1.

(MaPLe)) improvement margin over baselines of-
ten widens. This further substantiates the crucial
role of MDPR’s multi-dimensional semantic under-
standing and dynamic routing in tackling extreme
data imbalance.

4.4 Generalization on Different Backbones

To validate MDPR’s generalization beyond the
ViT-B/16 backbone, we conducted additional ex-
periments on Places-LT using CLIP-RN50 and
CLIP-RN101. As shown in Table 4, the stan-
dard CoOp method struggles significantly on these
ResNet backbones, with its performance dropping
well below the zero-shot baseline for tail classes.
In contrast, our MDPR (CoOp) consistently pro-
vides substantial improvements, not only recov-
ering the performance but surpassing the zero-
shot baseline across most metrics. This demon-
strates MDPR’s robustness and effectiveness as
a backbone-agnostic enhancement. The signifi-
cant gains, particularly in Few-shot categories (e.g.,
+26.45% on RN50), underscore MDPR’s capabil-
ity to effectively leverage semantic knowledge to
guide representation learning, regardless of the un-
derlying visual encoder architecture.
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Model ImageNet-LT Places-LT
All Many Med Few All Many Med Few

CLIP-ViT-B/16 (ICML’21) 62.95 63.96 62.08 63.15 38.40 35.49 37.97 44.77
CoOp (IJCV’22) 68.69 74.82 65.75 61.75 40.73 53.10 35.58 29.72
CoCoOp (CVPR’22) - - - - 41.12 52.95 35.84 31.39
MaPle (CVPR’23) 69.02 77.20 64.90 60.37 41.37 54.33 36.45 28.73
TextRefiner (AAAI’25) 66.74 81.75 62.45 39.40 38.01 52.76 32.79 22.79
Candle (KDD’24) 71.28 76.38 69.55 62.91 45.81 46.97 45.42 44.56
Ours (CoOp) 74.57 77.67 73.42 69.87 48.89 49.45 48.72 47.96
Ours (Maple) 75.57 79.42 74.02 70.04 50.94 50.32 51.42 50.99

Table 3: Comparison results on ImageNet-LT dataset and Places-LT dataset, where best results are bolded and
suboptimal results are underlined. The "-" in results means out of memory in our devices.

Model CLIP-RN50 Backbone CLIP-RN101 Backbone
All Many Med Few All Many Med Few

CLIP-ViT-B/16 (ICML’21) 33.37 32.88 32.29 36.75 33.37 30.42 33.12 39.39
CoOp (IJCV’22) 20.74 33.47 14.79 10.92 25.01 39.98 18.91 11.31
Ours (CoOp) 34.98 31.50 35.70 37.37 37.85 35.53 38.66 40.25

Table 4: Generalization results of MDPR (CoOp) on the Places-LT dataset with different ResNet backbones.
Best results for each backbone are bolded. MDPR consistently provides significant gains over the standard CoOp
baseline, which struggles on these backbones.

4.5 Ablation Study

Our algorithm achieves performance gains through
stacking multi-dimensional semantic prompts and
regularization modules. To assess their con-
tributions, we compared zero-shot CLIP, base
MaPLe(base), MaPLe with semantic prompts
(base+Sem), and full MDPR (base+sem+reg)
on CIFAR-100-LT (IR=50), ImageNet-LT, and
Places-LT. As shown in Figure 3, performance im-
proves progressively with each module. Adding
semantic prompts (base+sem) significantly boosts
tail-class accuracy, e.g., Few on Places-LT from
28.73% to 48.39% (+19.66%). Regularization
(base+sem+reg) further raises Few to 50.99% and
slightly improves head and mid classes (e.g., Many
to 79.42% on ImageNet-LT). Semantic prompts
substantially mitigate tail-class bias via comprehen-
sive semantic representations, while regularization
enhances prediction consistency across head, mid,
and tail classes by stabilizing dynamic routing.

4.6 In-depth Analysis of Knowledge-base
Construction

An ablation study on the multi-dimensional se-
mantic knowledge base using Ours (CoOp) on
Places-LT (Table 5) reveals each dimension’s dis-
tinct contribution. Removing the Differential Fea-
tures (DF) dimension caused the largest overall
accuracy drop, highlighting the critical role of dis-
tinguishing unique characteristics via comparison
with similar classes. The removal of Contextual
Information (CI) or General Appearance (GA) also

significantly impacted performance, underscoring
the importance of scene understanding and fun-
damental visual features.In contrast, lacking Fine-
grained Appearance (FA) or Functionality (FT) had
a smaller, yet noticeable, negative effect, confirm-
ing the supplementary value of specific visual de-
tails and object function information. Notably, all
dimensions positively contributed to few-shot class
recognition; removing any single dimension de-
creased few-shot accuracy by 1.3% to 2%, with CI
removal having the most pronounced effect.

These findings demonstrate that a comprehen-
sive, multi-dimensional knowledge base with com-
plementary semantic dimensions is essential for
MDPR to effectively address long-tailed distribu-
tions and enhance learning of data-scarce classes.

4.7 Comparative Analysis of Model Efficiency

To assess the practical applicability of our pro-
posed MDPR framework, this section briefly ana-
lyzes the additional parameter count and its impact
on training efficiency. As summarized in Table 6,
our MDPR module introduces approximately 1.1M
trainable parameters. This increment is substan-
tially smaller than the total parameter count of the
CLIP ViT-B/16 backbone (representing less than
0.74% of the backbone’s parameters), positioning
MDPR within the realm of parameter-efficient fine-
tuning. For training on the ImageNet-LT dataset,
integrating MDPR results in a slight increase in
per-epoch training time of approximately 14 sec-
onds for the CoOp baseline and 114 seconds for
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the MaPLe baseline.
In summary, while MDPR introduces a modest

number of additional parameters and a slight in-
crease in computation, these are well-justified by
the significant performance gains, particularly in
recognizing few-shot classes. The marginal over-
head is especially low when MDPR is integrated
with more complex frameworks like MaPLe, under-
scoring its practicality as an efficient enhancement
module for VLMs addressing imbalanced data.

Knowledge All Many Mid Few
All 48.89 49.45 48.72 48.24
w/o GA 47.23 48.24 46.70 46.58
w/o FA 47.88 48.67 47.53 47.24
w/o FT 47.87 49.10 47.04 47.48
w/o CI 47.28 49.40 46.05 46.21
w/o DF 46.82 48.11 45.74 46.92

Table 5: Different knowledge base on Places-LT.

Metric CoOp CoOp MaPLe MaPLe
+MDPR +MDPR

Param (M) 0.008 1.108 3.6 4.7
Time (s) 1115 1229 1361 1375

Table 6: Trainable Parameters (Param) and Training
Time per Epoch (Time) on ImageNet-LT.

5 Conclusion

Addressing the class bias in fine-tuning vision-
language models under long-tailed distributions,
we propose the Multi-dimensional Dynamic
Prompt Routing (MDPR) framework. Unlike tra-
ditional static prompt or high-cost sample gen-
eration methods, MDPR leverages a structured
multi-dimensional semantic knowledge base and
an image-driven dynamic routing mechanism to
efficiently mitigate biases from pre-training and
downstream data. First, MDPR constructs a
multi-dimensional prompt pool, providing com-
prehensive class understanding to counter prior
biases. Second, an image-guided dynamic rout-
ing module, combined with regularization, gen-
erates instance-adaptive class representations by
optimizing routing and representation stability. Ex-
periments on CIFAR-100-LT, ImageNet-LT, and
Places-LT demonstrate that MDPR significantly en-
hances tail-class performance while balancing head
and medium-class robustness, achieving SOTA
or highly competitive results. As a lightweight
plug-and-play module, MDPR offers an effective
paradigm for open-world long-tailed recognition.

Limitations

• Limited by the devices, the effectiveness of
MDPR has been primarily validated on the
CLIP ViT-B/16 backbone and further verified
on ResNet backbones. Its generalizability and
performance on larger-scale or different VLM
architectures require further examination in
future work.

• MDPR’s prediction balancing, while benefit-
ing from the rich multi-dimensional semantic
library, still partially relies on known class
distribution information from the training set.
This dependency might limit its robustness
in real-world scenarios with unknown or dy-
namic class distributions. Future research
could explore integrating methods like causal
inference to enhance adaptability to open en-
vironments.

• The current multi-dimensional semantic
knowledge base is constructed offline for pre-
defined classes, raising challenges in both scal-
ability and reliability. Regarding scalability,
offline construction limits rapid adaptation
in incremental or open-set learning scenar-
ios. Regarding reliability, the quality of the
knowledge base depends heavily on the exter-
nal LLM. Future work could explore mecha-
nisms for dynamic construction and updating
of the knowledge base, while enhancing ro-
bustness by cross-validating across multiple
LLMs or integrating real-world metadata.

Acknowledgments

This work was partially supported by the Project
SDCX-ZG-202502017 funded by Postdoctoral In-
novation Program of Shandong Province, the Min-
istry of Education Humanities and Social Sciences
Research Project (Grant No. 22YJCZH007), and
the Science and Technology Support Plan for Youth
Innovation of Colleges and Universities of Shan-
dong Province of China (Grant No. 2022KJN028).

References
Adrian Bulat and Georgios Tzimiropoulos. 2023. Lasp:

Text-to-text optimization for language-aware soft
prompting of vision & language models. In Pro-
ceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 23232–23241.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga,
and Tengyu Ma. 2019. Learning imbalanced datasets

14817



with label-distribution-aware margin loss. Advances
in neural information processing systems, 32.

Guangyi Chen, Weiran Yao, Xiangchen Song, Xinyue
Li, Yongming Rao, and Kun Zhang. 2022. Plot:
Prompt learning with optimal transport for vision-
language models. arXiv preprint arXiv:2210.01253.

J. Chen, J. Zhao, J. Gu, and 1 others. 2024. Multimodal
framework for long-tailed recognition. Applied Sci-
ences, 14(22):10572.

Niv Cohen, Rinon Gal, Eli A Meirom, Gal Chechik, and
Yuval Atzmon. 2022. “this is my unicorn, fluffy”:
Personalizing frozen vision-language representations.
In European conference on computer vision, pages
558–577. Springer.

Y. Cui, M. Jia, T. Y. Lin, and 1 others. 2019. Class-
balanced loss based on effective number of samples.
In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 9268–
9277.

B. Dong, P. Zhou, S. Yan, and 1 others. 2022. Lpt:
Long-tailed prompt tuning for image classification.
arXiv preprint arXiv:2210.01033.

W. Fedus, B. Zoph, and N. Shazeer. 2022. Switch trans-
formers: Scaling to trillion parameter models with
simple and efficient sparsity. Journal of Machine
Learning Research, 23(120):1–39.

Muhammad Uzair Khattak, Hanoona Rasheed, Muham-
mad Maaz, Salman Khan, and Fahad Shahbaz Khan.
2023. Maple: Multi-modal prompt learning. In Pro-
ceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 19113–19122.

J. Kim, D. Kim, H. Jung, and 1 others. 2024. Long-
tailed recognition on binary networks by calibrating a
pre-trained model. arXiv preprint arXiv:2404.00285.

Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli
Shechtman, and Jun-Yan Zhu. 2023. Multi-concept
customization of text-to-image diffusion. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 1931–1941.

D. Li, J. Yan, T. Zhang, and 1 others. 2024a. On the role
of long-tail knowledge in retrieval augmented large
language models. arXiv preprint arXiv:2406.16367.

Xiangxian Li, Yuze Zheng, Haokai Ma, Zhuang Qi,
Xiangxu Meng, and Lei Meng. 2024b. Cross-modal
learning using privileged information for long-tailed
image classification. Computational Visual Media,
10(5):981–992.

Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang,
Boqing Gong, and Stella X Yu. 2019. Large-scale
long-tailed recognition in an open world. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 2537–2546.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Lei Meng, Xiangxian Li, Xiaoshuo Yan, Haokai Ma,
Zhuang Qi, Wei Wu, and Xiangxu Meng. 2025.
Causal inference over visual-semantic-aligned graph
for image classification. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39,
pages 19449–19457.

Lei Meng, Zhuang Qi, Lei Wu, Xiaoyu Du, Zhaochuan
Li, Lizhen Cui, and Xiangxu Meng. 2024. Improving
global generalization and local personalization for
federated learning. IEEE Transactions on Neural
Networks and Learning Systems, 36.

Zhuang Qi, Lei Meng, Zitan Chen, Han Hu, Hui Lin,
and Xiangxu Meng. 2023. Cross-silo prototypical
calibration for federated learning with non-iid data.
In Proceedings of the 31st ACM International Con-
ference on Multimedia, pages 3099–3107.

Zhuang Qi, Lei Meng, Zhaochuan Li, Han Hu, and
Xiangxu Meng. 2025. Cross-silo feature space align-
ment for federated learning on clients with imbal-
anced data. In The 39th Annual AAAI Conference
on Artificial Intelligence (AAAI-25), pages 19986–
19994.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark, and
1 others. 2021. Learning transferable visual models
from natural language supervision. In International
conference on machine learning, pages 8748–8763.
PmLR.

H. Rangwani, P. Mondal, M. Mishra, and 1 others.
2024. Deit-lt: Distillation strikes back for vision
transformer training on long-tailed datasets. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 23396–23406.

J. X. Shi, C. Zhang, T. Wei, and 1 others. 2024. Efficient
and long-tailed generalization for pre-trained vision-
language model. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 2663–2673.

Mingyang Song, Xiaoye Qu, Jiawei Zhou, and
Yu Cheng. 2025. From head to tail: Towards bal-
anced representation in large vision-language models
through adaptive data calibration. In Proceedings of
the Computer Vision and Pattern Recognition Con-
ference, pages 9434–9444.

Hao Tan, Jun Li, Yizhuang Zhou, Jun Wan, Zhen Lei,
and Xiangyu Zhang. 2024. Compound text-guided
prompt tuning via image-adaptive cues. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 5061–5069.

J. Tan, C. Wang, B. Li, and 1 others. 2020. Equalization
loss for long-tailed object recognition. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 11662–11671.

14818



Changyao Tian, Wenhai Wang, Xizhou Zhu, Jifeng
Dai, and Yu Qiao. 2022. Vl-ltr: Learning class-wise
visual-linguistic representation for long-tailed visual
recognition. In European conference on computer
vision, pages 73–91. Springer.

Xinyu Tian, Shu Zou, Zhaoyuan Yang, and Jing Zhang.
2024. Argue: Attribute-guided prompt tuning for
vision-language models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 28578–28587.

Y. Wang, Z. Yu, J. Wang, and 1 others. 2024. Exploring
vision-language models for imbalanced learning. In-
ternational Journal of Computer Vision, 132(1):224–
237.

Jingjing Xie, Yuxin Zhang, Jun Peng, Zhaohong Huang,
and Liujuan Cao. 2025. Textrefiner: Internal visual
feature as efficient refiner for vision-language mod-
els prompt tuning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 39, pages
8718–8726.

Z. Xu, R. Liu, S. Yang, and 1 others. 2023. Learning
imbalanced data with vision transformers. In Pro-
ceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 15793–15803.

Jiexuan Yan, Sheng Huang, NanKun Mu, Luwen
Huangfu, and Bo Liu. 2024. Category-prompt re-
fined feature learning for long-tailed multi-label im-
age classification. In Proceedings of the 32nd ACM
International Conference on Multimedia, pages 2146–
2155.

Y. Zhang, R. Wang, D. Z. Cheng, and 1 others. 2023.
Empowering long-tail item recommendation through
cross decoupling network (CDN). In Proceedings of
the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 5608–5617.

Qihao Zhao, Yalun Dai, Hao Li, Wei Hu, Fan Zhang,
and Jun Liu. 2024. Ltgc: Long-tail recognition via
leveraging llms-driven generated content. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 19510–19520.

Zhaoheng Zheng, Jingmin Wei, Xuefeng Hu, Haidong
Zhu, and Ram Nevatia. 2024. Large language models
are good prompt learners for low-shot image classifi-
cation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
28453–28462.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and
Ziwei Liu. 2022a. Conditional prompt learning
for vision-language models. In Proceedings of the
IEEE/CVF conference on computer vision and pat-
tern recognition, pages 16816–16825.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and
Ziwei Liu. 2022b. Learning to prompt for vision-
language models. International Journal of Computer
Vision, 130(9):2337–2348.

A Appendix

A.1 Detailed Hyperparameter Settings
This section provides a comprehensive overview of
the hyperparameter settings used for training our
MDPR models and the baseline VLM frameworks,
supplementing the details in Section 4.2.2 of the
main paper. All experiments were conducted on a
single NVIDIA RTX 3090 GPU.

A.1.1 Common Training Settings
The following settings were applied to all trained
models (both baselines and our MDPR variants)
unless specified otherwise:

• Optimizer: AdamW (Loshchilov and Hutter,
2017).

• Weight Decay: 1× 10−4.

• Base Learning Rate (for prompts and
MDPR modules): 1× 10−3.

• Learning Rate Schedule: Cosine annealing
schedule.

• Total Training Epochs: 20.

• Batch Size: 128 for all datasets.

• Visual Backbone: Pre-trained CLIP ViT-
B/16 (Radford et al., 2021) for all experiments.
The backbone parameters were kept frozen,
consistent with standard prompt tuning prac-
tices.

A.1.2 Base VLM Framework Parameters
When MDPR is integrated, the parameters of the
underlying base VLM frameworks were set as fol-
lows:
CoOp (Zhou et al., 2022b):

• Number of Context Tokens (Nctx): 16.

• Class Token Position: “end”.

• Context Initialization: Random initializa-
tion.

MaPLe (Khattak et al., 2023):

• Number of Context Tokens (Nctx): 2 for
both visual and language shallow prompts.

• Deep Prompt Depth (Vision & Language):
9 layers for both vision and language en-
coders.

• Context Initialization: Random initializa-
tion.
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A.1.3 MDPR Module Parameters
The specific parameters for our MDPR module
were configured as:

• Semantic Prompt Embedding Dimension
(d): 512.

• Multi-Head Attention (MHA) in DPR:

– Number of Attention Heads: 8.
– Dropout Rate (during training): 0.1.

• KL Projection Layer (Proj(·)): This linear
layer projects features from d = 512 to an
intermediate dimension of 128.

A.1.4 Loss Weights and Temperatures
The weights for the individual loss components in
the total loss function (Equation 10) and the KL
distillation temperature T were determined through
systematic tuning on a validation split.

• λbase: Fixed at 1.0 for all experiments.

• Tuning Strategy: A two-stage tuning process
was generally followed:

1. Stage 1 (Tuning λsem): With λpa = 0
and λka = 0, λsem was tuned from
{0.1, 0.5, 1.0, 2.0}.

2. Stage 2 (Joint Tuning λpa, λka, T ):
With the selected λsem, λpa was tuned
from {0.01, 0.05, 0.1, 0.5, 1.0}, λka
from {0.001, 0.005, 0.01, 0.05, 0.1},
and the temperature T from
{1.0, 2.0, 5.0}.

• Typical Final Values: While optimal values
could slightly vary per dataset, the follow-
ing settings demonstrated robust performance
across most experiments:

– For MDPR-CoOp: λsem = 0.1, λpa =
0.05, λka = 0.01, T = 2.0.

– For MDPR-MaPLe: λsem = 1.0, λpa =
0.05, λka = 0.005, T = 2.0.

• Loss Weight Warm-up: The weights λsem
and λka were linearly warmed up from 0 to
their target values over the first 5 epochs to
stabilize early training.

A.2 Algorithm Pseudo-code
Algorithm 1 provides a detailed overview of the
MDPR framework’s training process, correspond-
ing to the methodology described in Section 3.

Algorithm 1 Multi-dimensional Dynamic Prompt
Routing (MDPR)

Require: Training set D = {(xb, yb)}Bb=1

Ensure: Trained model ϕ
1: Initialize CLIP with pre-trained weights
2: Build confusion matrix K

CLIP←−−− D
3: Generate prompts Pc LLM←−−− (K, prompts)
4: Compute M ∈ RC×5 CLIP←−−− Pc
5: Encode fp ∈ RC×5×d CLIP←−−− Pc
6: for xb, yb do in D, Compute fib = ϕv(xb)
7: Calculate ŷcb, constrained by Lbase
8: Initialize frb and Wr

9: for class c = 1 to C do
10: f crb,W

c
r = C-MHA(f cib, f

c
p , f

c
p)

11: Calculate Lreg
12: Append f crb to frb, Wc

r to Wr

13: end for
14: Calculate ŷrb, Constraint Lsem
15: Optimize Ltotal
16: Update ϕ← ϕ− η∇ϕLtotal
17: end for
18: return ϕ

B LLM-based Knowledge Base
Construction

B.1 Prompt Templates and Generation
Process

We used structured query templates to guide the
LLM in generating the five semantic dimensions
for each class. The templates provided to the LLM
are shown below.

visual features:
Provide a concise English phrase describ-
ing the key visual appearance features of a
"{class-name}".
Focus on what it looks like (e.g., shape,
color, texture, notable parts).
The phrase should be approximately {target-
word-count} words and suitable to complete
the sentence: "A {class-name} typically ap-
pears as {YOUR PHRASE HERE}."
Output ONLY the descriptive phrase. Do
NOT include "A {class-name} typically ap-
pears as".
Descriptive phrase for "{class-name}":
functional-use: Provide a concise English
phrase describing the primary function or
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purpose of a "{class-name}".
Focus on what it is used for.
The phrase should be approximately {target-
word-count} words and suitable to complete
the sentence: "A {class-name} is used for
[YOUR PHRASE HERE]."
Output ONLY the descriptive phrase. Do
NOT include "A {class-name} is used for".
Descriptive phrase for "{class-name}":
contextual-scene: Provide a concise En-
glish phrase describing the common en-
vironments or contexts where a "{class-
name}" is typically found.
Focus on its usual surroundings or scenar-
ios.
The phrase should be approximately {target-
word-count} words and suitable to complete
the sentence: "A {class-name} is commonly
found in [YOUR PHRASE HERE]."
Output ONLY the descriptive phrase. Do
NOT include "A {class-name} is commonly
found in".
Descriptive phrase for "{class-name}":
differential-comparison: Describe the key
visual differences of a "{class-name}" when
compared to a "{confusing-class-name}".
Focus on features that distinguish a "{class-
name}" from a "{confusing-class-name}".
The description should be in English, con-
cise, and approximately target-word-count
words.
Output ONLY the descriptive phrase itself,
suitable for completing the sentence: "Un-
like a {confusing-class-name}, a {class-
name} has [YOUR PHRASE HERE]."
Output ONLY the descriptive phrase of
differences. Do NOT include "Unlike
a {confusing-class-name}, a {class-name}
has".
Descriptive phrase of differences for
"class-name" compared to "confusing-class-
name":
fine-grained-attribute: Provide a concise
English phrase describing one or two highly
distinctive or fine-grained visual attributes
of a "{class-name}" that make it unique or
easily identifiable.
Focus on specific, detailed characteristics.
The description should be in English, con-
cise, and approximately target-word-count

words.
Output ONLY the descriptive phrase itself,
suitable for completing the sentence: "A dis-
tinctive feature of a {class-name} is [YOUR
PHRASE HERE]."
Output ONLY the descriptive phrase of the
attribute(s). Do NOT include "A distinctive
feature of a {class-name} is".
Descriptive phrase of attribute(s) for
"{class-name}":

Differential Comparison via Confusion Matrix.
To generate meaningful prompts for the Differen-
tial Features (DF) dimension, we first construct a
confusion matrix K using CLIP’s zero-shot predic-
tions on the training set. For each class c, its most
frequently confused class c′ (where c′ ̸= c) is iden-
tified from K. This confused class c′ is then used
to fill the ‘{confusing-class-name}‘ placeholder in
the query template, guiding the LLM to generate
highly relevant and discriminative comparisons.

B.2 LLM Selection, Error Handling, and
Construction Cost

Beyond designing prompt templates, constructing
a reliable knowledge base involves selecting a suit-
able LLM, handling potential generation errors,
and assessing computational costs. This section de-
tails our approach to these practical considerations.

B.2.1 LLM Selection.
To ensure the quality of the generated knowledge
base, we evaluated several Large Language Mod-
els (LLMs), including Qwen2.5, LLaMa4, and
DeepSeek-V3. The evaluation primarily consid-
ered the statistical properties of the semantic simi-
larities (forming the prior alignment matrix M) be-
tween the CLIP-encoded LLM-generated prompts
and generic class descriptions. Considering a com-
prehensive comparison of key metrics (summarized
in Table 7 and a qualitative assessment of the gen-
erated text, we selected Qwen2.5 for prompt gen-
eration due to its favorable overall performance in
semantic alignment and distributional stability.

LLM Mean Std Median
Qwen2.5 0.8371 0.0370 0.8452
LLaMa4 0.8360 0.0371 0.8457
DeepSeek-V3 0.8354 0.0373 0.8438

Table 7: Key statistics for the prior alignment matrix M
(semantic similarities) from prompts by different LLMs
on CIFAR-100.
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B.2.2 Handling Potential LLM Errors.
To mitigate potential errors or hallucinations from
the LLM, we implemented a verification and re-
generation mechanism. After an initial prompt is
generated, we perform an automated check for for-
mat compliance and basic relevance. If the output
is invalid (e.g., empty, or fails a simple keyword
check), the system automatically triggers a sec-
ondary generation attempt for that specific prompt.
This offline process ensures a higher quality and
robustness of the final knowledge base.

B.2.3 Offline Construction Cost.
The construction of the multi-dimensional knowl-
edge base is a one-time, offline process. We report
its resource cost for transparency.

• LLM Generation: Using the Qwen2.5 API,
generating five prompts per class takes approx-
imately 19 seconds and uses 105 tokens on av-
erage. For large-scale datasets like ImageNet-
LT (1000 classes), we employ parallel genera-
tion with 5 processes, reducing the total time
to approximately 3900 seconds.

• CLIP Encoding and Matrix Construction:
The memory footprint for encoding prompts
and building the confusion matrix is compa-
rable to standard CLIP zero-shot inference.
With a batch size of 128 on a single NVIDIA
RTX 3090, the peak memory usage is approx-
imately 1.9 GB.

C Additional Experimental Results

C.1 Ablation Results for Different Imbalance
Ratios

Figure 4 provides additional ablation study results
on CIFAR-100-LT with different imbalance ratios
(IR=10 and IR=100), supplementing Figure 3 in the
main paper. The trend is consistent: performance
improves progressively as each MDPR component
(base+sem, base+sem+reg) is added.
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Figure 4: Ablation results on CIFAR-100-LT with
IR=10 (labeled as -0.1) and IR=100 (labeled as -0.01).
This supplements the main ablation figure.
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