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Abstract

Out-of-Distribution (OOD) detection is a crit-
ical challenge for ensuring the practicality
and safety of task-oriented dialogue systems
(TODS). With the emergence of large language
models (LLMs), their strong ability to capture
diverse patterns and contexts offers new op-
portunities to address this problem. In this pa-
per, we evaluate the performance of LLMs in
the near-OOD setting, where OOD queries are
from the same domain but represent unseen
intents. To leverage LLMs’ capabilities with-
out additional training, we avoid fine-tuning.
We systematically assess GPT-40 on 3 widely
used public datasets and 3 in-house datasets,
exploring 10 methods and prompt variations.
We further compare results with Gemini 1.5
Flash and Llama 3.1-70b, and analyze the im-
pact of increasing the number of in-distribution
(ID) intents. Finally, we propose a novel hy-
brid approach that combines the ID accuracy
of smaller text classification models with the
strong generalization power of LLMs for OOD
detection. This method is cost-efficient, ro-
bust, high-performing, and adaptable enough
to work effectively with smaller LLMs without
sacrificing performance.

1 Introduction

As the field of natural language processing (NLP)
progresses rapidly, task-oriented dialogue systems
(TODS) are experiencing a significant increase
in their overall capabilities. Their efficiency, ac-
cessibility, and coverage have improved with the
emergence of the Large Language Model (LLM)
paradigm, as shown by Zhao et al. (2024).

In TODS, natural language understanding (NLU)
tasks begin with intent detection, where the user
query is mapped to a set of known intents to con-
trol the flow of the dialogue, select appropriate
knowledge sources, and so on. Prior to LLMs, this
task was handled by transformer models such as
BERT (Devlin et al., 2019) and RoBERTa (Liu
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Figure 1: An example of a TODS dialogue in banking
domain. Without OOD detection support, conversations
may go astray.
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It is 12008. It is 12008.

It is 12008.

et al., 2019). These models operate under the
closed world hypothesis, as discussed by Lang
et al. (2023), and can only detect what is present
in their training data. However, the real world is
open-ended, and users often submit unseen or unre-
lated queries. The need to reject such out-of-scope
queries — illustrated in Figure 1 — has led to the
development of Out-of-Distribution (OOD) detec-
tion systems, described in surveys by Lang et al.
(2023) and Yang et al. (2024). The improved gen-
eralization capabilities introduced by LLMs hold
great promise for addressing this challenge.

As an intent detection model is trained with a
fixed set of intents and utterances, the problem of
OQD detection can be framed as the task of iden-
tifying a distribution shift. In NLP, two primary
types of distributional shift are typically discussed.
The first is semantic shift, where OOD queries
arise from a different intent space and must be
filtered before being incorrectly mapped to known
intents. The second is covariate shift, where the
intent space remains the same, but the input dis-
tribution changes, leading to novel utterances for
familiar intents, as discussed by Lang et al. (2023)
and Yang et al. (2024). In this paper, we focus on
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semantic shifts.

The challenges of OOD detection extend beyond
distributional shifts. Training datasets, often con-
structed by domain experts without machine learn-
ing expertise, may be imbalanced, with certain in-
tents represented by very few examples. Addition-
ally, the scope of intents can vary widely — some
may be fine-grained while others are overly broad.

This work focuses on a more demanding sub-
set of the problem, known as near-OOD detection
(Liu et al., 2024a), also referred to as In-Domain
and Out-of-Scope Detection (ID-OOS) by Zhang
et al. (2022). In this setting, unknown examples
do not come from entirely different domains but
instead belong to different intent labels within the
same general distribution. Near-OOD detection
mimics the presence of long-tail intents unseen dur-
ing training by identifying semantically similar yet
label-divergent in-domain examples.

In this paper, we investigate the performance of
LLMs on near-OOD detection without fine-tuning.
We aim to provide insights into the latest models,
their performance with different techniques, and
how they can be better utilized. Our main contribu-
tions are:

1. We investigate the performance of GPT-40 in
the challenging task of near-OOD detection us-
ing 3 well-known public datasets, and 3 in-house
datasets. We use zero-shot and few-shot prompts
and their k-Nearest (k-N) variations, as well as a
hybrid method with various prompting strategies.
The results demonstrate exceptional performance,
surpassing prior studies on the benchmarks.

2. We introduce a novel hybrid method. Our
method, on average, is the highest performing
amongst all strategies. It also improves the perfor-
mance of smaller or open source LLMs to match
GPT4o, reduces the input-token numbers and cost,
is robust, and easy to implement.

3. We compare the performance of Gemini 1.5
Flash, Llama 3.1-70b, and GPT-40 when using
zero-shot, few-shot, and two hybrid methods.

4. We study the effect of increasing the number of
ID intents in 3 datasets using GPT-4o0.

2 Related Work

Hendrycks et al. (2020) systematically measures
performance in the OOD detection task. Various
older methods are seen to perform worse than ran-
dom guess, but pre-trained models such as BERT
and RoBERTa (Devlin et al., 2019; Liu et al., 2019)

have performed well and are accepted as the in-
dustry standard. Numerous studies have been con-
ducted on the fine-tuning performance of such mod-
els. Uppaal et al. (2023) presents a systematic com-
parison of fine-tuning methods. It is observed that
pre-trained models achieve near-perfect OOD de-
tection in far-OOD, which is the case where the
distributional shift corresponds to a domain shift.

In near-OOD problems where no examples of
OOD data are given, there have been various ef-
forts. Zhang et al. (2022) fine-tune different va-
rieties of BERT-based models and observe that
fine-grained near-OOD problems with few exam-
ples remain a significant challenge. Zhan et al.
(2021) and Wang et al. (2023) employ discrimina-
tive fine-tuning methods, while Zhou et al. (2021)
and Zeng et al. (2021) investigate contrastive fine-
tuning methods. Since models in real-world scenar-
ios typically have no access to OOD data, Baran
et al. (2023) focus on post hoc methods.

The main categories of methods for OOD detec-
tion problems are summarized in recent surveys by
Lang et al. (2023) and Yang et al. (2024) as:

(1) output-based (Hendrycks and Gimpel, 2018;
Liu et al., 2020; Qian et al., 2022),

(2) gradient-based (Huang et al., 2021),

(3) density-based (Arora et al., 2021), and

(4) distance-based (Sun et al., 2022; Podolskiy
et al., 2022).

Zawbaa et al. (2024) present an output-based
method called Dual Encoder for Threshold-Based
Re-Classification (DETER) that achieves signifi-
cant improvements in near-OOD problems. In ad-
dition, as seen in the works of Rawat et al. (2021)
and Kim et al. (2023), creating synthetic OOD data
is also a valuable approach. Li et al. (2024) study
the effect of employing ChatGPT (OpenAl, 2022)
in creating synthetic near-OOD data.

LLMs such as GPT-40 (OpenAl, 2024a), Gem-
ini 1.5 Flash (Google, 2024), and Llama 3.1
(Grattafiori, 2024) have become the leading
paradigm in NLP. Their performance in multiple
NLP tasks such as machine translation, informa-
tion extraction, summarization, and clustering is
impressive (Zhao et al., 2024). However, the study
of the performance of LLMs on the OOD detection
task is still lacking. Arora et al. (2024) investi-
gates the In-Context Learning (ICL) ability in the
far-OOD detection task. Seven of the most recent
LLMs are tested together with a hybrid model that
utilizes SetFit (Tunstall et al., 2022) with negative
data augmentation. Their hybrid model aims to
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reduce cost and latency, and they also propose a
two-step methodology that utilizes the representa-
tion of the last prompt token of the LLM decoder
layer. Wang et al. (2024) examines the zero-shot
and few-shot capabilities of ChatGPT in the near-
OOD setting and compares them with unsupervised
SOTA methods, including those proposed by Mou
et al. (2022). They find that ChatGPT struggles
when the number of in-distribution (ID) intents is
large. In addition, they claim that fine-grained in-
tent labels are challenging for ChatGPT and that it
is difficult to transfer knowledge from ID examples
to OOD tasks.

3 Methodology

3.1 Problem Formulation

Let S = {i1,42,...,in} be the predefined set of
N intents. Let ¢ = {t1,t2,...,t,} be the user
input query, composed of the tokens ¢;. The output
is prediction i,.. € S U {OOD}. We employ 4
different performance metrics: total (ALL), OOD
and ID macro-F1; OOD recall.

3.2 Datasets

We employ 3 widely used benchmarks and a col-
lection of internal production data. The bench-
mark datasets are CLINC150 (Larson et al., 2019),
BANKING?77 (Casanueva et al., 2020), and DSTC
Finance dataset from DSTC11 Track 2 (Gung et al.,
2023b,a). In the test splits we limit the utterance
per intent number to 10. To the best of our knowl-
edge, DSTC Finance is used in similar tasks like
intent clustering and open intent induction, but it is
the first time an OOD detection paper has utilized
it. We employ their utterance test set and split it
50% — 50% in a stratified fashion to be used as
train and test sets. The in-house collection dataset
is called BIT3', consisting of banking, insurance,
and telecommunication domains. The correspond-
ing subsets are called BIT3-bank, BIT3-ins, and
BIT3-tele, and their statistics can be seen in Ta-
ble 1. These datasets are collected directly from
real-world applications. They are PII redacted and
cleaned by 3 experts.

As shown in the Section 4, the performance on
BIT3 is on average lower than on the other datasets
from the literature. Our analysis indicates that
this is mainly due to the smaller number of ut-
terances per label in BIT3 compared to the other

!This dataset is created for the purpose of this study; hence,
experiment results may differ from production performance.

Train Test

Dataset # Intent Size | UPL | Size | UPL
CLINC150 150 15000 | 100 | 1500 | 10
BANKING77 77 10003 | 130 | 770 10
DSTC 38 565 15 365 9.6
BIT3-bank 88 852 10 546 6
BIT3-ins 62 340 5 336 5
BIT3-zele 58 273 5 270 4.5

Table 1: The statistics of datasets. DSTC stands for
DSTC Finance. UPL stands for average utterance per
label.

datasets. The mean utterance-per-label statistics
for all datasets are presented in Table 1. Additional
details are discussed in the Section 4.

3.3 Methods

3.3.1 Baseline

As a baseline method, we adopt a threshold-based
classification system using a fine-tuned, quantized
version of "sentence-transformers/all-distilroberta-
v1l" (Reimers and Gurevych, 2019; Sanh et al.,
2020), reflecting a basic, production-oriented text
classification pipeline. We attach a lightweight
feedforward classification head, train it with cross-
entropy loss while keeping the encoder frozen, and
classify examples as OOD when prediction con-
fidence falls below a threshold (7" = 0.9). Full
architectural and training details are provided in
Appendix A.1.

3.3.2 Zero-Shot Detection

We evaluate two distinct approaches for zero-shot
detection, both leveraging tool calling functionality
to eliminate formatting issues—to our knowledge,
this represents the first application of tool calling
for intent detection tasks.

In the first approach, we construct tools for each
intent using solely the intent names, without in-
corporating any example utterances. We addition-
ally include an out-of-domain (OOD) class imple-
mented as a tool named “fallback.” The complete
set of tools is then provided to the LLM, which
must select the appropriate tool based purely on in-
tent name semantics. We enforce tool calling in all
experiments to ensure consistent output formatting.
A detailed example is provided in Appendix A.2.

The second approach enhances the basic zero-
shot method through selective tool filtering. We
employ OpenAl’s “text-embedding-ada-002” (Ope-
nAl, 2023) to generate embeddings for the input
utterance, then identify the k = 5 most similar
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tools based on cosine similarity between embed-
dings. Only these top-k tools are subsequently
provided to the LLM for selection. We refer to this
variant as the zero-shot k-Nearest method. Com-
plete prompts for both zero-shot approaches are
detailed in Appendix A.3.

3.3.3 Few-Shot Detection

We investigate two complementary strategies for
few-shot detection, each incorporating example ut-
terances to guide the intent classification process.

The first strategy extends our tool-based frame-
work by enriching each intent tool with representa-
tive example utterances in addition to intent names.
We conduct experiments with two different exam-
ple set sizes: 10 and 45 utterances per intent. For
the BIT3 dataset, where certain intents contain
fewer than the target number of examples, we uti-
lize all available examples for those specific intents.
This approach allows the LLM to leverage both se-
mantic information from intent names and concrete
patterns from example utterances when making
classification decisions.

The second strategy combines few-shot learn-
ing with embedding-based retrieval. Similar to our
zero-shot k-Nearest approach, we utilize OpenAl’s
“text-embedding-ada-002” to compute embeddings
for both the input utterance and all available intent
tools (now enriched with examples). We then select
the £ = 5 most similar tools based on embedding
similarity and provide only this filtered subset to
the LLM. This method, termed few-shot k-Nearest,
reduces the computational burden while maintain-
ing access to the most relevant intent candidates.
Detailed prompts for both few-shot configurations
are provided in Appendix A.4.

3.3.4 Hybrid-Methods

Arora et al. (2024) shows that LLMs’ OOD detec-
tion performance drops as the number and scope of
intents grow. Moreover, with a high number of in-
tents, few-shot prompting becomes costly and slow.
To address these challenges, we devise a two-step
hybrid method. First, the baseline model predicts
an ID intent, as its ID performance is satisfactory.
Then, using examples and specialized prompts, we
ask GPT-4o to verify or reject the baseline’s predic-
tion—thus focusing LLM usage solely on OOD de-
tection and avoiding unrelated examples in prompts.
Chain-of-thought style prompts are generated with
OpenAl ol (OpenAl, 2024b) and customized for
the task. Few-shot toy examples highlighting ID

vs. OOD distinctions are added, as detailed in the
appendices. We use three different prompts: Bal-
anced, OOD-Focused, and Contrastive.

Balanced. This is a concise prompt that aims to be
unbiased in predicting ID or OOD. It also priori-
tizes efficiency and clarity and uses a step-by-step
approach. We use at most 45 utterances of the
predicted intent.

OOD-Focused. This is a skeptic version of the
balanced prompt, more suited for cases where OOD
intents are easier to miss. The inclination is towards
detecting the OOD examples.

Contrastive. This prompt uses cross-referencing
between two sets of examples, one of which is a set
of positive examples and the other is a set of neg-
ative but similar examples that are obtained from
the second and third predictions of the front end.
This aims for higher coverage around the query
and creates further separation between challenging
near-OOD examples.

4 Experiments and Results

We devise three different experiments. In Sec 4.1,
we want to see how different approaches compare
to each other. To that end, we employ all the meth-
ods in Sec 3.3 using GPT-40 as the LLM repre-
sentative. In Sec 4.2, we aim to compare the per-
formance of different LLMs using zero-shot and
few-shot prompting with all the intents, and using
the hybrid method with balanced prompt and con-
trastive prompt. For this purpose, we use GPT-40
(OpenAl, 2024a), Gemini 1.5 Flash (Google, 2024),
and Llama 3.1-70b-instruct (Grattafiori, 2024) .
Lastly, in Sec 4.3, the goal is to see the effect of
the number of ID intents on OOD detection perfor-
mance. We use the same LLMs and methods as in
the previous experiment.

4.1 Comparison of Methods

To compare the methods, we use all 6 datasets.
We split the labels 50% — 50% as ID and OOD,
respectively. We use F1 scores as well as OOD
recall, since it is important to see how much of
the OOD examples are captured without sacrificing
ID performance. The results are shown in Table
2. The best score is shown in bold, and the second
best is underlined. In Figure 2, the performance in
BANKING77 is visualized.

The baseline model’s ID performance is compa-
rable to LL.Ms on public datasets. It achieves the
highest ID F1 on CLINC150 and outperforms GPT-
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BANKING77 CLINC150 DSTC Finance
ALL | ID (016))) ALL | ID (010))] ALL | ID O0D
Model Method F1 F1 | Recall | F1 F1 F1 | Recall | F1 F1 F1 | Recall | F1
Baseline | Threshold 76.7 | 92.7 | 425 | 61.1 | 824 [959 | 560 | 704 || 86.1 | 89.2 | 785 | 84.2
Z-S 694 | 772 | 66.0 | 71.6 || 83.7 | 885 | 829 |84.5 | 877 | 857 | 923 | 904
Z-S k-N 672 | 772 | 589 | 67.0 765 | 838 | 745 |78.7 | 873 |87.0| 87.8 | 90.4
GPTo40 F-S (10) 787 | 90.6 | 549 | 689 | 91.3 | 948 | 87.1 |90.6 | 933 |91.3 | 927 | 945
F-S (10) k-N 79.6 | 90.5 | 586 | 71.6 | 90.0 | 922 | 91.1 | 909 || 945 | 919 | 942 | 94.8
F-S (45) 784 |1 90.7 | 539 | 688 | 91.6 [ 957 | 856 |90.2 | 949 [93.0 | 92,6 | 95.0
F-S (45) k-N 795 |1 90.8 | 564 | 704 | 922 | 948 | 905 |[924 | 948 | 92.6 | 93.1 | 95.1
Balanced 832 [ 93.0| 62.7 | 750 | 957 | 958 | 96.8 |96.2 | 951 | 92.1 | 959 | 96.0
Hybrid OOD-Focused | 86.3 | 89.7 | 84.0 | 859 | 914 [ 905 | 994 | 936 | 923 | 884 | 98.4 | 94.0
Contrastive 85.8 1933 | 70.7 |80.2 | 953 | 955 | 964 | 957 | 944 | 919 | 94.1 | 94.7
BIT3-bank BIT3-ins BIT3-tele
ALL | ID (016))) ALL | ID (010))] ALL | ID (010))]
Model Method F1 F1 | Recall | F1 F1 F1 | Recall | F1 F1 F1 | Recall | F1
Baseline | Threshold 721 | 747 | 817 | 79.1 | 69.6 | 723 | 856 | 794 || 639 | 66.3 | 863 | 79.1
Z-S 687 | 729 | 849 | 775 | 744 | 7777 | 80.7 | 803 | 77.8 | 82.6 | 812 | 854
Z-S k-N 69.8 | 74.1 84.1 779 || 75.5 | 81.1 76.1 792 || 77.8 | 84.1 | 77.8 | 84.2
GPT 40 F-S (10) 86.0 | 90.0 | 843 | 86.9 | 837 |91.1| 70.7 |80.3 | 734 | 780 | 786 | 81.3
F-S (10) k-N 84.5 | 884 | 85.1 85.7 || 83.1 | 87.0 | 82.7 | 859 | 75.6 | 787 | 855 | 83.2
F-S (45) 86.8 | 90.2 | 845 | 87.5| 83.7 [90.5| 722 | 813 | 726 | 7677 | 804 | 81.0
F-S (45) k-N 853 | 89.0 | 863 | 87.0| 839 |87.6 | 830 |86.5 | 723 | 750 | 86.6 | 82.7
Balanced 848 | 87.3 | 84.6 | 86.6 | 826 | 864 | 798 |84.0 | 80.2 | 83.1 | 834 | 87.6
Hybrid OOD-Focused | 81.3 | 81.4 | 94.0 | 859 | 80.0 | 823 | 85.6 | 843 | 756 | 756 | 93.0 | 874
Contrastive 86.1 | 87.7 | 89.6 | 88.5 | 84.5 | 85.7 | 90.2 | 88.5 | 80.6 | 82.3 | 88.5 | 88.3

Table 2: The performance metrics across different methods and datasets. All results are average of 3 runs. Z-S

stands for zero-shot, and F-S stands for few-shot.

BANKING77 Comparison of Methods
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Focus

Figure 2: The comparison of all the methods in BANKING77 in terms of ALL F1 and OOD Recall.

40 on BANKING?77 in both zero-shot and few-shot
settings. In BIT3, GPT-40 leads. Few-shot gener-
ally outperforms zero-shot, though gains diminish
or slightly drop beyond 10-45 examples, indicat-
ing an upper bound. In OOD performance, we
see a significant improvement when using LLMs.
OOD F1 is significantly higher than the baseline
in the vast majority of cases. It is also important
to note that in all the datasets, the highest OOD
F1 belongs to the hybrid methods. In public sets,
different prompts perform better, but in BIT3 the
contrastive method seems to outperform the rest,
which may suggest the robustness of this strategy

in real life. Through all datasets but BIT3-ins we
see few-shot improves performance over zero-shot
in terms of ALL F1 scores. In public datasets, zero-
shot k-Nearest decreases zero-shot performance,
whereas in BIT3 it results in a slight increase. This
may be the result of noise in intent names in BIT3.
A similar situation occurs in few-shot as well. In
public datasets, k-Nearest is beneficial both in 10
and 45 example few-shots whereas in BIT3 there
may be a slight drop in performance.

Comparing balanced prompt and OOD-focused
prompt variations of the hybrid method, it is ob-
served that OOD recall is significantly increased
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CLINC150 Comparison of LLMs
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Figure 3: The comparison of different LLMs in
CLINCI150 in terms of ALL F1 and OOD recall.

on all 6 datasets (up to 21 points) with a similar
or lower decrease on ID F1. This suggests that a
simple prompt engineering can shift the balance in
the ID-OOD trade-off without having a significant
decrease on the either side.

In all 6 datasets, it is observed that OOD recall
is decreased (up to 8 points) on zero-shot prompt
when the k-Nearest method is used, while it is in-
creased on few-shot prompt (up to 12 points) when
the k-Nearest method is used. This may suggest
that using at least a few example utterances may
help to detect related intents much better. However,
this observation needs further investigation.

One thing to note is that the results in BIT3 are
on average lower than the results in public datasets.
This is mostly due to the limited utterance per label
numbers in BIT3. As it can be seen in Table 1, the
UPL numbers for BIT3-bank, BIT3-ins and BIT3-
tele are 10, 5 and 5 respectively. This strongly
affects the success in both transformer based base-
line and LLM based systems. Our hybrid methods
are also strongly affected by this statistics. Even
though we limited maximum number of UPL in
most of our experiments, our front end system uses
all available training utterances to maximize the
ID performance. Therefore the difference is best
visible in our baseline method. This results indicate
that having more clean utterances per intent signifi-
cantly improves the robustness of all the systems
in our setup.

4.2 Comparison of LLMs

To see whether the high performance in OOD de-
tection depends on the success of GPT-40, we com-
pare the performance of GPT-40, Gemini 1.5 Flash,
and Llama 3.1-70b in CLINC150, DSTC Finance,
and BIT3-ins. We split the labels 50% — 50%
into ID and OOD, respectively. We compare each
LLM using the zero-shot and few-shot (10) prompt-
ing methods. Then, we complete using the hy-
brid method with balanced prompt and contrastive
prompt. The results are shown in Table 3. In Figure
3 results of CLINC150 are visualized.

The largest model of all performs the best. The
greatest performance difference is in zero-shot
method. Few-shot generally improves ALL F1
score by about ~10 points. In Gemini 1.5 Flash and
Llama 3.1-70b, there is significant improvement
when using hybrid methods. This may indicate that
a large classification task may be challenging for
them, and narrowing the task scope given to them is
highly beneficial. We see comparable performance
for all the models when we use hybrid methods,
which demonstrates the robustness of our proposed
system. This shows that through intelligent design,
smaller models may perform on par with the largest
models.

4.3 Comparison of Number of Intents

Wang et al. (2024) observes that LLMs may strug-
gle with fine-grained near-OOD cases where there
is also a large number of intents (30-40). As LLMs
progress rapidly, checking the performance in this
aspect is a necessity. As a good representative of
current LLMs, we use GPT-4o in this experiment.
CLINC150, DSTC Finance, and BIT3-ins datasets
are used. We split 25% of their intents to the OOD
class. All of the OOD examples are used in the
test set. Then, we sample the rest of the intents
33%,66%, 100% as 1D intents. To make a fair
comparison, these splits are crafted to ensure that
smaller splits are a subset of the larger splits. We
report OOD recall and binary F1 between ID and
OOD classes in Table 4. To calculate the binary F1
metric, we assume all ID classes have the same la-
bel; thus, we only measure the ability of models to
differentiate OOD samples from ID samples. The
results are visualized in Figure 4.

In CLINCI150 the OOD test sets make up 38
intents resulting in 33%, 66%, 100% sets to have
37,74, 112, respectively. We see high OOD perfor-
mance even in zero-shot methods through all intent
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CLINC150 DSTC Finance BIT3-ins
ALL | ID (010))] ALL | ID (010)); ALL | ID (010));

Method Model F1 F1 | Recall | F1 F1 | Recall | F1 F1 F1 | Recall | F1
GPT-40 | 83.7 | 89.0 | 813 | 839 | 882 |88 | 93.6 |91.1| 75.0 | 785 | 79.5 | 80.1
Zero-Shot | Gemini | 749 | 86.1 | 54.8 | 67.3 | 76.0 | 81.1 | 522 | 672 699 | 773 | 489 | 615
Llama 72.6 | 81.6 | 555 |66.7 | 819 |84.8 | 73.1 |824 | 68.0 | 793 | 456 | 58.0
GPT-40 | 91.3 | 948 | 87.1 | 90.6 || 93.8 | 91.5| 92.7 | 945 | 837 |91.1| 70.7 | 80.3

Few-Shot Gemini | 83.7 | 87.1 | 864 | 879 || 93.7 | 90.6 | 957 |951 | 763 | 842 | 639 | 74.1
Llama 80.7 | 783 | 56.8 | 699 | 913 | 91,5 | 852 | 915 763 | 843 | 556 | 68.9
Hybrid GPT-40 | 95.7 | 958 | 968 | 96.2 || 95.1 | 92.1 | 959 | 96.0 || 82.6 | 86.4 | 79.8 | 84.0
Balanced Gemini | 94.7 | 949 | 965 | 954 | 935 |92.1 | 912 | 933 | 825 |86.7| 789 | 84.7
Llama 95.0 | 958 | 95.1 | 954 | 945 [921 | 914 |942 | 81.1 | 872 | 725 | 810
Hybrid GPT40 | 953 | 955 | 964 | 957 | 944 | 919 | 94.1 |94.7 | 84.5 | 85.7 | 90.2 | 88.5
Contrastive Gemini | 94.8 | 952 | 96.1 | 953 939 |91.6| 93.7 | 944 | 817 | 847 | 854 | 856
Llama 949 | 95.6 | 956 | 954 | 944 |92.1 | 941 |948 || 829 | 865 | 823 | 849

Table 3: Performance comparison for LLMs using various techniques. GPT-4o stands for gpt-40-2024-08-06,
Gemini stands for Gemini 1.5 Flash, and Llama stands for Llama 3.1-70b. All results are average of 3 runs.

numbers. The performance drops from 37 intents
to 112 intents significantly (~10) in zero-shot and
few-shot methods. The performance drop in hy-
brid methods is approximately half of that amount,
indicating the robustness of our hybrid approach.

In DSTC Finance, the OOD test sets make up
about 9 intents, leaving 9, 18, 29 for the ID splits.
The overall performances are higher, with almost
perfect scores, in hybrid methods. The worst per-
forming of all, few-shot method, shows the least
deviation.

In BIT3-ins we have 17 intents reserved for
OQOD, and ID splits have 17,33, 51 intents. Most
of the intents have less utterances than enough to
fill few-shot prompts. In the smaller splits few-shot
performs the best, however, in 100%, hybrid bal-
anced method takes the lead. In all the methods,
drop in F1 score is approximately ~10 points. This
may indicate the effect of having extremely few
examples per intent.

5 Discussion

OQOD detection is a challenging task that is criti-
cal for the practicality and safety of Al systems.
Our study sheds light on the current state of one
of the frontier models, GPT-40, which performs
significantly better than its older successors like
GPT-4 and GPT-3.5, as reported by Wang et al.
(2024). Their experiments on BANKING77 using
GPT 3.5 with zero-shot prompting show 33.8 OOD
F1, whereas our GPT-40 experiments score 71.6
with the same combination, as can be seen in Table
2. There are prompt details and split differences
that can change the result; however, approximately

~40 points improvement indicates the model gets
better at an impressive pace. In CLINC150 a simi-
lar ~35 point improvement is seen in Table 2.

In few-shot prompting, Wang et al. (2024) re-
ports the performance of GPT 3.5 with different
numbers of intents and different numbers of ut-
terances per intent. They demonstrate a signifi-
cant performance drop in OOD F1. From 5 intents
to 40 intents, GPT 3.5 suffers a loss of approxi-
mately ~50 points. In Table 4 we see a less drop
through all datasets. In CLINC150, our few-shot
prompt (with 10 examples) suffers approximately
~6 points from 37 intents to 112 intents. This
shows that the current frontier models are signifi-
cantly more robust in this aspect.

We also believe the performance of OOD de-
tection strongly depends on the dataset quality. If
any intent has a misleading label name, has noisy
examples, or it has utterance examples that can
be used in another intent as well, the results get
affected significantly. We suggest that the low per-
formance in BANKING77 in comparison to other
public datasets is due to these kinds of effects, as
reported by Ying and Thomas (2022).

In BIT3 datasets, the results in Table 2 show a
greater challenge than public data. The main rea-
sons are the differences in the nature of the datasets
and the imbalanced number of utterance examples
for each intent. The imbalance affects few-shot
prompting, and the hybrid method the most. The
ID classifier in the hybrid method is dependent on
our baseline method, which is more sensitive to
such imbalances.
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CLINC150 DSTC Finance BIT3-ins

Method Metric 33% | 66% | 100% || 33% | 66% | 100% | 33% | 66% | 100%
Zero-Shot OOD Recall | 87.4 | 82.1 | 78.7 98.1 | 946 | 923 89.9 | 825 | 819

Binary F1 87.6 | 81.7 | 78.6 98.1 | 90.7 | 84.0 854 | 75.1 | 721
Few-Shot OOD Recall | 91.0 | 86.8 | 78.1 96.1 | 90.8 | 92.7 879 | 80.0 | 63.7

Binary F1 93.8 | 90.6 | 87.1 95.2 | 95.1 | 95.1 92.7 | 88.2 | 81.3
Balanced OOD Recall | 97.9 | 96.6 | 94.9 98.8 | 96.6 | 96.6 88.1 | 79.1 | 823
Prompt Binary F1 974 | 950 | 933 99.1 | 96.7 | 94.9 90.7 | 858 | 82.1
Contrastive | OOD Recall | 96.8 | 95.7 | 94.0 99.6 | 947 | 938 90.2 | 91.0 | 934
Prompt Binary F1 96.2 | 939 | 91.7 994 | 959 | 933 894 | 873 | 79.6

Table 4: Effect of number of intents on GPT-40 across three datasets. The highest score per each split in each dataset

is bolded. All results are average of 3 runs.
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Figure 4: Performance of different methods with increasing number of intents in terms of F1 Score and OOD recall.

We also note, Wang et al. (2024) shows that the
longer a prompt takes, the less consistent the output
labels become. This may result from forgetting the
middle part of the prompt, as suggested by Liu et al.
(2024b). This limits the prompt length, the domain
information we can inject, and the number of few-
shot examples. However, by using a transformer-
based classifier as a front end, we avoid prompt
length issues in our hybrid systems and achieve
higher performance with lower cost and latency.

Liu et al. (2024a) shows that OOD detection suc-
cess improves with the scale of LLMs. Our results
in Table 3 support this claim. However, the pre-
training and supervised fine-tuning steps also play
a substantial role in task success. To factor these
out, detailed comparison of same-family models
needs to be done. In addition, our results demon-
strate that using a hybrid method may remove this
disadvantage.

6 Conclusion and Future Work

In this paper, we extensively study the current state
of LLMs in one of the challenging tasks of NLU,
the near-OOD detection task. Using 10 methods
across 3 public and 3 in-house datasets, we evalu-
ate GPT-40 and compare it with Gemini 1.5 Flash
and Llama 3.1-70b. We study how the increasing
number of intents affects the performance of GPT-
40. We introduce a novel hybrid method that is
robust, high-performing, easy to use, that enables
the usage of smaller or open-source models without
sacrificing performance.

Despite broad coverage, several research direc-
tions remain:
Cost and Latency. By combining cost and latency
into a metric we may find the most beneficial strat-
egy to run large scale intent detection with OOD
detection support.
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Alternative Hybrid Methods. The hybrid method
provided here focuses on combining the ID strength
of transformer models with the generalization capa-
bility of LLMs. It is cost-efficient as it doesn’t re-
quire every intent and utterance to be fed to LLMs;
however, we still send each intent even though the
baseline method is extremely confident. Using a
post hoc method and using LLMs only when the
method is unsure may provide further efficiency
and speed.

Detailed LLM Comparison. To clearly see the
comparison of different providers and open-source
models, we need thorough experimentation. The
frontier models, the newly emerging reasoning
models, and small language models are all rich
future directions.

Multi-Label Intent Detection. Intent detection
systems often do a simplification that is rather un-
realistic of human communication. It is to expect
each utterance to have a single intent. In reality,
communication often involves more intricate infor-
mation having multiple levels of intentions. One
may ask a couple of things at once, or ask a more
abstract concept with non-trivial bounds, or ask
something that can be understood in different lev-
els of detail. The LLMs open the door for such
advanced NLU cases.

Limitations

First of all, we do not include thorough LLM com-
parisons. Comparison of different sizes of the same
family of models, comparison of the largest models
of all providers, comparison of generative models
and reasoning models are required to come to a
conclusion about the state of the LLMs.

In the hybrid method, acting as the front-end, we
employ a simple yet effective sentence transformer
model based on the distil-roberta architecture. Our
in-domain evaluation shows that its performance
is ~ 1-2 points below the SOTA, a gap whose
implications warrant further investigation.

The hybrid method contrastive prompt uses
slightly more utterance examples than other
prompts as it includes the second and the third
prediction examples. We omit its further investiga-
tions due to page limitations.

It is possible that few-shot example size and
intent number are correlated. Their extensive study
is required. In this paper, we only have insights on
these.
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A Appendix

A.1 Training Details for Threshold-Based
Baseline

The classification head is a four-layer structure
starting with an input layer (embedding size 768),
followed by two hidden layers with 512 and 64
neurons respectively, and concluding with an out-
put layer matching the number of classes. We
use ReLLU activations for hidden layers, and cross-
entropy loss for optimization. Training was per-
formed over 100 epochs with a learning rate of
0.001, while keeping the sentence-transformer
backbone frozen.

A.2 Tool Calling
We define tools as

tool = {
"name"”: name,
"description”: desc_limited,

2
where

desc_limited = f"""Below are some example utterances for when to call
this tool:

Utterances:
- <utterancel>
- <utterance2>

In zero-shot setting we put empty string to description field.

A.3 Zero-Shot Prompt

Classify given utterances into pre-defined intents,

using the "fallback” intent for out of scope samples.

You will receive a list of intents, each with a name but no description,
and an additional intent called "fallback”.

If an utterance aligns with one of the predefined intents,

classify it under that intent. Otherwise, classify it as "fallback”.

# Steps
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1. *xIdentify Intentsxx: Receive a list of intent names without descriptions,
including an additional "fallback” intent.
2. *xAnalyze Utterancexx: Carefully analyze the provided utterance
to determine its intent.
3. *xClassify Utterancexx:
- If the utterance matches any given intent,
classify it under that specific intent.
- If it does not match any of the provided intents,
classify it as "fallback”.

o

Remember that you need to choose intents via tool calling only.

A4 Few-Shot Prompt

Classify user utterances based on a set of predefined tools
and identify any out-of-scope requests, assigning them
to a fallback tool if necessary.

You will be provided with a list of tools,

each defined by a name and a description

containing sample utterances. Your task is to match user utterances
to the appropriate tool name, evaluating their relevance and context.

# Steps
1. **Analyze User Input:*x
Carefully read and understand the given user utterance.
2. xxEvaluate Tool Descriptions:#*x*
- Review the names and descriptions of all provided tools,
including sample utterances.
- Compare the user utterance to the samples and context provided.
3. xxDetermine Intent:xx
- Identify if the user utterance corresponds closely with any tool
based on the descriptions.
- If the utterance does not clearly match any tool,
assign it to the "fallback” tool.
4. *xQutput the Appropriate Tool Name:*x
- Output the name of the identified tool
or "fallback” if the intent is out-of-scope.

# Output Format

Output the result as a simple text line containing
only the name of the matched tool or

"fallback” if no match is found.

# Example
tools = ["credit_card_cancellation”, "billing_payment”,
"lost_or_stolen_card”, "i_am_hungry”, "fallback”]

*xInput*x: "I want to pay my bills”
You need to call "billing_payment” tool.

*%Input**: "I want to cancel my credit card.”
You need to call "credit_card_cancellation” tool.

*%Input**: "I want to cancel my account.”
You need to call "fallback” tool.

*xInput*x: "I want to cancel my miles&fly card.”
You need to call "fallback” tool.

*xInput*x: "I lost my card, so I want to deactivate it”
You need to call "lost_or_stolen_card” tool.

*xInput*x: "I want to learn my credit card balance.”
You need to call "fallback” tool.

*xInput*x: "I want to change my billing address.”
You need to call "fallback” tool.

*%Input*%: "I am starving. Lets eat something.”
You need to call "i_am_hungry” tool.

**Input**: "Do you want to have a drink tonight?”
You need to call "fallback” tool.

# Notes

- Be precise in intent matching and ensure the fallback is used only
when no other tool is applicable.

- Handle ambiguities in user input by leveraging

the breadth of tool descriptions and samples.

- Continuously refer back to the tool descriptions

to ensure accuracy in intent classification.

A.5 Hybrid Method
A.5.1 Balanced Prompt

Decide if a new utterance belongs to a given intent. You will be provided with
an intent name and sample utterances for that intent,

followed by a new utterance.

Determine if the new utterance corresponds to the intent.

- Analyze the provided intent name

and sample utterances to understand the common thematic elements or purpose.
- Compare the new utterance with the sample utterances

to decide if it conveys the same intent.

- Consider variations in phrasing and terminology when deciding.

# Steps

1. xxUnderstand the Intent:** Review the intent name and

sample utterances provided to capture the core idea or action they represent.

2. xxAnalyze the New Utterance:** Examine the new utterance,
identifying key elements and themes.

3. xxCompare and Decide:** Cross-reference the analysis of

the new utterance with the intent description

and sample utterances to check for alignment.

4. xxConclusion:** Decide if the new utterance matches the intent.
If yes, output "yes”; if not, output "no".

# Output Format

- A single word response: "yes" or "no".
# Examples

*xExample 1#*

- xxIntent Name:** "Order Food”

- *xSample Utterances:*x "I'd like to place an order for a pizza."”,

"Can I get a delivery for sushi?”, "I want to order dinner.”

- x*New Utterance:xx "I'd like to schedule a meal.”

- *x%Qutput:** yes

*xExample 2%x

- xxIntent Name:** "Order Food"

- xxSample Utterances:*x "I'd like to place an order for a pizza."”,

"Can I get a delivery for sushi?”, "I want to order dinner.”

- xxNew Utterance:** "What's the weather like today?”

- *xxQutput:** no

# Notes

- Be mindful of synonyms and different phrases conveying the same intent.

- Consider the context and overarching theme rather than specific word matches.

A.5.2 OOD-Focused Prompt

You will be provided with an intent name and a set of sample utterances
associated with that intent.
Additionally, a new utterance will be given.
Your task is to determine whether the new utterance
aligns with the defined intent
based on the provided samples. Provide a thorough analysis to ensure
the decision accounts for subtle differences,
recognizing when a new utterance closely resembles
but does not fully match the intent.
# Steps
1. **Review the Intent Namexx*:
Understand the overall purpose
and category defined by the intent name.
2. xxAnalyze Sample Utterancesx:
Examine the given sample utterances
to identify common themes, language patterns, and key details
that characterize the defined intent.
3. **Evaluate New Utterancexx:
Compare the new utterance against
the identified characteristics of the intent's sample utterances.
- Consider synonyms, language variations,
and context to determine similarity.
- Pay close attention to subtle differences
that may indicate a different intent.
4. **Decision Making#x:
- If the new utterance matches the intent characteristics,
conclude with “yes.”
- If it does not match, conclude with “no.”
# Output Format
- A single word response: 'yes' or 'no'.
# Examples
### Example 1
**xInput:*x
- Intent Name: BookFlight
- Sample Utterances:
["I want to book a flight"”, "Can you help me reserve a ticket?”,
"Find me a flight ticket”]
- New Utterance: "I need to book a cab”
**Reasoning: xx
Review the sample utterances for intent "BookFlight.”
They all involve reserving or booking flight tickets.
The new utterance refers to booking a cab,
which is different from booking a flight despite structural similarities.
**x0utput:**- "no”
### Example 2
**xInput:**
- Intent Name: BookFlight
- Sample Utterances:
["I want to book a flight”, "Can you help me reserve a ticket?",
"Find me a flight ticket"]
- New Utterance: "Can you book me a flight?”
**Reasoning: *x
The new utterance closely aligns with the intent to book a flight,
sharing both context and action with the sample utterances.
**x0utput:xx- "yes"
# Notes
- Pay attention to context shifts, even when phrasing similarities exist.
- Carefully consider synonyms and phrasing that might
subtly change the intent.”"”

A.5.3 Contrastive Prompt

Based on the given intent, sample in-scope utterances,

and out-of-scope utterances, classify whether

a new utterance belongs to the intent.

Output must strictly be 'yes' or 'no'.

- You will receive the intent name, a set of sample utterances
that fall under this intent, and another set that do not.

- Carefully evaluate both sets of utterances to determine

the defining characteristics and scope of the intent.

- Analyze the new utterance in this context.

- Decide if the new utterance appropriately falls under
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the specified intent.,
# Steps,1.
*xUnderstand the Intent Scopexx:
- Review the name and characteristics of the intent.
- Examine in-scope utterances to understand
typical expressions that belong to the intent.
- Analyze out-of-scope utterances to understand
boundaries and what differentiates them from in-scope utterances.
2. *xEvaluate the New Utterancexx:
- Compare the new utterance against
the characteristics derived in the previous step.
- Determine whether it aligns more closely with
the in-scope or out-of-scope examples.
3. *xClassify the New Utterancexx:
- If it aligns with in-scope, conclude with 'yes'.
- If it matches out-of-scope features, conclude with 'no'.,
# Output Format,
- The output must be a single word: either 'yes' or 'no'.
No other text, explanations, or alterations are permitted.
# Examples
*xExample 1:%x%
- #xInputxx:
- Intent: Credit Card Cancellation
- In-Scope Utterances: "I want to cancel my credit card”,
"How do I close my credit card account?”
- Out-of-Scope Utterances: "What is my credit card balance?”,
"I need to change my credit card limit."
- New Utterance: "Please terminate my credit card”,
**Qutput**: yes,
**xExample 2:%*
= x*xInput**:
- Intent: Travel Request
- In-Scope Utterances: "I need to book a flight for my trip"”,
"Can you arrange transportation for my travel?”
- Out-of-Scope Utterances: "What are the hotel prices in New York?”,
"I need to know my car rent balance.”
- New Utterance: "When is the best time to visit Paris?”,
**xQutput*x: no,
# Notes,
- Remember that it's crucial to understand the nuanced differences
between intents, especially when they are closely related.
- Avoid assumptions beyond the given utterances;
strictly adhere to the linguistic patterns and examples provided.

14664



