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Abstract

We know from prior work that LLMs encode
social biases, and that this manifests in clini-
cal tasks (Gerszberg, 2024; Zack et al., 2024;
Zhang et al., 2020). In this work we adopt
tools from mechanistic interpretability to un-
veil sociodemographic representations and bi-
ases within LLMs in the context of health-
care. Specifically, we ask: Can we identify ac-
tivations within LLMs that encode sociodemo-
graphic information (e.g., gender, race)? We
find that, in three open weight LL.Ms, gender
information is highly localized in MLP layers
and can be reliably manipulated at inference
time via patching. Such interventions can surgi-
cally alter generated clinical vignettes for spe-
cific conditions, and also influence downstream
clinical predictions which correlate with gen-
der, e.g., patient risk of depression. We find
that representation of patient race is somewhat
more distributed, but can also be intervened
upon, to a degree. To our knowledge, this is the
first application of mechanistic interpretability
methods to LLMs for healthcare !.

1 Introduction

LLM:s are poised to transform the practice of health-
care in many ways (Nori et al., 2023; Dash et al.,
2023; Singhal et al., 2023), given the volume of
unstructured health data and limited provider band-
width (Zhou et al., 2023). Such models are capable
of a wide range of tasks related to processing and
making sense of healthcare data (Thirunavukarasu
et al., 2023), from summarizing published medical
literature (Shaib et al., 2023) to extracting key in-
formation from the notes within patient electronic
health record (EHR) data (Agrawal et al., 2022; Ah-
san et al., 2024). Indeed, excitement around such
uses is driving fast adoption: Epic—a major ven-
dor of EHR software—has hastily integrated GPT-4

'Our code is available at https://github.com/
hibaahsan/interp-healthcare-bias/
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Figure 1: We show that we can localize patient gender
information in LLM representations for clinical tasks.

into its platform, making it directly accessible to
caregivers (Epic Systems Corporation, 2023).

But enthusiasm around the uptake of LLMs in
this space has been tempered by concerns over
fairness and the opaque nature of large generative
models (Haltaufderheide and Ranisch, 2024). One
salient concern—which preliminary work suggests
is very much warranted—is that such models might
exacerbate existing biases in healthcare.

For instance, recent work by Zack et al. (2024)
found that GPT-4 exaggerates associations between
conditions and sociodemographic groups. Specif-
ically, when asked to generate clinical vignettes
of patients with particular conditions, GPT-4 will
nearly exclusively assume certain demographics
(e.g., race, gender). For example, asked to gener-
ate vignettes for patients with rheumatoid arthritis,
GPT-4 generates cases featuring female patients
97% of the time (the actual percent of individuals
with rheumatoid arthritis who are female is about
66%:; Linos et al. 1980). Similarly, GPT-4 asso-
ciates sarcoidosis with Black patients and hepatitis
B with Asian patients more strongly than actual
population-wide correlations.

In this work, we ask: Is the internal LLM encod-
ing of patient demographics like gender and race
localized? And, can we intervene upon this? To an-
swer this we perform activation patching (Heimer-
sheim and Nanda, 2024) in the context of clinical
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vignette generation. The idea is to identify a small
set of internal activations which code for patient
characteristics like gender, and then verify these by
intervention. We offer the following contributions:

(1) We find that gender? information is highly lo-
calized in MLP layers. In two of the four models,
patching MLP activations of a single layer con-
sistently alters patient gender in generated texts.
Gender information can also be localized in condi-
tions such as prostate cancer (exclusive to males)
and preeclampsia (females).

(2) Race representations are more complicated:
Multiple token activations in early and middle MLP
layers correspond to patient race. We are able to
intervene to “alter” race to a degree.

(3) We use two downstream clinical tasks to show
how patching demographic information can be used
to study implicit biases encoded in LLMs.

To our knowledge, this is the first investigation of
mechanistic interpretability methods for healthcare.

2 Localizing patient gender

2.1 Vignette Generation

Zack et al. (2024) found that GPT-4 exaggerates dif-
ferences between demographic groups with respect
to clinical conditions. Specifically, when asked
to generate clinical vignettes of patients with par-
ticular conditions, GPT-4 will nearly exclusively
assume certain demographics (e.g., race, gender).
For instance, asked to generate vignettes for pa-
tients with rheumatoid arthritis, GPT-4 generates
cases featuring female patients 97% of the time.?

Is the encoding of patient gender localized or
distributed in the LLM? To answer this we use ac-
tivation patching (Heimersheim and Nanda, 2024)
in the context of vignette generation. We aim to
find a small set of internal activations that encode
patient gender: Using these we ought to be able to
“change” the gender in a generated vignette by ma-
nipulating these activations. This requires access to
model internals, so we adopt open-source models
in place of the opaque GPT-4.

We focus on the OLMo-7B-Instruct model

2Following prior work (Zack et al., 2024), we use “gender”
instead of “sex” because of the ambiguity in how LLMs use
the terms “male” and “female” (biological vs sociocultural).
Most (~ 60%) vignettes generated by OLMo state “gender”
followed by “male” or “female”. Our analysis is also limited
to binary gender categories, owing to limitations of the data.

3The actual percent of individuals with rheumatoid arthritis
who are female is about 66% (Linos et al., 1980).

Condition M F
Sarcoidosis 0.02 0.98
Multiple Sclerosis  0.06  0.94

Table 1: Proportion of Male (M) and Female (F) patients
in OLMo-7B-Instruct-generated vignettes.

throughout this paper, but show that our findings
generalize across models and scale with three
additional models: Llama-3.1-8B-Instruct
(Grattafiori et al., 2024), Gemma-2-9B-it (Riviere
et al., 2024), and OLMo-2-0325-32B-Instruct
(OLMo et al., 2024).

To find gender-encoding activations, we first
prompt the LLM to generate a vignette for a condi-
tion (strongly) associated with females (or males).
Specifically, following prior work (Zack et al.,
2024), we prompt the LLM to provide a succinct
description of the patient—including symptoms,
medical history, and demographic information—
using the same 10 prompts introduced in this prior
study. One of the prompts, e.g., is:

Compose a brief presentation of a patient
presenting with [CONDITION]. Please in-
clude complete demographic information
and past medical history.

We run each prompt for every condition through
the model 100 times, yielding 1000 vignettes per
condition. We pick two conditions for which GPT-
4 exaggerates the association between gender and
incidence (Zack et al., 2024): Sarcoidosis and mul-
tiple sclerosis (MS). While these conditions are
indeed more prevalent in women than men,* GPT-
4 generates cases with female patients in 97% and
96% of the cases where gender was specified.

We first confirm that OLMo-7B-Instruct be-
haves similarly. Table 1 reports the proportion of
male/female patients in generated vignettes; OLMo
over-represents females for sarcoidosis and MS.

2.2 Activation Patching

We use activation patching to localize gender in-
formation encoded by LLMs in clinical contexts.
We first consider conditions for which the LLM
over-represents females. We denote the vignette
generation prompt by Zyignere and define the sim-
ple prompt e as “The patient is Male”. While
prompting the LLM using Zyignette, W€ replace or
“patch” the MLP activation of the i*" token at layer

*In US-based studies, about 76% of individuals with MS
and 64% of individuals with sarcoidosis are female (Baugh-
man et al., 2016; Hittle et al., 2023).
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Prompt Compose a brief presentation of a patient presenting with Multiple Sclerosis. Please include
complete demographic information and past medical history.

Before intervention

After activation patching

Ms. Sarah Johnson
Gender: Female; Age: 42
Race: White

Past medical history

Multiple Sclerosis (MS)
Hypertension: Diagnosed at 40
Diabetes Mellitus Type 2

Mr. John Smith
Gender: Male; Age: 45
Birthplace: New York, USA

Past medical history

Multiple Sclerosis (MS)
Hypertension (high blood pressure)
Diabetes Mellitus Type 2

Table 2: Patient vignettes generated by OLMo-7B-Instruct for a patient with Multiple Sclerosis before (left) and
after (right) patching in the “male” activation pattern. This intervention alters patient gender, but not other attributes.
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Figure 2: Rewrite score distribution averaged over
six conditions for which OLMo over-represents females.
Middle layer (¢=18) MLP activations of the last subto-
ken of the condition encodes gender information.

¢, with the MLP activations of the ‘Male’ token
at layer ¢ from xpmae. We choose MLP activa-
tions over residual stream or attention as prior
work (Meng et al., 2022; Geva et al., 2023) has
shown that MLPs play a crucial role in detokeniza-
tion—enriching token embeddings with relevant
semantics. The idea is to locate activations agender
that encode gender information. Replacing activa-
tions Ggender 1N Tyignewre With activations from Tyale
should then increase the likelihood of a male vi-
gnette generation.

For each intervention at the i*" token at layer /,
we compute a rewrite score (Hase et al., 2024):

p«(‘Male’) — p(‘Male’)
1 — p(‘Male’)

)]

Where p(‘Male’) is the probability of generating
the token ‘Male’ for gender when prompting using
Zyignetre Defore intervention and p, (‘Male’) is the
probability of generating ‘Male’ after it.>

SWe append the phrase, You must start with the following:
‘Gender’: to ensure that the next token generated is “Male” or

Model Condition Before w/oS w/S
Llama-3.1-8B-1 MS 0.07 0.23 1.0
Sarcoidosis  0.06 0.19 1.0
Gemma-2-9B-1 MS 0.02 0.83 0.85
Sarcoidosis  0.07 0.92 0.92
OLMo-2-32B-I% MS 0.10 0.96 0.96

Table 3: Ratio of male-patient vignettes before and
after activation patching. w/o S: without scaling, w/ S:
with scaling. *Females were not over-represented for
sarcoidosis in OLMo-32B generations.

Figure 2 shows the rewrite score distribu-
tion averaged over six conditions for which
OLMo-7B-Instruct over-represents females (see
Appendix A.l for conditions and prompts). We
observe that middle layer (/ = 18) MLP activa-
tions of the last subtoken of the condition encodes
gender. Based on this, we proceed with patching
the last subtoken, at layer 18.

For a condition, we generate 1000 vignettes be-
fore and after activation patching at temperature
0.7. We also experiment with scaling up the MLP
activations by a factor, c. Figure 3a shows the ra-
tio of male vignettes after patching for sarcoidosis
and MS. Patching is effective when scaled (c>2),
flipping the gender for all vignettes.

Table 3 shows results for other mod-
els. We observe a similar pattern in
Llama-3.1-8B-Instruct: Patching  (with

scaling) flips the gender to male 100% of the time.
Similarly, patching in OLMo-2-32B-Instruct
yields vignettes with male patients 96% of
the time (scaling is irrelevant here). And in
Gemma-2-9B-it, the fraction of males after
patching is 0.83 and 0.92 for MS and Sarcoidosis,
respectively; this is less extreme than other models

“Female”. Note that the intervention is effective even when the
phrase is removed.
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Figure 3: (a) Male vignette ratio after patching. Patching in and scaling (¢ > 2) alters the gender 100% of the time.
(b) Average vignette perplexity after patching. The black dotted line corresponds to perplexity before patching.

but a dramatic change nonetheless.®

As a qualitative example, the left side of Table
2 reproduces (a snippet of) the vignette generated
by OLMo-7B-Instruct for MS; as expected, the
patient is described as female. When we intervene
by patching in the “male activation pattern” at layer
£ = 18 at the token position corresponding to scle-
rosis (right side of table), the gender is switched to
male, but the rest is not meaningfully altered.

Do our interventions deteriorate text quality?
A natural concern here is that the activation patch-
ing we have performed may degrade output qual-
ity, even while being “successful” in altering the
patient characteristic of interest. To assess if
this is the case, we compute the perplexity using
Llama-3.1-8B’ (Grattafiori et al., 2024) of 500
vignettes LLM generated before and after patch-
ing. Figure 3b reports average perplexities as a
function of ¢ for sarcoidosis and MS. Perplexity is
minimally impacted by the interventions, indicat-
ing that generation quality is not compromised. For
context, a distorted vignette after faulty patching
has an average perplexity of 15.54 (Appendix A.2).

2.3 Sexed Conditions

We have shown that we can extract a “male acti-
vation” which can consistently induce “maleness”
via patching in clinical vignettes. This activation
pattern was extracted from the xy,. prompt, “The
patient is Male”. Is such gender information also
encoded when processing less explicitly gendered
texts? Here we consider the case of conditions

8Scaling (up to ¢ = 20) makes no difference here (see
Appendix B for rewrite score plots).

"We use L1lama as an external judge of perplexity rather
than OLMo since the latter generated the text and so likely finds
it high likelihood (Panickssery et al.).

Model Condition w/0S w/S SW
Llama-3.1-8B-I* Hepatitis B 0.16 0.66 0.96
Gemma-2-9B-I1* Sarcoidosis  0.23 0.24 0.91
OLMo-2-32B-1I Hepatitis B 0.26 0.24 0.78

Sarcoidosis  0.06 0.08 0.76

Table 4: Proportion of target race after patching. w/o S:
without scaling, w/ S: with scaling, SW: sliding window.
These are averages over the three target races. *Gemma
and Llama did not exhibit skewed racial distributions
for hepatitis B and sarcoidosis, respectively.

which are inherently sexed. For instance, activa-
tions corresponding to prostate cancer may implic-
itly encode ‘male-ness’. We test this hypothesis by
following the patching set up discussed in Section
2.2, but change xy,1e from ‘The patient is Male’ to
Tyignette TOr ‘prostate cancer’. In other words, the
prompt that we patch from and the prompt that we
patch into differ only in terms of the clinical condi-
tion. We patch MLP activations of ‘prostate’ to the
last sub-token of the condition in yigpee at layer
18. We observe the same phenomenon as shown in
Figure 3a: Patching after scaling activations alters
the gender 100% of the time. We also find that
the “maleness” patch generalizes to non-clinical
domains as well. See Appendix A.3 for details.

3 Localizing Race

We have found that patient gender information is
localized within LLM representations; is race simi-
larly? We repeat the exercise, using two conditions
that correlate with race: Sarcoidosis and hepatitis
B. We again first reproduce Zack et al. (2024)’s
result using 01mo-7B-Instruct, confirming that
the model disproportionately generates vignettes of
Black patients in the case of sarcoidosis and Asian
patients for hepatitis B (Table 9).

As done in Section 2.2, for a condition,
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Figure 4: Rewrite score distribution for hepatitis B and sarcoidosis. Early (layer 4) as well as middle (layer 18 — 20)

MLP layers affect racial distribution.
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Figure 5: Ratio of target race vignettes before and after activation patching in the case of hepatitis B. We report
the maximum improvement for scaling and sliding window patching here. Refer to the Appendix for other scaling

factors and window sizes.

we generate 1000 vignettes using a single
prompt before and after activation patching. In
the case of hepatitis B, we aim to flip the
over-represented race, Asian, to another race.
Specifically, we experiment with three combi-
nations: (Asian—Black), (Asian—Caucasian),
and (Asian—Hispanic). Similarly, for sar-
coidosis, for which Black patients are over-
represented, we experiment with: (Black— Asian),
(Black—Hispanic), and (Black—Caucasian).

Figures 4a and 4b depict the average rewrite
scores for hepatitis B and sarcoidosis, respectively.
Patching in early (¢=4) as well as middle (/=18 —
20) layers affects racial distribution. Figures 5a and
5b show the ratio of the target race (race we aim
to flip to) vignettes before and after intervention
at layers 4 and 19 respectively. Patching a single
layer, even with scaling, has a less pronounced
effect than for gender.

Does patching multiple layers at a time help?
We explore sliding window patching (Meng et al.,
2022), in which neighboring layers are simultane-
ously patched. For instance, patching at layer ¢

with a window size of 1 implies patching layers
¢ —1, ¢, and ¢ 4 1 simultaneously. In Figures Sa
and 5b, we show results for window size 5, which
results in the highest improvement in the target race
ratio (averaged over the 3 target races). We report
results of window sizes 1 and 3 in Tables 14 and 15.
Sliding window patching improves target race ratio,
suggesting race information is more dispersed.

Table 4 shows results for other models. We ob-
serve the same phenomenon in Gemma-2-9B-it
and 0lmo-2-32B-Instruct: patching a single
layer, even with scaling, has a less pronounced ef-
fect. Sliding window considerably improves target
race ratio. In L1ama-3.1-8B-Instruct, patching
even a single layer after scaling has a pronounced
effect (see Appendix B for details).

As we did for gender, we compute average per-
plexity under L1ama-3.1-8B over the three target
races for 500 vignettes before and after patching
for sarcoidosis and hepatitis B. Perplexities before
and after patching are comparable (Figure 8).
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Figure 6: Ratio of target race vignettes before and after activation patching in the case of sarcoidosis.

Male Female
...there 1s no direct indication that the patient is at risk of  ...the patient’s history of anxiety and alcohol withdrawal
depression.... symptoms, as well as her eviction from her apartment,

...The patient experienced anxiety, agitation, and delir-
ium, but these were managed...

suggest that she may be at risk of depression....

...the patient had persistent difficulties with anxiety over
the weeks preceding admission...

White

Black

...there is no indication that she is at risk of depression...

...the patient is not at risk of depression...

...1s at risk of depression, given her anxiety and interest
in complementary/alternative medicine for managing her
mental health...

...at a higher risk of depression...denied suicidality, and
she denied prior hospitalizations and incarcerations for
which we have documentation...

Table 5: Sample OLMo outputs when prompted to assess depression risk, after patching in the target demographic.

4 Clinical Applications

We have established that certain patient demo-
graphic information is localized in LLM representa-
tions using the task of clinical vignette generation,
a straightforward setting that focuses on a single
condition and has limited confounding variables.
Next, we broaden our analysis and look at how
mechanistic interventions can be used to detect im-
plicit biases in the context of clinical tasks where
LLMs might be used.?

4.1 Depression Risk

Prior research shows that racial and gender dispari-
ties exist in depression diagnosis. In particular, it is
diagnosed significantly more commonly in female
(Brody et al., 2018) and Black adults (Vyas et al.,
2020). We investigate whether demographics affect

8The reader might ask: Can we instead study disparities
by simply stating demographics explicitly in prompts (e.g.,
“Below is the brief hospital course of a Black patient...”)?
Perhaps, but recent work has shown that LLMs have implicit
biases which may not be apparent with explicit prompts (Bai
et al., 2024). Moreover, LLMs can discern patient race from
clinical notes even when explicit mentions of race are removed
(Adam et al., 2022). Assigning demographics with causal
interventions provides an alternate approach to study implicit
biases in LLMs.

LLM outputs as to whether a patient with anxiety
is at risk of depression, and if we can control this
mechanistically, via patching.

Specifically, given a brief hospital course of a
patient with anxiety, we follow Ahsan et al. (2024)
and prompt the LLM to determine whether the pa-
tient is at risk of depression. For patient notes, we
use the dataset introduced by Hegselmann et al.
(2024) and select brief hospital courses (BHCs) of
female patients that include the term ‘anxiety’. We
filter out BHCs with the term ‘depression’ to elimi-
nate patients that may already have depression. We
also exclude BHCs that discuss sexed conditions,
such as pregnancy. We sample 1000 BHCs from
this filtered set to create our final evaluation set, S.

Gender To study whether gender affects LLM
outputs for the task, we first create a gender-neutral
evaluation set using S. Specifically, we replace
gendered terms such as ‘F’, ‘female’, ‘Mrs.’, and
‘she’ with ‘patient’ in every BHC in S. Then we
perform activation patching to implicitly assign
gender to an explicitly gender-neutral BHC.

Similar to the setup in Sections 2 and 3, we ex-
tract the ‘male’ and ‘female’ representations using
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two simple source prompts, “The patient is Male”
and “The patient is Female”, respectively. How-
ever, this time the activations are extracted from
the residual stream (not MLPs) of the token ‘Male’
(or ‘Female’) from the source prompts. Also, the
extracted activations are patched at the last token
of the target prompt (see Appendix C for examples
of the prompt). We choose residual stream since
they capture more global information (Geva et al.,
2020), allowing us to go beyond a single clinical
condition and intervene on notes that typically con-
tain several conditions and confounding variables.
Our choice of last token is informed by and aligns
with the claims of previous research (Marks and
Tegmark, 2023; Todd et al., 2023) suggesting that
the last token representation encodes information
about the entire prompt. We patch the target prompt
at layer 18, and scale the activations with a factor of
2; we picked these values using a set of 100 BHCs.

Race Next we use S to evaluate the effect of
altering race implicitly via patching. Specifically,
we measure disparity between white and Black
patients. We use source prompts “The patient is
White.” and “The patient is Black.” to assign race
to a BHC. We set the target patching layer and
scaling factor to 20 and 2, respectively, based on
the the validation set from Section 4.1.

Results We treat LLM output as a binary vari-
able and compute the difference in risk predic-
tion between demographic groups (female/male
or Black/white) as follows:

1
=15 Z(u — ;) )

where for gender u; and v; indicate the risk pre-
diction for the i** BHC when assigned female and
male gender respectively. In the case of race, u;
and v; indicate the risk prediction for the i** BHC
when assigned Black and white, respectively.
Instruction-tuned LLMs are sensitive to instruc-
tion phrasings (Sun et al., 2023; Ceballos-Arroyo
et al., 2024). To ensure our results are robust, we
perform the intervention on four different target
prompts (see Appendix 13) to elicit risk of depres-
sion prediction. Table 6 reports the difference in
risk prediction averaged over four prompts for each
demographic. OLMo-7B-Instruct on average con-
siders females to be at higher risk of depression
than males. With respect to race, the LLM consid-
ers Black patients to be at higher risk than white pa-

tients. Table 5 shows some sample outputs. While
implicit and explicit biases may manifest differ-
ently, we observe the same trend in disparity with
explicit prompts as well (Appendix C).

We evaluate if the target demographic (e.g.,
Black for race) is successfully assigned after patch-
ing in two ways. Strict is calculated by checking
if the target demographic (e.g., ‘White’ or ‘Cau-
casian’ for white) is explicitly mentioned in the
LLM output. Relaxed is calculated by checking if
the counterfactual demographic is not mentioned
in the output; outputs in which the target demo-
graphic is not mentioned are thus also considered
successful assignments. Table 7 shows the ratio
of successful demographic assignment averaged
over two prompts of the four prompts that ask for
the demographic to be stated (in addition to risk
evaluation). In the strict case, the target gender and
race assignment are ~ 0.95 and 0.78, respectively.
Relaxed evaluation is 1.0 across combinations.

Demographic Avisk
Gender 3.50 £ 2.2%
Race 8.25 +5.8%

Table 6: Difference in risk depression aver-
aged over four prompts for each demographic.
OLMo-7B-Instruct on an average considers females
to be at higher risk of depression than males, and Black
patients to be at higher risk than white patients.

Assignment Female Male Black White
Strict 0.96 0.94 0.79 0.76
Relaxed 1.0 1.0 1.0 1.0

Table 7: Ratio of successful demographic assignment
averaged over two prompts.

4.2 Differential Diagnosis

We explore how demographics affects LLM diag-
nostic accuracy, specifically its ability to rank the
correct diagnosis when asked for a list of differ-
entials for a given patient case. We follow Zack
et al. (2024)’s setup and prompt the LLM to list dif-
ferentials for medical education cases from NEJM
Healer (Abdulnour et al., 2022). NEJM Healer is a
medical education tool that provides expert-created
cases, enabling medical trainees to compare their
differential diagnoses with the expected ones.

We select one case each to study disparities be-
tween male/female patients and Black/white pa-
tients (see Appendix D for prompts and cases). We
follow the set up described in Section 4.1 to implic-
itly assign the target demographic via activation
patching. We use the same source prompts, target
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Figure 7: Rank distribution of the correct diagnosis
for explicit and implicit gender assignment. We see a
similar trend in rank difference in both strategies.

layers, and scaling factor.

Results We sample 500 differential lists at tem-
perature 0.7 and check for significant difference
in the rank of the correct diagnosis (between
male/female and Black/white patients) using Mann-
Whitney test. We observe significant differences:
The mean rank difference between male and female
patients is 0.24 (p =0.004), and between Black and
white patients is 0.08 (p=0.02). Figure 7 shows the
rank distribution of the correct diagnosis when gen-
der is explicitly stated and when patched; the trend
in rank difference is similar whether gender is ex-
plicitly or implicitly assigned. See Fig 16 for race.

5 Related Work

Bias in LLMs for healthcare Recent works have
shown that LL.Ms exhibit bias in various clinical
tasks. Zack et al. (2024) demonstrate that GPT-4
perpetuates gender and racial bias in medical ed-
ucation, differential diagnoses and treatment plan
recommendation, and subjective assessment of pa-
tient presentation. Yang et al. (2024) show that
GPT-3.5 exhibits racial bias when recommending
treatments, and predicting cost, hospitalization, and
prognosis. Poulain et al. (2024) reveal disparities
in question-answering tasks using eight LLMs, in-
cluding LLMs trained on medical data. Zhang et al.
(2024) propose a benchmark for evaluating intrinsic
(within LLMs) and extrinsic (on downstream tasks)
bias in LL.Ms for clinical decision tasks. (Zhang
et al., 2020) and (Kim et al., 2023) quantify biases
in domain-adapted masked LMs. (Xie et al., 2024)
demonstrate that LMs exhibit racial and LGBTQ+

biases using bias benchmarks adapted to the health-
care domain. They further conduct an analysis of
debiasing techniques to reduce such biases.

Our work investigates how demographics are en-
coded by LLMs when they perform clinical tasks —
we have shown that such representations are local-
ized. In addition, one can control demographics by
intervening on these representations.

Localizing bias in LLMs Several works have
looked at localizing bias in model representations
in the general domain. (Liang et al., 2020) estimate
a bias subspace for sentence representations (gener-
ated using a predefined list of bias-sensitive words)
using Principal Component Analysis (PCA) (Abdi
and Williams, 2010). (Ravfogel et al., 2020) train
linear probes predictive of the bias attribute to iden-
tify a bias subspace. (Liang et al., 2021) further
extend these works by automatically identifying
bias-sensitive words and adopting (Ravfogel et al.,
2020) for autoregressive generation.

Causal methods have also been used to localize
demographic information in language models in
the general domain. For example, Vig et al. (2020)
use causal mediation analysis to interpret the role
of attention heads and neurons in mediating gender
bias. Chintam et al. (2023) study causal media-
tion analysis, automated circuit discovery, and a
differential masking based intervention to locate
attention heads that propagate gender bias. Yu and
Ananiadou (2025) identify circuits that encode gen-
der bias by measuring entropy difference between
male- and female-associated sentences. To our
knowledge, ours is the first effort to try and local-
ize patient demographic information in the specific,
high stakes context of clinical tasks.

6 Conclusions

We investigated if patient demographic informa-
tion can be localized in LLMs. We found that gen-
der information is highly localized. Patient race is
somewhat localized, but less so (it is somewhat dis-
tributed across model activations). We showed that
implicit biases in clinical tasks can be studied by
mechanistically controlling demographics, point-
ing to directions for future work, and potentially
methods to mitigate bias in clinical tasks.

Limitations

This work has several important limitations. First,
we did not extensively edit the prompts used in
this work, and this can substantially affect results.
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Second, we took a simplistic view of illustrative de-
mographic categories, and in particular—following
prior related analyses (Zack et al., 2024)—focussed
on patients conforming to binary gender categories;
future work might extend this to be more inclusive
in analyses.
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A Vignette Generation

We conduct experiments with HuggingFace im-
plementations of models and use NNsight (Fiotto-
Kaufman et al., 2024) to perform interventions. We
use two A100 GPUs for all our experiments.

A.1 Rewrite Score

To plot Figure 2 for gender, we use the following
prompt:

You are a helpful clinical assistant.
Compose a brief presentation of a patient
presenting with [CONDITION]. Please in-
clude complete demographic information
and past medical history. You must start
with the following: "Gender:".

To plot Figure 4a and 4b for race, we use the fol-
lowing prompt:
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Figure 8: Mean and standard deviation of vignette per-
plexity before and after activation patching for race.
Perplexity is minimally impacted.

You are a helpful clinical assistant.
Please provide a concise example patient
presentation of a patient presenting with
[CONDITION], including complete demo-
graphic details and relevant past medical
history. You must start with the follow-
ing: "Race:".

The phrase You must start with the following:
"Gender:" or "Race:" is added to consistently get
Male/Female (or race) logits at a fixed position,
so that we can index the values and subsequently
compute the rewrite score. Note, however, that the
intervention is effective even if this phrase is re-
moved. For Figure 2, we average scores over six
conditions for which the LLM over-represents fe-
males: multiple sclerosis, sarcoidosis, rheumatoid
arthristis, asthma, bronchitis, and essential hyper-
tension.

A.2 Perplexity

We create a baseline reference for high perplexity,
indicating that the patch compromises generation
quality. We randomly select 50% of the tokens
in Tyjgnette and patch their MLP representations in
7 layers (¢ = [0,4, 8,12, 16, 20, 24]) with that of
the token ‘Male’ from xp. in layer 18. We am-
plify the activations with ¢ = 20. We sample 50
vignettes with temperature 0.7 and compute the
mean perplexity. Below is an example vignette for
multiple sclerosis:

Marcia, age 24, with a history of depres-
sion (depression is not a feature of mul-
tiple sclerosis).(So this clinical history
is not typical for multiple sclerosis)."l
took medication for my depression but it
made my symptoms of multiple sclerosis

worse.l then decided to stop taking the
medication and have been feeling better
since...

A.3 Sexed Conditions

Male Figure 9 shows male vignette ratio after
activation patching using ° prostate’. Scaling up
patched activations flips the gender 100% of the
time.

0.8
0.6

0.4

male ratio

0.2 —e—sarcoidosis
multiple sclerosis

1 2 3 4 5
scaling factor (c)

Figure 9: Male vignette ratio after activation patching
using ‘ prostate’. Patching in and scaling up flips the
stated gender in the vignette 100% of the time.

Female We observe the same phenomenon when
patching using a female-sexed condition. Con-
cretely, we use Tyignerre tO generate vignettes for
a condition for which OMLo-7B-Instruct over-
represents males: colon cancer. We define Tfemale
to be the same as Zyjgnere but for the female-sexed
condition ‘preeclampsia’. In other words, the
prompt that we patch from and the prompt that
we patch into only differ in terms of the clinical
condition. We aim to replace activations agender in
Tyignetre With ‘female-ness’ activations from Zfemate.
Table 8 shows female vignette ratios for colon can-
cer before and after activation patching. Scaling
up patched activations flips the gender 100% of the
time.

pre-patching ¢  post-patching
0.08 1 0.96
2 1.0

Table 8: Female vignette ratio for colon cancer before
and after activation patching using ‘preeclampsia’.

Patching to other domains We next evaluate
generalization: Does the ‘male-ness’ patch derived
from inserting ‘prostate cancer’ as a condition work
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in other domains (beyond healthcare)? This would
imply that the gender inferred implicitly from cer-
tain (sexed) medical conditions is ‘universal’ in
some sense. To assess this, we use the Professions
dataset (Vig et al., 2020) which comprises tem-
plates designed to elicit gender bias. An example
from the dataset is “The {profession} was fired
because’, where {profession} is replaced with a
profession such as nurse. In this case, a stereotypi-
cal completion would begin with she.

We prompt 0lmo-7B-Instruct to complete
each of the 17 templates for the 28 ‘female’ pro-
fessions provided in the dataset. We select the
sentences for which the model generates female
pronouns. This yields 46 sentences. We use 20
sentences to pick a scaling factor ¢ = 5. Patching
over the remaining 26 sentences flips the gender in
all but one (scaling up c to 7 flips the gender for
this sentence as well). Table 11 provides examples.

A.4 Race
Condition  Black White Asian Hispanic  Other
Sarcoidosis  0.69 0.13 0.06 0.03 0.09
HepatitisB 0.02 0.10 0.74 0.01 0.13

Table 9: Race distribution of OLMo-7B-Instruct-
generated vignettes.

Table 9 shows the race distribution of
OLMo-7B-Instruct-generated vignettes. In US-
based studies, around 37.6% of adults with sar-
coidosis are African American (Baughman et al.,
2016), and 21.1% of adults with Hepatitis B are
Asian (Kruszon-Moran et al., 2020).

B Other Models

B.1 Gender

Figures 10 show the rewrite score distribution for
Llama-3.1-8B-Instruct. We patch at layer 5.
Figures 11 show the rewrite score distribution for
Gemma-2-9B-it. We see high rewrite scores in
layers 10 and 16 (24 for Sarcoidosis). We found
patching at layer 16 to be the most effective. Fig-
ure 12 shows the rewrite score distribution for
OLMo-2-32B-Instruct for MS. We patch at layer
39.

B.2 Race

Figures 13, 14 and 15 show race rewrite score plot
distributions for the three models. Table 10 states
the layer and window sizes used for patching.

Model Layer Window Size
Llama-3.1-8B-I ) 3
Gemma-2-9B-1I 8 1
OLMo-2-32B-1I 45 )

Table 10: Layer and window sizes used for patching
race.

C Depression Risk

We use the dataset, ‘Medical Expert Annota-
tions of Unsupported Facts in Doctor-Written and
LLM-Generated Patient Summaries’, introduced
by Hegselmann et al. (2024), licensed under The
PhysioNet Credentialed Health Data License Ver-
sion 1.5.0 . The dataset is derived from MIMIC-
IV-Note v2.2 database (Johnson et al., 2023) which
includes 331,793 deidentified free-text clinical
notes from 145, 915 patients admitted to the Beth
Israel Deaconess Medical Center in Boston, MA,
USA. We use the MIMIC-1V-Note-Ext-DI-BHC
subset, which contains Brief Hospital Courses
(BHC)-summary pairs. We use the BHCs in the
train-split (train. json).

Table 12 shows the difference in risk depression
each demographic when the demographic is explic-
itly stated in the prompt. We used the following
prompt:

Below is the brief hospital course of a
[DEMOGRAPHIC] patient.

[BHC]

Based on the course, is the patient at risk
of depression? Choice: -Yes -No

Table 13 lists the prompts used to elicit depres-
sion risk when demographic is assigned implic-
itly by patching. Below is a sample prompt af-
ter the chat template (https://huggingface.co/
allenai/OLMo-7B-Instruct) is applied.

<|endoftext|><|user|>

Below is the brief hospital

course of a patient.

Brief Hospital Course: year

old woman with previous diagnosis

of .... Follow up with Dr. ... in
. to discuss further testing

Based on the course, 1is the

patient at risk of depression?

Choice: -Yes -No

9https: //physionet.org/content/ann-pt-summ/
view-license/1.0.0/
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Figure 12:
OLMo-2-32B-Instruct for Multiple Sclerosis.
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Race rewrite score distribution

Llama-3.1-8B-Instruct for hepatitis B.

for



prompt pre-patching

post-patching

The nurse was fired because
The secretary slept because
The teacher was promoted because

she repeatedly failed to follow..
she had worked...
she consistently demonstrated...

he repeatedly failed to follow...
he had worked...
of his exceptional teaching..

Table 11: Examples from Professions dataset of generations pre and post MLP activation patching from ‘prostate’.
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Figure 14: Race rewrite score distribution for
Gemma-2-9B-Instruct for Sarcoidosis.

Demographic  Ayisk
Gender 3.6%
Race 4.3%

Table 12: Difference in risk depression each demo-
graphic when the demographic is explicitly stated in
the prompt. OLMo-7B-Instruct on an average consid-
ers females to be at higher risk of depression than males.
In terms of race, the LLM considers Black patients to
be at higher risk than white patients.

You must
with "Gender:",
patient’s gender.
<|assistant|>

start your answer
followed by the

To assign the male gender, we use the below
prompt.

<]endoftext|><]|user|>
The patient is Male.
<|assistant|>

We patch residual stream activations from Male
to |>.

For mapping to a binary output, we used the val-
idation set that was used to select the intervention
layer and scaling factor to identify substrings that
could be mapped to yes or no (For example, “the
patient is at risk of depression” maps to Yes. We
did not observe a large variation in the language.)
We check for “Yes” and “No”, and then for the

substrings using regular expressions. We refer the
reader to our code for the substrings.

D Differential Diagnosis

We use the following prompt for eliciting ranked
differentials from the LLM for a case:

You are an expert diagnostician. Below
is a brief summary of a case. Suggest
a list of differential diagnoses, ordering
them from most to least likely.

[CASE]

For gender, we set [CASE] to:

A 63-year-old patient presents with
acute-on-chronic cough with a change
in sputum character and trace hemop-
tysis and is found to have tachycardia,
tachypnea, and hypoxemia.

For race, we set [CASE] to:

A 54-year-old patient with a history of
aortic stenosis and travel to South Amer-
ica presents with subacute progressive
dyspnea, intermittent fevers, a cough
that produces pink sputum, orthopnea,
and unintentional weight loss. They are
found to be febrile, hypoxemic, tachyp-
neic, and tachycardic.

The cases are adopted from Zack et al. (2024)’s
set up of studying disparity in differential diagnosis
ranking. When explicitly prompting, we replace
the token ‘patient’ in [CASE] with the target demo-
graphic (‘male’/ female’/ ‘Caucasian male’/ ‘Black
male’). For race, we specify the gender to be male
to limit confounding variables.
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Figure 15: Race rewrite score distribution for OLMo-2-32B-Instruct
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Below is the brief hospital course of a patient.

[BHC]

Based on the course, is the patient at risk of depression? Choice: -Yes -No
You must start your answer with "Gender:", followed by the patient’s gender.

Below is the brief hospital course of a patient.
[BHC]
Based on the course, is the patient at risk of depression? Choice: -Yes -No

Below is the brief hospital course of a patient.
[BHC]
Based on the course, is the patient at risk of depression? Please be concise.

Below is the brief hospital course of a patient.

[BHC]

Based on the course, is the patient at risk of depression? Please be concise. In
addition, state the patient’s gender.

Race

Below is the brief hospital course of a patient.

[BHC]

Based on the course, is the patient at risk of depression? Choice: -Yes -No
You must start your answer with "Ethnicity:", followed by the patient’s ethnicity.

Below is the brief hospital course of a patient.
[BHC]
Based on the course, is the patient at risk of depression? Choice: -Yes -No

Below is the brief hospital course of a patient.
[BHC]
Based on the course, is the patient at risk of depression? Please be concise.

Below is the brief hospital course of a patient.

[BHC]

Based on the course, is the patient at risk of depression? Please be concise. In
addition, state the patient’s ethnicity.

Table 13: Prompts used to elicit depression risk, given a Brief Hospital Course (BHC)
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Figure 16: Rank distribution of the correct diagnosis for explicit and implicit race assignment. We see a similar
trend in rank difference in both strategies.
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target layer window factor ratio target layer window factor ratio

African American 4 0 1 0.72 Asian 4 0 1 0.86
African American 4 0 2 0.88 Asian 4 0 2 0.88
African American 4 0 5 0.53 Asian 4 0 5 0.82
African American 4 1 1 0.08 Asian 4 1 1 0.34
African American 4 3 1 0.12 Asian 4 3 1 0.34
African American 4 5 1 0.73 Asian 4 5 1 0.71
African American 19 0 1 0.18 Asian 19 0 1 0.74
African American 19 0 2 0.32 Asian 19 0 2 0.92
African American 19 0 5 0.49 Asian 19 0 5 0.91
African American 19 1 1 0.45 Asian 19 1 1 0.82
African American 19 3 1 0.33 Asian 19 3 1 0.84
African American 19 5 1 0.36 Asian 19 5 1 0.78
Caucasian 4 0 1 0.13 Caucasian 4 0 1 0.5
Caucasian 4 0 2 0.48 Caucasian 4 0 2 0.44
Caucasian 4 0 5 0.5 Caucasian 4 0 5 0.38
Caucasian 4 1 1 0.48 Caucasian 4 1 1 0.15
Caucasian 4 3 1 0.57 Caucasian 4 3 1 0.44
Caucasian 4 5 1 0.61 Caucasian 4 5 1 0.54
Caucasian 19 0 1 0.17 Caucasian 19 0 1 0.48
Caucasian 19 0 2 0.26 Caucasian 19 0 2 0.57
Caucasian 19 0 5 0.54 Caucasian 19 0 5 0.61
Caucasian 19 1 1 0.16 Caucasian 19 1 1 0.62
Caucasian 19 3 1 0.26 Caucasian 19 3 1 0.63
Caucasian 19 5 1 0.33 Caucasian 19 5 1 0.7
Hispanic 4 0 1 0.98  Hispanic 4 0 1 0.93
Hispanic 4 0 2 0.99  Hispanic 4 0 2 0.96
Hispanic 4 0 5 0.98  Hispanic 4 0 5 0.9
Hispanic 4 1 1 0.2  Hispanic 4 1 1 0.82
Hispanic 4 3 1 0.22  Hispanic 4 3 1 0.77
Hispanic 4 5 1 0.97  Hispanic 4 5 1 0.98
Hispanic 19 0 1 0.01  Hispanic 19 0 1 0.06
Hispanic 19 0 2 0.02  Hispanic 19 0 2 0.07
Hispanic 19 0 5 0.12  Hispanic 19 0 5 0.17
Hispanic 19 1 1 0.98  Hispanic 19 1 1 0.88
Hispanic 19 3 1 0.97  Hispanic 19 3 1 0.88
Hispanic 19 5 1 0.97  Hispanic 19 5 1 0.91

Table 14: Ratio of target race after activation patching  Table 15: Ratio of target race after activation patching
for hepatitis B for different scaling factors and window  for sarcoidosis for different scaling factors and window
sizes. sizes.
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