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Abstract

Decoding strategies manipulate the probability
distribution underlying the output of a language
model and can therefore affect both generation
quality and its uncertainty. In this study, we
investigate the impact of decoding strategies
on uncertainty estimation in Large Language
Models (LLMs). Our experiments show that
Contrastive Search, which mitigates repetition,
yields better uncertainty estimates on average
across a range of preference-aligned LLMs. In
contrast, the benefits of these strategies some-
times diverge when the model is only post-
trained with supervised fine-tuning, i.e. without
explicit alignment.

1 Introduction

Recent advances in natural language processing
(NLP) have been driven almost entirely by the
rapid progress of Large Language Models (LLMs).
State-of-the-art models such as GPT-4 (OpenAI
et al., 2023), Llama (Touvron et al., 2023a), and
DeepSeek (DeepSeek-AI et al., 2025) already
match or surpass human performance on a diverse
suite of downstream NLP tasks.

Despite these successes, LLMs sometimes out-
put fabricated or misleading text (hallucinations),
which hinders the deployment of LLMs in safety-
critical domains such as medicine, finance, and law.
Uncertainty Estimation (UE) is a key technique
for mitigating the problem (Geifman et al., 2019;
Galil et al., 2023; Xin et al., 2021; Hashimoto et al.,
2024). By quantifying predictive uncertainty, a sys-
tem can reject dubious outputs and route them to
either human experts or stronger models.

In addition, decoding strategies also constitute
a promising approach to address the problem. De-
coding strategies manipulate next-token distribu-
tions of language models, thereby able to elicit
higher-quality outputs from the language model.
Recent work demonstrates that the choice of de-
coding strategy can markedly impact the quality

of LLM outputs, underscoring its pivotal role in
unlocking the full potential of these models (Shi
et al., 2024).

However, the comprehensive investigation into
how decoding strategies affect UE performance in
LLMs remains limited. Although recent studies
improve uncertainty by devising sampling strate-
gies (Aichberger et al., 2025; Vashurin et al., 2025),
the UE performance combined with extensive de-
coding strategies has not been systematically eval-
uated across various tasks. Since decoding algo-
rithms influence both the probability distribution
over candidate tokens and the final token selection,
they can have a significant impact on UE perfor-
mance. Furthermore, mainstream LLMs usually
apply preference-alignment techniques including
Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022) or Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2023) af-
ter Supervised Fine-Tuning (SFT). Although such
techniques improve the alignment of outputs with
human preferences, recent work suggests they can
degrade reliability (Kadavath et al., 2022; OpenAI
et al., 2023; Tian et al., 2023; Xiao et al., 2025),
potentially interacting with the choice of decoding
strategy. The investigation of these interactions is
therefore essential for producing more trustworthy
LLM outputs. We address this gap through two
research questions:

• RQ1: Which decoding strategies deliver the
best UE performance?

• RQ2: How do training stages such as SFT and
the preference-alignment techniques modulate
UE performance across decoding strategies?

Our experiments reveal the following find-
ings: First, Contrastive Search, which explicitly
mitigates repetition, achieves better UE perfor-
mance as a whole. Second, the optimal decod-
ing strategy for UE can change as a model pro-
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gresses from SFT to preference alignment dur-
ing its post-training phase. In addition, our
results show that the changes in UE perfor-
mance depend on the interaction with the decod-
ing strategy and preference-alignment techniques.
All code is available at https://github.com/
wataruhashimoto52/decoding_uncertainty.

2 Decoding Strategies

We focus exclusively on deterministic decod-
ing strategies because deterministic outputs are
important in safety-critical domains such as fi-
nance (Bender et al., 2021; You and Chon,
2024). The strategies examined in this study
are: Greedy Search (Greedy), Beam Search
(BS) (Freitag and Al-Onaizan, 2017), Diverse
Beam Search (DBS) (Vijayakumar et al., 2018),
Contrastive Search (CS) (Su et al., 2022; Su and
Collier, 2023), Contrastive Decoding (CD) (Li
et al., 2023), Frustratingly Simple Decoding (FSD;
based on an n-gram model) (Yang et al., 2024),
FSD-vec (based on a vectorized n-gram model),
Decoding by Contrastive Layers (DoLa) (Chuang
et al., 2024), and Self-Logits Evolution Decoding
(SLED) (Zhang et al., 2024a). Technical details
and the hyper-parameter search space are provided
in Appendix A.

3 Experimental Settings

3.1 Datasets

We conducted evaluations across four text genera-
tion tasks: question answering (QA), text summa-
rization (TS), machine translation (MT), and code
generation (CG). In QA, we use TriviaQA (Joshi
et al., 2017) dataset. In TS, we use XSum (Narayan
et al., 2018) dataset. In MT, we use WMT19 (Foun-
dation, 2019) dataset in German to English (De-En)
setting. In CG, we use HumanEval (Chen et al.,
2021) dataset. Dataset details are in Appendix B.

3.2 Models

In RQ1, to examine the impact of decoding meth-
ods on UE performance across multiple tasks, we
used Llama2-7B-Chat (Touvron et al., 2023b)1,
Llama3-8B-RLHF (Grattafiori et al., 2024; Hu
et al., 2024)2, and Zephyr-7B-β (Tunstall et al.,

1https://huggingface.co/meta-llama/
Llama-2-7b-chat-hf

2https://huggingface.co/OpenRLHF/
Llama-3-8b-rlhf-100k

2024).3 For CD, we adopted TinyLlama (Zhang
et al., 2024b)4 as the amateur model. In RQ2, to
evaluate the effects of the SFT and RLHF stages,
we employed Llama3-8B-SFT5 and Llama3-8B-
RLHF. When applying preference tuning, we used
Llama3-8B-DPO6, which is applied the iterative
version of DPO (Dong et al., 2024). For CD, we
adopted Llama3.2-1B-Instruct7 as the amateur.

3.3 Details of Uncertainty Estimation
3.3.1 Uncertainty Estimation Metrics
Following Fadeeva et al. (2023), we measure UE
performance with the Prediction–Rejection Ratio
(PRR), which compares the area under the predic-
tion–rejection curve obtained when ranking gener-
ations by model uncertainty to the oracle curve that
ranks by true quality. Unlike AUROC, PRR does
not require binary labels, making it applicable to
various text generation tasks such as TS or MT. Let
the test set be D = {(xi,yi)}. For each input xi,
the language model produces an output f(xi) and
an associated uncertainty score U(xi). The Predic-
tion–Rejection Curve (PRC) traces the average min-
max normalized generation quality Q(f(xi),yi)
of those outputs that satisfy U(xi) < a as the re-
jection threshold a varies. The PRR compares the
area under this curve when ranking by uncertainty
against an oracle that ranks by true quality:

PRR =
PRCuns

PRCorc
. (1)

Here, PRCorc is the area obtained when the
lowest-quality samples are rejected first, whereas
PRCuns is the area when rejection is driven by the
model’s uncertainty scores. Because uncertainty
is an imperfect proxy for quality, PRCuns typi-
cally lies below PRCorc. A higher PRR means
the uncertainty scores more accurately filter out
low-quality outputs.8

The quality score Q is task-dependent. The qual-
ity scores used in calculating the PRR are as fol-
lows: for QA we use RougeL (Lin, 2004); for

3https://huggingface.co/HuggingFaceH4/
zephyr-7b-beta

4https://huggingface.co/TinyLlama/TinyLlama-1.
1B-intermediate-step-955k-token-2T

5https://huggingface.co/OpenRLHF/
Llama-3-8b-sft-mixture

6https://huggingface.co/RLHFlow/
LLaMA3-iterative-DPO-final

7https://huggingface.co/meta-llama/Llama-3.
2-1B-Instruct

8If correctly predicted instances receive higher uncertainty
than mispredicted ones, the PRR can become negative.
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Model Method MSP MTE
TriviaQA XSum WMT19 HumanEval TriviaQA XSum WMT19 HumanEval
RougeL RougeL AlignScore BLEU Comet AlignScore Pass@1 Mean PRR RougeL RougeL AlignScore BLEU Comet AlignScore Pass@1 Mean PRR

L
la

m
a2

-7
B

-C
ha

t

Greedy 62.970.59 14.421.87 1.571.78 38.742.40 46.481.92 19.023.14 −11.038.61 20.95 49.130.91 8.071.60 10.681.75 31.242.21 25.031.93 21.693.33 −13.498.56 17.89
BS 63.620.70 14.121.79 −0.451.66 38.962.02 52.881.56 20.163.56 −24.517.04 18.65 50.580.85 4.681.75 9.501.69 29.782.10 21.462.05 18.113.71 −28.476.56 14.03
DBS 63.982.34 14.441.71 −18.031.42 28.972.41 53.241.82 4.353.66 −35.368.70 21.51 41.340.94 7.501.64 12.541.76 6.662.34 −6.662.27 6.073.44 −11.398.38 14.25
CS 63.730.69 17.56∗1.04 1.432.04 36.942.29 41.991.97 19.583.21 −9.968.86 21.55 51.95∗0.82 8.991.85 10.212.14 30.662.11 23.702.09 22.243.13 −12.108.28 18.66
CD 15.972.22 7.181.57 −1.221.19 49.31∗1.43 54.19∗1.34 50.39∗2.14 −7.208.44 21.47 24.951.67 9.331.68 1.472.04 58.25∗1.27 62.48∗1.26 63.00∗1.87 −5.678.08 27.11
FSD 33.841.87 0.641.39 12.42∗2.27 31.821.74 14.042.19 8.153.58 −27.038.42 9.97 34.810.95 −0.131.38 11.732.26 34.771.77 15.932.17 9.393.55 −27.038.29 10.59
FSD-vec 32.661.81 −1.581.36 10.112.14 31.241.71 12.831.71 8.243.45 −20.198.71 16.81 32.080.72 −3.041.36 11.312.01 33.541.78 14.212.15 9.103.44 −9.148.51 15.36
DoLa 61.150.65 12.461.92 0.071.56 38.782.04 49.151.79 16.743.62 −14.829.70 19.06 49.230.85 5.511.96 8.171.72 25.031.89 17.361.91 15.143.67 −17.419.02 14.28
SLED −12.680.44 - - −27.361.20 −61.371.54 2.533.04 −41.248.58 -19.69 7.800.38 - - 16.241.96 18.322.06 5.343.24 −17.639.78 2.94

L
la

m
a3

-8
B

-R
L

H
F Greedy 20.800.86 15.231.89 −2.441.77 59.61.54 82.270.72 20.492.89 −30.768.18 23.60 20.270.87 9.781.62 5.791.93 59.651.37 68.401.01 23.962.75 −31.338.26 22.36

BS 22.88∗0.80 38.32∗1.33 2.641.61 31.361.46 48.111.64 −6.714.23 −38.855.46 13.96 19.310.85 −1.541.72 2.271.85 25.062.20 8.102.30 16.873.46 −41.034.87 4.15
DBS −9.700.71 12.031.93 −9.521.66 29.81.44 24.841.22 16.203.92 26.01∗10.17 12.81 11.680.81 8.951.82 8.422.09 13.481.85 15.772.13 5.664.65 −39.765.40 3.46
CS 16.890.84 16.371.83 −2.511.53 61.24∗1.53 84.86∗0.66 19.563.10 −28.349.62 24.01 19.200.79 11.96∗1.57 4.441.73 62.93∗1.38 72.79∗0.98 22.542.97 −29.798.63 23.44
CD 17.810.96 −9.181.54 9.90∗2.15 −9.031.96 −57.071.42 −34.462.67 −51.435.84 -19.07 22.25∗0.80 −0.051.84 9.33∗1.83 41.621.54 25.741.67 60.24∗2.04 −51.705.85 15.35
DoLa 20.110.87 12.272.02 −3.291.51 50.311.82 76.961.22 21.133.02 −39.795.85 19.67 18.410.80 6.291.78 4.631.77 52.171.80 64.861.11 19.902.75 −40.465.96 17.97

Z
ep

hy
r-

7B
-β

Greedy 64.850.55 11.802.05 −5.631.79 65.531.53 81.670.50 22.363.31 −27.415.56 30.45 53.790.77 10.801.85 3.192.09 64.821.46 72.410.89 17.98∗3.63 −35.245.01 26.82
BS 53.291.18 10.451.92 −5.321.21 59.871.71 80.850.81 22.013.41 −35.434.71 26.53 44.481.16 10.061.73 2.132.05 57.411.57 62.981.17 12.023.96 −31.313.67 22.54
DBS 64.190.61 1.501.82 −17.842.39 43.861.45 75.240.93 21.523.16 −21.22∗7.67 23.89 24.420.88 10.161.57 10.74∗1.94 36.381.96 50.671.49 16.283.66 −17.96∗6.92 18.67
CS 65.22∗0.51 12.20∗1.97 −5.341.83 65.771.47 86.02∗0.58 23.72∗3.30 −27.607.18 31.43 54.29∗0.77 11.671.84 4.222.16 65.00∗1.45 72.94∗1.06 17.483.49 −28.636.95 28.14
FSD 23.390.83 11.272.26 2.04∗2.48 42.281.78 24.441.76 11.523.13 −34.395.28 11.51 23.870.86 11.622.23 3.322.56 44.971.76 27.661.76 12.543.05 −36.034.88 12.56
FSD-vec 23.210.83 11.822.12 −6.572.54 41.231.66 26.661.79 15.393.12 −28.126.51 15.03 23.850.86 14.35∗2.15 2.792.52 43.841.66 28.641.73 16.552.98 −30.406.49 14.23
DoLa 63.900.57 11.402.04 −5.361.78 65.221.55 84.540.54 22.813.24 −26.995.69 30.79 52.020.80 10.351.84 2.302.08 60.001.62 65.761.12 15.823.25 −28.725.29 25.36

Table 1: PRRs for every task and generation metric pair in Llama2-7B-Chat, Llama3-8B-RLHF, and Zephyr-7B-β.
Warmer color indicates better results. * indicates that the best strategy is significantly better (p < 0.05) than the
second best. All standard deviations are obtained by bootstrap resampling with 1,000 trials.

Model Method TriviaQA XSum WMT19 HumanEval
RougeL RougeL AlignScore BLEU Comet AlignScore Pass@1

L
la

m
a2

-7
B

-C
ha

t

Greedy 8.43 10.57 10.57 6.14 6.14 6.14 8.52
BS 24.95 7.41 7.13 16.26 16.26 20.30 6.26
DBS 1,751.65 2,020.93 2,012.05 1,971.69 1,971.69 1,977.82 2,604.76
CS 17.42 10.61 10.61 8.16 8.16 6.11 12.77
CD 62.97 186.72 186.72 63.48 63.74 63.36 98.20
FSD 153.70 15.52 16.25 8.96 8.96 8.96 7.56
FSD-vec 92.10 15.57 16.99 9.09 9.09 8.92 102.44
DoLa 6.32 7.54 7.33 4.82 4.82 4.82 6.69
SLED -1,720.95 -1,959.09 -2,441.84 -2,669.11 -2,135.69 -2,669.11 -4,218.55

L
la

m
a3

-8
B

-R
L

H
F Greedy 34.76 9.00 9.00 9.00 23.35 23.35 17.13

BS 90.52 351.83 351.83 351.83 187.62 191.84 8.24
DBS 2249.43 1210.59 1175.13 1213.68 1537.93 1609.42 2488.23
CS 50.10 9.58 9.58 9.58 23.42 24.19 26.49
CD 47.81 175.62 175.62 175.62 374.31 374.31 10.68
DoLa 24.43 4.91 4.89 4.89 15.33 15.33 10.63

Z
ep

hy
r-

7B
-β

Greedy 15.79 20.70 20.70 11.12 11.12 11.12 8.11
BS 41.49 17.81 16.91 19.47 19.47 19.47 5.17
DBS 1,470.62 1,958.16 1,958.16 1,276.36 1,276.36 1,395.72 2,210.45
CS 16.03 21.45 21.45 11.46 19.08 11.46 9.58
FSD 23.29 23.30 23.30 18.69 20.23 20.23 9.73
FSD-vec 23.28 23.62 23.62 18.62 20.25 20.25 11.72
DoLa 12.63 16.73 16.73 9.01 9.01 9.30 6.67

Table 2: Averaged MSP scores for every task and genera-
tion metric pair in Llama2-7B-Chat, Llama3-8B-RLHF,
and Zephyr-7B-β. Higher score indicates more uncer-
tain.

TS we report RougeL and AlignScore (Zha et al.,
2023); for MT we report BLEU (Papineni et al.,
2002), Comet (Rei et al., 2020) and AlignScore;
for CG we report Pass@1 (Chen et al., 2021). To
improve readability, all generation quality scores
and PRRs are multiplied by 100.

3.3.2 How to Estimate Uncertainty Score

To convert the predictive token-level probability
distribution into a single uncertainty score, an ag-
gregation scheme must be chosen. To analyze the
impact of decoding strategies on predictive uncer-
tainty from the viewpoint of probability and en-
tropy, we limit our analysis to two fundamental
methods: Maximum Sequence Probability (MSP)
which is the negative log-likelihood of the gener-
ated sequence, and Mean Token Entropy (MTE)
which is the average entropy of the token-level pre-

Model Method TriviaQA XSum WMT19 HumanEval
RougeL RougeL AlignScore BLEU Comet AlignScore Pass@1

L
la

m
a2

-7
B

-C
ha

t

Greedy 0.13 0.16 0.16 0.25 0.25 0.25 0.10
BS 0.10 0.32 0.26 0.23 0.23 0.23 0.08
DBS 0.21 0.37 0.35 0.16 0.16 0.25 0.19
CS 0.13 0.40 0.40 0.25 0.25 0.25 0.12
CD 0.25 0.54 0.54 0.16 0.27 6.03 0.09
FSD 0.11 0.60 0.60 0.25 0.25 0.25 0.09
FSD-vec 0.24 0.55 0.55 0.25 0.25 0.25 0.09
DoLa 0.05 0.19 0.23 0.18 0.18 0.18 0.05

L
la

m
a3

-8
B

-R
L

H
F Greedy 0.80 0.36 0.36 0.36 0.89 0.89 0.39

BS 0.52 0.27 0.27 0.27 0.54 0.51 0.18
DBS 0.48 0.46 0.39 0.34 0.59 0.60 0.44
CS 0.75 0.37 0.37 0.37 0.88 0.88 0.45
CD 0.85 0.74 0.74 0.74 0.76 0.76 0.24
DoLa 0.41 0.19 0.19 0.19 0.42 0.42 0.18

Z
ep

hy
r-

7B
-β

Greedy 0.44 0.50 0.50 0.34 0.34 0.34 0.18
BS 0.30 0.41 0.38 0.25 0.25 0.25 0.11
DBS 0.38 0.45 0.45 0.29 0.29 0.33 0.27
CS 0.44 0.49 0.49 0.34 0.34 0.34 0.20
FSD 0.52 0.51 0.51 0.42 0.44 0.44 0.21
FSD-vec 0.52 0.51 0.51 0.42 0.43 0.43 0.22
DoLa 0.26 0.31 0.31 0.21 0.21 0.21 0.12

Table 3: Averaged MTE scores for every task and gen-
eration metric pair in Llama2-7B-Chat, Llama3-8B-
RLHF, and Zephyr-7B-β. Higher score indicates more
uncertain.

dictive distributions.9 For each decoding strategy
tested, MSP and MTE are computed, and the re-
sulting uncertainty scores are then evaluated using
PRRs.

4 Results & Analysis

4.1 RQ1: Which decoding strategies deliver
the best UE performance?

Table 1 reports the PRRs obtained with MSP and
MTE when each of the decoding strategies is ap-
plied across four benchmarks. In addition, Table 2
and Table 3 report averaged MSP scores and MTE
scores, respectively.

9More advanced methods can affect uncertainty estimates
combined with the choice of the decoding strategy. Results
obtained by applying one such technique – Shifting Attention
to Relevance (Duan et al., 2024) – to the computation of
uncertainty scores are presented in Appendix H.

14603



Model Method Distinct-1 Distinct-2
TriviaQA XSum WMT19 HumanEval TriviaQA XSum WMT19 HumanEval

L
la

m
a2

-7
B

-C
ha

t
Greedy 0.750 0.809 0.784 0.608 0.924 0.974 0.935 0.851
BS 0.744 0.808 0.775 0.602 0.919 0.973 0.929 0.845
DBS 0.739 0.806 0.766 0.598 0.917 0.973 0.925 0.842
CS 0.759 0.819 0.807 0.604 0.930 0.977 0.948 0.846
CD 0.739 0.782 0.729 0.569 0.909 0.950 0.887 0.801
FSD 0.735 0.773 0.716 0.573 0.910 0.946 0.884 0.808
FSD-vec 0.734 0.766 0.706 0.556 0.907 0.942 0.881 0.785
DoLa 0.748 0.771 0.716 0.560 0.923 0.946 0.888 0.792
SLED 0.744 - 0.716 0.554 0.919 - 0.889 0.790

L
la

m
a3

-8
B

-R
L

H
F Greedy 0.703 0.805 0.766 0.656 0.914 0.941 0.861 0.885

BS 0.692 0.804 0.766 0.648 0.909 0.941 0.861 0.881
DBS 0.677 0.783 0.735 0.642 0.899 0.924 0.828 0.877
CS 0.740 0.866 0.864 0.666 0.943 0.991 0.965 0.890
CD 0.687 0.750 0.689 0.650 0.905 0.883 0.789 0.882
DoLa 0.678 0.766 0.678 0.644 0.907 0.901 0.799 0.881

Z
ep

hy
r-

7B
-β

Greedy 0.734 0.778 0.755 0.545 0.920 0.963 0.887 0.792
BS 0.754 0.776 0.782 0.531 0.919 0.960 0.896 0.772
DBS 0.747 0.775 0.771 0.538 0.919 0.960 0.890 0.787
CS 0.734 0.782 0.774 0.557 0.922 0.966 0.906 0.808
FSD 0.666 0.762 0.648 0.544 0.895 0.957 0.827 0.793
FSD-vec 0.665 0.760 0.644 0.546 0.892 0.956 0.816 0.797
DoLa 0.734 0.778 0.753 0.545 0.920 0.963 0.886 0.792

Table 4: Distinct-1 and Distinct-2 for every task and
generation metric pair in Llama2-7B-Chat, Llama3-8B-
RLHF, and Zephyr-7B-β. Higher score indicates diver-
sified outputs.

Contrastive Search shows better uncertainty
across the models on average. Across all
aligned models examined, CS, followed by Greedy,
produces better uncertainty, on average. We hy-
pothesized that these results are due to CS’s ability
to mitigate repetition which is one of the causes
of overconfidence in a language model (Holtzman
et al., 2020) while keeping the original probabil-
ity (Su et al., 2022; Su and Collier, 2023). To
evaluate this, we measured averaged sentence-level
Distinct-n (Li et al., 2016). Distinct-n is the rate at
which n-grams in the output are different, which
can evaluate the diversity of tokens in the output
sentences. As shown in Table 4, CS has the highest
Distinct-1 and Distinct-2 overall, suggesting that
the outputs from CS have less repetition than other
decoding strategies.

BS and DBS sometimes underperform. We can
see that BS and DBS in Llama3-8B-RLHF and
Zephyr-7B-β sometimes perform worse. In Ta-
bles 2 and Table 3, the negative log-probability and
the entropy change significantly with BS and DBS
compared to Greedy or CS. The uncertainty scores
obtained based on the manipulated probability dis-
tributions by BS and DBS may not be aligned with
the objective of separating high- and low-quality
outputs.

For CD, there is a large difference in UE perfor-
mance across models. On average, CD provides
the strongest aggregate performance, followed by
CS in Llama2-7B-Chat. However, the advantage
of CD is mainly pronounced in MT setting. On the
other hand, in Llama3-8B-RLHF, the situation is
markedly different: while CD remains reasonably
reliable for factual metrics, its reliability deterio-

rates sharply for MT or TS. As CD is highly sen-
sitive to the specific pairing of teacher and student
models, substantial behavioral differences across
model families can be expected. Results of other
models also support this in Appendix E and Ap-
pendix F. Moreover, as with BS and DBS, we can
see that the probability distribution of the LLM out-
put changes significantly when CD is used, from
Table 2 and Table 3. The selection and construction
of an appropriate amateur model for CD to opti-
mize UE performance remains an open challenge.

Recent factuality decoding strategies underper-
form. As shown in Table 1, recent factuality de-
coding strategies such as DoLa and SLED fre-
quently underperform alternative methods in terms
of PRRs. Factuality decoding is hypothesized to
increase factual correctness by amplifying knowl-
edge that is localised within particular layers of
the language model. This amplification, however,
can distort the probability distribution of the base
LLMs, potentially degrading downstream perfor-
mance. The results in Table 2 and Table 3 reveal
that factuality decoding strategies provide overcon-
fident MSP score and less entropy, suggesting that
the original probability distribution of the language
model is indeed being altered by emphasising fac-
tual tokens.

4.2 RQ2: How do training stages such as SFT
and the preference-alignment techniques
modulate UE performance across
decoding strategies?

Stopping post-train at the SFT stage may af-
fect the conclusion of RQ1. Figure 1 depicts the
change of PRR values across all task-quality pairs
when the training phase of Llama3-8B is switched
from SFT to RLHF. The figure reveals that under
SFT, BS achieves superior PRR in a larger number
of cases than it does under RLHF. Previous re-
search (Kumar and Sarawagi, 2019) has shown that
the confidence calibration effect of BS has positive
impacts not only the confidence but also the gener-
ation quality. Furthermore, applying RLHF to an
SFT model tends to make its token-level probability
distribution more overconfident (Xie et al., 2024).
Consequently, during beam search, low uncertainty
score can be assigned to low quality outputs. This
miscalibration will lead to a degradation in PRR.

The absolute impact of the training stage tran-
sition on PRR is task-dependent. On TriviaQA,
applying RLHF reduces PRR, whereas on WMT19
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Figure 1: Slopegraphs of PRR when changing the model from Llama3-8B-SFT to Llama3-8B-RLHF.
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Figure 2: Slopegraphs of PRR when changing the model from Llama3-8B-SFT to Llama3-8B-DPO.

De-En it tends to enhance PRR. Overall, we did not
observe the tendency that RLHF induces overconfi-
dence and reduces predictive uncertainty (Kadavath
et al., 2022; Xie et al., 2024) when PRR was used
as the evaluation metric.

On the other hand, as shown in Figure 2, there
are fewer cases in which PRR improved when
applied DPO compared to Figure 1, suggesting
overconfident than Llama3-8B-RLHF. The reason
why DPO has lower UE performance compared to
RLHF can be due to an interesting “squeezing ef-
fect” (Ren and Sutherland, 2025) in the training of
Llama3-8B-DPO. The “squeezing effect” happens
a concentration of probability mass on the most
likely token by the negative gradient when using
DPO-like loss, while Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017) loss in RLHF
avoids the effect (Ren and Sutherland, 2025). The
phenomenon that Greedy or CS improved PRR in

MT on the RLHF stage was not observed on the
DPO stage, which can also be due to the increase
in the probability of the most likely token and the
degeneration of the probability other than the most
likely token.

5 Conclusion

In this study, we examined how decoding strate-
gies affect predictive uncertainty in LLMs. Our
experiments show that Contrastive Search strategy
tends to provide better uncertainty estimates across
various tasks and models on average by mitigat-
ing output repetition, a key source of model over-
confidence. On the other hand, we found that the
conclusions may change depending on the stage
in the post-training phase, such as SFT and the
preference-alignment. We hope that this study will
help practitioners improve the reliability of LLMs.
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Limitations

LLMs Our study mainly relies on two aligned
models (Llama2-7B-Chat and Llama3-8B-RLHF)
and a single SFT model (Llama3-8B-SFT). Ex-
periments on larger models are limited by avail-
able resources. In addition, proprietary models
such as GPT4 (OpenAI et al., 2023) or Gemini
series (Team et al., 2024, 2025) are black boxes.
Therefore, users cannot freely manipulate the de-
coding strategy. All experiments fix the prompt
template; we do not explore how prompt engineer-
ing might change the conclusions.

Decoding Strategies From the viewpoint of prac-
tice, we did not consider stochastic decoding strate-
gies, which cannot guarantee deterministic outputs,
as discussed in Section 2. In addition, our small-
scale experiments do not suggest that stochastic
decoding strategies are effective for PRR (see
Appendix G). However, we may find the better
stochastic strategy in terms of PRR by more exten-
sive experiments. Moreover, some recent decoding
strategies such as ϕ-Decoding (Xu et al., 2025) are
omitted for limited resource reasons.

UE Methods Our analysis focuses on two classi-
cal, token-probability based uncertainty estimators
- MSP and MTE. More advanced techniques such
as Semantic Entropy (Kuhn et al., 2023), Shift-
ing Attention to Relevance (Duan et al., 2024),
and distance-based methods (Yoo et al., 2022;
Hashimoto et al., 2025) are not benchmarked sys-
tematically. As a result, we cannot claim that the
decoding strategy ranking we report would persist
when paired with stronger uncertainty estimators.

Tasks Our benchmark suite covers four English-
only generation tasks with public test sets. Tasks
such as multi-modal understanding (Yue et al.,
2024), combining Retrieval Augmented Generation
(RAG) setting (Ozaki et al., 2025), and non-English
setting (Raihan et al., 2025) are out of scope. By im-
proving comprehensiveness, we are likely to gain
a deeper understanding of the strengths and weak-
nesses of each decoding strategy.

Ethical Considerations

AI Assistant Tools We used ChatGPT10 and
GitHub Copilot11 to accelerate our research.

10https://openai.com/index/chatgpt/
11https://github.com/features/copilot

Datasets & Models This study relies exclusively
on publicly available datasets (TriviaQA, XSum,
WMT19 De→En, and HumanEval) and openly re-
leased LLMs. All datasets and LLMs used in this
study are, at a minimum, licensed for research pur-
poses. In addition, the datasets we used do not
consist of harmful domains (see Appendix B).

Uncertainty Estimation Even a high PRR score
can miss low-quality generations; therefore, criti-
cal decisions must always include qualified human
oversight.

Acknowledgements

The authors also acknowledge the Nara Institute
of Science and Technology’s HPC resources made
available for conducting the research reported in
this paper.

References
Lukas Aichberger, Kajetan Schweighofer, Mykyta Ielan-

skyi, and Sepp Hochreiter. 2025. Improving uncer-
tainty estimation through semantically diverse lan-
guage generation. In The Thirteenth International
Conference on Learning Representations.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language mod-
els be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT ’21, page 610–623, New York, NY,
USA. Association for Computing Machinery.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374.

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon
Kim, James R. Glass, and Pengcheng He. 2024. Dola:
Decoding by contrasting layers improves factuality in
large language models. In The Twelfth International
Conference on Learning Representations.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-
hong Shao, Zhuoshu Li, Ziyi Gao, and 181 others.
2025. Deepseek-r1: Incentivizing reasoning capabil-
ity in llms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

14606

https://openai.com/index/chatgpt/
https://github.com/features/copilot
https://openreview.net/forum?id=HSi4VetQLj
https://openreview.net/forum?id=HSi4VetQLj
https://openreview.net/forum?id=HSi4VetQLj
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://openreview.net/forum?id=Th6NyL07na
https://openreview.net/forum?id=Th6NyL07na
https://openreview.net/forum?id=Th6NyL07na


Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang,
Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo,
Caiming Xiong, and Tong Zhang. 2024. RLHF work-
flow: From reward modeling to online RLHF. Trans-
actions on Machine Learning Research.

Jinhao Duan, Hao Cheng, Shiqi Wang, Alex Zavalny,
Chenan Wang, Renjing Xu, Bhavya Kailkhura, and
Kaidi Xu. 2024. Shifting attention to relevance: To-
wards the predictive uncertainty quantification of
free-form large language models. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5050–5063, Bangkok, Thailand. Association
for Computational Linguistics.

Ekaterina Fadeeva, Roman Vashurin, Akim Tsvigun,
Artem Vazhentsev, Sergey Petrakov, Kirill Fedyanin,
Daniil Vasilev, Elizaveta Goncharova, Alexander
Panchenko, Maxim Panov, Timothy Baldwin, and
Artem Shelmanov. 2023. LM-polygraph: Uncer-
tainty estimation for language models. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing: System Demon-
strations, pages 446–461, Singapore. Association for
Computational Linguistics.

Wikimedia Foundation. 2019. Acl 2019 fourth confer-
ence on machine translation (wmt19), shared task:
Machine translation of news.

Markus Freitag and Yaser Al-Onaizan. 2017. Beam
search strategies for neural machine translation. In
Proceedings of the First Workshop on Neural Ma-
chine Translation, pages 56–60, Vancouver. Associa-
tion for Computational Linguistics.

Ido Galil, Mohammed Dabbah, and Ran El-Yaniv. 2023.
What can we learn from the selective prediction and
uncertainty estimation performance of 523 imagenet
classifiers? In The Eleventh International Confer-
ence on Learning Representations.

Yonatan Geifman, Guy Uziel, and Ran El-Yaniv. 2019.
Bias-reduced uncertainty estimation for deep neural
classifiers. In International Conference on Learning
Representations.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783.

Wataru Hashimoto, Hidetaka Kamigaito, and Taro
Watanabe. 2024. Are data augmentation methods in
named entity recognition applicable for uncertainty
estimation? In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Process-
ing, pages 18852–18867, Miami, Florida, USA. As-
sociation for Computational Linguistics.

Wataru Hashimoto, Hidetaka Kamigaito, and Taro
Watanabe. 2025. Efficient nearest neighbor based un-
certainty estimation for natural language processing
tasks. In Findings of the Association for Computa-
tional Linguistics: NAACL 2025, pages 4350–4366,
Albuquerque, New Mexico. Association for Compu-
tational Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang,
Dehao Zhang, and Yu Cao. 2024. Openrlhf: An easy-
to-use, scalable and high-performance rlhf frame-
work. arXiv preprint arXiv:2405.11143.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601–1611, Vancouver,
Canada. Association for Computational Linguistics.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli
Tran-Johnson, Scott Johnston, Sheer El-Showk,
Andy Jones, Nelson Elhage, Tristan Hume, Anna
Chen, Yuntao Bai, Sam Bowman, Stanislav Fort, and
17 others. 2022. Language models (mostly) know
what they know. arXiv preprint arXiv:2207.05221.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. 2023.
Semantic uncertainty: Linguistic invariances for un-
certainty estimation in natural language generation.
In The Eleventh International Conference on Learn-
ing Representations.

Aviral Kumar and Sunita Sarawagi. 2019. Calibration
of encoder decoder models for neural machine trans-
lation. arXiv preprint arXiv:1903.00802.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110–119, San Diego, California. Association
for Computational Linguistics.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang,
Jason Eisner, Tatsunori Hashimoto, Luke Zettle-
moyer, and Mike Lewis. 2023. Contrastive decod-
ing: Open-ended text generation as optimization. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 12286–12312, Toronto, Canada.
Association for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

14607

https://openreview.net/forum?id=a13aYUU9eU
https://openreview.net/forum?id=a13aYUU9eU
https://doi.org/10.18653/v1/2024.acl-long.276
https://doi.org/10.18653/v1/2024.acl-long.276
https://doi.org/10.18653/v1/2024.acl-long.276
https://doi.org/10.18653/v1/2023.emnlp-demo.41
https://doi.org/10.18653/v1/2023.emnlp-demo.41
http://www.statmt.org/wmt19/translation-task.html
http://www.statmt.org/wmt19/translation-task.html
http://www.statmt.org/wmt19/translation-task.html
https://doi.org/10.18653/v1/W17-3207
https://doi.org/10.18653/v1/W17-3207
https://openreview.net/forum?id=p66AzKi6Xim
https://openreview.net/forum?id=p66AzKi6Xim
https://openreview.net/forum?id=p66AzKi6Xim
https://openreview.net/forum?id=SJfb5jCqKm
https://openreview.net/forum?id=SJfb5jCqKm
https://doi.org/10.18653/v1/2024.emnlp-main.1049
https://doi.org/10.18653/v1/2024.emnlp-main.1049
https://doi.org/10.18653/v1/2024.emnlp-main.1049
https://doi.org/10.18653/v1/2025.findings-naacl.246
https://doi.org/10.18653/v1/2025.findings-naacl.246
https://doi.org/10.18653/v1/2025.findings-naacl.246
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://openreview.net/forum?id=VD-AYtP0dve
https://openreview.net/forum?id=VD-AYtP0dve
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/2023.acl-long.687
https://doi.org/10.18653/v1/2023.acl-long.687
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013


Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, and 262
others. 2023. Gpt-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Gray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems.

Shintaro Ozaki, Yuta Kato, Siyuan Feng, Masayo
Tomita, Kazuki Hayashi, Wataru Hashimoto, Ry-
oma Obara, Masafumi Oyamada, Katsuhiko Hayashi,
Hidetaka Kamigaito, and Taro Watanabe. 2025. Un-
derstanding the impact of confidence in retrieval
augmented generation: A case study in the medi-
cal domain. In Proceedings of the 24th Workshop on
Biomedical Language Processing, pages 1–17, Viena,
Austria. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan
Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, and 25 others.
2025. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Md Nishat Raihan, Antonios Anastasopoulos, and Mar-
cos Zampieri. 2025. mHumanEval - a multilingual
benchmark to evaluate large language models for
code generation. In Proceedings of the 2025 Confer-
ence of the Nations of the Americas Chapter of the
Association for Computational Linguistics: Human

Language Technologies (Volume 1: Long Papers),
pages 11432–11461, Albuquerque, New Mexico. As-
sociation for Computational Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Yi Ren and Danica J. Sutherland. 2025. Learning dy-
namics of LLM finetuning. In The Thirteenth Inter-
national Conference on Learning Representations.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Chufan Shi, Haoran Yang, Deng Cai, Zhisong Zhang,
Yifan Wang, Yujiu Yang, and Wai Lam. 2024. A
thorough examination of decoding methods in the era
of LLMs. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 8601–8629, Miami, Florida, USA. Association
for Computational Linguistics.

Yixuan Su and Nigel Collier. 2023. Contrastive search
is what you need for neural text generation. Transac-
tions on Machine Learning Research.

Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Ling-
peng Kong, and Nigel Collier. 2022. A contrastive
framework for neural text generation. In Advances
in Neural Information Processing Systems.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie
Millican, David Silver, Melvin Johnson, Ioannis
Antonoglou, Julian Schrittwieser, Amelia Glaese,
Jilin Chen, Emily Pitler, Timothy Lillicrap, Ange-
liki Lazaridou, and 1332 others. 2025. Gemini: A
family of highly capable multimodal models. arXiv
preprint arXiv:2312.11805.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, Soroosh
Mariooryad, Yifan Ding, Xinyang Geng, Fred Al-
cober, Roy Frostig, Mark Omernick, Lexi Walker,
Cosmin Paduraru, Christina Sorokin, and 1118 oth-
ers. 2024. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv
preprint arXiv:2403.05530.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit
Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn,
and Christopher Manning. 2023. Just ask for cali-
bration: Strategies for eliciting calibrated confidence
scores from language models fine-tuned with human
feedback. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 5433–5442, Singapore. Association for
Computational Linguistics.

14608

https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
https://doi.org/10.18653/v1/2025.bionlp-1.1
https://doi.org/10.18653/v1/2025.bionlp-1.1
https://doi.org/10.18653/v1/2025.bionlp-1.1
https://doi.org/10.18653/v1/2025.bionlp-1.1
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://aclanthology.org/2025.naacl-long.570/
https://aclanthology.org/2025.naacl-long.570/
https://aclanthology.org/2025.naacl-long.570/
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://openreview.net/forum?id=tPNHOoZFl9
https://openreview.net/forum?id=tPNHOoZFl9
https://doi.org/10.18653/v1/2024.emnlp-main.489
https://doi.org/10.18653/v1/2024.emnlp-main.489
https://doi.org/10.18653/v1/2024.emnlp-main.489
https://openreview.net/forum?id=GbkWw3jwL9
https://openreview.net/forum?id=GbkWw3jwL9
https://openreview.net/forum?id=V88BafmH9Pj
https://openreview.net/forum?id=V88BafmH9Pj
https://doi.org/10.18653/v1/2023.emnlp-main.330
https://doi.org/10.18653/v1/2023.emnlp-main.330
https://doi.org/10.18653/v1/2023.emnlp-main.330
https://doi.org/10.18653/v1/2023.emnlp-main.330


Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. arXiv
preprint arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, and 49 oth-
ers. 2023b. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288.

Lewis Tunstall, Edward Emanuel Beeching, Nathan
Lambert, Nazneen Rajani, Kashif Rasul, Younes
Belkada, Shengyi Huang, Leandro Von Werra, Clé-
mentine Fourrier, Nathan Habib, Nathan Sarrazin,
Omar Sanseviero, Alexander M Rush, and Thomas
Wolf. 2024. Zephyr: Direct distillation of LM align-
ment. In First Conference on Language Modeling.

Roman Vashurin, Ekaterina Fadeeva, Artem Vazhentsev,
Lyudmila Rvanova, Daniil Vasilev, Akim Tsvigun,
Sergey Petrakov, Rui Xing, Abdelrahman Sadallah,
Kirill Grishchenkov, Alexander Panchenko, Timothy
Baldwin, Preslav Nakov, Maxim Panov, and Artem
Shelmanov. 2024. Benchmarking uncertainty quan-
tification methods for large language models with
lm-polygraph. Transactions of the Association for
Computational Linguistics, 13:220–248.

Roman Vashurin, Maiya Goloburda, Preslav Nakov,
Artem Shelmanov, and Maxim Panov. 2025. Cocoa:
A generalized approach to uncertainty quantification
by integrating confidence and consistency of llm out-
puts. arXiv preprint arXiv:2502.04964.

Ashwin Vijayakumar, Michael Cogswell, Ramprasaath
Selvaraju, Qing Sun, Stefan Lee, David Crandall,
and Dhruv Batra. 2018. Diverse beam search for
improved description of complex scenes. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, and 3 others. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Jiancong Xiao, Bojian Hou, Zhanliang Wang, Ruochen
Jin, Qi Long, Weijie J Su, and Li Shen. 2025. Restor-
ing calibration for aligned large language models:
A calibration-aware fine-tuning approach. In Forty-
second International Conference on Machine Learn-
ing.

Johnathan Xie, Annie S Chen, Yoonho Lee, Eric
Mitchell, and Chelsea Finn. 2024. Calibrating lan-
guage models with adaptive temperature scaling. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pages
18128–18138, Miami, Florida, USA. Association for
Computational Linguistics.

Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin.
2021. The art of abstention: Selective prediction and
error regularization for natural language processing.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1040–1051, Online. Association for Computational
Linguistics.

Fangzhi Xu, Hang Yan, Chang Ma, Haiteng Zhao, Jun
Liu, Qika Lin, and Zhiyong Wu. 2025. ϕ-decoding:
Adaptive foresight sampling for balanced inference-
time exploration and exploitation. In Proceedings
of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13214–13227, Vienna, Austria. Association
for Computational Linguistics.

Haoran Yang, Deng Cai, Huayang Li, Wei Bi, Wai Lam,
and Shuming Shi. 2024. A frustratingly simple de-
coding method for neural text generation. In Proceed-
ings of the 2024 Joint International Conference on
Computational Linguistics, Language Resources and
Evaluation (LREC-COLING 2024), pages 536–557,
Torino, Italia. ELRA and ICCL.

KiYoon Yoo, Jangho Kim, Jiho Jang, and Nojun Kwak.
2022. Detection of adversarial examples in text clas-
sification: Benchmark and baseline via robust density
estimation. In Findings of the Association for Com-
putational Linguistics: ACL 2022, pages 3656–3672,
Dublin, Ireland. Association for Computational Lin-
guistics.

Doohee You and Dan Chon. 2024. Trust & safety
of llms and llms in trust & safety. arXiv preprint
arXiv:2412.02113.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng,
Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu
Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao
Yu, Ruibin Yuan, Renliang Sun, Ming Yin, Boyuan
Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, and
3 others. 2024. Mmmu: A massive multi-discipline
multimodal understanding and reasoning benchmark
for expert agi. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 9556–9567.

Yuheng Zha, Yichi Yang, Ruichen Li, and Zhiting Hu.
2023. AlignScore: Evaluating factual consistency
with a unified alignment function. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 11328–11348, Toronto, Canada. Association
for Computational Linguistics.

14609

https://openreview.net/forum?id=aKkAwZB6JV
https://openreview.net/forum?id=aKkAwZB6JV
https://doi.org/10.1162/tacl_a_00737
https://doi.org/10.1162/tacl_a_00737
https://doi.org/10.1162/tacl_a_00737
https://doi.org/10.1609/aaai.v32i1.12340
https://doi.org/10.1609/aaai.v32i1.12340
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://openreview.net/forum?id=51tMpvPNSm
https://openreview.net/forum?id=51tMpvPNSm
https://openreview.net/forum?id=51tMpvPNSm
https://doi.org/10.18653/v1/2024.emnlp-main.1007
https://doi.org/10.18653/v1/2024.emnlp-main.1007
https://doi.org/10.18653/v1/2021.acl-long.84
https://doi.org/10.18653/v1/2021.acl-long.84
https://doi.org/10.18653/v1/2025.acl-long.647
https://doi.org/10.18653/v1/2025.acl-long.647
https://doi.org/10.18653/v1/2025.acl-long.647
https://aclanthology.org/2024.lrec-main.47/
https://aclanthology.org/2024.lrec-main.47/
https://doi.org/10.18653/v1/2022.findings-acl.289
https://doi.org/10.18653/v1/2022.findings-acl.289
https://doi.org/10.18653/v1/2022.findings-acl.289
https://doi.org/10.18653/v1/2023.acl-long.634
https://doi.org/10.18653/v1/2023.acl-long.634


Jianyi Zhang, Da-Cheng Juan, Cyrus Rashtchian, Chun-
Sung Ferng, Heinrich Jiang, and Yiran Chen. 2024a.
SLED: Self logits evolution decoding for improving
factuality in large language models. In The Thirty-
eighth Annual Conference on Neural Information
Processing Systems.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024b. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385.

A Details of Decoding Strategies

Greedy Search (Greedy) is the simplest decod-
ing strategy, where at each time step t the token
with the highest conditional probability is selected.
Formally, given an input x and the previously gen-
erated sequence y<t = {y1, y2, . . . , yt−1}, the
next token yt is chosen as:

yt = argmax
y∈V

P (y | y<t,x) (2)

where V is the vocabulary. While Greedy is compu-
tationally efficient, its myopic nature may lead to
suboptimal overall sequences since only the locally
optimal choice is considered at each step.

Beam Search (BS) (Freitag and Al-Onaizan,
2017) addresses the limitations of Greedy by keep-
ing track of the top-k highest-scoring partial se-
quences (beams) at each time step. At step t, each
beam y

(i)
<t is extended with every possible next to-

ken y ∈ V , producing candidates scored by the
cumulative log-probability:

score(y
(i)
1:t) =

t∑

τ=1

logP
(
yτ | y(i)

<τ ,x
)
. (3)

Only the top-k candidates are retained as beams
for the next time step, trading off exploration and ef-
ficiency. BS often yields higher-quality sequences
than Greedy but can still suffer from low diversity
and search errors when k is small. In this study, we
tuned beam size among 3, 5, and 7.

Diverse Beam Search (DBS) (Vijayakumar
et al., 2018) augments classical beam search with
an explicit diversity prior. All k hypotheses are par-
titioned into G groups of equal size k/G. At every
decoding step, the algorithm first ranks candidates
inside each group and then retains the top-k/G
sequences per group, rather than the global top-k.
The score assigned to a partial sequence (y<t, y)
belonging to group g is

score
(
y<t, y

)
= logP

(
y<t, y,

∣∣,x
)

− λ
∑

g′<g

∆
(
(y<t, y),Bg′

t

)
, (4)

where Bg′
t denotes the beam of group g′ at time

t and ∆(·, ·) is a similarity measure (e.g., n-gram
overlap). DBS encourages beams to explore differ-
ent regions of the search space, improving output
variety. In this study, we tuned beam size k and
group size G among (3, 3), (6, 3), (9, 3), (6, 6), and
(12, 6).

Contrastive Search (CS) (Su et al., 2022; Su
and Collier, 2023) assumes that the language model
(LM) embeds tokens in an approximately isotropic
space. Given the context (x,y<t), it selects the
next token by jointly maximizing likelihood and
dissimilarity to the preceding hidden states:

yt = argmax
y∈Vk

[
(1− α)P (y | x,y<t)

− α max
1≤j≤t−1

s
(
hy, hxj

)]
,

(5)

where Vk is the top-k candidate set, h are hidden
states, and s is usually the cosine similarity. The
presence of the second term causes the language
model to avoid tokens that are too similar to pre-
vious ones, reducing degeneration. We select the
best α among 0.2, 0.4, and 0.6.

Contrastive Decoding (CD) (Li et al., 2023)
similarly incorporates a contrastive penalty but di-
rectly modifies token-level logits by using an am-
ateur language model. For each candidate token
y:

score
(
y<t, y

)
= (1− β)ze

y − βza
y , (6)

where ze
y and za

y are logits in the expert language
model and the amateur language model, respec-
tively. In addition, CD introduces the following
vocabulary constraints to penalize scores by taking
into account the grammatical ability and common-
sense of the amateur language model:

Vhead
(
x,y<t

)
= {y ∈ V : P e(y | y<t,x)

> αmaxP a(y | y<t,x)},
(7)

where P e and P a are softmax probability in the
expert language model and the amateur language
model, respectively. We set α = 0.1, and search
β ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
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Frustratingly Simple Decoding (FSD) (Yang
et al., 2024) contrasts an LM (P base) with an on-
the-fly anti-LM (P anti) estimated from the current
prefix to penalize the repetition. Two instantiations
exist: an n-gram model (FSD) and a vectorized
model (FSD-vec).

The selection rule is

P FSD(y | y<t,x) = (1− α)P base(y | y<t,x)

− αP anti(y | y<t,x)

(8)

evaluated over Vn, the top-n tokens under P base.
We tuned n ∈ {3, 5} and α ∈ {0.3, 0.5, 0.7}.

Decoding by Contrastive Layers (DoLa)
(Chuang et al., 2024) is a decoding strategy
designed to enhance the factuality of language
models. This method derives a more factual
next-token distribution by contrasting the standard
next-token prediction obtained from the model’s
final layer with a prediction from an earlier, or
"premature," layer. Specifically, DoLa utilizes
the difference between the logits of the final
layer and those of a premature layer to adjust the
distribution, thereby encouraging the selection of
higher-confidence words.

The selection of the premature layer is dynamic
and employs the Jensen-Shannon Divergence (JSD)
as a metric to measure the distance between next-
token probability distributions. From a set of candi-
date premature layers, the one exhibiting the largest
JSD with the final layer’s probability distribution is
chosen. This approach aims to identify a layer that
contains significantly different information com-
pared to the final layer, thereby emphasizing their
contrast. For Llama2-7B and Llama3-8B series,
we selected the premature layers from [0, 16) and
[16, 32).

Self-Logits Evolution Decoding (SLED)
(Zhang et al., 2024a) improves the factuality
of LLM outputs by evolving the model’s logits
during decoding to dynamically adjust the token
selection process. SLED achieves this by first
contrasting the logits from the model’s final layer
with those from selected earlier, "premature,"
layers to unearth potential factual inconsistencies
or underexpressed knowledge. It then employs
an approximate gradient-based approach, where
this identified latent knowledge guides a "self-
evolution" or refinement process of the output

Task Dataset N

QA TriviaQA (Joshi et al., 2017) 17,210
TS XSum (Narayan et al., 2018) 11,334
MT WMT19 (De-En) (Foundation, 2019) 2,998
CG HumanEval (Chen et al., 2021) 164

Table 5: Dataset statistics.

probability distribution. This iterative adjustment
aims to steer the generation towards more factually
accurate tokens, effectively improving truthfulness
while maintaining fluency and incurring negligible
latency. Consequently, SLED helps LLMs
produce more reliable and factually sound text by
better aligning their outputs with their inherent
knowledge.

In SLED, the main hyperparameters are the top
n tokens compared to the logit and the evolution
rate α in the logit evolution. We search n ∈ {5, 10}
and α ∈ {0.1, 1.0, 5.0}.

B Details of Datasets

Dataset statistics are in Table 5.

TriviaQA (Joshi et al., 2017) is a large-scale
reading-comprehension dataset including ques-
tion–answer pairs authored independently of ev-
idence documents. Each question is paired with
supporting context drawn from both Wikipedia and
diverse web sources, enabling evaluation of open-
domain and extractive QA systems.

XSum (Narayan et al., 2018) is a large-scale,
single-document abstractive summarization dataset
consisting of BBC news articles paired with profes-
sionally written, single-sentence summaries.

WMT19 (Foundation, 2019) refers to the train-
ing and evaluation data released for the 2019 Work-
shop on Machine Translation shared task, which is
designed to benchmark neural machine translation
systems. It includes distinct development and test
sets to measure translation for news.

HumanEval (Chen et al., 2021) is a collection
of 164 programming problems, each paired with a
reference implementation and a suite of unit tests.

C Instruction Templates

The instruction templates for each task are listed
from Figure 3 to Figure 6.
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# Question: {question}

# Answer:

Figure 3: The prompt for QA.

Article: {text}

Summarize the above article in 1 sentence.

Figure 4: The prompt for TS.

Translate the following sentence from German to En-
glish.
{text}

Figure 5: The prompt for MT.

Please complete the remaining Python function code
based on the following docstring content.
{text}

Figure 6: The prompt for CG.

Model Method TriviaQA XSum WMT19 HumanEval
RougeL RougeL AlignScore BLEU Comet AlignScore Pass@1

L
la

m
a2

-7
B

-C
ha

t

Greedy 11.36 15.08 17.43 17.44 66.62 77.68 34.76
BS 12.16 17.82 18.88 15.31 62.17 78.38 29.88
DBS 10.91 17.81 18.57 15.50 62.56 78.40 31.10
CS 10.45 17.79 17.40 18.88 68.26 77.69 37.80
CD 5.03 14.95 17.65 12.04 57.12 62.33 15.85
FSD 4.98 16.97 18.01 10.49 54.72 78.10 34.76
FSD-vec 3.37 17.06 18.40 11.29 54.68 78.27 17.07
DoLa 11.60 17.86 17.89 17.28 66.00 77.80 36.59
SLED 10.91 – – 14.22 63.85 78.65 46.95

L
la

m
a3

-8
B

-R
L

H
F Greedy 5.75 31.19 76.71 83.07 16.86 16.47 39.63

BS 5.70 15.02 52.13 84.35 13.92 21.19 18.90
DBS 5.61 15.28 52.68 84.47 14.03 21.10 25.00
CS 5.88 30.31 75.73 83.17 16.83 16.74 42.68
CD 5.09 6.90 54.54 57.97 17.24 18.09 28.05
DoLa 5.86 35.03 80.93 83.64 17.33 16.71 33.54

L
la

m
a3

-8
B

-S
FT

Greedy 53.00 20.60 10.37 40.16 86.04 83.05 48.17
BS 17.14 20.07 12.73 18.99 56.97 85.19 7.93
DBS 18.11 20.11 12.53 18.90 56.94 84.98 20.12
CS 52.50 20.46 10.55 40.11 86.01 82.78 47.56
CD 33.16 20.99 12.38 7.14 56.40 59.47 23.78
DoLa 55.69 21.13 10.60 41.28 86.16 83.65 49.39

Table 6: Quality scores for every task and generation
metric pair in Llama2-7B-Chat, Llama3-8B-RLHF and
Llama3-8B-SFT.

D Quality Scores

Results for each quality scores are listed in Table 6.

E Additional Results on Qwen2.5 Series

Table 7 and Table 8 present the UE performance
achieved with Qwen2.5-7B-Instruct (Qwen et al.,
2025)12 and Qwen2.5-14B-Instruct,13 respectively.
For CD, we used Qwen2.5-0.5B-Instruct14 as the
amateur model.

12https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct

13https://huggingface.co/Qwen/Qwen2.
5-14B-Instruct

14https://huggingface.co/Qwen/Qwen2.5-0.
5B-Instruct

F Additional Results on
Llama3-13B-Chat

Table 9 presents the UE performance achieved with
Llama2-13B-Chat.15

G Experiments on Stochastic Decoding
Strategies

To succinctly evaluate the uncertainty impact of
the stochastic decoding strategies omitted from
our comprehensive experiments in Section 2, we
experimented on Temperature Sampling (T ∈
{0.8, 1.0, 1.2}) and Top-p Sampling (Holtzman
et al., 2020) (p = 0.9). The results in Table 10
show that UE performance remains nearly identical
to Greedy, suggesting that introducing stochasticity
confers little reliability benefit.

H Additional Results on Advanced UE
Method

We combine TokenSAR, a variant of Shifting At-
tention to Relevance (Duan et al., 2024), with
each decoding strategy and show the results in Ta-
ble 11. PRRAlignScore scores from Greedy and
CS, and FSD-TokenSAR in MT setting outperform
MSP, while the rest degrade. Existing benchmark-
ing (Vashurin et al., 2024) that comprehensively
investigated UE performance has shown that sim-
ple MSP is superior, and these results are consistent
with those of the previous study.

I Details of Implementation

We used a single NVIDIA A100 40GB for all
experiments. Decoding strategies have been
implemented with reference to Hugging Face
Transformers (Wolf et al., 2020) and official
implementations.161718 Quality metrics, uncer-
tainty metrics, and uncertainty estimation meth-
ods have been implemented with reference to LM-
polygraph (Fadeeva et al., 2023).

J Settings of Hyperparameters

The optimal hyperparameters for each decoding
strategy across different datasets and models are
listed from Table 12 to Table 16.

15https://huggingface.co/meta-llama/
Llama-2-13b-chat-hf

16https://github.com/XiangLi1999/
ContrastiveDecoding

17https://github.com/LHRYANG/FSD
18https://github.com/JayZhang42/SLED/
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Method MSP MTE
TriviaQA XSum WMT19 HumanEval TriviaQA XSum WMT19 HumanEval
RougeL RougeL AlignScore BLEU Comet AlignScore Pass@1 Mean PRR RougeL RougeL AlignScore BLEU Comet AlignScore Pass@1 Mean PRR

Greedy 67.56 10.77 -0.32 35.33 56.03 28.55 -9.63 26.90 60.90 8.00 5.11 43.56 59.06 30.34 -9.40 28.22
BS 62.90 10.29 -2.54 32.31 52.00 25.41 0.36 25.82 56.84 5.99 3.26 40.43 53.98 28.06 0.84 27.06
DBS 63.80 4.42 -10.46 5.24 29.51 14.28 -9.27 13.93 39.29 6.87 5.34 20.08 31.59 10.32 0.64 16.30
CS 67.59 11.08 0.03 35.36 56.58 28.38 -8.15 27.27 60.93 8.22 5.38 43.60 59.56 31.08 -5.86 28.99
CD -21.87 -23.64 4.11 17.27 -32.21 -19.28 -9.90 -12.22 48.36 11.33 3.84 29.67 0.27 8.81 -9.84 13.21
DoLa 64.58 9.46 3.58 34.63 54.37 24.08 -8.01 26.10 58.34 7.09 5.09 38.10 52.95 23.65 -10.56 24.95

Table 7: PRRs for every task and generation metric pair in Qwen2.5-7B-Instruct.

Method MSP MTE
TriviaQA WMT19 HumanEval TriviaQA WMT19 HumanEval
RougeL BLEU Comet AlignScore Pass@1 Mean PRR RougeL BLEU Comet AlignScore Pass@1 Mean PRR

Greedy 71.44 41.37 67.48 27.83 2.25 42.07 66.81 47.28 65.93 31.46 6.31 43.56
BS 65.55 37.89 62.51 23.18 9.18 39.66 62.65 43.19 58.79 27.19 13.16 41.00
DBS 68.04 13.62 48.34 10.64 -7.73 26.58 42.15 19.45 31.45 12.08 -7.94 19.44
CS 71.63 41.60 67.85 27.35 5.18 42.72 66.90 47.53 66.37 30.97 4.69 43.29
CD -9.90 17.63 21.30 -19.60 8.98 3.68 18.89 22.28 8.87 13.14 11.95 15.03
DoLa 65.00 39.96 65.36 25.84 13.31 41.89 58.94 41.14 62.21 26.52 13.17 40.40

Table 8: PRRs for every task and generation metric pair in Qwen2.5-14B-Instruct.

Method MSP MTE
TriviaQA WMT19 HumanEval TriviaQA WMT19 HumanEval
RougeL BLEU Comet AlignScore Pass@1 Mean PRR RougeL BLEU Comet AlignScore Pass@1 Mean PRR

Greedy 57.08 32.92 49.87 29.15 -17.94 30.22 39.44 45.92 46.89 31.25 -16.58 29.38
BS 56.27 43.8 62.42 30.28 -16.8 35.19 32.22 33.37 26.25 21.47 -16.44 19.37

DBS 53.92 -44.82 60.03 18.71 4.57 18.48 8.52 -34.45 -66.69 -17.64 4.29 -21.19
CS 57.85 41.55 60.64 29.33 15.89 41.05 38.0 43.59 45.38 31.09 4.65 32.54
CD 6.43 42.49 56.25 59.3 -20.76 28.74 11.99 50.68 62.55 65.63 -25.72 33.03
FSD 20.56 56.52 62.52 70.69 -13.01 39.46 20.78 57.71 63.04 70.52 -11.55 40.1

FSD-vec 19.86 56.15 64.03 70.82 -14.51 39.27 20.23 57.36 64.55 70.78 -13.03 39.98
DoLa 55.64 44.0 61.33 31.38 -20.25 34.42 30.92 32.92 23.44 23.95 -20.77 18.09

Table 9: PRRs for every task and generation metric pair in Llama2-13B-Chat.

Method MSP MTE
TriviaQA WMT19 HumanEval TriviaQA WMT19 HumanEval
RougeL BLEU Comet AlignScore Pass@1 Mean PRR RougeL BLEU Comet AlignScore Pass@1 Mean PRR

Greedy 62.97 38.74 46.48 19.02 -11.03 31.24 49.13 31.24 25.03 21.69 -13.49 22.72
Temperature 63.73 38.45 46.19 19.35 -13.92 30.76 51.22 30.15 23.69 21.34 -14.00 22.48

Top-p 61.82 38.65 46.79 19.00 -11.34 30.98 51.16 30.92 26.01 21.27 -13.32 23.21

Table 10: PRRs for every task and generation metric pair in Llama2-7B-Chat with Temperature Sampling and Top-p
sampling.

Method TriviaQA WMT19
RougeL BLEU Comet AlignScore

Greedy-MSP 62.97 38.74 46.48 19.02
CS-MSP 63.73 36.94 41.99 19.58

FSD-MSP 33.84 31.82 14.04 8.15
DoLa-MSP 61.15 38.78 49.15 16.74

Greedy-TokenSAR 51.77 29.26 24.11 21.85
CS-TokenSAR 51.45 30.83 26.93 23.45

FSD-TokenSAR -2.14 58.36 59.46 63.68
DoLa-TokenSAR 50.19 28.16 23.40 15.32

Table 11: PRRs for every task and generation metric
pair in Llama2-7B-Chat with TokenSAR (Duan et al.,
2024).

Model Method TriviaQA XSum WMT19 HumanEval
RougeL RougeL AlignScore BLEU Comet AlignScore Pass@1

L
la

m
a2

-7
B

-C
ha

t

Greedy - - - - - - -
BS 3 3 7 3 3 5 3

DBS 9_3 9_3 6_3 6_3 3_3 3_3 9_3
CS 0.2 0.2 0.2 0.6 0.6 0.6 0.6
CD 0.7 0.5 0.5 0.3 0.1 0.1 0.5
FSD 5_0.7 3_0.3 3_0.5 3_0.3 3_0.3 5_0.5 5_0.3

FSD-vec 5_0.5 3_0.3 5_0.5 3_0.5 3_0.5 3_0.5 3_0.5
DoLa [16, 32) [0, 16) [16, 32) [0, 16) [0, 16) [0, 16) [16, 32)
SLED 5.0_5 1.0_5 1.0_5 0.1_5 5.0_10 0.1_5 5.0_5

L
la

m
a3

-8
B

-R
L

H
F Greedy - - - - - - -

BS 7 3 5 3 3 3 3
DBS 9_3 3_3 9_3 12_6 3_3 6_3 3_3
CS 0.6 0.2 0.4 0.2 0.2 0.2 0.6
CD 0.3 0.5 0.5 0.5 0.5 0.5 0.1

DoLa [16, 32) [16, 32) [16, 32) [0, 16) [16, 32) [16, 32) [0, 16)

Z
ep

hy
r-

7B
-β

Greedy - - - - - - -
BS 7 7 5 3 3 3 5

DBS 9_3 9_3 9_3 9_3 9_3 3_3 3_3
CS 0.2 0.2 0.4 0.4 0.6 0.4 0.4

FSD 3_0.3 3_0.3 3_0.3 5_0.3 5_0.5 5_0.5 5_0.5
FSD-vec 3_0.3 3_0.3 3_0.3 5_0.3 5_0.3 5_0.5 3_0.5

DoLa [0, 16) [0, 16) [0, 16) [0, 16) [0, 16) [16, 32) [0, 16)

Table 12: Optimal hyperparameters in Table 1.

Method TriviaQA XSum WMT19 HumanEval
RougeL RougeL AlignScore BLEU Comet AlignScore Pass@1

Greedy - - - - - - -
BS 7 3 5 3 3 3 3

DBS 9_3 3_3 9_3 12_6 3_3 6_3 3_3
CS 0.6 0.2 0.4 0.2 0.2 0.2 0.6
CD 0.3 0.5 0.5 0.5 0.5 0.5 0.1

DoLa [16, 32) [16, 32) [16, 32) [0, 16) [16, 32) [16, 32) [0, 16)

Table 13: Optimal hyperparameters in Llama3-8B-SFT.

Method TriviaQA XSum WMT19 HumanEval
RougeL RougeL AlignScore BLEU Comet AlignScore Pass@1

Greedy - - - - - - -
BS 7 3 5 5 5 5 3

DBS 9_3 9_3 9_3 6_3 9_3 6_3 9_3
CS 0.6 0.4 0.2 0.4 0.2 0.2 0.6
CD 0.1 0.5 0.7 0.7 0.3 0.5 0.5
FSD 5_0.7 5_0.5 5_0.5 3_0.5 5_0.5 5_0.3 3_0.7

FSD-vec 3_0.7 5_0.5 3_0.5 5_0.3 3_0.7 5_0.3 5_0.5
DoLa [0, 16) [0, 16) [16, 32) [0, 16) [0, 16) [16, 32) [0, 16)

Table 14: Optimal hyperparameters in Table 7.

Method TriviaQA WMT19 HumanEval
RougeL BLEU Comet AlignScore Pass@1

Greedy - - - - -
BS 7 5 5 7 5

DBS 9_3 9_3 9_3 9_3 6_6
CS 0.2 0.2 0.2 0.2 0.4
CD 0.1 0.1 0.3 0.3 0.5

DoLa [16, 32) [0, 16) [0, 16) [0, 16) [16, 32)

Table 15: Optimal hyperparameters in Table 8.

Method TriviaQA WMT19 HumanEval
RougeL BLEU Comet AlignScore Pass@1

Greedy - - - - -
BS 3 3 3 3 5

DBS 6_3 6_3 6_3 6_6 6_6
CS 0.2 0.6 0.6 0.4 0.6
CD 0.1 0.1 0.1 0.1 0.1

DoLa [0, 16) [0, 16) [0, 16) [0, 16) [16, 32)

Table 16: Optimal hyperparameters in Table 9.
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