RadialRouter: Structured Representation for Efficient and Robust Large
Language Models Routing

Ruihan Jin Pengpeng Shao*

Zhengqi Wen® Jinyang Wu

Mingkuan Feng Shuai Zhang Jianhua Tao
Department of Automation, Tsinghua University, Beijing, China

jinrh24@mails.tsinghua.edu.cn

Abstract

The rapid advancements in large language mod-
els (LLMs) have led to the emergence of rout-
ing techniques, which aim to efficiently select
the optimal LLM from diverse candidates to
tackle specific tasks, optimizing performance
while reducing costs. Current LLM routing
methods are limited in effectiveness due to
insufficient exploration of the intrinsic con-
nection between user queries and the charac-
teristics of LLMs. To address this issue, in
this paper, we present RadialRouter, a novel
framework for LLM routing which employs a
lightweight Transformer-based backbone with
a radial structure named RadialFormer to ar-
ticulate the query-LLMs relationship. The op-
timal LLM selection is performed based on
the final states of RadialFormer. The pipeline
is further refined by an objective function that
combines Kullback-Leibler divergence with the
query-query contrastive loss to enhance robust-
ness. Experimental results on RouterBench
show that RadialRouter significantly outper-
forms existing routing methods by 9.2% and
5.8% in the Balance and Cost First scenarios,
respectively. Additionally, its adaptability to-
ward different performance-cost trade-offs and
the dynamic LLM pool demonstrates practical
application potential.

1 Introduction

Recent advances in natural language processing,
significantly driven by the development of large
language models (LLMs), has opened new fron-
tiers across numerous applications. LLMs demon-
strate outstanding performance on various tasks,
including mathematical problem-solving (Romera-
Paredes et al., 2024), commonsense reasoning
(Zhao et al., 2023), and code generation (Wu et al.,
2023). The growing reliance on LLMs gives rise to
the concept of LLM ensemble (Chen et al., 2025),

*Corresponding authors.

{ppshao, zgwen}@tsinghua.edu.cn

LLM Chain

predict

fl\arge model 3

! small model |
. LJI‘
bl |

LLMs-pair router

:

m [

!
answer
LLM cascade

Structured query-LLM representation

-

(11 1| o
(@ M » ~ m)

Similariry-based router

RadialRouter(Ours)

Figure 1: Paradigm comparison between different
LLM routing methods. Existing methods lack the mod-
eling of the interrelation between the query and LLMs,
while the proposed RadialRouter unifies the routing pro-
cess in a structured representation.

which integrates multiple LLMs to establish a sys-
tem capable of multitasking, thereby generating
more accurate and robust responses to user inputs.
Through this collaborative approach, practition-
ers can leverage the unique strengths of different
LLMs, potentially improving the overall perfor-
mance and reliability in addressing diverse require-
ments. However, as the size and complexity of
LLM:s increase, the challenges of deploying LLM
ensemble —such as computational cost, latency,
and scalability —also intensify.

To address these challenges, LLM routing is ex-
plored to dynamically assign a specific LLM in the
LLM ensemble to user queries. As shown in Fig.1,
early attempts (Ding et al., 2024; Ong et al., 2024)
employ a binary score router to decide whether to
select a smaller LLM or a larger one for a given
query. (Chen et al., 2023) utilizes a router to guide
cascaded LLMs for generating responses. Further
research (Chen et al., 2024) introduces similarity
matching to align the query with LLMs and select

14587

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 14587-14600
November 4-9, 2025 ©2025 Association for Computational Linguistics

the most appropriate LLM. However, these meth-
ods are limited in the following aspects: 1) They
narrow the routing sorely to identify the optimal
LLM, failing to capture the intrinsic connection
between the query and LLMs, which undermines
their effectiveness in achieving ideal routing re-
sults. 2) The exclusive dependence on the features
extracted by the BERT-based text encoder hinders
their ability to leverage the contextual information
and prevents a nuanced understanding of the under-
lying relationships and constraining the efficiency
of routing. 3) Existing methods that limit routing
to a fixed number of LLMs struggle to adapt to a
dynamically evolving pool of LLMs. 4) Certain
approaches neglect the actual requirements of the
task, rendering them ineffective in scenarios that
necessitate a simultaneous consideration of both
performance and cost.

In this paper, we propose a novel LLM routing
approach named RadialRouter, which leverages
a Transformer-based architecture to enhance per-
formance for efficient and robust LLM routing. To
represent the interrelationship between the query
and LLMs, we propose RadialFormer as the back-
bone of RadialRouter and incorporate the structure
consisting of a relay node and n satellite nodes.
During update, these nodes are processed through
the multi-head attention mechanism. Compared
with the standard Transformer, RadialFormer re-
duces the computational complexity from O(1%d)
to O(ld) given the sequence length [and the di-
mension of the hidden state d. The optimal LLM
selection is performed based on the final states
of satellite nodes. To guide the selection and en-
hance comprehensive representation, we employ a
Kullback-Leibler divergence loss for supervision.
Additionally, we cluster the queries into groups and
introduce a query-query contrastive loss, which fos-
ters the generation of similar embeddings for se-
mantically related queries, facilitating robust LLM
routing.

We conduct experiments on challenging Router-
Bench (Hu et al., 2024) encompassing 4 task do-
mains (commonsense reasoning, knowledge-based
language understanding, math, and coding) to eval-
uate the proposed RadialRouter in three scenarios.
Extensive experiments demonstrate that Radial-
Router efficiently harnesses the interrelationship of
routing and outperforms existing routing methods
by a large margin. Furthermore, the adaptability
of RadialRouter toward different performance-cost
trade-offs and the dynamic LLM pool is verified

through extended experiments.
Our contributions are summarized as follows:

* We propose RadialRouter, a novel framework
that leverages a Transformer-based architec-
ture to dynamically route user queries to suit-
able LLMs.

* We introduce a lightweight architecture Ra-
dialFormer as the backbone of RadialRouter
to capture the interrelationship between the
query and LLMs in routing. To improve the
robustness of routing, we incorporate con-
trastive loss in the optimization of Radial-
Router.

» Experimental results show that RadialRouter
outperforms baseline routing methods and
achieves efficient and robust routing in three
scenarios with different performance-cost
trade-offs.

2 Related Work

LLM Ensemble The remarkable performance
exhibited by a single LLM, coupled with the in-
creasing demand for enhanced cross-domain capa-
bilities, has catalyzed the emergence of the con-
cept of LLM ensemble. Majority voting (Wang
et al., 2022; Li et al., 2024) is a simple yet effective
method to achieve the LLM ensemble. (Jiang et al.,
2023) proposes a supervised ensembling method
to produce enhanced results by synthesizing the
outputs of all LLMs. (Du et al., 2023) develops a
debate framework for LLM collaboration. LLM
cascading (Chen et al., 2023; Yue et al., 2023;
Gupta et al., 2024; Nie et al., 2024) adopts a serial-
ized model architecture and halts when the output
quality is satisfied. (Wang et al., 2023) tackles
the fusion-of-experts problem by combining out-
puts from models with diverse knowledge domains.
These approaches frequently exhibit considerable
computational complexity, leading to substantial
time latency and cost in practical applications. In
contrast, our RadialRouter is highly efficient, as
it requires only a single invocation of the routed
LLM.

LLM Routing Similar to Mixture-of-Expert
(MoE) approaches (Jacobs et al., 1991; Collobert
et al., 2003; Jiang et al., 2024), LLM routing is
designed to identify the most suitable LLM for a
query, allowing the lightweight activation of LLM
ensemble. (Shnitzer et al., 2023) addresses the

14588

l [respond

Query | “Which best describes how the sun might compare to
% a different-sized star, if they were right next to each

| RadialFormer
X T\

/RadiaIFormerLayer

other?”
|

e
\ Encoder /

——
relay node r Lg—q

RadialFormer

satellite nodes

\\\\\\

Step 1 | embed

A\ @ @

Claude GPT Llama i ’

LLM Pool
&=

A 4

(a) The framework of our proposed RadialRouter. RadialRouter captures the in-
terrelation between the query and LLMs through a lightweight Transformer-based
architecture. It selects the optimal LLM based on the final states of satellite nodes,
while optimizing the pipeline through an objective function that combines Kullback-

Leibler divergence and query-query contrastive loss.

Step1 Feature Initialization
Step 2 Update of RadialFormer o J
Step 3 Optimal LLM Selection

[J Relay/Query QO Satellite/Model ,* MHAttention

(b) Connections of one layer in Radi-
alFormer, where each satellite node is
exclusively connected to the relay node
to form a radial configuration.

Figure 2: Overview of RadialRouter methodology.

LLM selection problem with a series of binary clas-
sification tasks. ZOOTER (Lu et al., 2023) devel-
ops a reward-guided method to train the routing
function. HybridLLM (Ding et al., 2024) proposes
a hybrid approach to save cost and maintain quality
leveraging LLM pairs. The framework proposed in
RouteLLM (Ong et al., 2024) dynamically routes
between a strong model and a weak model. Rou-
terDC (Chen et al., 2024) improves the routing
performance by introducing dual contrastive learn-
ing. Recent advancements in LLM routing utilizing
graph neural networks (Feng et al., 2024) and re-
inforcement learning (Sikeridis et al., 2024; Yue
et al., 2025) show significant promise. Different
from the aforementioned methods, the proposed
RadialRouter leverages a Transformer-based back-
bone to achieve performance-cost balanced LLM
routing.

3 Method

We consider a set of candidate LLMs {LLM; :
i =1,...n}, which can include local open-source
LLMs and off-the-shelf LLMs hosted on cloud plat-
forms. Our goal is to learn a router to select the
most suitable LLM for each user query. For each
round, the router receives the user query x as in-
put and chooses the optimal LLM; for response,
balancing high performance with minimal cost.

In this section, we propose RadialRouter, a
framework that leverages a Transformer-based ar-
chitecture for query-based LLM routing. Fig.2a

shows the framework of the proposed method. We
present RadialFormer, a lightweight Transformer-
based architecture as the backbone of routing
(Sec.3.1). Based on the update of RadialFormer,
we perform optimal LLM selection (Sec.3.2) and
introduce a contrastive loss to optimize the router
(Sec.3.3). The overall algorithm of RadialRouter is
illustrated in Alg.2 of Appendix B.

3.1 RadialFormer Architecture

The key to LLM routing lies in designing a scor-
ing mechanism to measure the potential capacity
of LLMs on user queries. The backbone of the
router necessitates the efficient representation of
the query and LLMs. In this work, we present a
novel Transformer-based architecture named Radi-
alFormer, which builds upon the foundational de-
sign of the Star-Transformer (Guo et al., 2019), in-
corporating specific enhancements tailored to LLM
routing tasks.

The RadialFormer consists of one relay node and
n satellite nodes, representing the input user query
and n candidate LLMs, respectively. The topol-
ogy of the model is simplified for computational
efficiency, where each satellite node is exclusively
connected to the relay node, forming a radial con-
figuration as shown in Fig.2b. Through the compu-
tational mechanisms employed by RadialFormer,
the interrelationship between the query and LLMs
is comprehensively captured, providing valuable
insights for effective routing.

14589

Update of RadialFormer Let r! € R'*¢ de-
notes the state of the relay node, and S* € R**¢
denote the states of the n satellite nodes at time
step t. Given a query x, we initialize the relay node
with the query embedding encoded by a pre-trained
language model as q = £(x) € R'*?. The satel-
lite nodes are initialized with n learnable model
embeddings {m; : i = 1,...,n}.

Based on the multi-head attention mechanism
(Vaswani et al., 2017), the update of RadialFormer
focuses on processing the relay node and the satel-
lite nodes. Details of the multi-head attention mech-
anism are introduced in Appendix A. The satellite
node s; is updated from the contextual information
considering the relay node r'~!, the previous state

t—1

s, ,and the initial state m;:

C! = (™5 my; !, (1)

st = MHAttn(s, !, C!),)

where C! denotes the contextual information of
the i-th satellite node. The relay node r is updated
from all the satellite nodes and its previous state:

r! = MHAttn(r "1, [r' 1 S7)). (3)

The updated satellite nodes are regularized
through layer normalization (Ba et al., 2016). The
update algorithm of RadialFormer is shown in
Alg.1. Given the sequence length [and the di-
mension of the hidden state d, RadialFormer re-
duces the computational complexity of the standard
Transformer from O(I2d) to O(ld). The specific
design of RadialFormer integrates both lightweight
and structured representations of the routing. Sub-
sequent experiments validate that RadialFormer
facilitates efficient and effective LLM routing.

3.2 Optimal LLM Selection

Following the update of RadialFormer, we sent
the final states S” to an MLP network M to pre-
dict the potential score of the corresponding LLM
as si” = M(s!), which comprehensively inte-
grates both the information of the query and LLMs
through RadialFormer. The optimal LLM selec-
tion is performed based on the predicted scores
as i = argmax;(p;), where p; = softmax(s}")
denotes the routing probability.

Given a query x;, the process of LLM selection
is supervised by the scores of the candidate LLMs
scorey; = {sy) :1=1,...,n}, which we identify
in advance (described in Sec.4.3). We employ the

Algorithm 1 Update of RadialFormer
Input: number of layers 7', model embeddings

my, ..., my,, and query embedding q.

1: // Feature Initialization

2: s?,...,s%(—ml,...,mn

3 r0 q

4: fort =1to T do

5: /I Update the satellite nodes

6: fori =1tondo

7: Cl+ [s:hmy; et

8: st + MHAttn(s! ™', C})

9: s! + LayerNorm(ReLU(s!))
10: /I Update the relay node

11: rl « MHAttn(r'~1, [r?=1; 8Y])
12: r! + LayerNorm(ReLU(r"))

Kullback-Leibler divergence loss (Kullback and
Leibler, 1951) for supervision to guide the routing
probability toward the probability derived from the
exponent of true scores, which is defined as:

Lxi(x;0) = Dxw(pllg) = > pilog %,)
i=0 !

where 6 denotes the parameters in RadialRouter,
p and ¢ = softmax(score,) denote the predicted
routing probability and the ground truth probability,
respectively.

3.3 Optimization with Contrastive Loss

Inspired by (Chen et al., 2024), we leverage a con-
trastive loss to provide additional supervision for
the optimization of RadialFormer.

Query-Query Contrastive Loss To enhance the
robustness of LLM routing, we introduce a query-
query contrastive loss, which promotes the abil-
ity of the language encoder in RadialRouter to
generate analogous embeddings for semantically
similar queries. Following (Chen et al., 2024),
we transform the query embeddings encoder by
a pre-trained language model into low-dimensional
vectors by the t-SNE algorithm (Van der Maaten
and Hinton, 2008) and perform k-means clustering
(MacQueen, 1967) to obtain N semantic groups
{K1,...,Kn}. We use the sample-sample con-
trastive loss to promote the generation of embed-
dings, formulated as:

Lyq(x;0) =

sim(&(x),E(xt
log esim(€(x),E(xT)) (5)
esim(€(x),E(xT)) + Z eSIm(E(x),E(x;) ’
t

14590

where x denotes in-group query, x; denotes out-
group queries, and sim(-, -) denotes the cosine sim-
ilarity.

Optimization Objective Finally, we learn the
RadialRouter by minimizing a final objective that
combines the KL divergence and the query-query
contrastive loss as:

0* = arg min

%E Lxi(x;0) + A\Lgq(x;0),
X~ Ltrain
(6)

where A > 0 is a hyper-parameter.

4 Experimental Setup
4.1 Datasets and Candidate LLMs

We conduct experiments on RouterBench(Hu
et al., 2024) to compare our RadialRouter model
with baselines considering both performance and
costs. We select user queries from 6 represen-
tative datasets in RouterBench across 4 task do-
mains: (i) Commonsense Reasoning: Hellaswag
(Zellers et al., 2019), Winogrande (Sakaguchi
et al., 2021), ARC Challenge (Clark et al., 2018);
(i) Knowledge-based Language Understand-
ing: MMLU (Hendrycks et al., 2021); (iii) Math:
GSMS8K (Cobbe et al., 2021); (iv) Coding: MBPP
(Austin et al., 2021). A total of 11 candidate LLMs
are involved in RouterBench, including both open-
source models: Llama-70B-chat (Touvron et al.,
2023), Mixtral-8x7B-chat (Aggarwal et al., 2024),
Yi-34B-chat (Young et al., 2024), Code Llama-34B
(Roziere et al., 2023), Mistral-7B-chat (Jiang et al.,
2023), WizardLM-13B (Xu et al., 2024); and pro-
prietary models: GPT-4, GPT-3.5-turbo (Achiam
etal., 2023), Claude-instant-v1, Claude-v1, Claude-
v2 (Anthropic, 2023).

4.2 Baselines

RadialRouter is compared with the following rout-
ing methods: (i) CosineClassifier trains a cosine
classifier on the query embedding and performs
a multi-class classification on candidate LLMs,
which can be regarded as a simplified version of
(Chen et al., 2024). (ii) HybridLLM (Ding et al.,
2024) trains a language model to categorize queries
to either small or large LLM. Mistral-7B-chat and
GPT-4 are chosen as the small are large LLM, as
they have the highest and lowest cost, respectively.
We use DeBERTa (He et al., 2020) as the router
model. (iii) FrugalGPT (Chen et al., 2023) uses a
pre-trained language model to learn the scores of
the generated results and guide the LLM cascade.

We also use DeBERTa as the prediction model. (iv)
RouterDC (Chen et al., 2024) learns a router to
select the suitable LLM for user queries by dual
contrastive learning. (v) GraphRouter (Feng et al.,
2024) introduces a graph-based framework to lever-
age contextual information among tasks, queries,
and LLMs for routing.

4.3 Maetrics

Metrics that consider both performance and cost
are utilized to evaluate RadialRouter and baselines.

* Performance refers to the average accuracy
of responses across user queries generated by
LLM or LLM ensemble equipped with routing
methods.

* Cost refers to the average LLM inference cost
for generating responses to the queries, which
is expressed in dollars. The statistics of can-
didate LLMs on RouterBench are shown in
Appendix C.

* Score is employed to assess how effectively
a method balances performance and cost: for
an input query x;, the score for LLM; is cal-
culated via

score;j = performanceij — « - cost;, (7)
where « balances the performance-cost trade-
off and a higher « indicates a preference for
saving cost. We define three scenarios: Perfor-
mance First, Balance, and Cost First, which
correspond to different priorities between per-
formance and cost. In three scenarios, we set
the value of o to 0, 0.02, and 0.1, respectively.

4.4 Implementation Details

We adopt mDeBERTaV3-base (He et al., 2021) as
the language encoder £(x). For RadialFormer, the
number of layers 7' is set to 6, with a 768-dim hid-
den dimension. The head number of the multi-head
attention is 4, with each head having a dimension
of 32. The MLP for predicting the routing scores
has a hidden layer dimension of 128. The training
batch size is 64, and the maximum training epoch
is 1000. The router is trained using the AdamW
(Loshchilov and Hutter, 2019) optimizer with a
learning rate of 5 x 10~°. The hyperparameter \
is set to 0.5. All experiments are run on a single
NVIDIA A100 80GB GPU.

14591

Table 1: Comparison of routing methods on RouterBench across three distinct performance-cost trade-off
scenarios. Bold and underline denote the best and second-best results. All methods are evaluated on Performance,
Cost, and Score. The results are taken as the average of each dataset.

Performance First Balance Cost First

Perf.1 Cost]. Score?t Perf.? Cost]. Score?t Perf.t Cost]. Score?t

Best candidate 0.813 7.185 0.813 0.709 0.562 0.698 0.704 0.439 0.660
Random 0.627 1.847 0.627 0.627 1.847 0.590 0.627 1.847 0.442
CosineClassifier 0.662 1.448 0.662 0.584 0.189 0.580 0.566 0.162 0.549
HybridLLM 0.801 6.869 0.801 0.791 6.612 0.659 0.517 0.107 0.506
FrugalGPT 0.813 7.185 0.813 0.671 0.336 0.664 0.549 0.124 0.536
RouterDC 0.815 6.768 0.815 0.716 1.313 0.690 0.718 0.418 0.676
GraphRouter 0.813 7.185 0.813 0.713 0.987 0.693 0.709 0.500 0.659
RadialRouter 0.816 6.759 0.816 0.781 1.179 0.757 0.763 0.476 0.715
Oracle 0.925 1.015 0.925 0.917 0.393 0.909 0.891 0.258 0.865

Table 2: Ablation results on RadialRouter. ‘PF’, ‘BA’,
‘CF’ denote three trade-off scenarios. RF, Star-7, T
denote RadialFormer, Star-Transformer and standard
Transformer, respectively. ‘Time’ refers to the average

routing time per batch in milliseconds. The best results
are highlighted in bold.

Setting PF BA CF Time/ms
RadialRouter 0.816 0.757 0.715 10.7
w/oRF

+ Star-T 0.813 0.751 0.709 13.5

+T 0.815 0.753 0.705 15.8

+ MLP 0.781 0.732 0.701 4.6
w/o Lki 0.548 0442 0.017 -
w/0o Lqq 0.813 0.740 0.711 -

5 Empirical Results

5.1 Comparison with Baselines

We compare RadialRouter with baselines in three
scenarios. The results are shown in Tab.1. Here,
‘Best candidate’ denotes the individual LLM that
achieves the highest score in the corresponding
scenario. ‘Random’ denotes randomly selecting
LLMs from the LLM pool to generate responses
to testing queries. We conduct 50 independent
selections and calculate the average of the results
obtained. ‘Oracle’ denotes an ideal situation where
all queries are routed to the optimal model, which
defines the theoretical upper bound of the routing
performance.

We can observe that RadialRouter substantially
outperforms baseline methods in all three scenar-
i0s. In the Performance First scenario, a relatively
singular optimal LLM (GPT-4) yields similar per-
formance outcomes across the routing methods.
The routing process becomes complex considering
the performance-cost trade-off, leading to greater
disparities among the methods. RadialRouter sur-

L7

AF

A

(b) w/ Lquery-query~

(a) w / o Equery-query-

Figure 3: t-SNE visualization of test query embeddings
extracted by the learned language encoder of Radial-
Router.

passes baselines by at least 9.2% and 5.8% in the
Balance and Cost First scenarios, demonstrating
the superiority of the framework. The adaptabil-
ity of RadialRouter to different performance-cost
trade-offs is further verified in the Sec.5.3.2. Radi-
alRouter significantly exceeds the Best candidate
and achieves at least 82.66% of the Oracle’s score.
This suggests that RadialRouter is capable of im-
plementing flexible routing within the LLM pool to
improve the routing ability. In contrast, the baseline
methods struggle with ineffective representation
of the routing process, which limits their overall
scores. This underscores the importance of discern-
ing the intrinsic connection between the query and
LLMs in the routing task.

5.2 Ablation Studies

We conduct ablation studies to investigate the con-
tribution of each component in RadialRouter as
shown in Tab.2. Here, ‘w/o’ denotes variants with
specific components removed, and ‘4’ denotes
replacing RadialFormer with alternative architec-
tures.

We model the routing problem as a probability
distribution prediciton problem which requires ef-
ficient representation of both queries and LLMs.

14592

0.85

CosineClassifier RouterDC
HybridLLM GraphRouter
FrugalGPT —a— RadialRouter

0.80
0.75
L o.70
R 065
0.60

0.55

0.50

0 0.01 0.02 0.05 0.1
a

(a) Effects of o on routing methods. All methods are
evaluated on Score.

ok CosineClassifier RouterDC
0801 & Oracle HybridLLM GraphRouter
0.85 FrugalGPT —s— RadialRouter
ot 0
O 0.80
c
E 0.75
S 0.70 ’ <
E 0.65
o
0.60 A
0.55 o
0.50
0 1 2 3 2 3 3 7
Cost ($)

(b) Performance-cost trade-offs for routing methods.
Scatter points denote candidate LLMs.

Figure 4: Routing results on RouterBench within different performance-cost trade-offs.

From Tab.2 we can observe that replacing Ra-
dialFormer with alternative architectures (Star-
Transformer (Guo et al., 2019), standard Trans-
former (Vaswani et al., 2017), and MLP) all leads
to performance degradation. The result indicates
the effectiveness of RadialFormer, which maintains
rich semantic information through structured rep-
resentation and facilitates the selection of the op-
timal LLM. In construct, the architecture of Star-
Transformer introduces unnecessary connections
(e.g., Ring Connections), causing interference to
the routing process. We further compare the rout-
ing efficiencies of different architectures. Radial-
Former demonstrates lower time consumption than
both Star-Transformer and standard Transformer,
validating its lightweight design.

Eliminating the KL divergence loss leads to a
substantial drop in metrics, further experiments in
Sec.5.3.1 investigate the impact of loss functions on
the optimal LLM selection. Eliminating the query-
query contrastive loss also leads to a performance
decline. Fig.3 exhibits the t-SNE visualization of
test query embeddings extracted by the learned lan-
guage encoder of RadialRouter. We can observe
that the absence of the query-query contrastive loss
results in mixed query embeddings across different
datasets. By incorporating the contrastive loss, we
achieve well-separated query embeddings, thereby
establishing a robust foundation for effective rout-
ing. Detailed results of ablation studies are shown
in Tab.8 of Appendix D.

5.3 Analysis

5.3.1 Loss Function for LLM Selection

We further compare the Kullback-Leibler diver-
gence loss with two different loss functions for
supervision the optimal LLLM selection.

Table 3: Comparison on different loss functions for
LLM selection. ‘PF’, ‘BA’, ‘CF’ denote three trade-off
scenarios. All settings are evaluated on Score. The best
results are highlighted in bold.

Model Setting PF BA CF
RadialRouter w/ Lk, 0816 0.757 0.715
RadialRouter w/ L. 0.533 0.530 0.520
RadialRouter w/ Lq.L 0.815 0.714 0.676
0.80 7ot
performance
075 score 6757
o 0.696 0.707
o) 0.670 0673 0.673 0-677 g 70.699
— 0.655
-*q-j 0.65 0850 0,850 0-655
= 0.617
0.60] 0.614
0.554
0.5510.533 7550
0.530
0053 5 6 7 8 9 10 11
#LLM

Figure 5: Effects of different numbers of LLMs.

Cross-Entropy Loss Viewing LLM routing as
a multi-class classification problem, the cross-
entropy loss is introduced. In this approach, the
LLM that receives the highest true score is assigned
‘1’, while all other LLMs are assigned ‘0’. The
cross-entropy loss function is defined as:

Loe(x:0) == yilog(pi), ®)
=1

where y; denotes the label for LL.M;, and p denotes
the predicted routing probability.

Query-LLM Contrastive Loss Considering the
objective of routing is to allocate the query to top-
performing LLMs, rather than merely identifying

14593

Table 4: Comparison on routing to an increasing number of candidate LLMs in the Balance scenario, where ‘+°
denotes an increase in the LLM pool. The results are taken as the average of each dataset.

#LILM Performance? Cost] Scoret
WizardLM-13B-V1.2 1 0.5331 0.166 0.530
+ code-llama-34b-chat 2 0.5539 0.178 0.550
+ llama-2-70b-chat 3 0.6105 0.468 0.601
+ claude-v2 4 0.6550 2.348 0.608
+ claude-v1 5 0.6696 2.758 0.614
+ claude-instant-v1 6 0.6731 1.134 0.650
+ mistral-7b-chat 7 0.6731 1.134 0.650
+ mixtral-8x7b-chat 8 0.6769 1.109 0.655
+ Yi-34B-Chat 9 0.6964 0.421 0.688
+ gpt-3.5-turbo-1106 10 0.7068 0.404 0.699
+ gpt-4-1106-preview 11 0.7810 1.179 0.757

the optimal model, (Chen et al., 2024) introduces
the sample-LLLM contrastive loss to learn the router.
‘We make minor modifications to it within the Ra-
dialRouter framework. Based on the true scores
obtained by Eq.7, we construct the LLMs index set
T and 7 as the indices of LLMs corresponding to
the top-K and bottom-K scores, respectively. The
query-LLM contrastive loss is then defined as:
ePi

,Cq_L(X; 9) = Z — 10g m, (9)

jel
where p denotes the predicted routing probability,
¢ and j denote the index of LLLMs corresponding to
the top-K and bottom-K scores, respectively.
Tab.3 displays the results of comparison. Train-
ing RadialRouter with Lgp yields the highest
scores in all three scenarios, as can be observed.
From a macroscopic perspective, Lxr, Le and
L1 address the routing problem out of distinct
viewpoints: probabilistic distribution fitting, multi-
class classification, and contrastive learning, re-
spectively. The superiority of the KL divergence
underscores the effectiveness of framing the rout-
ing problem through the lens of probabilistic dis-
tribution fitting, which fosters a comprehensive un-
derstanding of the intrinsic connection between the
query and LLMs in the routing process, as opposed
to focusing merely on a limited number of dom-
inant LLMs. This perspective aligns seamlessly
with the design principles of RadialFormer, allow-
ing for the accomplishment of both efficient and
robust routing.

5.3.2 Adaptability to Performance-Cost
Trade-Offs

Beyond the three aforementioned scenarios, we as-
sess the adaptability of RadialRouter and baseline
routing methods to performance-cost trade-offs by

varying the parameter o in Eq.7. Fig.4a shows the
scores achieved by routing methods within differ-
ent a, where RadialRouter achieves the highest
scores in different trade-offs, significantly outper-
forming baseline routing methods. Fig.4b depicts
the performance-cost curves of routing methods.
Our observation indicate that RadialRouter is ca-
pable to obtain improved performance while main-
taining comparable costs to baselines, leading to
a robust performance-cost balance. This analysis
substantiates the adaptability of RadialRouter to
performance-cost trade-offs, which highlights its
practical applicability. Detailed results are shown
in Tab.9 of Appendix E.

5.3.3 Routing to Different Numbers of LLMs

We evaluate the efficiency of RadialRouter with
a dynamic LL.M pool by gradually increasing the
number of candidate LLMs. We compare the re-
sults in the Balance scenario, as shown in Tab.4 and
Fig.5. We can observe that increasing the number
of candidate LLLMs leads to improved performance,
demonstrating RadialRouter’s ability to effectively
adapt to a dynamic LLM pool.

5.3.4 Effects of A on Optimization

We study the impact of the contrastive loss weight
A in Eq.6 on the optimization of RadialRouter. Ex-
periments are conducted in the Balance scenario,
and the results are presented in Appendix F. As
can be seen, the highest score is achieved when
A = 0.5. Therefore, we fix A to 0.5 when training
RadialRouter. Moreover, we observe that Radial-
Router demonstrates insensitivity across a broad
range of A € [0.25, 5], which confirms the robust-
ness of our method and provides greater flexibility
in the practical selection of A.

14594

6 Conclusions

In this paper, we introduce RadialRouter, a novel
Transformer-based framework for efficient and ro-
bust LLM routing. We achieve a structured repre-
sentation of the routing process with RadialFormer,
which efficiently captures the interrelationship be-
tween the query and LLMs. The robustness of
RadialRouter is enhanced by incorporating con-
trastive loss. Extensive experiments on Router-
Bench demonstrate that RadialRouter consistently
outperforms baseline methods across various sce-
narios, exhibiting adaptability to performance-cost
trade-offs and efficacy in routing queries within a
dynamic LLM pool. These findings confirm the
potential of RadialRouter as a superior solution for
LLM deployment in practical applications.

Limitations

We acknowledge several limitations regarding our
proposed method.

First, RadialRouter requires re-training when-
ever a new LLM is introduced to the LLM pool.
Consequently, the ability to rapidly adapt and it-
erate in dynamic environments is hindered, par-
ticularly in scenarios where frequent updates are
needed to address evolving tasks or domains. The
router’s implementation of training-free adaptation
to the dynamic LLLM pool relies on a general por-
trait or embedding for various LLMs, but that is
beyond the scope of this paper.

Second, due to limited computational resources,
we have not performed testing within multi-
language and multi-modal LLM ensembles, which
may restrict our ability to fully assess the frame-
work’s applicability across languages and modali-
ties. We leave the investigation of such scenarios
to future work.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Pranjal Aggarwal, Aman Madaan, Ankit Anand, Sriv-
idya Pranavi Potharaju, Swaroop Mishra, Pei Zhou,
Aditya Gupta, Dheeraj Rajagopal, Karthik Kappagan-
thu, Yiming Yang, et al. 2024. Automix: Automati-
cally mixing language models. Advances in Neural
Information Processing Systems, 37:131000-131034.

Anthropic. 2023. Model card and evaluations for claude
models.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Lingjiao Chen, Matei Zaharia, and James Zou. 2023.
Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv
preprint arXiv:2305.05176.

Shuhao Chen, Weisen Jiang, Baijiong Lin, James Kwok,
and Yu Zhang. 2024. Routerdc: Query-based router
by dual contrastive learning for assembling large lan-
guage models. Advances in Neural Information Pro-
cessing Systems, 37:66305-66328.

Zhijun Chen, Jingzheng Li, Pengpeng Chen, Zhuoran Li,
Kai Sun, Yuankai Luo, Qianren Mao, Dingqi Yang,
Hailong Sun, and Philip S Yu. 2025. Harnessing
multiple large language models: A survey on llm
ensemble. arXiv preprint arXiv:2502.18036.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems, 2021. arXiv preprint arXiv:2110.14168, 9.

Ronan Collobert, Yoshua Bengio, and Samy Bengio.
2003. Scaling large learning problems with hard
parallel mixtures. International Journal of pattern
recognition and artificial intelligence, 17(03):349—
365.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim,
Subhabrata Mukherjee, Victor Ruhle, Laks VS Laksh-
manan, and Ahmed Hassan Awadallah. 2024. Hybrid
IIm: Cost-efficient and quality-aware query routing.
arXiv preprint arXiv:2404.14618.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen-
baum, and Igor Mordatch. 2023. Improving factual-
ity and reasoning in language models through multia-
gent debate. In Forty-first International Conference
on Machine Learning.

Tao Feng, Yanzhen Shen, and Jiaxuan You. 2024.
Graphrouter: A graph-based router for llm selections.
In The Thirteenth International Conference on Learn-
ing Representations.

14595

https://www-cdn.anthropic.com/files/4zrzovbb/website/bd2a28d2535bfb0494cc8e2a3bf135d2e7523226.pdf
https://www-cdn.anthropic.com/files/4zrzovbb/website/bd2a28d2535bfb0494cc8e2a3bf135d2e7523226.pdf
https://arxiv. org/abs/2110.14168
https://arxiv. org/abs/2110.14168

Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao,
Xiangyang Xue, and Zheng Zhang. 2019. Star-
transformer. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
1315-1325.

Neha Gupta, Harikrishna Narasimhan, Wittawat Jitkrit-
tum, Ankit Singh Rawat, Aditya Krishna Menon,
and Sanjiv Kumar. 2024. Language model cascades:
Token-level uncertainty and beyond. In The Twelfth
International Conference on Learning Representa-
tions.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. In The Eleventh International Conference on
Learning Representations.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang,
Benjamin Keigwin, Gaurav Ranganath, Kurt Keutzer,
and Shriyash Kaustubh Upadhyay. 2024. Router-
bench: A benchmark for multi-llm routing system.
arXiv preprint arXiv:2403.12031.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,
and Geoffrey E Hinton. 1991. Adaptive mixtures of
local experts. Neural computation, 3(1):79-87.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7B. arXiv
e-prints, page arXiv:2310.06825.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. 2023.
Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. arXiv
preprint arXiv:2306.02561.

Solomon Kullback and Richard A Leibler. 1951. On
information and sufficiency. The annals of mathe-
matical statistics, 22(1):79-86.

Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and
Deheng Ye. 2024. More agents is all you need. arXiv
preprint arXiv:2402.05120.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin,
Zheng Yuan, Chang Zhou, and Jingren Zhou. 2023.
Routing to the expert: Efficient reward-guided en-
semble of large language models. arXiv preprint
arXiv:2311.08692.

James MacQueen. 1967. Some methods for classifica-
tion and analysis of multivariate observations. In
Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, Volume 1:
Statistics, volume 5, pages 281-298. University of
California press.

Lunyiu Nie, Zhimin Ding, Erdong Hu, Christopher Jer-
maine, and Swarat Chaudhuri. 2024. Online cascade
learning for efficient inference over streams. In In-
ternational Conference on Machine Learning, pages
38071-38090. PMLR.

Isaac Ong, Amjad Almabhairi, Vincent Wu, Wei-Lin Chi-
ang, Tianhao Wu, Joseph E Gonzalez, M Waleed
Kadous, and Ion Stoica. 2024. Routellm: Learning
to route llms from preference data. In The Thirteenth
International Conference on Learning Representa-
tions.

Bernardino Romera-Paredes, Mohammadamin
Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR
Ruiz, Jordan S Ellenberg, Pengming Wang, Omar
Fawzi, et al. 2024. Mathematical discoveries from
program search with large language models. Nature,
625(7995):468-475.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99-106.

Tal Shnitzer, Anthony Ou, Mirian Silva, Kate Soule,
Yuekai Sun, Justin Solomon, Neil Thompson, and
Mikhail Yurochkin. 2023. Large language model
routing with benchmark datasets. arXiv preprint
arXiv:2309.15789.

Dimitrios Sikeridis, Dennis Ramdass, and Pranay Pa-
reek. 2024. Pickllm: Context-aware rl-assisted
large language model routing. arXiv preprint
arXiv:2412.12170.

14596

https://doi.org/10.48550/arXiv.2310.06825

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Hongyi Wang, Felipe Maia Polo, Yuekai Sun, Souvik
Kundu, Eric Xing, and Mikhail Yurochkin. 2023.
Fusing models with complementary expertise. arXiv
preprint arXiv:2310.01542.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, et al. 2023. Autogen:
Enabling next-gen llm applications via multi-agent
conversation. arXiv preprint arXiv:2308.08155.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024. Wizardlm: Empowering
large pre-trained language models to follow complex
instructions. In The Twelfth International Conference
on Learning Representations.

Alex Young, Bei Chen, Chao Li, Chengen Huang,
Ge Zhang, Guanwei Zhang, Guoyin Wang, Heng
Li, Jiangcheng Zhu, Jianqun Chen, et al. 2024. Yi:
Open foundation models by 01. ai. arXiv preprint
arXiv:2403.04652.

Murong Yue, Jie Zhao, Min Zhang, Liang Du, and Ziyu
Yao. 2023. Large language model cascades with
mixture of thoughts representations for cost-efficient
reasoning. arXiv preprint arXiv:2310.03094.

Yanwei Yue, Guibin Zhang, Boyang Liu, Guancheng
Wan, Kun Wang, Dawei Cheng, and Yiyan Qi. 2025.
Masrouter: Learning to route llms for multi-agent
systems. arXiv preprint arXiv:2502.11133.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics.

Zirui Zhao, Wee Sun Lee, and David Hsu. 2023. Large
language models as commonsense knowledge for
large-scale task planning. Advances in Neural Infor-
mation Processing Systems, 36:31967-31987.

A Details of Multi-Head Attention

The update of RadialFormer is based on the atten-
tion mechanism (Vaswani et al., 2017). Specifically,
given the input sequence H € R™*9 where m de-
notes the sequence length and d denotes the hidden
dimension, we use a query sequence q € R!*?¢
to compute the relevant information based on the
scaled dot-product attention:

QKT
Vd

where [Q; K;V] = [qW,;; HW;; HW,], and
Wy, Wy, Wy, denote learnable parameters.

The multi-head attention layer extends the scale
dot-product attention by performing h paralleled
attention operations and concatenating the informa-
tion:

Attn(Q, K, V') = softmax(

)V, (10)

MHAttn(q, H) = [head, ..., heady]W,, (11)

head; = Attn(Q;, K;, Vi),i € [1,h], (12)

where [Q;; K;,;V;] are the i-th group from
[Q; K; V] with a dimension of d/h, and W, de-
notes output learnable parameter.

In RadialFormer, the multi-head attention mech-
anism is utilized to update states of the relay node
and the satellite nodes.

B Training and Inference Algorithm of
RadialRouter

Alg.2 shows the training and inference procedures
of RadialRouter. The algorithm presented in Radi-
alRouter outlines a training and inference frame-
work for efficient and robust LLM routing. During
training, the learnable parameters in the router are
updated through mini-batch sampling, supervised
by the Kullback-Leibler divergence loss and the
query-query contrastive loss. Given an input query,
the inference of RadialRouter involves predicting
the routing probabilities for the candidate LLMs
and selecting the optimal one for response.

C Statistics of Candidate LLMs on
RouterBench

Tab.5 shows the basic statistics of 11 LLMs in
RouterBench as our candidate LLMs. Tab.7 shows
the statistics of candidate LLLMs on RouterBench
considering performance and cost. The perfor-
mance of each candidate LLM is assessed by av-
eraging the accuracy across six different datasets.

14597

Algorithm 2 The overall algorithm of RadialRouter

Input: training set Dygin, LLMs {LLM; : i = 1,.

..,n}, number of out-group queries H, number of

clusters IV, hyper-parameter A\, mini-batch size b, and learning rate 7; learnable parameters 8: encoder
&, RadialFormer RF, MLP M, and learnable LLM embeddings {m; : i = 1,...,n};

.,/CN};

Training:

1: Score LLM:s for each query (x;,y;) € Diain and obtain {sg-l) :i=1,...,n}byEq.7,
2: Cluster training queries {x; : j = 1,...,l} into N groups {Kq,..

3: repeat

4: Sample a mini-batch B from Dyin;

5. for (x;,y;) € Bdo

6: q + &(x5);

7 Compute the updated state of RadialFormer by Alg.1:

8: vl st . sl « RF(q,my,...,m,);

9: Compute the Kullback-Leibler divergence 10ss Lxuliback-Leibler(X;; @) by Eq.4;
10: Sample an in-group query x* and H out-group queries x; from B;
11: Compute the query-query contrastive 10ss Lquery-query (Xi; @) by Eq.5;
12: 'C(B7 0) < ineg LKullback-Leibler (Xi§ 0) + Aﬁquery—query (Xi§ 9);
13: 0« 06— an)ﬁ(B; 0);
14: until converged.

Inference:
15: Sample a testing query x’;

16: Compute the predicted routing probability p’ using the £, RF and M;

17: @'+ argmaxjeqy,. 0y (P));
18: ¥ + LLMy (x').
Output: response y’

Table 5: Statistics of different LLMs in RouterBench.

LLM Size
o WizardLM-13B-V1.2 13B
‘§ code-llama-34b-chat 34B
S Ilama-2-70b-chat 70B
§ mistral-7b-chat 7B
2 mixtral-8x7b-chat 47B

Yi-34B-Chat 34B
& claude-instant-v1 -
§ claude-vl -
N claude-v2 -
S gpt-3.5-turbo-1106 -
:z

gpt-4-1106-preview -

The cost is determined based on the pricing of the
LLMs per million tokens, and is also averaged over
the six datasets.

D Detailed Results of Ablation Studies

Tab.8 shows the detailed results of ablation stud-
ies on RadialRouter. Through ablation studies, we
verify the rationality of RadialFormer and the ne-
cessity of introducing the KL divergence loss and
the query-query contrastive loss.

Table 6: Effects of)\ in the Balance scenario. The best
results are highlighted in bold.

A Performance Cost Score
0 0.7492 0.455 0.740
0.25 0.7911 1.964 0.752
0.5 0.7810 1.179 0.757
0.75 0.7923 1.960 0.753
1 0.7911 1.964 0.752
2 0.7845 1.985 0.745
3 0.7911 1.964 0.752
4 0.7589 0.478 0.749
5 0.7620 0.488 0.752
6 0.7577 0.482 0.748
8 0.7581 0.481 0.748
10 0.7575 0.481 0.748

E Full Results of Performance-Cost
Balance

Tab.9 is the full results of Fig.4. We set the value of
ato 0,0.01, 0.02, 0.05, and 0.1 to assess the adapt-
ability of different routing methods to performance-
cost trade-offs. We can see that RadialRouter is
robust to a wide range of performance-cost trade-
off scenarios (o € [0,0.1]).

14598

Table 7: Statistics of candidate LLMs on RouterBench.

LLM GSM8K Hellaswag MBPP MMLU winograde ARC Perf. Cost|

WizardLM-13B-V1.2 0.5054 0.6004 0.3906 0.5253 0.5289 0.6476 0.5331 0.166
claude-instant-v1 0.6281 0.7690 0.6250 0.4529 0.5211 0.8421 0.6397 0.514
claude-v1 0.6520 0.8187 0.6094 0.5281 0.5711 0.9199 0.6832 4.486
claude-v2 0.6671 0.3130 0.6406 0.5652 0.4763 0.6247 0.5478 5.336
gpt-3.5-turbo-1106 0.6094 0.7843 0.6875 0.6667 0.6632 0.8444 0.7092 0.562
gpt-4-1106-preview 0.6589 0.9057 0.6875 0.8162 0.8552 0.9565 0.8134 7.185
code-llama-34b-chat 0.4548 0.5194 0.5156 0.5284 0.5921 0.6636 0.5457 0.407
llama-2-70b-chat 0.5252 0.7046 0.3750 0.6034 0.4974 0.8169 0.5871 0.490
mistral-7b-chat 0.4151 0.5410 0.3828 0.5198 0.5737 0.6705 0.5171 0.107
mixtral-8x7b-chat 0.5214 0.6960 0.5391 0.6822 0.6842 0.8627 0.6642 0.324
Yi-34B-Chat 0.5517 0.8782 0.4141 0.7187 0.7421 09176 0.7037 0.439

Table 8: Detailed ablation results on RadialRouter. The best results are highlighted in bold.

Performance First Balance Cost First

Perf. Cost Score Perf. Cost Score Perf. Cost Score
RadialRouter 0.816 6.759 0.816 0.781 1.179 0.757 0.763 0476 0.715

w/o RadialFormer
+ Star-Transformer 0.813 7.185 0.813 0.794 2.170 0.751 0.758 0.491 0.709

+ Transformer 0.815 6.768 0.815 0.792 1960 0.753 0.752 0478 0.705
+ MLP 0.781 4362 0.781 0.770 1940 0.732 0.751 0.496 0.701
w/o LxL 0.548 5.308 0.548 0.548 5.308 0.442 0.548 5.308 0.017
w/o Lyq 0.813 7.185 0.813 0.759 0519 0.749 0.759 0478 0.711
080 Serformance A € [0.25,5], which confirms the robustness of
0. 9?'709.;91 0.791 . . R
079 score our method and provides greater flexibility for the
[selection of)\ in practice.
0.78
g 0.77
40-5 oo 0.762
z 0.76 757 0.758 0.758 0.757
04590752 0.752 0.152
0.75 o e L) 0.748 0.749 0.748
074 0.74¢
0.73 0051 2 3 4 5 6 8 10
A

Figure 6: Effects of A in the Balance scenario.

F Detailed Results of Effects of)\ on
Optimization

Tab.6 shows the effects of the contrastive loss
weight A\ on the optimization of RadialRouter. Ex-
periments are conducted in the Balance scenario,
visualized in Fig.6. As can be seen, the highest
score is achieved when A = 0.5 and RadialRouter
demonstrates insensitivity across a wide range of

14599

Table 9: Performance and cost of routing methods on RouterBench with different cv.

Method o GSMSK Hellaswag MBPP MMLU winograde ARC Perf. Cost|

0 06062 07046 0.6250 0.6798 0.5395 0.8169 0.6620 1.448

CosineClassifier 0.01 0.4671 0.6004 0.4922 0.5730 0.5553 0.8627 0.5918 0.271
0.02 04725 0.5410 04766 0.5765 0.5737 0.8627 0.5838 0.189

0.05 0.4320 0.5410 0.5000 0.5663 0.5763 0.8627 0.5797 0.201

0.1 04945 05410 0.5703 0.5352 0.5816 0.6705 0.5655 0.162

0 06489 0.8898 0.6719 0.8054 0.8474 0.9405 0.8006 6.869

HybridLLM 0.01 0.6489 0.8898 0.6719 0.8054 0.8474 0.9405 0.8006 6.869
0.02 0.6371 0.8715 0.6719 0.7904 0.8474 0.9291 0.7912 6.612

0.05 0.4294 0.5586 0.4219 0.5393 0.5868 0.6842 0.5367 0.553

0.1 04151 0.5410 0.3828 0.5198 0.5737 0.6705 0.5171 0.107

0 0.6589 09057 0.6875 0.8162 0.8552 0.9565 0.8134 7.185

Frugal GPT 0.01 0.6317 0.8437 0.6953 0.7422 0.7816 0.8993 0.7656 3.910
0.02 0.5229 0.7172 0.5312 0.6888 0.6947 0.8696 0.6708 0.336

0.05 0.5056 0.6004 0.5234 0.5253 0.5289 0.6476 0.5552 0.327

0.1 04154 05410 0.5703 0.5198 0.5737 0.6705 0.5485 0.124

0 0.6671 0.9057 0.6875 0.8163 0.8553 0.9565 0.8147 6.768

RouterDC 0.01 0.6671 0.8782 0.5078 0.6860 0.6842 0.9176 0.7235 1.329
0.02 0.6671 0.8782 0.5156 0.6869 0.6842 0.8627 0.7158 1.313

0.05 0.6094 0.8782 0.6016 0.5822 0.7553 0.8627 0.7149 0.810

0.1 0.6281 0.8782 0.5078 0.6910 0.6842 09176 0.7178 0.418

0 0.6589 09057 0.6875 0.8162 0.8552 0.9565 0.8134 7.185

GraphRouter 0.01 0.6121 0.7902 0.6953 0.6751 0.6711 0.8513 0.7158 0.980
0.02 0.6121 0.7886 0.6875 0.6739 0.6711 0.8444 0.7129 0.987

0.05 0.6013 0.7896 0.6719 0.6698 0.6553 0.8421 0.7050 0.548

0.1 05802 0.8321 0.5859 0.6926 0.6895 0.8719 0.7087 0.500

0 06672 09057 0.6953 0.8163 0.8553 0.9565 0.8161 6.759

RadialRouter 0.01 0.6671 0.8782 0.7031 0.8077 0.8553 0.9565 0.8113 5.072
0.02 0.6281 0.8782 0.6797 0.7270 0.8553 0.9176 0.7810 1.179

0.05 0.6281 0.8782 0.6875 0.7187 0.7421 09176 0.7620 0.488

0.1 0.6281 0.8782 0.6875 0.7235 0.7421 09176 0.7628 0.476

14600

