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Abstract

Haptic signals, from smartphone vibrations
to virtual reality touch feedback, can effec-
tively convey information and enhance real-
ism, but designing signals that resonate mean-
ingfully with users is challenging. To facili-
tate this, we introduce a multimodal dataset
and task, of matching user descriptions to vi-
bration haptic signals, and highlight two pri-
mary challenges: (1) lack of large haptic vi-
bration datasets annotated with textual descrip-
tions as collecting haptic descriptions is time-
consuming, and (2) limited capability of ex-
isting tasks and models to describe vibration
signals in text. To advance this area, we cre-
ate HapticCap, the first fully human-annotated
haptic-captioned dataset, containing 92,070
haptic-text pairs for user descriptions of sen-
sory, emotional, and associative attributes of vi-
brations. Based on HapticCap, we propose the
haptic-caption retrieval task and present the re-
sults of this task from a supervised contrastive
learning framework that brings together text
representations within specific categories and
vibrations. Overall, the combination of lan-
guage model T5 and audio model AST yields
the best performance in the haptic-caption re-
trieval task, especially when separately trained
for each description category. The dataset
is available at https://huggingface.co/
datasets/GuiminHu/HapticCap.

1 Introduction

Haptic signals can convey information and emo-
tions through programmable feedback experienced
by users via the sense of touch. From touchscreen
and VR interactions (Choi et al., 2017, 2021) to
gaming (Yun et al., 2023a), rehabilitation (Seim
et al., 2022) and healthcare (Kuchenbecker et al.,
2017; McMahan et al., 2011), haptic feedback has
gained significant attention, with the market ex-
pected to exceed $28 billion USD by 2026. How-
ever, little is known about how users perceive hap-
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Figure 1: HapticCap dataset and haptic-caption retrieval
task.

tic signals or how these signals relate to textual
descriptions.

Existing multimodal datasets focus on modali-
ties such as text, images, and audio, while overlook-
ing vibration haptic signals, despite their signifi-
cant potential for user applications (van der Linden
et al., 2011; Seifi et al., 2020; Salvato et al., 2022).
Language-based descriptions can express sensory
(e.g., the intensity of tapping on a surface), emo-
tional (e.g., the mood of a scene), and associative
qualities (e.g., familiar feelings resembling real-
world phenomena) of haptic signals (Seifi et al.,
2015). These descriptions, which we refer to as
haptic captions, are essential for designing vibra-
tions with relevant sensory, emotional, and associa-
tive characteristics for users. In this regard, we first
introduce the term haptic captions, along with the
corresponding dataset and task (Figure 1) to refer
to user descriptions of haptic signals.

Multimodal models for image (Vinyals et al.,
2015; Mokady et al., 2021), video (Iashin and
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Rahtu, 2020; Wu et al., 2023), and audio caption-
ing (Zhang et al., 2022; Liu et al., 2022) have made
significant progress in recent years. In contrast to
previous captioning research, haptic captioning is
a largely unexplored area for two key reasons: (1)
lack of large text-annotated vibration datasets cov-
ering sensory, emotional, and metaphorical associ-
ations; and (2) no available task and model to link
vibration haptic signals with textual descriptions.
Notably, the data collection process for haptic cap-
tioning is time-consuming and labor-intensive, fur-
ther hindering progress in this domain.

In this paper, we introduce the first and largest
fully human-annotated multimodal haptic caption-
ing dataset for vibrations, HapticCap, which con-
tains 92,070 vibration-description pairs with 2,736
unique vibration signals and 235 users and is col-
lected over approximately 11 months'. HapticCap
captures diverse and well-differentiated haptic sig-
nals, along with rich textual descriptions that cover
sensory, emotional, and associative perspectives.
Building on this foundation, we propose a novel
haptic-caption retrieval task that aims to retrieve
textual descriptions from the perspectives of sen-
sation, emotion, and metaphoric association for a
given haptic signal. Inspired by captioning tasks in
other modalities, such as image and audio (Mokady
et al., 2021; Zhang et al., 2022), this task aims to
bridge user language and vibration haptic signals.
Given the scarcity of haptic-language data needed
to train generative models, haptic caption genera-
tion is currently impractical. Instead, haptic caption
retrieval task offers an interpretable framework to
study semantic alignment between haptic signals
and language: Given a vibration and a set of cap-
tions, can a model reliably identify the correct one?

We employ a supervised contrastive learning
framework to project text and haptic representa-
tions into a shared space and align them with each
other. We assess this framework’s performance by
comparing models trained on individual description
categories vs. all categories across various large
models, showing the effectiveness of the proposed
framework. The proposed task and framework for
haptic caption retrieval provides several practical
benefits: (a) it accelerates dataset expansion for
generative models via human-in-the-loop annota-
tion, where users quickly refine retrieved captions
for new vibrations; (b) this task leverages vetted,
human-curated captions to yield interpretable re-

"https://github.com/LeMei/HapticCap.

sults, enabling applications such as accessibility,
eyes-free notifications, and human-robot interac-
tion in noisy environments; and (c) it objectively
measures the alignment between haptic signals
and captions, offering an evaluation framework for
newly generated signals analogous to CLIP (Rad-
ford et al., 2021) in vision-language domains. As
a pioneering effort in the haptic—text domain, our
benchmark dataset and retrieval task establish a
foundation for future progress in haptic language
understanding. Our contributions include:

1. We introduce HapticCap, a novel human-
annotated multimodal dataset with 92,070
vibration—description pairs. Each signal is
annotated from three distinct perspectives:
sensory, emotional, and associative, provid-
ing rich multidimensional descriptions. The
dataset is available at https://huggingface.
co/datasets/GuiminHu/HapticCap.

2. We propose a haptic-caption retrieval task to
understand user experiences with vibration
haptic signals and employ a contrastive learn-
ing framework to align and integrate haptic
signals with textual descriptions.

3. We evaluate haptic-caption retrieval by com-
paring various models trained on combined
and individual categories as baselines, paving
the way for the development of sensory lan-
guage models in haptics.

2 Related Work

2.1 Haptic Modality and User Experience

Vibrotactile technology is the most accessible and
versatile form of haptics (Ege et al., 2011; Jung
et al., 2024; Garcia-Valle et al., 2017; Kaul and
Rohs, 2017). Vibration signals can vary in ampli-
tude and frequency over time, creating a large sig-
nal space to convey sensations and meanings (Seifi
and MacLean, 2017). For instance, the VibViz li-
brary includes 120 vibrations with diverse signal
and affective tags (Seifi et al., 2015). User language
can enable designing meaningful haptic signals but
previous work used preset lists of tags which are
limited to the tags selected (Park et al., 2011; Israr
et al., 2014a). Others focused on free-form natural
language, but due to the time-consuming nature of
data collection, they included small sets of 2-10
signals and reported qualitative trends in user de-
scriptions (Obrist et al., 2013; Knibbe et al., 2018;
Dalsgaard et al., 2022), preventing computational
models for haptic descriptions.
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2.2 Touch Datasets

Touch is one of the five basic senses, enabling hu-
mans and robots to perceive physical sensations.
Recent touch datasets (Balasubramanian et al.,
2024; Yang et al., 2022; Yuan et al., 2017) such as
TVL (Fu et al., 2024), TLV (Cheng et al., 2024b),
and Touch100k (Cheng et al., 2024a) consist of
tactile images recorded as RGB data from a de-
formable sensor, resembling image or vision-based
data. The tactile images in these datasets capture
object shape, size, and texture (e.g., the tangible
surface of a table) and are accompanied by text
annotations generated partially or entirely by GPT-
4V. These touch datasets enable training robots to
perceive physical objects through tactile images.
Unlike prior touch datasets, HapticCap focuses
on vibration haptic signals—tactile feedback per-
ceived by humans through handheld devices (e.g.,
mobile phones, VR controllers). These signals vary
in amplitude and frequency over time and are inher-
ently different from tactile images in prior datasets.
HapticCap includes vibration signals with sensory,
emotional, and associative descriptions which are
fully annotated by humans. The dataset enables
providing vibration feedback for users (rather than
robots) interacting with digital or virtual content.

2.3 Multimodal Captioning

Multimodal models for image (Vinyals et al.,
2015; Mokady et al., 2021), video (Iashin and
Rahtu, 2020; Wu et al., 2023), and audio caption-
ing (Zhang et al., 2022; Liu et al., 2022) have
rapidly advanced in the last decade. For haptics, Hu
et al. (2024) developed a computational pipeline
that extracts sensory and emotional tags from tex-
tual descriptions to link these keywords to haptic
signal features, but this work focused on a small
dataset consisting of 32 signals x 12 descriptions.
Recently, Sung et al. (2025) developed a model that
generates vibrations from user prompts; however,
their work did not focus on captioning tasks and
did not capture the sensory, emotional, and associa-
tive aspects of vibrations. In contrast, we propose
a dataset and task to retrieve user captions for a
haptic signal based on three descriptive categories.

3 HapticCap Dataset

We present our process for creating HapticCap over
11 months, which involves compiling diverse sig-
nals, collecting user descriptions, and performing
manual checks and data validation to ensure the
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Figure 2: Illustration of haptic signal statistics: (a) dis-
tribution of haptic source, (b) signal count on envelope
frequency feature.

dataset’s diversity and quality.

3.1 Source of Haptic Signals

We create a large, diverse set of 2,736 vibration sig-
nals by collecting an initial set of 304 diverse sig-
nals and further increasing signal variance by gen-
erating new signals. Figure 2 illustrates the sources
of haptic signals and their distribution based on
envelope frequency features, highlighting the diver-
sity of both signal origins and characteristics.

The initial set of vibrations are from multiple
sources to ensure variety: (a) we select 78 sig-
nals from VibViz (Seifi et al., 2015), focusing on
signals that have distinct features and can render
well on VR controllers, (b) we create 70 new vi-
brations based on sound effect libraries by either
mimicking timing, or directly applying low-pass
filtering to them (Ternes and MacLean, 2008; De-
graen et al., 2021; Yun et al., 2023b), (c) we make
35 new vibrations by varying vibration parameters
of amplitude, envelop frequency, carrier frequency,
and rhythm (Yoo et al., 2015), (d) finally, we design
121 custom-made vibrations by applying various
transformations to existing vibration signals such
as time reversal (e.g., ramp up to ramp down), re-
peating part of the signal, and mixing subsets of
vibrations to create new vibrations (Schneider and
MacLean, 2016; MacLean et al., 2017). We normal-
ize all vibration signals to 10 seconds by repeating
the shorter signals. These methods are common
practices for haptic designers to create new vibra-
tions (Seifi et al., 2015; Ternes and MacLean, 2008;
Yoo et al., 2015; Yun et al., 2023b).

Next, we follow procedures described by Lim
et al. (2025) to perform stretching, amplifying,
noise injection, and their combined operations on
the haptic signals and generate 8 new haptic sig-
nals for each initial haptic signal. Lim et al. (2025)
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Figure 3: t-SNE visualization of haptic signal features
(e.g., max, min).

shows that after these operations, vibrations will
evoke similar haptic experience to the original sig-
nals. Also, these operations have been used in prior
haptic literature to create new signals from existing
ones (Israr et al., 2014b; Yoo et al., 2015; Israr et al.,
2014b; Ternes and MacLean, 2008). This step in-
creases the dataset size and diversity and improves
the generalization of the haptic caption retrieval
model. This generation resulted in a total of 2,736
unique vibration signals in our dataset. We ensure
that each vibration haptic signal can be played on
VR controllers (Meta Quest 3 and Pro) and have
diverse waveform features (e.g., energy, frequency,
change rate). We visualize haptic signals in feature
space including the initial set and newly generated
signals in Figure 3, further demonstrating our hap-
tic signals exhibits both diversity and extensive
spatial representation in feature space.

3.2 Collecting User Descriptions

We collect a haptic-caption dataset with 92,070
tuples of [vibration, description] after removing
empty or NA response. Each vibration is described
in English by at least 10 users according to sensory,
emotional, or associative perspectives. Sensory
refers to the participants’ senses (e.g., roughness),
emotion involves positive or negative feelings (e.g.,
pleasant, agitating), and association reflects the
real-world metaphors evoked by the signal (e.g.,
alarm clock).

We run a user study with 235 diverse users to col-
lect descriptions of haptic signals. Collecting user
descriptions for haptics is time-consuming as users
need to feel the vibrations under controlled condi-
tions in the lab. Participants wear headphones and
earplugs to cancel any audio noise from VR con-
trollers, following the established practice in haptic
studies (Seifi et al., 2015; Yoo et al., 2015). They
hold the VR controller in their non-dominant hand,
feel each signal in a random order, and type three

descriptions about the sensory, emotional, and asso-
ciative feel of the signal on a user interface. When
they cannot think of a description for a signal, they
enter Not Applicable (NA) in the response form.
Each participant describes 16 haptic signals in one
hour according to the three sensory, emotional, and
associative aspects. Appendix C shows user back-
grounds, example descriptions, and data collection
platform.

3.3 Data Validation and Diversity Analysis

We perform three types of data analysis and valida-
tion, focusing on generated signals, agreement in
captions, and diversity of signal-caption pairs.

First, we randomly sample 5% of the original
haptic signals along with their corresponding gener-
ated versions to conduct human validation, assess-
ing whether the haptic experience remains consis-
tent—i.e., similar or different—between the origi-
nal and generated signals. Each pair of signals is in-
dependently evaluated by three researchers outside
the author team, using the following instruction:
“If the two signals evoke similar sensory, emotional,
and associative experiences, mark Y; otherwise,
mark N”. As a result, 98.78% of the signals are
verified to elicit a similar haptic experience to the
original signals.

Second, human-labeled descriptions may con-
tain errors, as annotators are inherently prone to
mistakes such as misinterpreting instructions or ac-
cidental mislabeling (Weber-Genzel et al., 2024).
This leads to high variance in human labeling
across sensory, emotional, and associative dimen-
sions. To address this, we consider that labels devi-
ating significantly from the majority can be noisy or
outliers. Thus, we calculate inter-annotator agree-
ment scores based on sensory, emotional and as-
sociative descriptions and divide the dataset into
low-agreement and medium/high-agreement sub-
sets (Table 1). In the medium/high-agreement
subset, we filter out HapticCap descriptions that
have a low agreement with most other participants’
descriptions on a specific category. We first en-
code the description into a representation vector
by TS5 (Raffel et al., 2020) and then calculate co-
sine similarity for every pair of descriptions from
different participants on the same category and the
same haptic signal. Finally, we filter out descrip-
tions with an average similarity score of less than
0.5 to other participants. Through this step, we
primarily separate (1) the signals that may be less
perceptible and their corresponding descriptions
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Full Dataset (Removing NA) Medium/High Agreements
Vibration signals 2,736 2,709

Signal-sensory pairs 32,202 28,134
Signal-emotion pairs 30,762 25,092
Signal-association pairs 29,106 15,295

Total 92,070 68,521

Table 1: Statistics of HapticCap’s full dataset and
medium/high-agreement subset.

and (2) descriptions that deviate significantly from
the majority perception. We report the results of
the haptic-caption retrieval task on both the full
dataset and after removing the low-agreement data.
Third, we analyze the diversity of signal-caption
pairs in the dataset (Figure 4). Specifically, we
examine the distribution of haptic signals associ-
ated with emotion-related descriptions, as shown
in Figure 4(a). Emotion categories (e.g., calm) are
selected based on a word cloud generated from
emotional aspects (Figure 7 in Appendix), and a
signal is counted if it is reported to evoke the cor-
responding emotional experience. The distribution
indicates the diversity of user experiences in the
dataset. Similar analysis was performed for the
sensory and associative categories in Figure 8 in
Appendix. We further visualize the embedding
spaces of captions in (Figure 4(b)) to show their
diverse but also distinct characterics spanning sen-
sory, emotional, and associative dimensions. We
provide further dataset analysis in Appendix B.
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Figure 4: Diversity of signal-caption pairs in Haptic-
Cap: (a) emotion distribution of haptic signals, (b) t-
SNE visualization of description embedding encoded
by TS5 (Raffel et al., 2020) on three aspects shown by
three colors.

4 Haptic-Caption Retrieval Task

4.1 Task Formalization

Given a set of haptic signals C = {hi,...,h,},
each signal is described by multiple participants
across three dimensions: sensory, emotional, and
associative qualities. Formally, a haptic signal h
and a description d° € " compose haptic-text

pair (h, d¢), where ¢ € {s,e,a} denotes sensory,
emotional, or associative categories, respectively.
The haptic-caption retrieval task’s objective is to
retrieve the textual descriptions of three categories
that correspond to a given haptic signal, using the
haptic signal as the query and the descriptions as
the target documents, as shown in Figure 5.

4.2 Encoders for Text and Haptics

Text representation: We evaluate text repre-
sentations derived from three distinct language
model architectures: encoder, encoder-decoder,
and decoder. For this purpose, we test mod-
els representing each architecture type, includ-
ing BERT-base (Devlin et al., 2019) (encoder),
T5-base (Raffel et al., 2020) (encoder-decoder),
Llama-3.22 (Touvron et al., 2023), and Mistral-7B-
Instruct-v0.2 (Jiang et al., 2023) (both decoder).
Specifically, we compute text representations by
averaging the hidden states from the top layer of
each model. BERT uses bidirectional context for
tasks like question answering and classification,
trained with Masked Language Modeling and Next
Sentence Prediction. T5, an encoder-decoder trans-
former, frames tasks as sequence-to-sequence text
generation. Llama is a decoder-only model focused
on general-purpose language understanding, while
Mistral uses a decoder-only architecture optimized
for efficient natural language generation.

Haptic representation We test haptic representa-
tion by fine-tuning three audio models: AST (Gong
et al., 2021), Wav2vec (Baevski et al., 2020), and
EnCodec (Défossez et al., 2023). We adopted pre-
trained audio models as haptic encoders for three
main reasons. First, training a vibration model from
scratch on HapticCap performs worse than fine-
tuning audio models due to the size of the dataset
(See Appendix A.1 for result). Second, vibration
and audio signals are both one-dimensional signals
and share key temporal and frequency-based char-
acteristics, enabling the use of similar time-series
analysis techniques. Third, prior work has shown
perceptual similarities between the two modalities,
with audio often used as a proxy in haptics re-
search (Bernard et al., 2022; Pitzold et al., 2023;
Yun et al., 2023b; Zhao et al., 2016; Degraen et al.,
2021). Thus, we employ pre-trained audio models
to encode haptic signals into representation. Note
that we fine-tune the parameters of the pre-trained
audio model to adapt it for haptic data encoding.

2meta-llama/Llama-3.2-3B-Instruct
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label closer and pull those with different labels away in the embedding space. The figure shows the architecture of
the model trained on the sensory, emotional, and associative categories.

AST converts audio into 128-dimensional log Mel
filterbank features and uses the spectrogram as in-
put. Wav2Vec learns representations from unla-
beled audio by predicting the next frame, using
contrastive learning to capture speech patterns. En-
Codec compresses raw audio into a compact latent
representation, which is then stored, transmitted,
and reconstructed.

4.3 Supervised Contrastive Learning
Framework

Let fi : — R% be a haptic signal encoding
function (e.g., a pre-trained audio model), which
takes an m-dimensional haptic signal of length up
to " and outputs a d; -dimensional vector as the rep-
resentation of haptic signal. Let fp : >.* — R%
be a text encoding function (e.g., from a pretrained
language model) that produces a ds-dimensional
vector representation of a sentence. Note that we
fine-tune the parameters of the pre-trained audio
model to better adapt it for haptic data encoding.
Supervised contrastive learning aims to pull the
clusters of points belonging to the same class to-
gether in an embedding space and simultaneously
pushes apart clusters of samples from different
classes (Khosla et al., 2020). We initialize the pa-
rameters of the haptic encoder and fine-tune the
last n layers of the text encoder. After the haptic
and text encoders, we set up two linear projection
layers, one for each representation, aiming to map
both representations into a common feature space
with a dimension of d. First, we pair each haptic
representation with its corresponding description
to create a haptic-text pair. Next, we concatenate
the haptic ID (e.g., F1) and category (e.g., sensory)
as the label of haptic-text pair (e.g., F1_sensory).
In this setting, the haptic-text pairs from multiple

RTXm

participants but for the same haptic signal and same
category can be viewed as the same class. Specifi-
cally, each haptic signal has multiple labels from
different users, and the descriptions are categorized
into three groups: sensory, emotional, and associa-
tive. To address this, we combine the category and
haptic ID as the label for supervised contrastive
learning, with the goal of linking the haptic signal
to its descriptions within a specific category (Figure
5). We define the contrastive loss as:

YT,

€T JEP(3)

exp(z; - z;/T)
acA(i) €XP(Zi  2a/T)

6]

Here, P(i) is the set of indices of all positives
in the batch distinct from anchor haptic-text pair
i, and | P(4)| is its cardinality. A(:) = {j € P(i) :
y; = y;}, where y; and y; represent the labels of
haptic-text pairs ¢ and j, respectively. The condi-
tion y; = y; indicates that the two pairs share the
same haptic signal and their descriptions belong
to the same category. z, represents the haptic-text
pair representation obtained by concatenating the
haptic and text representations. 7 represents the
temperature coefficient.

Suppose we partition haptic-text pair set C into
mutually exclusive train, validation, and test sets,
C = Cirain U Cyalid U Crest- In practice, we first
divide all haptic signals into mutually exclusive
training, validation, and test sets. Captions are then
associated with these sets based on the underlying
haptic signals, ensuring that there is no overlap of
signals between the splits. We train contrastive
learning framework via minimizing training loss,
leverage the validation set to optimize the selec-
tion of hyperparameters within the framework, and
evaluate model performance on C;.g; for the haptic-
caption retrieval task. For h € Cyegt:
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d = top-K (sim(text(d), haptic(h))) 2)
dECsest

where d = {d*,d®,d"} is the retrieved haptic de-
scriptions of all three categories corresponding to
a given haptic signal, and all three categories are
candidates for retrieval. Prediction is counted as
correct if the retrieved description is in the set of
the top K most similar objects to a given haptic sig-
nal in semantics. We use the following similarity
function between the textual description and haptic
representations based on cosine similarity,

sim(text(d), haptic(h)) = softmax(x - {fp(d), fu(h))) (3)

where (,) denotes the dot product, softmax is
softmax function, k is scaling factor to adjust
the range of similarity scores.

S Experiments

5.1 Setup

We evaluate the proposed contrastive learning
framework from two perspectives: (1) performance
on combined categories i.e., the framework is
trained using all sensory, emotional, and associa-
tive categories, and evaluated on both combined
and individual categories, as shown in Section 6.1,
and (2) performance on individual categories i.e.,
the framework is independently trained and evalu-
ated for each category, as discussed in Section 6.2.
For both perspectives, we report results on the full
dataset and after removing the low-agreement sub-
set of the data. Additionally, we report the results
of a zero-shot generalization test on our proposed
framework in Table 5 in the Appendix.

5.2 Evaluation Metrics

We use common metrics in Information Retrieval
(IR), including Precision@ 10 (P@10), Recall@10
(R@10), mean Average Precision at 10 (mAP@10),
and normalized Discounted Cumulative Gain at
10 (mnDCG@10). Precision ensures that the most
relevant descriptions appear at the top, while re-
call is essential for capturing all relevant options.
mAP@ 10 provides a single score that takes both
the precision and rank of the retrieved descriptions
into account. nDCG @10 gives higher weight to rel-
evant items that appear earlier in the top 10 results
and normalizes the weighted score to be between 0
and 1. Together, these comprehensive metrics pro-
vide valuable benchmarks for various downstream
applications in haptic caption retrieval.

5.3 Implementation Details

All experiments run with one NVIDIA RTX
A100 GPU. We perform a light grid search
over the hyperparameters, learning rates o €
{1073,107%,10°}, temperature coefficients 7 €
{0.07,0.1}, n = {1,2,3,4,5}, and m =
{1,2,3,4,5}. The model achieves optimal per-
formance when o = 1073, 7 = 0.1, n = 3 and
m = 2 for best combination of TS and AST. We set
K =10,k =100, di = 768, dy = 768, and com-
mon dimension d = 768. The batch size is set to
128, and training is conducted for 15 epochs, taking
approximately 4 to 12 hours. The optimal hyperpa-
rameters with the best epoch for early stopping are
determined using a validation set.

We initialize the parameters of haptic encoder
(audio model) and fine-tune last n and m layers
of text encoder (LLM) and haptic encoder, respec-
tively (See hyperparameter analysis in Appendix
A.4). In our proposed model, the trainable parame-
ters consist of the last n layers of the text encoder
and last m layers of haptic encoder, and two linear
projection layers. The data is divided into 70%
training, 10% validation, and 20% test subsets for
the full dataset and the medium/high agreement
subset (See Appendix A.2 for more implementa-
tion details).

6 Results

6.1 Performance of Model Trained on
Combined Categories

Table 2 presents the performance of the proposed
framework trained in all categories combined, uti-
lizing separately four text model architectures with
three fine-tuned audio models. Also, we report the
performance of the model trained on all categories
when evaluated separately for the sensory, emo-
tion, and association categories. The chance-level
performance for the three metrics (P@10, R@10,
MAP@10) is 7.81%, estimated based on randomly
selecting 10 captions from a pool of 128, with 10
ground-truth captions.

First, the model after filtering out low-agreement
data performs better, improved by average around
20% on all metrics, indicating filtering is effec-
tive and helpful to performance (See Appendix A.4
for results obtained with alternative filtering thresh-
olds). Second, our model performs best on the emo-
tional category, followed by performance in sen-
sory category, with the poorest performance in as-
sociative category across combinations of language
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P@10 R@10 mAP@10 nDCG@10 Sensory Emotional Associative

AST 13.68/12.01 16.09/13.31 27.30/23.89 0.4952/0.4514 13.26/11.42 14.21/12.96 12.69/11.04

BERT  WavVec 11.75/10.96 15.78/13.16 26.58/23.16 0.4916/0.4487 11.41/10.59 13.69/12.01 11.46/10.25
EnCodec  12.64/10.68 16.10/13.30 27.42/23.75 0.4956/0.4574 11.48/10.08 12.89/11.76 11.36/10.07

AST 16.66%/12.25* 19.14*/13.19*% 30.62*%/24.03* 0.5579*/0.4610* 16.85*/11.51* 17.30%/12.98* 15.16*/11.20*

T5 WavVec 16.01/10.90 18.86/13.27 29.48/23.97 0.5368/0.4563 15.95/11.08 16.89/12.67 12.09/10.21
EnCodec  15.96/10.98 18.87/13.10 29.32/23.85 0.5316/0.4563 15.03/11.19 16.18/12.46 12.48/10.32

AST 16.03/12.36 18.58/13.60 29.92/23.91 0.5527/0.46002 16.29/11.53 16.89/12.87 15.09/11.09

Mistral WavVec 15.89/10.68 18.42/13.28 29.27/23.44 0.5484/0.4474 15.31/10.47 15.93/12.66 12.12/10.48
EnCodec  15.28/10.49 17.51/13.11 28.68/23.26 0.5334/0.4460 15.11/10.39 15.63/12.62 12.36/9.91

AST 16.54%/12.37* 19.03*%/13.67* 30.47%/24.32* 0.5536%/0.4731* 16.59%/11.60* 17.28%/13.04* 15.04*/11.28*

Llama  WavVec 16.14/11.11 18.36/13.59 29.26/24.30 0.5488/0.4689 16.08/11.67 16.89/13.10 12.18/10.29
EnCodec  15.38/10.72 15.62/13.60 25.93/24.51 0.4880/0.4690 16.33/10.85 16.40/12.62 11.66/10.29

Table 2: Performance evaluation of framework trained on all categories (sensory, emotional, and associative). The
three right columns show P@ 10 of the framework trained on all three categories but tested on individual categories.
For each metric, the numbers before and after “-/-” indicate the performance results obtained after filtering out
low-agreement data and performance on the full dataset, respectively. The best and second-best results are
highlighted with green and orange. The chance-level performance for P@10, R@10, and MAP@10 is 7.81%.
Significant differences of p < 0.05 using t-test are indicated by *.

Sensory Emotional Associative

P@10 R@10 mAP@10 nDCG@10 P@10 R@10 mAP@10 nDCG@10 P@10 R@10 mAP@10 nDCG@10

AST 15.17/12.65 15.86/14.18  27.62/24.30  0.5116/0.4709 15.62/12.92  17.80/14.22  28.13/25.66  0.5138/0.4736  14.26/11.89 15.20/14.10  27.32/24.01  0.5022/0.4682

BERT  WavVec  14.39/11.43 15.10/13.89  26.84/23.75  0.5033/0.4601 14.49/11.16 15.89/ 27.96/24.15  0.5018/0.4605  12.11/10.88 14.39/13.04  26.19/2326  0.4928/0.4601
EnCodec  14.63/11.37  15.25/13.61  27.10/23.12  0.5035/0.4536 15.48/11.47 17.88/13.48  27.16/24.37  0.5032/0.4625  13.08/10.22 14.57/ 26.69/23.68  0.4933/0.4644
AST 17.24%/13.48  17.65%/14.61 30.17%/25.58  0.5266*/0.4779  18.89%/13.74 20.79%/15.62 30.56*/27.10 0.5274*/0.4886 17.88%/12.54 20.21*/15.06 29.36*/24.57 0.5248%/0.4751

TS WavVec  16.61/12.87  16.34/13.66  29.87/24.85  0.5078/0.4648 17.60/12.20  18.99/14.75  27.24/26.14  0.5016/0.4791 15.99/11.40  17.12/14.10 ~ 28.33/23.49  0.5087/0.4648
EnCodec  16.47/12.57  18.48/13.43  29.24/24.48  0.5025/0.4611 16.28/11.99 17.45/14.38  26.84/26.04  0.4996/0.4725  15.58/11.11 17.01/13.74  27.80/23.20  0.5034/0.4613

AST 16.62/12.87  17.64*/14.48  29.28/24.37  0.5137/0.4748 16.86/13.07 19.34/1537  28.67/26.04  0.5108/0.4743  16.83/11.08  20.07%/14.09  28.55/23.20  0.5156/0.4610

Mistral  WavVec — 16.38/12.36  17.16/14.11  28.52/24.05  0.5073/0.4714 16.04/12.84  16.29/15.03  27.01/25.68  0.4982/0.4710  15.61/10.46 18.14/13.70  27.79/23.04  0.4940/0.4557
EnCodec  16.48/12.18  17.33/13.89  28.42/23.78  0.5106/0.4709 16.38/12.67 17.84/14.78  28.25/25.61  0.5015/0.4705  15.76/10.44 19.11/13.76  27.37/24.12  0.5114/0.4547

AST 17.18%/13.28  17.47/14.50  29.95%/25.21 0.5211%/0.4718  18.48%/13.48 20.38%/15.21 30.31%/26.85 0.5217%/0.4852 17.82%/12.15 20.05%/14.97 29.12%/24.18  0.5226%/0.4709

Llama  WavVec  16.29/13.07  16.20/13.35  26.52/24.14  0.5099/0.4687 16.52/13.11 19.26/14.83  27.02/26.33  0.5101/0.4810  16.98/12.02  20.01/24.67  28.79/23.86  0.5118/0.4678
EnCodec  16.67/13.14  16.33/13.38  29.21/24.17  0.5111/0.4654 16.69/13.13 19.31/14.67  29.27/26.21  0.5124/0.4812  17.28/12.04 ~ 20.83/20.56  30.86/24.08  0.5140/0.4675

Table 3: Performance evaluation of framework trained on individual category. The numbers before and after the “-/-”
denote results on the medium/high agreement subset (i.e., after excluding low-agreement data) and the full dataset,
respectively. The chance-level performance for P@10, R@10, and MAP@10 is 7.81%. Significant differences

using t-tests are marked by *.

models (e.g., BERT, T5, Mistral, and LLaMA) and
AST. We speculate that higher agreement enhances
performance, as emotional descriptions generally
yield higher agreement, while associative descrip-
tions tend to yield lower agreement. Third, the com-
bination of TS5 and AST, as well as Llama and AST,
shows superior overall performance across multi-
ple metrics. Specifically, TS with AST achieves the
highest P@10 (16.66), R@10 (19.14), mAP@10
(30.62), and nDCG @10 (0.5579) across all three
categories. Llama with AST closely follows in
all categories and metrics. In summary, the pro-
posed contrastive learning framework aligns haptic
signals and their textual descriptions. For modal
encoder, BERT lags behind T5 and Llama in the
haptic caption retrieval task, showing certain limita-
tions. TS excels in natural language understanding
tasks, while Llama 3.2 performs strongly in natural
language generation (Fu et al., 2023), leading to TS
slightly outperforming Llama. Regarding haptic en-

coder, AST is an effective haptic feature extractor
and can be paired with LLMs (e.g., TS and Llama)
for the haptic caption task. WavVec is trained on
speech corpora, while EnCodec is designed to re-
store the original signal after compression. See the
lower performance of vibration-specific encoders
trained on HapticCap (Appendix A.1).

6.2 Performance of Model Trained on
Individual Category

We also evaluate the performance of the proposed
framework trained in a single category (i.e., sen-
sory, emotional, and associative) across different
combinations of pretrained language models and
pre-trained audio models. The results are presented
in Table 3. Among the models, T5 with AST consis-
tently outperforms others across multiple metrics,
particularly excelling in all three categories with
the highest scores across the board. In compari-
son, Llama with AST shows the second-best per-
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formance on most metrics. As exceptions, Mistral
with AST outperforms Llama with AST in R@10
for the sensory and associative categories. The
performance of T5+AST and Llama+AST aligns
with the results obtained from training on all cate-
gories. To provide further insights, we include con-
crete examples of successful and failed retrievals
for T5+AST in Appendix B.2. Furthermore, we
conduct zero-shot generalization experiments and
report the results in Appendix A.3.

We attribute AST’s strong performance in the
combined and category-specific results to two fac-
tors: (1) Model architecture: AST treats spec-
trogram patches as tokens and models their re-
lationships with a Transformer, capturing both
global patterns (e.g., rhythm, frequency shifts)
and local textures important for haptic perception
(Abou Chabhine et al., 2022; Ternes and MacLean,
2008). In contrast, EnCodec and Wave2Vec operate
directly on raw signals: EnCodec emphasizes local
patterns for compression (Défossez et al., 2023),
while Wave2Vec learns frame-level speech depen-
dencies, making both less suited to vibration dy-
namics. (2) Training data: AST is pretrained on
AudioSet (Gemmeke et al., 2017), which covers di-
verse everyday sounds with temporal and frequency
structures relevant to haptics (e.g., object collisions,
surface interactions) (Lee and Choi, 2013; Kim
et al., 2023). In contrast, Wave2Vec is trained
mainly on speech, and EnCodec is optimized for
speech and music, limiting their generalization to
vibration.

Conclusion

In this paper, we introduce the haptic-caption re-
trieval task to link user descriptions to vibration
haptic signals. To support this task, we present a
large haptic caption dataset called HapticCap, care-
fully designed and validated to ensure diversity and
quality. Our primary contribution lies in introduc-
ing a novel dataset and task for the community, and
demonstrating its feasibility for haptic-language
understanding. We also report results from a su-
pervised contrastive learning framework that in-
corporates various pre-trained models for text and
haptic, aligning user descriptions with vibration
signals. Since haptic—text alignment is a nascent
area with limited prior work, we intentionally adopt
contrastive learning as a proven method to provide
a strong and interpretable baseline for evaluating
the HapticCap dataset. Our results suggest that

haptic-caption retrieval is a challenging task for
existing pre-trained models. Our experimental re-
sults and dataset provide a baseline for future work
in this area and pave the way for the development
of sensory language models for haptics. We are
also working on haptic captions with an end-to-end
generative framework that takes vibration signal
as input and output corresponding captions, aim-
ing to further contribute to the NLP and Haptics
communities in our future work.

Limitations

First, HapticCap is fully manually annotated
through a time-intensive process. While it rep-
resents the largest and most diverse collection of
vibration signal—caption pairs to date, it may still
not encompass the full range of possible signals
and user experiences. Additionally, user descrip-
tions are only available in English, and data collec-
tion is restricted to Denmark and the United States,
potentially introducing bias due to geographical
limitations. Second, we acknowledge that there
is some semantic overlap across categories. For
example, a sensory description “It’s a funny buzz,
like a childish tingle” may also convey emotional
and associative meanings. Such overlaps may ex-
plain why training a combined model to push away
categories sometimes yields worse performance
compared to treating categories independently. Fu-
ture work can model the interdependencies among
description categories to enhance haptic caption re-
trieval performance. Third, the contrastive learning
framework we adopt is a well-established method
for aligning multiple modalities and has shown
strong performance on various multimodal tasks.
As the first work to explore the integration of lan-
guage and vibration, leveraging this framework of-
fers a solid foundation for cross-modal alignment.
Yet, its maturity limits the novelty of our approach.

Ethical Considerations

The collection and management of personal data
in our study were approved by the university’s In-
stitutional Review Board (IRB). Additionally, the
collection of user information and haptic experi-
ence data was conducted with the consent of par-
ticipants. Participants used pseudonyms, and no
identifying information was included in the dataset.
We reviewed the haptic descriptions to ensure they
do not contain any offensive content.
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A Additional Experiments

A.1 Pretraining a Haptic Encoder

We also train a haptic-specific encoder from scratch
using our vibration signals, with AST and Encodec
architectures, respectively. Furthermore, we in-
tegrate this encoder with TS5 and LLaMA in our
contrastive learning framework and evaluate their
performance on the haptic caption retrieval task, as
shown in Table 4.

A.2 More Implementation Details

All Categories Sensory Emotion Association

Ours 16.66 16.85 17.30 15.16
T5+AST 14.19] 14.68 15.12) 11.53]
Llama+AST 14.37] 14.74 | 15.26. 11.61]
T5+Encodec 12.67 13.190 14.06. 10.44]
Llama+Encodec 13.25] 13.43] 13.71) 10.26

Table 4: Results on pretraining audio models (e.g., AST)
with haptic signals and integrating with large language
models (e.g., T5, Llama) on P@ 10 metric.

We present the hyperparameter setting for the
combinations of text encoder (e.g., LLMs T5 and
Llama) and haptic encoder (e.g., AST, WavVec and
Encodec) as Table 8. We fuse haptic and text rep-
resentations using simple concatenation, a widely
used and straightforward feature fusion approach.
As the first work in this area, our primary goal is
to evaluate the performance of recent LLMs and
audio models on the proposed HapticCap dataset,
thus we did not include results on various fusion
strategies in this work.

Compared to fine-tuning pretrained audio mod-
els, the performance of the model with a haptic-
specific encoder performance drops notably. This
is perhaps because the fine-tuned audio models bet-
ter learn temporal and rhythmic features, which
are shared between vibrations and audio (Bernard
et al., 2022), from much larger audio datasets than
HapticCap, and the fine-tuning further adapts them
to haptic signals.

A.3 Zero-Shot Generalization

A zero-shot generalization test assesses a model’s
ability to handle tasks or data it has never encoun-
tered during training. In our work, we evaluate
the performance of the proposed framework in
zero-shot generalization. Specifically, we test the
specific-category model’s performance on unseen
categories. For instance, we train the framework
with the sensory description and test it on the emo-

tional and associative categories. The results are
presented in Table 5.

First, models perform best when tested on the
same category they were trained on (diagonal val-
ues). When tested on other categories, performance
drops, indicating a domain shift in description
styles. For example, Sensory-trained models strug-
gle with emotional and associative captions. Sec-
ond, Sensory-trained models perform better across
different categories compared to emotion-trained
and associative-trained models. Sensory-related
descriptions can overlap with both emotional (e.g.,
“intense” can convey strong emotions) and associa-
tive (e.g., “beat” or “pulse” are related to heartbeat).
In contrast, emotional and associative categories
are more domain-specific, making cross-category
adaptation more challenging. These results suggest
that feature alignment methods, such as adversar-
ial domain adaptation, could help mitigate the gap
between different description styles. In terms of
generalization, sensory training provides better gen-
eralization than emotional or associative training.

A.4 Hyperparameter Analysis

We also conduct experiments with different val-
ues for the number of fine-tuning last layer n of
text encoder TS. The model achieves the opti-
mal result when n=3, both for combined and sep-
arate categories. The detailed P@10 results for
n € {1,2,3,4,5} are reported in Table 7.

For the filtering threshold, the choice of 0.5 was
based on empirical evaluation to balance data qual-
ity and quantity by excluding inconsistent descrip-
tions while retaining sufficient training samples.
We examined alternative thresholds of 0.4 and 0.6
in Table 6. A lower threshold (0.4) tends to retain
more noisy captions, while a higher threshold (0.6)
removes more data, limiting training examples.

B Dataset Analysis

B.1 Diversity Analysis

We perform a comprehensive diversity analysis of
the proposed HapticCap dataset. Figure 6 presents
the distribution of vibration haptic signal based on
amplitude and zero crossing rate features. Figure
7 shows word-cloud visualizations corresponding
to the sensory, emotional, and associative captions.
Additionally, Figure 8 illustrates the distribution
of haptic signals associated with sensory and as-
sociative words, which are extracted from their
respective word clouds.
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Sensory Emotional Associative
P@10 R@10 mAP@10 nDCG@10 P@10 R@10 mAP@10 nDCG@10 P@10 R@10 mAP@10 nDCG@I10
Sensory 18.16 20.23 31.32 0.5318 1247  15.52 23.57 0.4607 1171 13.22 20.65 0.4461
T5+AST Emotion 11.65 13.10 21.09 0.4467 17.45 20.38 29.56 0.5298 11.01  13.08 19.25 0.4381
Association  10.10  11.89 20.56 0.4241 10.08  11.69 20.81 0.4309 17.01  20.36 29.49 0.5225
Sensory 18.19 19.31 28.68 0.5208 12.19 1549 23.24 0.4593 11.68 13.14 20.36 0.4427
Llama+AST  Emotion 1124 13.05 20.88 0.4416 1475 17.16 28.36 0.5219 11.05 1341 18.61 0.4312
Association 10.07 11.34 20.22 0.4420 10.10  10.86 20.08 0.4326 18.16 22.32 29.64 0.5109

Table 5: The performance of zero-shot generation. Row headers denote the combination of language and haptic
encoders and the description category used for model training, and column headers denote the category used for
testing the model without fine-tuning.

Threshold P@10 R@10 mAP@10 nDCG@10 Sensory Emotional Associative
threshold=0.4 15.57 1841 29.30 0.5343 1591 16.92 14.10
threshold=0.5 (ours) 16.66  19.14 30.62 0.5579 16.85 17.30 15.16
threshold=0.6 15.61 18.22 29.16 0.5375 15.89 16.84 14.47

Table 6: Performance comparison across different thresholds for filtering out low-agreement data.

All Categories Sensory Emotion Association
n=1 11.47) 10.78 11.91] 10.36)
n=2 15.61) 15.36) 16.82) 15.19]
n=3 16.74) 16.59) 17.28) 15.44)
n=4 14.94) 14.51) 15.64) 14.25)
n=>5 14.39] 14.16) 14.86/ 14.11)

Table 7: Hyperparameter analysis on fine-tuning layer
on P@10 metric.

nm « T
TS + AST 3 2 1073 0.1
TS+WavVece 3 3 1072 0.1
T5+Encodec 3 3 1072 0.1
Llama + AST 2 2 1073 0.1
Llama+ WavVec 2 3 1073 0.1
Llama + Encodec 2 3 1073 0.1

Table 8: The values of hyperparameters.

Regarding sensory aspect, words such as short,
long, strong, beat, pulse, fast, and interval appear
prominently, indicating that sensory descriptions
focus on measurable and temporal characteristics
of haptic signals. These terms suggest that users de-
scribe touch stimuli based on rhythm, intensity, and
speed. For emotional category, the most dominant
words include calm, energetic, anxious, uncom-
fortable, excited, good, and happy, demonstrating
that haptic signals evoke clear emotional responses.
The presence of both positive (e.g., calm, energetic)
and negative (e.g., anxious, uncomfortable) emo-
tions indicates a diverse range of affective reactions.
In term of associative, words like alarm, car, phone,
music, game, machine, and heartbeat dominate this

category, reflecting the tendency of users to asso-
ciate haptic sensations with real-world experiences,
objects, or events. These associations suggest that
haptic signals can be linked to familiar contexts,
making them more interpretable.

Overall, the word clouds highlight the diversity
of user experiences and the distinct focus of each
aspect: sensory descriptions emphasize physical
properties, emotional descriptions capture feelings,
and associative descriptions link haptic experiences
to real-world references.

The distribution of signals over sensory and as-
sociative words in Figure 8 further suggest the vi-
bration signals in HapticCap can create diverse
experiences (see Figure 4a for the emotional cate-
gory). Finally, we calculate distinct-n and n-gram
of description to measure the diversity of textual
description, shown in Table 9.
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Figure 6: Haptic signal statistics : (a) signal count on
amplitude feature, (b) signal count on zero crossing rate.

B.2 Case Analysis

Table 10 shows the top-10 results for a selected
haptic signal in the sensory category for TS + AST,
with correct retrievals in bold font.
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| Distinct-1/1-Gram? | Distinct-2/2-Gram{ | Distinct-3/3-Gram{

Sensory 0.0599/7.7289 0.3528/12.0394 0.6793/13.9565
Emotion 0.0639/6.9261 0.2995/10.2775 0.5303/11.8154
Association 0.0868/7.9509 0.4065/11.8475 0.6794/13.5471

Table 9: Metrics on distinct-n and n-gram of description.

C Data Collection and Compensation

In this work, the annotators come from diverse
backgrounds, including students, haptic designers,

Rank Retrieved Description

1 The sensation is a sporadic sharp vibration and it is very
alarming.

The sensation is like subtle buzzes.

The vibrations are strong with random stronger vibrations.
This sensation is light, irregular and lumpy.

The sensation is long repeating vibration lines.

This sensation is fuzzy and tender.

This sensation is smooth and soft.

This sensation is discontinued.

The sensation is very light vibration.

The sensation was regular and low intensity.

O 00NN N AW

S

Table 10: Retrieved descriptions by rank.

and researchers. Figure 9 visualizes participant
backgrounds. Each participant described 16 signals
(one group) within one hour and received $15 USD
in cash or an equivalent value in gifts (e.g., choco-
late) as compensation for their time. This com-
pensation rate is above the minimum local wage.
The data collection period spans approximately 11
months, including the user study and the creation
of new haptic signals.

[ Hindi
disorm [] English

[ Telugu
60.54% O Male 890% B Chinese
[J Female O] Marahi

39.46% “"% B3 [ Danish
[ others

(@) (b)

Figure 9: Distribution of (a) gender and (b) native lan-
guage of users collected in the HapticCap dataset. All
users were fluent English speakers.

To ensure high-quality annotations, we collected
this dataset by having users feel vibrations on VR
handheld devices in a controlled lab setting. Fig-
ure 10 shows the graphical user interface that par-
ticipants used to play the haptic signals and in-
cludes the questions and instructions to write sen-
sory, emotional, and associative descriptions. Ta-
ble 11 presents example sensory, emotional, and
associative descriptions from three different partic-
ipants in our dataset.

We divide all haptic signals into 19 groups/sets,
with each set containing 16 signals. The first two
sets have a larger number of participants as we
collected more descriptions for these two sets of
haptic signals when we started the data collection.
Based on our initial analysis of these descriptions,
we found that descriptions from 10 users per signal
provide enough variation, and thus we continued
with describing each signal by 10 users for the fol-
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lowing sets. We include the additional descriptions
for the first two sets in HapticCap to enable fu-
ture work to do further analysis of the individual
differences and subjectivity in haptic descriptions.

Category Description

sensory Its frequency is not very strong but very regular.

P emotion I feel little bit impatient.
association It reminds me of my heartbeat after an intense workout.
sensory feeling is like beating of a heart that is beating fast.

P,  emotion makes me feel a bit stressed , like I need to hurry.
association It is like the heartbeat after running fast.
sensory The sensation was short and with a light vibration.

P3  emotion I feel being made hurring up by the vibrations.

association It reminds me of the feeling of sitting on a motor boat.

Table 11: Example haptic descriptions in sensory, emo-
tional, and associative categories. P; denotes participant
ID.

[ FREE TEXT

How would you describe the sensation to someone else?

How does this sensation make you feel? Can you attach any emotions to it?

Does this remind you of something you have felt before? If so, can you associate
any actions or objects with the sensation?

1/16 >

F2_loop.wav

Figure 10: Illustration of the data collection interface.
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