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Abstract

As multimodal large language models
(MLLMs) advance, their large-scale archi-
tectures pose challenges for deployment in
resource-constrained environments. In the
age of large models, where energy efficiency,
computational scalability and environmental
sustainability are paramount, the development
of lightweight and high-performance models is
critical for real-world applications. As such,
we propose a lightweight MLLM framework
for end-to-end visual question answering. Our
proposed approach centres on BreezeCLIP,
a compact yet powerful vision-language
encoder optimised for efficient multimodal
understanding. With only 1.2 billion pa-
rameters overall, our model significantly
reduces computational cost while achieving
performance comparable to standard-size
MLLMs. Experiments conducted on multiple
datasets further validate its effectiveness
in balancing accuracy and efficiency. The
modular and extensible design enables
generalisation to broader multimodal tasks.
The proposed lightweight vision-language
framework is denoted as BcQLM (BreezeCLIP-
enhanced Q-Gated Multimodal Language
Model). It offers a promising path toward
deployable MLLMs under practical hardware
constraints. The source code is available at
https://github.com/thico0224/BcQLM.

1 Introduction

Multimodal learning integrates visual and linguis-
tic modalities, which has become a key direction in
building more general and human-like AI systems.
By combining information from different modali-
ties, such systems can better understand complex
real-world scenarios and perform more advanced
reasoning and decision-making tasks.

Among various multimodal tasks, Visual Ques-
tion Answering (VQA) has emerged as a widely
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adopted and representative benchmark. VQA re-
quires models to comprehend an image, under-
stand a corresponding natural language question
and generate an appropriate answer (Antol et al.,
2015). It poses significant challenges in cross-
modal semantic alignment, contextual reasoning
and fine-grained visual understanding (Anderson
et al., 2018; Li et al., 2022; Zhang et al., 2021), and
thus serves as an important indicator of multimodal
intelligence.

To effectively address the inherent challenges of
VQA and other complex multimodal tasks, main-
stream approaches have predominantly adopted a
two-stage architecture. Pretrained encoders such as
CLIP (Radford et al., 2021), ViT (Dosovitskiy et al.,
2021), and BERT (Devlin et al., 2019) are first used
to extract semantic features from images and texts,
providing strong unimodal representations and ini-
tial cross-modal alignment through large-scale pre-
training. These features are then passed to large
language models (LLM), which serve as decoders
to perform reasoning and generate answers. This
paradigm has been adopted by several representa-
tive systems, including BLIP-2, Qwen and LLaVA
(Li et al., 2023; Bai et al., 2023; Li et al., 2024).
These models integrate visual understanding with
language modelling, which enables them to gen-
erate contextually relevant and accurate answers
across a wide range of question types.

However, existing multimodal large models of-
ten suffer from large parameter sizes and high
computational costs, limiting their deployment on
edge devices. This hinders practical use in sce-
narios requiring efficient on-device inference, such
as healthcare (Wang et al., 2023), remote educa-
tion (Chu et al., 2025), disaster response (Kumbam
and Vejre, 2024) and assistive technologies (Driess
et al., 2023). In these settings, cloud-based so-
lutions may be infeasible due to connectivity or
latency issues (Wang et al., 2024), underscoring
the need for lightweight yet capable multimodal
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systems.
To address this issue, we propose BcQLM

(BreezeCLIP-enhanced Q-Gated Multimodal Lan-
guage Model). BreezeCLIP is a lightweight vi-
sion–language encoder designed to significantly re-
duce computational costs while enabling efficient
multimodal representation. It replaces the original
BERT and ViT backbones in CLIP with compact
transformer modules inspired by the inverted bottle-
neck design (Sandler et al., 2018). To train Breeze-
CLIP, we construct image–text pairs from the GQA
dataset (Hudson and Manning, 2019), leveraging
its rich scene graph annotations that provide de-
tailed object relationships and spatial context. We
adopt a dual training strategy: contrastive learning
ensures visual and textual features are well aligned
in a shared embedding space, while knowledge dis-
tillation from a CLIP teacher (Radford et al., 2021)
transfers high-level semantic alignment to Breeze-
CLIP. This enables BreezeCLIP to achieve strong
performance despite its lightweight architecture.

A lightweight decoder based on LLaMA-3.2-
1B (Grattafiori et al., 2024) is first employed
to generate answers conditioned on fused mul-
timodal features, achieving strong performance
with significantly reduced computational overhead.
Building on this, we introduce a Q-Gated Cross-
Modal Fusion Module that dynamically adjusts
the contribution of visual and textual features
according to the input question, which enables
fine-grained, question-aware interaction between
modalities. These components together constitute
an efficient end-to-end multimodal question an-
swering system designed for real-world, resource-
constrained deployment scenarios.

Our primary contributions are thus as follows:

(i) We propose BcQLM, involving a compact
BreezeCLIP by distillation learning and a Q-
Gated Cross-Modal Fusion Module. Com-
prehensive experiments demonstrate that our
BreezeCLIP is able to effectively preserve
vision-language alignment capabilities under
a tiny model setting.

(ii) We propose a Q-Gated Cross-Modal Fusion
Module to enable fine-grained and adaptive
multimodal fusion.

(iii) Our BreezeCLIP only contains 1.2B parame-
ters (10% of SoTA method), which achieves
performance comparable to several standard-
sized MLLMs with much higher parameter
counts on VQA tasks.

2 Related Work

We consider prior work leading to recent advances
in MLLMs, with connections to multimodal fu-
sion techniques and vision-language tasks, such as
VQA, highly relevant to our work.

2.1 Visual Question Answering

Visual Question Answering (VQA) is a prominent
multimodal task that requires a model to answer
natural language questions based on the content
from an image. It requires both visual percep-
tion and language understanding, as well as rea-
soning across the two modalities. First introduced
by Antol et al. (Antol et al., 2015), the VQA task
has become a widely used benchmark for evalu-
ating multimodal intelligence. Subsequent work
by Goyal et al. (Goyal et al., 2017) extended the
original dataset with balanced answer distributions,
mitigating language bias and enabling more robust
evaluation.

Early VQA approaches extract CNN-based im-
age features and LSTM/GRU question embeddings,
fusing them via concatenation, bilinear pooling or
co-attention (e.g., MCB (Fukui et al., 2016)); later
attention-based models like BAN (Kim et al., 2018)
and Bottom-Up Top-Down (Anderson et al., 2018)
enhance fine-grained reasoning and cross-modal
alignment. These early methods achieved some suc-
cess but relied on task-specific fusion and lacked
generalisation. Recent work leverages pretrained
large language models and generative architectures
to enable broader reasoning.

2.2 Vision-Language Pretraining & LLM
Generation

Advances in multimodal representation learning
focused on aligning visual and textual modalities
through joint embedding spaces. One of the most
representative models, CLIP (Radford et al., 2021),
learns such a space by contrastively training an
image encoder and a text encoder on large-scale
image-text pairs. Subsequent models such as ViLT
(Kim et al., 2021), ALBEF (Li et al., 2021), and
BLIP (Li et al., 2022) further enhance cross-modal
alignment by incorporating attention-based fusion
mechanisms and multi-task pretraining objectives.
These models demonstrate strong transferability to
a wide range of downstream tasks, including VQA,
image-text retrieval (Xiao et al., 2025) and caption
generation (Liu et al., 2025). Such dual-encoder
and fusion-based models adopt architectures where
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Figure 1: An overview of the proposed framework. Training consists of two stages: (1) BreezeCLIP encoder is
trained using contrastive (Lcontrastive) and distillation loss (Ldistill) from the CLIP teacher; (2) the Q-GCAM
module fuses image and question features to generate answers via a lightweight LLM decoder, optimised with
cross-entropy loss (LCE). The bottom diagrams illustrate BreezeCLIP and Q-GCAM architectures.

visual and textual inputs are first encoded inde-
pendently and then fused via attention modules or
interaction layers. While they excel at semantic
alignment, they remain limited in their ability to
support complex reasoning or generate language
that relies on common sense and broader world
knowledge not captured by the training corpus.

In response to these limitations, recent studies
have introduced pretrained LLMs into multimodal
systems, marking a shift toward generative archi-
tectures. Unlike traditional approaches that rely
solely on vision-language encoders, models such as
BLIP-2 (Li et al., 2023) and LLaVA (Li et al., 2024)
integrate visual features into frozen or lightly tuned
LLMs, treating the language model as the central
reasoning and generation component. Visual in-
puts are typically embedded as prompts or spe-
cial tokens to guide multimodal interaction. These
models demonstrate superior performance in open-
ended and knowledge-intensive tasks like VQA and
produce more coherent and contextually relevant
answers. This shift from traditional dual-encoder
models to LLM-centred generative architectures

brings improved reasoning and generation capa-
bilities, but high computational costs and large
model sizes remain major obstacles for practical
deployment. Recent works such as AdapterCLIP
(Gao et al., 2023) and LoRA (Hu et al., 2022) mit-
igate this issue via lightweight adapters or low-
rank tuning, but still rely on large fixed backbones
and show limited flexibility in complex generation
tasks. Our work advances this direction by empha-
sising lightweight and efficient modelling through
the introduction of BreezeCLIP, coupled with gated
cross-modal fusion and a LLaMA-based decoder.

3 Method

The proposed BcQLM (BreezeCLIP-enhanced
Q-Gated Multimodal Language Model) is a
lightweight multimodal large language model de-
signed for visual question answering under re-
source constraints, to support effective multimodal
reasoning in resource-limited environments. The
architecture comprises three main components.
First, a compact vision-language encoder, Breeze-
CLIP, is proposed to extract semantic features from
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both images and text. BreezeCLIP is trained us-
ing contrastive learning and knowledge distillation
from a CLIP teacher to ensure efficient representa-
tion learning. Next, we propose a question-guided
cross-modal attention module (Q-GCAM) to dy-
namically fuse visual and textual features based
on the semantics of the input question. Finally, a
lightweight language decoder based on LLaMA-
3.2-1B generates the final answer. An overview
of the framework is shown in Figure 1. It fol-
lows a two-stage design: (1) BreezeCLIP is first
pretrained via distillation and contrastive learning;
and (2) the pretrained BreezeCLIP is then used as
a frozen feature extractor, working with Q-GCAM
and an LLaMA-3.2-1B decoder to perform vision-
language generation. This balances performance
and efficiency, and enables BcQLM to support ef-
fective multimodal reasoning in resource-limited
environments.

3.1 Breezeclip
To enable efficient vision-language representation
learning within our framework, we design Breeze-
CLIP, a lightweight dual-encoder model that sig-
nificantly reduces computational costs while effec-
tively aligning visual and textual modalities.

Feature Encoder: The text encoder in Breeze-
CLIP adopts a lightweight Transformer to en-
able efficient language modelling in resource-
constrained settings, as shown in Figure 1. The
architecture adopts the same 24-layer Transformer
structure as BERT-Large. To reduce the number of
computation parameters while preserving model ca-
pacity, we incorporate a bottleneck structure (Sun
et al., 2020) into each layer: token embeddings are
first projected to lower dimensions, where atten-
tion and feed-forward computations are performed
and then restored via a linear projection. Residual
connections and layer normalisation are applied to
ensure training stability. Furthermore, we adopt a
factorised embedding strategy to reduce the size of
the vocabulary embedding matrix and apply layer-
wise knowledge distillation to preserve semantic
representation quality. The hidden states from the
last Transformer layer are retained as token-level
features without pooling, preserving fine-grained
textual semantics for subsequent fusion.

The image encoder combines convolutional oper-
ations with lightweight Transformer modules, fol-
lowing the bottleneck principle (Mehta and Raste-
gari, 2022). This structure enables efficient local
feature extraction while maintaining the ability to

capture global context with minimal computational
overhead. As shown in Figure 1, the input im-
age is first passed through a convolutional stem
and a set of lightweight MobileNetV2-style bot-
tleneck blocks (Sandler et al., 2018) to extract
early features. The resulting feature maps are then
processed by three Transformer blocks operating
at progressively smaller spatial resolutions (e.g.,
14× 14 and 7× 7). Each block consists of a local
convolutional module followed by a stack of Trans-
former encoder layers — specifically, 2, 4, and 3
layers in the three blocks, respectively, totalling 9
self-attention layers. In each Transformer block,
the input feature map is processed by a 3×3 convo-
lution to capture local context, followed by a 1× 1
convolution to reduce channel dimensions. The re-
sulting features are flattened into non-overlapping
patches and passed through the Transformer en-
coder for global modelling. The output is then
reshaped back into the 2D spatial layout and fused
with the original representation using a 1×1 convo-
lution. Finally, the output feature map is flattened
across spatial dimensions into a patch-level em-
bedding sequence to produce a three-dimensional
representation aligned with the text token embed-
dings for downstream cross-modal interaction.

The constructed BreezeCLIP achieves a total
parameter reduction of approximately 80% (from
151M to 31M), which significantly improves de-
ployment efficiency in resource-constrained envi-
ronments compared to standard CLIP.

Distillation and Contrastive Learning. A
joint optimisation scheme that unifies contrastive
learning and knowledge distillation is adopted
to strengthen alignment across modalities in a
lightweight setting. This enables the student model
to learn from both raw image-text pairs and the
supervision of a large pretrained teacher model.

We construct image-text pairs by leveraging the
scene graphs provided in the GQA dataset. Each
image is associated with a structured graph that
specifies object categories, spatial relationships
(e.g., “a book is on the right of the table”), and
attributes (e.g., “the book is red”), as shown in
Appendix Figure A1. We convert these graph
structures into informative language descriptions to
serve as textual counterparts to the original images.

Given image-text pairs, the inputs are encoded
using the student model’s image and text encoders,
resulting in feature embeddings Is and Ts. A con-
trastive InfoNCE loss (Parulekar et al., 2023) is
used to bring matched pairs closer and push mis-
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matched pairs apart in the shared embedding space:

Lcontrast =
1
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(1)

where τ is a temperature coefficient, y denotes the
index labels of positive pairs and α balances the
contributions of the two directional terms.

To further improve the student model’s represen-
tations, we perform knowledge distillation from
a pretrained CLIP model. Visual and textual em-
beddings It and Tt are extracted from the teacher
model and projected into the student embedding
space via learnable projection heads. The distil-
lation loss is computed as the mean squared er-
ror (MSE) between the L2-normalised student and
teacher embeddings:

Ldistill =
1

β
(MSE(Is, It) +MSE(Ts, Tt)) , (2)

where β is a normalisation factor.
The total training objective is defined as a

weighted combination of the two losses:

Ltotal = λ1 · Lcontrast + λ2 · Ldistill, (3)

where hyperparameters, λ1 and λ2, balance the con-
tributions of the contrastive and distillation losses.

3.2 Multimodal Input Construction
To enable fine-grained visual-language interaction,
a Dynamic Gated Cross-Attention module is used.
After extracting modality-specific representations
from the feature encoders, visual and textual fea-
tures undergo cross-modal integration to establish
contextual grounding for answer generation.

Specifically, the image encoder outputs a latent
feature map FV ∈ RB×C×H×W , which is spa-
tially flattened into patch-level embeddings FI ∈
RB×N×C , where N = H × W . Concurrently,
the text encoder provides token-wise embeddings
FT ∈ RB×T×d, where d is the embedding dimen-
sion, as well as a global semantic representation
F̄T ∈ RB×d derived through average pooling:

F̄T =
1

T

T∑

i=1

F
(i)
T , (4)

Visual patch tokens serve as queries, while tex-
tual embeddings provide keys and values for atten-
tion computation:

Q = FIW
Q, K = FTW

K , V = FTW
V ,

(5)

F̂I = Softmax

(
QK⊤
√
d

)
V. (6)

To inject global semantic control, the pooled
textual vector F̄T is projected into the same latent
space and broadcast across all spatial locations:

F̄ ′
T = Proj(F̄T ) ∈ RB×d, (7)

γ = σ
(
MLP

(
[FI ; F̄

′
T ]
))

∈ [0, 1]B×N×1. (8)

The attention-enhanced visual representations
F̂I are adaptively modulated by the gate γ, then
integrated with the original features through a gated
residual connection:

Fmod = FI + γ ⊙ F̂I , (9)

This intermediate representation is subsequently
refined via a feed-forward network and normalisa-
tion layer:

Ffused = LayerNorm (Fmod + FFN(Fmod)) .
(10)

To align with the decoder’s token embedding
space, the fused visual patches are mapped through
a lightweight projection head, yielding pseudo tex-
tual tokens:

Fpseudo = Adapter(Ffused) ∈ RB×N×d. (11)

3.3 LLM Decoder
In this work, the LLaMA-3.2-1B model (Grattafiori
et al., 2024) is adopted as the language decoder to
generate final responses. As a compact yet capable
member of the LLaMA series, the 1B variant is
pre-trained exclusively on large-scale textual cor-
pora, without exposure to any visual or multimodal
data. Its small size enables efficient fine-tuning
and inference, which makes it suitable for resource-
constrained deployment. More importantly, the
absence of any prior visual grounding makes it an
ideal testbed to rigorously assess the effectiveness
of our visual-text fusion module in aligning visual
content for language generation.

Given the pseudo tokens from the image encoder,
denoted as Fpseudo ∈ RB×N×d, and the instruction-
response text sequence Xtext, tokenised and embed-
ded as FT = Embed(Xtext) ∈ RB×T×d, the input
to the decoder is constructed by concatenation:

Fllama = [Fpseudo;FT ] ∈ RB×(N+T )×d, (12)
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Method LLM Param. Res. GQA VQAV 2 VisWiz

BLIP-2 (2023) Vicuna-13B 13.5 224 44.0 65.0 19.6
InstructBLIP (2023) Vicuna-7B 7.5 224 49.2 – 34.5
InstructBLIP (2023) Vicuna-13B 13.5 224 49.5 – 33.4
IDEFICS-9B (2023) LLaMA-7B 9.0 224 38.4 50.9 35.5
IDEFICS-80B (2023) LLaMA-65B 80.0 224 45.2 60.0 36.0
BcQLM (ours) Llama-3.2-1B 1.2 224 60.8 71.0 49.5
Qwen-VL (2023) Qwen-7B 9.6 448 59.3 78.8 35.2
Qwen-VL-Chat (2023) Qwen-7B 9.6 448 57.5 78.2 38.9
LLaVA-1.5 (2024) Vicuna-1.5-7B 7.3 336 62.0 78.5 50.0
LLaVA-1.5 (2024) Vicuna-1.5-13B 13.3 336 63.3 80.0 53.6
VILA-7B (2024) Llama-2-7B 7.0 336 62.3 79.9 57.8
VILA-13B (2024) Llama-2-13B 13.0 336 63.3 80.8 60.6
BcQLM (ours) Llama-3.2-1B 1.2 336 62.4 78.7 56.1

Table 1: Comparison of accuracy (%) across three VQA benchmarks: GQA, VQAv2, and VizWiz. Results for
BLIP-2 (Li et al., 2023), InstructBLIP (Dai et al., 2023), IDEFICS (Laurençon et al., 2023), LLaVA-1.5 (Liu et al.,
2024), VILA (Lin et al., 2024), and Qwen-VL (Bai et al., 2023) are reported based on their official releases. Our
proposed BcQLM achieves competitive performance across all datasets while using only 1.2B parameters.

During training, label supervision is applied only
to the response portion of the sequence, with in-
struction and visual tokens masked out from loss
computation. This facilitates alignment of visual
features with downstream language tokens via gra-
dient propagation through the decoder:

Lgen = CE(LLaMA(Fllama), Yresponse). (13)

where CE(·) denotes the cross-entropy loss com-
puted over the generated response tokens Yresponse.

4 Experiments

4.1 Dataset

To comprehensively evaluate the performance of
our model, we conduct experiments on three widely
used datasets: GQA, VQAv2, and VizWiz:

• GQA (Hudson and Manning, 2019): 113K
real-world images from Visual Genome paired
with 22.7M programmatically generated ques-
tions. Each question is derived from a scene
graph and converted into a natural-language
query covering comparison, spatial relations,
logical inference and other multi-step reason-
ing types.

• VQAv2 (Goyal et al., 2017): Built on MS-
COCO, comprising approximately 205K im-
ages and over 1.1M image–question–answer
triplets. Each question is paired with ten

human-provided answers and complementary
image–question pairs are included to mitigate
language biases.

• VizWiz (Gurari et al., 2018): Consists of
about 31K images and corresponding free-
form questions captured by blind users with
mobile phones. Each question has ten crowd-
sourced answers; the dataset is characterised
by poor image quality, incomplete visual con-
text and diverse real-world query types.

4.2 Settings

We use a pretrained CLIP model as the teacher
and BreezeCLIP as the student. Images are resized
(224×224 or 336×336), normalised and converted
to tensors. Text is tokenised and padded to 77
tokens. Visual and textual features are projected to
a shared embedding space (512 or 768 dims). We
use contrastive loss with τ = 0.07, α = β = 0.5,
and train for 64 epochs using Adam (lr=1× 10−5),
StepLR (step_size=10, γ=0.5), batch size 32, and
gradient clipping (max norm=1.0).

BreezeCLIP visual features are adapted via a
VisualAdapter and fused with question embed-
dings through an 8-head Dynamic Gated Cross-
Attention. The fused embeddings are fed into a
trainable LLaMA model. Training uses AdamW
(lr=1× 10−4), StepLR (step_size=5, γ=0.1), for
15 epochs, with batch size 32 and gradient clipping.
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Figure 2: Cosine similarity in BreezeCLIP distillation.

4.3 Evaluation Metrics

During the distillation and contrastive learning
stage, we compute the InfoNCE loss on the valida-
tion set to measure the convergence of image–text
embedding alignment. Additionally, the mean co-
sine similarity of all positive image–text pairs and
the positive–negative similarity gap are reported to
evaluate the discrimination capability of the model.
For the visual question answering task, we employ
VQA accuracy as the sole evaluation metric, quan-
tifying the proportion of generated answers that
match the reference answers.

4.4 Quantitative Results

BreezeCLIP is jointly optimised with contrastive
and distillation objectives under the supervision of
a frozen CLIP ViT-B/32 teacher. During training,
the cosine similarity between visual and textual em-
beddings increases steadily, ultimately exceeding
80%, whereas the teacher model remains around
71% (Figure 2). This demonstrates that despite
its compact size, BreezeCLIP achieves stronger
alignment in the multimodal embedding space.

To better visualise the feature distribution, we
project high-dimensional embeddings into 3D via
PCA and show them in Figure 3. The teacher
model, although not trained on these datasets, still
achieves about 71% positive cosine similarity due
to large-scale pretraining and the strong cross-
modal representation learning, generalisation abil-
ity and robust alignment properties of CLIP. How-
ever, its embedding space mixes positive and neg-
ative pairs without clear separation. In contrast,

(a) BreezeCLIP (b) Teacher CLIP

Figure 3: 3D projection of vision-language embeddings
after dimensionality reduction. BreezeCLIP (a) exhibits
clearer separation between positive and negative pairs
compared to the teacher CLIP (b), which shows no
separation between positive and negative pairs.

BreezeCLIP clusters positive pairs tightly at the
centre and pushes negative pairs outward. This
demonstrates that our dual-loss training strategy
significantly improves feature discrimination.

The proposed framework is evaluated on three
widely used VQA benchmarks (GQA, VQAv2 and
VizWiz), using accuracy as the primary evaluation
metric. As shown in Table 1, BcQLM achieves
an accuracy of 60.8% on GQA, 71.0% on VQAv2
and 49.5% on VizWiz, outperforming most exist-
ing methods operating at a resolution of 224×224
and even surpassing several models using higher
resolutions. When increasing the input resolution
to 336×336, BcQLM improves its performance by
achieving 62.4% on GQA as the second best result
among published models, 78.7% on VQAv2 and
56.1% on VizWiz as the third best result, bringing
its overall performance in line with mainstream
large scale vision language models. Notably, our
model uses only 1.2B parameters, significantly
smaller than existing models, and requires no ex-
ternal data or instruction tuning, demonstrating the
effectiveness of our training and encoder design.

4.5 Ablation Study

Five configurations were compared on the valida-
tion set (as shown in Table 2): CLIP + LLaMA-
3.2-1B (58.8%), BreezeCLIP + LLaMA-3.2-1B
(59.2%), Q-GCAM (60.8%), Q-GCAM’ with To-
ken Balance (58.7%) and Q-GCAM” with Visual
Query (55.7%). Token Balance reweights visual
features to match textual contributions; Visual
Query adds a cross-modal attention layer using
visual tokens as queries. These results show that
Q-GCAM drives the performance gains, while its
Token Balance and Visual Query variants need finer
parameter tuning and integration.

In the preceding ablation study, we evaluate the
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Figure 4: Example BcQLM responses to GQA questions: “Is there a fork in the bowl?”, “What color is the fur?”,”Is
the van to the right of a bus?“ “Is there a window in the scene?”, and “Does the ground look bare?” under three
different LLaMA-3.2-1B unfreeze ratios (5%, 50%, 100%). Despite unfreezing only 5% of parameters, the model
maintains correct semantic judgments; full (100%) unfreezing further improves fine-grained detail recognition, such
as correctly identifying a spoon in the bowl.

Model Configuration Acc. (%)

CLIP + LLaMA 58.8
BreezeCLIP + LLaMA 59.2

BreezeCLIP + Q-GCAM + LLaMA 60.8
BreezeCLIP + Q-GCAM’ + LLaMA 58.7
BreezeCLIP + Q-GCAM” + LLaMA 55.7

Table 2: Comparison of different model configurations
on validation accuracy. All LLaMA means LLaMA-3.2-
1B, Q-GCAM’ indicates the Token Balance strategy,
Q-GCAM” indicates the Visual Query strategy.

impact of varying unfreezing ratios (5%, 50%, and
100%) on BcQLM’s responses using the LLaMA-
3.2-1B backbone. Across different settings, the
model consistently produces semantically correct
answers, even when only 5% of the parameters
are unfrozen. Fully unfreezing the model provides
slight improvements on fine-grained details, such
as object attributes and spatial descriptions. Impor-
tantly, every prediction can still be viewed as cor-
rect from certain interpretative perspectives, even
though its expression may differ from the canoni-
cal ground truth. These findings demonstrate Bc-
QLM’s robustness and effectiveness under different
unfreezing strategies, with minimal reliance on ex-
tensive parameter updates. Example responses are

shown in Figure 4 for qualitative reference.

4.6 Efficiency Analysis

We further evaluate inference efficiency on an
NVIDIA RTX 4070 Ti using 20 test samples.
BcQLM completes the batch in 2.54 seconds
(127.1 ms per sample), requiring 4989.5 MiB peak
GPU memory and 1.57×1011 FLOPs per sam-
ple. In comparison, Qwen2.5-VL-3B (Qwen et al.,
2025) takes 5.06 seconds (253.1 ms per sample),
uses 7152.6 MiB memory, and costs 1.60×1011

FLOPs per sample, while Gemma3-4B (Team
et al., 2025) takes 5.48 seconds (273.9 ms per sam-
ple), consumes 7432.8 MiB memory, and requires
1.85×1011 FLOPs per sample. These results show
that BcQLM runs at twice the speed of Qwen2.5-
VL-3B and Gemma3-4B, with around 30% lower
memory usage and comparable or fewer FLOPs,
highlighting its superior efficiency for edge-like
deployment scenarios.

5 Conclusion

In this work, we present BcQLM, a lightweight
multimodal language model, specifically designed
for efficient and effective vision-language under-
standing under resource-constrained settings. Our
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approach is centred on BreezeCLIP, a compact
vision-language encoder trained using a dual strat-
egy of contrastive learning and knowledge distilla-
tion. It preserves cross-modal alignment while sig-
nificantly reducing computational overhead. The
model further incorporates Q-GCAM, a Q-Gated
Cross-Modal Attention module to enable dynamic
and context-aware fusion of visual and textual fea-
tures for adaptive multimodal reasoning.

Our extensive experiments demonstrate that Bc-
QLM achieves strong performance on three widely
used VQA benchmarks — GQA (62.4%), VQAv2
(78.7%), and VizWiz (56.1%) — using only 1.2 bil-
lion parameters, a fraction of the size of compara-
ble models. These results validate the effectiveness
of our lightweight design in balancing computa-
tional efficiency and high performance. Beyond
its strong quantitative results, BcQLM offers prac-
tical advantages for real-world deployment. Its
compact architecture enables efficient inference on
modest hardware, which makes it suitable for appli-
cations in edge computing, assistive technologies
and real-time multimodal systems. Our modular
framework also allows for flexible adaptation to
other multimodal tasks as a versatile solution for
resource-limited environments.

Limitations

While our work introduces an efficient and effec-
tive multimodal large language model under con-
strained computational settings, certain areas offer
opportunities for further enhancement. First, our
model relies on publicly available vision-language
datasets, which may not fully capture the complex-
ities and distributions of real-world multimodal
scenarios. The limited diversity and quality of
these datasets could constrain the model’s gener-
alisation ability, particularly in domains requiring
fine-grained or specialised reasoning. Second, the
decoder (LLaMA-3.2-1B) employed in our system
is pretrained solely on text and remains frozen dur-
ing fusion training. Although this design choice
enhances efficiency and controllability, it may also
limit the model’s capacity to adaptively integrate vi-
sual semantics during generation. Finally, although
our approach has been primarily validated on VQA
benchmarks, future work should explore its exten-
sion to more dynamic modalities, including video,
audio and real-time interactive settings.
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A Additional Visualization

Figure A1: An example scene graph from the GQA
dataset, illustrating spatial and attribute relationships
among objects, such as a red book on the desk.
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