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Abstract

Figurative language and figures of speech, such
as metaphors and hyperboles, are used every
day in written and oral communication among
human beings. Nonetheless, this imaginative
use of words in a non literal way requires a
solid understanding of semantics and a deep
real-world knowledge. In the longstanding de-
bate about whether Neural Language Models
(NLMs) really have a full understanding of
text, analysing how they can recognise figu-
rative language can provide some intuition of
their functioning, their capabilities and their
limits. Therefore, in this paper, we exploit
probing tasks to study how several NLMs
of different sizes recognise four different fig-
ures of speech: hyperboles, metaphors, oxy-
morons and pleonasms. We analyse whether
this information is learned and how it is ac-
quired during the training of the model, de-
scribing its learning trajectory. Moreover,
we analyse which layers have a better com-
prehension of figurative language and the in-
fluence of pre-training data. Datasets and
code are available at https://github.com/
nicolarici/learning-trajectories.

1 Introduction

Investigating the capabilities of Neural Language
Models (NLMs) is a well established research area
in Natural Language Processing (NLP) (Belinkov,
2022). Major studies have been conducted on how
these models understand grammar (Miaschi et al.,
2020), how attention weights encode dependency
relations (Vig and Belinkov, 2019) and on world
knowledge contained in such models (Roberts et al.,
2020; Heinzerling and Inui, 2021). This is often
done by probing tasks, i.e. by training a classifier to
verify if the embedded representation of words (or
sentences) produced by the models contain some
specific information, such as the part-of-speech or
whether a word describes the subject of the sen-
tence (Kohn, 2015).

However, analysing semantic-related aspects is
quite more complex (van Dijk et al., 2023). In
fact, a word can have different meanings and nu-
ances depending on the context in which it appears.
Moreover, it can be used literally, metaphorically,
or even ironically. With respect to grammar and
syntax, into which words have definite and recog-
nisable characteristics which can be easily anno-
tated, these nuances increase the difficulty of cre-
ating datasets and designing simple tasks for this
kind of evaluation.

In this paper, we tackle the problem on how
NLMs deal with semantics by analysing figura-
tive language and, in particular, figures of speech.
Understanding figurative language is a challeng-
ing task in the overall context of text comprehen-
sion (Shutova, 2011). As an example, consider
the sentence “The Real Madrid players go 3,000
kilometers per hour”. In order to understand that
it contains a hyperbole, a lot of implicit seman-
tic and real-world knowledge is needed: that Real
Madrid players are humans, that kilometers per
hour is a unit of measure of speed, and that humans
do not reach that speed. Since figures of speech
rely on using words in a nuanced, rhetorical and
imaginative way, investigating them can provide
interesting insight into the semantic knowledge of
NLMs, their inner workings and some of their lim-
its. From a practical perspective, understanding
how this knowledge is acquired during training (in
terms of quantity and types of data required) could
provide some insights for optimizing the training
process.

We structure the recognition of the presence
of a figure of speech (in particular, we analyse
metaphors, oxymorons, hyperboles and pleonasms
for the English language) in a sentence as a probing
task, and we evaluate it through the state-of-the-art
method of Minimum Description Length (MDL)
by Voita and Titov (2020). With this configuration,
we can also study the performance of the different
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layers across the NLMs architecture. Most impor-
tantly, we are not only interested in the capabilities
of the fully trained models. Following the works in
Chiang et al. (2020) and Liu et al. (2021), we also
perform this analysis through the entire training
process of an NLM, analysing how this semantic-
based knowledge is acquired and how it evolves
during training. By this procedure, we can also
analyse how different data (a small general purpose
Wikipedia dump, the literary corpus Project Guten-
berg and the extensive The Pile dataset (Gao et al.,
2021)) influence the learning of figurative language
information. In summary, through this work we
aim to address these research questions:

Q1. How do NLMs learn figurative language? Is
there a common pattern or different figures of
speech are learned in different ways?

Q2. Do larger models have a better understanding
of figurative language?

Q3. Which layers are mostly associated with figu-
rative language-related knowledge?

Q4. How is such knowledge acquired during train-
ing? How is it influenced by different data?

2 Related Work

Alongside the success and diffusion of Neural Lan-
guage Models, one of the top research priorities be-
came their explanation and interpretation (Rogers
et al., 2020; Zhao et al., 2024a). In this line of
work, many approaches have been proposed, such
as studying the behaviour of self-attention mech-
anisms (Clark et al., 2019; Vig, 2019); assessing
whether some forms of real-world knowledge are
learned by the models (Petroni et al., 2019; Jiang
et al., 2020), or analysing lexical and grammatical
capabilities through probing tasks (Belinkov and
Glass, 2019; Belinkov, 2022).

A probe is a simple neural network model that
uses the embedded representation of words or sen-
tences generated by a pre-trained language model
and that it is trained to solve a specific supervised
task (Kohn, 2015; Gupta et al., 2015). This tech-
nique has been exploited to study syntactic prop-
erties (Jawahar et al., 2019; Miaschi et al., 2020)
including dependency parsing (Hewitt and Man-
ning, 2019) and temporal relations (Caselli et al.,
2022). Differently from these works, our focus is
not on syntax or grammar, but on semantics and,

in particular, on figurative language. Recent meth-
ods such as Sparse Autoencoders (Huben et al.,
2024) and Sparse Probing (Gurnee et al., 2023)
work in an unsupervised framework focusing on
identifying the function of individual neurons (for
instance, whether a neuron activates in the pres-
ence of words beginning with the letter W (Huben
et al., 2024)). This is substantially different from
our study, which analyses whether the whole word
representation encodes a high level concept in a
supervised manner.

Probing for figurative language has been studied
by some works focusing on concepts like compo-
sitionality (Liu and Neubig, 2022; Dankers et al.,
2022) and idiomaticity (Garcia et al., 2021; Tan
and Jiang, 2021). Regarding figures of speech,
which are the focus of our study, Aghazadeh et al.
(2022) analyse how metaphors are recognised by
several NLMs across different datasets and lan-
guages. Similarly, the work in Schneidermann
et al. (2023) analyses hyperboles on three differ-
ent Transformer-based encoder models. Unlike
these works, we do not focus on a single detec-
tion task; instead, we expand the scope to multiple
figures of speech, including also oxymorons and
pleonasms. Moreover, they focus only on the fully
trained model. Instead, we analyse how these capa-
bilities are learned by NLMs during their training.

Understanding how and when a property is
learned by an NLM is a relatively new and un-
der investigated research field. Saphra and Lopez
(2019) investigated how linguistic properties are
encoded in the hidden representations of a LSTM
language model. They discovered that syntactic
features (such as the part-of-speech) are learned
early in the training, whereas the learning of topic-
related information is acquired later. Similar results
were obtained by Chiang et al. (2020) for the AL-
BERT model (Lan et al., 2020). Liu et al. (2021)
conduct a similar analysis of RoOBERTa (Liu et al.,
2019) learning trajectories focusing more on fac-
tual and common sense knowledge, finding that
this type of information is learned more in depth as
the training progresses. To the best of our knowl-
edge, our work is the first study on how figurative
language is learned during the model training.

Evaluating the effect of the pre-training on the
behaviour of NLMs is another underexplored field.
Primarily, the works by Longpre et al. (2024) and
Zhao et al. (2024b) evaluate how different sources
(books, code repositories, web pages) influence
the performance on several NLP downstream tasks.

14441



Differently from these works, we analyse how dif-
ferent datasets change the learning trajectory of spe-
cific semantic knowledge through probing tasks.

3 Case Studies and Datasets

We analyse four types of figures of speech: Hyper-
bole, Metaphor, Oxymoron and Pleonasm. In the
following, we explain them in detail and introduce
the datasets used for our analysis. All datasets are
in English, publicly available and released freely
for research purposes.

Hyperbole A hyperbole is an exaggeration to am-
plify or reduce the representation of the connota-
tions of what is being communicated over a qualita-
tive or quantitative scale (Burgers et al., 2016). As
a dataset, we used the one introduced by Troiano
et al. (2018) in the slightly modified version re-
leased in Schneidermann et al. (2023). It consists
of 1396 sentences collected from the web and an-
notated by several human annotators. The dataset
is divided equally between hyperbolic and literal
sentences.

Metaphor Following Strapparava (2018), a
metaphor can be defined as the replacement of one
word by another one whose literal sense bears a re-
semblance to the literal sense of the word replaced.
Unlike a comparison, where affinities and diver-
gences between the compared entities are explicitly
shown, in a metaphor the two entities are merged
into one. A well-known benchmark of manually
annotated metaphors is the Language Computer
Corporation (LCC) by Mohler et al. (2016). More
specifically, we adopt the binary version of LCC
released in Aghazadeh et al. (2022). From the 40 K
sentences contained in Binary LCC, we randomly
selected 1600 of them almost equally distributed
(785 literals and 815 metaphors) to perform a better
comparison with the other smaller datasets.

Oxymoron An oxymoron is a juxtaposition of
two semantically opposite terms; the terms may
be morphologically connected (as in happily un-
happy) or not (as in screaming silence) (Bolog-
nesi et al., 2024). For our analysis, we created a
new dataset starting from the 287 oxymorons col-
lected and annotated by Xu et al. (2023). While
their dataset contains only positive instances (i.e.
sentences containing an oxymoron), we generated
the negative ones ourselves. The generation pro-
cess exploits the GPT-4 model through the official
OpenAl API. For each oxymoron, we generated a

sentence which contains the same words that com-
pose the oxymoron but used in a literal meaning.
Then, the generated sentences were validated by
the authors. More details about the prompt and
the generation process are given in Appendix A.1.
The final dataset contains 1564 examples evenly
distributed between positive and negative.

Pleonasm A pleonasm is an overabundant ex-
pression formed by the addition of one or more
words that are not necessary from a grammatical
or conceptual point of view. It is often used to
provide the sentence with emphasis, confidence or
verbosity (Lehmann, 2005). For our analysis, we
exploited a dataset based on the Semantic Pleonasm
Corpus benchmark (SPC) by Kashefi et al. (2018).
This dataset contains 3019 sentences with different
pleonasms made by a pair of consecutive words.
Each instance has been labelled by human anno-
tators that evaluate whether one of the two words
1s redundant, both words are redundant or none of
them are. To adapt this dataset to our binary task,
we discard the sentences labelled as both. Our fi-
nal dataset contains 3002 sentences, of which 1720
with a pleonasm and 1282 without.

4 Methodology

In this section, we describe the method we use to
analyse the learning trajectories of NLMs applied
to figurative language.

4.1 Figurative Language as a Probing Task

Our probes aim to determine how much is known
by an NLM in terms of figurative language. More
specifically, the goal is to identify whether a sen-
tence contains a specific figure of speech or not.
The task is designed as follows. Considering
one figure of speech, its relative dataset and a
pre-trained NLM, we create a feed-forward neu-
ral network classifier that receives as input the V-
dimensional embedded representation of a sentence
s and should output 1 if s contains the figure of
speech and 0 otherwise. Following the approach
by Reimers and Gurevych (2019), we calculate the
embedded representation of s as the average of the
representation of each token in the sentence. The
neural network has two hidden layers with % neu-
rons with ReLU as activation function and an out-
put layer with 2 neurons using softmax activation
function. For training the classifier to recognise a
figure of speech, we use 80% of the corresponding
dataset as a training set. During the training phase,
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the weights of the pre-trained NLM are frozen;
thus, the model is not fine-tuned for the task. The
dimension of the hidden layers and the other hy-
perparameters of the classifier were obtained by
a preliminary random search on a validation set
(10% of the dataset).

In principle, the performance of the classifier
could be evaluated through standard machine learn-
ing metrics, such as accuracy or F-Score. Since the
NLM is frozen, good metric values should mean
that the embedded representation correctly encodes
specific knowledge relative to the figure of speech.
However, this assertion has been disputed by sev-
eral studies. For instance, Zhang and Bowman
(2018) show how the same probe classifier can
achieve the same performance in a linguistic task
if fed with a pre-trained representation or a random
one; a significant difference in terms of accuracy
would only be seen with a small set of training data.
Similar results were obtained by Hewitt and Liang
(2019), who tested the method with several control
tasks, for which they show how a probe classifier
provides very similar results both predicting a real
linguistic phenomenon and a random label.

A solution to these issues is the Minimum De-
scription Length (MDL) probing method by Voita
and Titov (2020). MDL is based on information
theory, and it has been proven to be robust with
respect to changes in the probe settings, the choice
of random seed and the aforementioned issues with
random representations and control tasks. Intu-
itively, MDL measures not only the classifier per-
formance, but also the effort required to achieve
such performance through the codelength metric.
Voita and Titov (2020) propose two alternative ap-
proaches for MDL.: the variational coding and the
online coding. The results obtained by these two
methods are consistent with each other. Following
Aghazadeh et al. (2022), for our analysis we used
the latter method which works as follows. First
the training set for our probing task is divided into
M portions of increasing dimension.! Next, for
each of these portions, a classifier is trained and
evaluated through the cross-entropy metric. More
precisely, a classifier trained on the ¢-th portion is
evaluated by calculating the cross-entropy over the
instances in the (7 + 1)-th portion excluding those

!As in Voita and Titov (2020) the portions are 0.1, 0.2, 0.4,
0.8, 1.6, 3.2, 6.25, 12.5, 25, 50, 100 %.

used for training. The codelength is defined as:

M-1
codelength = |My| - loga(K) + Z (CE;)
=0

where | M| is the size of the first training portion,
K is the number of classes of the probing task, and
CE; is the cross-entropy. In our case, we consider
only binary tasks, so K = 2.

Since the codelength is related to the size of the
dataset | D|, in order to draw a better comparison,
our analysis is performed in terms of compression.
This metric is defined as:

|D| - loga(K)

compression =
P codelength

Since K = 2, the compression can be seen as the
ratio between the dataset size and the codelength.?

4.2 Learning Trajectory and Layer Analysis

In the literature, probing tasks have been applied to
NLMs to assess the capabilities of a model which
has been fully trained and released to the public
(Jawahar et al., 2019; Miaschi et al., 2020; Caselli
et al., 2022). However, the same techniques can
be used for studying how a model acquires these
capabilities during its different training steps (Chi-
ang et al., 2020; Liu et al., 2021). By probing the
model through these steps, it is possible to derive
what has been called the learning trajectory of the
model with respect to some specific aspect.

Therefore, we do not perform the probing task
only on a final, fully trained NLM but also on its
checkpoints. A checkpoint is an intermediate ver-
sion of the model (and its weights) saved during
its training. For NLMs, a checkpoint is saved ev-
ery time the model has received a certain number
of tokens in input. Considering a specific figure
of speech and given a set of J checkpoints of a
pre-trained model, we execute the probing task and
measure repeatedly its performance in terms of
compression with the MDL method over all the J
checkpoints.

Moreover, we extend our analysis to the differ-
ent layers that compose the NLMs considered. By
this experiment, we aim to verify if there are signif-
icant differences across layers and their knowledge
related to figurative language. Similarly to what

*For more details regarding the MDL method, the reader
can refer to the original paper (Voita and Titov, 2020) and
to this blog post: https://lena-voita.github.io/posts/
mdl_probes.html.
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Figure 1: Learning trajectories of the GPT-NeoX models considering their last layer. Each plot regards a different
figure of speech. On the x-axis, we report the number of tokens used in training; on the y-axis we report the
compression calculated using MDL. Each line represents a model: in blue, the one with 14\ parameters, in orange
31M, in green 70M, in red 160M, in purple 410M, in brown 1.4 B, and in pink 6.95.

has been previously described, given a checkpoint
(final or intermediate) made by L layers, we repeat
the probing task and its evaluation for the embed-
ded representations provided by each layer.

5 Experimental Evaluation

For our experimental evaluation, we considered
several NLMs (for the English language) and their
available checkpoints, based on the GPT-NeoX ar-
chitecture (Black et al., 2022).

We evaluate each model in terms of compression
through the MDL method over all the available
checkpoints. From a theoretical point of view, as
described in Section 4, MDL is the state-of-the-
art method for evaluating probing tasks, given its
robustness versus randomness and control tasks.
Moreover, from a practical point of view, using
accuracy leads to a definitely less clear evaluation.
For instance, Hyperbole accuracy ranges from 70%
to 80% for almost the entire trajectory, with no
real distinctions among models despite their much
different size and number of parameters. Instead,
compressions lead to more stable and understand-
able results. For the engaged reader, results in
terms of accuracy are reported in Appendix C.

We considered the Pythia benchmark suite (Bi-
derman et al., 2023), i.e. GPT-NeoX models

(Black et al., 2022), a variant of GPT very similar
to GPT-3 (Brown et al., 2020) and GPT-J (Wang
and Komatsuzaki, 2021). All these models were
trained over The Pile dataset (Gao et al., 2021), for
a total of almost 3008 tokens. For each model,
a checkpoint is saved after O (i.e. with the model
weights randomly initialised), 1, 2, 4, 8, 16, 32, 64,
128, 256, 512, 1000 and every subsequent 1000
training steps. Each step consists of 2M tokens.
The models considered differ in terms of number of
layers, heads, embedding dimension and therefore
for their overall number of parameters. We selected
the models with 14M, 31M, 70M, 160M, 410M,
1.4B and 6.9 parameters.’

5.1 Results for the Last Layer (Q1, Q2)

In this section, we conduct a detailed comparison of
the performance of GPT models, providing answers
to Q1 and Q2.

Results are available in Figure 1, which shows
the learning trajectories of the last layer for each
model. Considering the values of compression, on
the y-axis of each plot, we can see notable differ-
ences among the figures of speech considered.
Those which are mostly recognisable by all the

*More details are available at https://github.com/
EleutherAI/pythia and in Appendix B
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Hyperbole Pleonasm

BL t% BL t% BL 1% BL 1%

Metaphor Oxymoron

Model L

14M 6 5 9.7 6 00 5 280 5
3IM 6 5 214 2 63 3 910 1
70M 6 4 242 4 70 2 878 0 25
160M 12 8 251 9 112 6 2068 10
410M 24 14 92 15 35 12 503 12 23
1.4B 24 13 92 11 1.9 11 729 10 28
6.9B 32 18 48 17 51 11 13.7 9 36

Table 1: Results of the layer analysis conducted on the
GPT-NeoX models. Column L gives the total number of
layers; the columns of the considered figures of speech
give the best performing layer (column BL) and the
improvement of the compression metric in percentage
with respect to the last layer (column 1 %).

GPT models are Oxymoron, which reaches a com-
pression higher than 4.5 with the 1.48 model, and
Hyperbole, which reaches a compression higher
than 2 with the 410M and 1.4B models. Some
difficulties can be observed for Metaphor. Even if
the three biggest models (410M, 1.4B and 6.9B5)
reach a compression of about 1.6, this value is no-
tably lower than the ones obtained for Oxymoron
and Hyperbole. For Pleonasm, all models obtain
similar performance and do not improve with re-
spect to the randomly initialised model, which
obtains a compression of 1.46. In order to im-
prove performance for Metaphor and Pleonasm,
we have tried tuning the hyperparameters of the
neural classifier, checking 100 further configura-
tions, obtaining no improvement. For Metaphor,
even doubling and quadrupling the training data
did not lead to improvements. This suggests that
recognising Metaphor and Pleonasm is particularly
difficult for the GPT models we considered.

For Hyperbole, Oxymoron and Metaphor, we
can see that, on average, bigger models obtain
a better performance. Taking Hyperbole as an
example, 31 M obtains a maximum value of 1.73
whereas 160M obtains 1.85 and 410M obtains
2.04. Notable exceptions are 1.48 and 6.9B
for Hyperbole (which do not perform better than
410M) and 410M, 1.4B and 6.9B for Metaphor,
which reach similar compression.

The learning trajectories of Hyperbole, Oxy-
moron and Metaphor share some similarities. As
can be seen in Figure 1, most of the models start
increasing their compression value in the ini-
tial phases of the training (before 10B tokens)
and they do not have remarkable improvements
afterwards. This suggests that, in order to ac-
quire the capability of recognising these figures of

Oxymoron

— 14M
31M

_/W

0B 0B 41B 73B 104B 136B 167B 199B 230B 262B 293B

13

Figure 2: Learning trajectories of the GPT-NeoX mod-
els for Oxymoron, considering their best layer. On the
x-axis, we report the number of tokens used in training;
on the y-axis we report the compression. Each line rep-
resents a model: in blue, the one with 14 M parameters,
in orange 31 M, in green 70M, in red 160, in purple
410M, in brown 1.4 B, and in pink 6.9B5.

speech, the considered GPT models do not require
a massive dataset. This behaviour is consistent with
the one observed by Liu et al. (2021) for linguistic
tasks, whereas factual knowledge and reasoning
have a more gradual learning process.

In some cases, we can see a worsening of com-
pression during the training process. Whereas the
14 M model for Hyperbole obtains only a slight
worsening (from 1.65 to 1.58), this behaviour is
more evident for Metaphor and Oxymoron. For
Metaphor, the 160M model after receiving 18058
tokens in training rapidly decreases its perfor-
mance, passing from 1.58 to 1.49 of compres-
sion. This behaviour is even more drastic for Oxy-
moron: all models apart from 410M and 1.4B
progressively worsen their performance in the lat-
ter stages of training. An interesting aspect that
can be noted is that smaller models worsen earlier:
14 M starts decreasing its compression after about
100B tokens, 31M after 142B, 7T0M after 1678
and 160M after 19958. We do not observe this
behaviour for 410M and 1.4B5.

Finally, for Oxymoron the 6.9 5 model exhibits
a peculiar behaviour: similarly to smaller models,
its performance does not increase much over train-
ing. However, as the larger models, its compression
is stable and does not worsen after a certain itera-
tion. We conducted further experiments to analyse
whether the low compression was due to the probe
dimensions. More specifically, we performed a ran-
dom search of the probe hyperparameters (number
of hidden layers from O to 4 and number of neurons
from N/2 to N/32, where N is the embedding
size). However, we did not see any improvement.
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Thus, we claim this is a characteristic of the model.

We have also conducted another experiment for
all case studies on 410M, considering as the probe
input only the span of the sentence containing the
figure of speech. The complete results are reported
in Appendix C. For Metaphor and Pleonasm we did
not observe a visible difference in performance; on
the contrary, for Oxymoron and Hyperbole, a sharp
deterioration in performance is observed, achiev-
ing, respectively, 1.64 (vs 1.98) and 1.85 (vs 4.09).
This could be caused by the poor quality of the
annotated spans for some datasets, or by the loss of
contextual information that NLMs distribute over
all tokens. Finally, we have performed the same
experiments over a BERT (Devlin et al., 2019) and
a RoBERTa (Liu et al., 2019) models. The results,
available in Appendix C, are very similar to those
obtained for the GPT-NeoX models, and they con-
firm the generalizability of our results.

5.2 Results of the Layer Analysis (Q3)

In this section, we analyse the performance of the
different layers of the models we considered, trying
to find out which ones are the mostly related to
figurative language knowledge (Q3).

First, we focus on the last checkpoint for each
figure of speech and the results are available in
Table 1. Analysing which layers perform best (re-
ported in the BL. column), we can see that in most
cases the best layers are in the central part or
in the second half of the model. For instance, the
best performing layer of 1.4 B (which has a total of
24 layers) for Hyperbole is layer 13 and for 6.9B is
layer 18 over 32. The same can be said for smaller
models, such as 160M (12 layers). In this case,
the best layers are 8 for Hyperbole, 9 for Metaphor
and 6 for Oxymoron. These results are consistent
with the literature. In fact, there is a general in-
tuition that the lower layers of Transformer-based
architectures store more syntactic and grammati-
cal knowledge, the intermediate layers have more
semantics-related knowledge, while the last lay-
ers are more task oriented (Miaschi et al., 2020;
Fayyaz et al., 2021). An evident improvement with
respect to the last layer can be seen for Hyperbole,
since 31 M, T0M and 160M have an improvement
of more than 20%. For Metaphor, the best per-
forming models (410M, 1.4B and 6.9B) show a
slighter improvement of their performance, with
respectively a 3.5%, 1.9% and 5.1% increase. For
Pleonasm there is no particular improvement, and
even the best performing layers are not able to

recognise a pleonasm in a sentence.

For Oxymoron, we have a more peculiar situ-
ation. In fact, for the last layer, as we discussed
in Section 5.1 and shown in Figure 1, all models
except 410M, 1.4B and 6.9B (which still obtains
results comparable to 31 M for the last layer) suf-
fer a strong decrease in performance in the latter
stages of the learning trajectory. However, the re-
sults in Table 1 indicate that the best performing
layers have much better performance compared
to the last, with an increase of 91.0% for 31M,
87.8% for 70M and an impressive 206.8% for
1600 . Analysing the complete learning trajec-
tory of the GPT-NeoX models, shown in Figure 2,
we can see that there is basically no evident wors-
ening of the performance over the training, and
all models except 14M (which shows a gradual
decrease in terms of compressions) are stable or
even show a slight increase. For instance, the 1.45
model reaches 7.48 at the final checkpoint with
respect to 5.82 at 10B tokens and 6.82 at 1005
tokens. This phenomenon is consistent with recent
findings (Rogers et al., 2020; Wallat et al., 2020;
Haviv et al., 2023), which demonstrate that Trans-
former models predominantly retrieve memorised
information in the intermediate layers. This has
also been confirmed by the work in Tirumala et al.
(2022) which, focusing on the last layer of NLMs,
analyses how they may forget information during
training. They also point out that this effect is more
pronounced in smaller models, whereas larger mod-
els tend to maintain higher levels of memorisation
during training. This is consistent with our results
for Oxymoron (Figure 1). Moreover, our layer
analysis suggests that information regarding oxy-
morons may not be forgotten but instead stored
in intermediate layers. Therefore, we claim that
this phenomenon cannot be categorized as a catas-
trophic forgetting (Thompson et al., 2019) of the
whole model. Instead, as shown by (Wallat et al.,
2020), we claim that the last layer becomes more
focused on the language modeling training task,
rather than storing semantic knowledge, which can
be found elsewhere in the model. Further experi-
mental investigation is necessary to better charac-
terise and quantify these effects.

5.3 Impact of Training Data (Q4)

To analyse the impact of pre-training data on the
model’s ability to detect figures of speech (Q4),
we chose to train two GPT-NeoX models from
scratch, with 7T0M and 160M parameters respec-
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Figure 3: Learning trajectories of the best layer for the GPT-NeoX models trained from scratch. For each figure
of speech, we report the compression value for the first 20K iterations. Each line represents a different model: in
blue Pythia-70M/, in orange PG-70M, in green Wiki-70M, in red Pythia-160M, in purple PG-160M, in brown
Wiki-160M; dots for PG models and crosses for Wiki models represent the termination of an epoch on the dataset.

tively, on two small English datasets, provided
by Dolma (Soldaini et al., 2024). The first is
Project Gutenberg, a corpus containing approxi-
mately 55K books (13GB of text, for a total of
5.3B tokens), which we hypothesised should con-
tain a more literary language and, therefore, more
figures of speech. The second one is a generic
corpus, i.e. a Wikipedia dump made by 6 million
pages (11GB of text, for a total of 3.8 B tokens).

To train the models, we follow the procedure
described in Biderman et al. (2023), without chang-
ing any hyperparameters. We train the architecture
with 41B tokens (20K iterations of 20 tokens)
considering both the smaller datasets involved and
the performance reported in Figure 1, which does
not show any visible improvement after that thresh-
old. Given that both datasets contain a lower num-
ber of tokens, the training was continued for sev-
eral epochs (7 for Project Gutenberg and 11 for
Wikipedia). After training, we performed the same
linguistic evaluation presented in Biderman et al.
(2023). Results are reported in Appendix D.

In Figure 3, we report the learning trajecto-
ries of the 7T0M and 1600/ models trained on the
original dataset (Pythia-70 and Pythia-160), the
Project Gutenberg collection (PG-70 and PG-160)
and Wikipedia (Wiki-70 and Wiki-160). With re-
spect to the previous experiments, we report only
the results for the two best performing figures of
speech, Hyperbole and Oxymoron. The complete
results are available in Appendix C. Focusing on
the comparison between the PG and Wiki models,
we observe that the PG-70 and PG-160 trained on

books, presumably richer in figures of speech, do
not outperform the respective Wiki models. For
Hyperbole, PG and Wiki models stabilise around
very similar compression values, 1.66 for the PG-
70 and Wiki-70 models, and 1.72 for PG-160 and
Wiki-160. Similarly, for Oxymoron, both PG and
Wiki models reach 2.30 compression for 70M and
160M parameters models. These results suggest
that the more literary language expected from
the Project Gutenberg corpus does not confer
a measurable advantage over a more generic
dataset, in terms of learning figures of speech.
However, it is evident that the Pythia models
consistently achieve superior performance, espe-
cially for Hyperbole, 1.77 for 70M and 1.90 for
160M, and Oxymoron, 3.72 for 70M and 4.94
for 160M. A plausible explanation is the dataset
size and epoch structure. In fact, the original The
Pile dataset is definitely larger w.r.t. PG and Wiki.
Therefore, whereas The Pile provides continuous
novel data throughout the training process, PG and
Wiki force the training to loop over the same data
multiple times. This contributes to the stabilisa-
tion of the learning trajectories after the first epoch.
These findings are also supported by the linguistic
evaluations in the Appendix D, which confirms the
consistent advantage of training with The Pile. For
Pleonasm and Metaphor, no notable performance
differences were observed between PG and Wiki.

6 Conclusions and Future Work

Considering seven different GPT-NeoX models,
we investigated whether and how NLMs are able
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to recognise four types of figurative language (hy-
perboles, metaphors, oxymorons and pleonasms)
describing their learning trajectories. Our results
show that the most recognisable figures of speech
are hyperboles and oxymorons, whereas more diffi-
culties can be found for metaphors and especially
for pleonasms. Analysing the learning trajecto-
ries, we discovered that such capabilities are ac-
quired in the early stages of the training and usu-
ally do not improve in the latter stages (Q1). On
the contrary, we observed that for Oxymoron the
final layer of several models decreases its results,
coherently with Tirumala et al. (2022). Rogers
et al. (2020) and Haviv et al. (2023). Apart from
the 6.9 model, bigger models tend to better un-
derstand the figures of speech we analysed (Q2).
Analysing the different layers of each model, we
have seen that best performing ones are usually in
the central part or in the second half of the model,
consistently with the literature (Fayyaz et al., 2021)
(Q3). By comparing models trained on different
datasets, we saw that using a literary corpus does
not provide advantages in recognising figures of
speech, with respect to a model trained on generic
content. Moreover, a larger general dataset drasti-
cally improves the results, coherently with Longpre
et al. (2024) and Zhao et al. (2024b) (Q4).

As future work, we aim to expand our analysis
considering more figures of speech, more datasets
and their impact, considering also other language
and multilingual models. For instance, it would
be interesting to identify whether figures of speech
knowledge is language specific or shared by more
languages (Zhao et al., 2024c). Finally, we will
focus on LLMs and black box models.

Limitations

The study presented in this paper is a first step
towards a more detailed comprehension on how
NLMs understand figurative language and as such
it has some limitations.

First, since our method leverages the model em-
beddings, not all models can be analysed through
our approach. LLMs are released in three main
ways: open source, where both the original weights
and the model technical specification (such as its
underlying architecture, the training algorithm, and
often the datasets used for training), are publicly
released; open/restricted weight, where only the
original weights are available, in some cases under
certain conditions; closed source, where nothing is

available, except for a way (usually a web interface
or a set of APIs) to communicate with the LLM.
Our method is applicable to the first type of re-
leased models, as long as the checkpoints are avail-
able or there are enough computational resources to
reproduce them,; it is applicable also for the second
type but only if the checkpoints are released. Our
method is not applicable to closed source models.

The second main limitation is intrinsic to prob-
ing tasks and how they interact with generative
LLMs. Probing tasks allow us to investigate
whether and how a certain type of knowledge is
contained in the model embeddings. However,
what a probing task cannot capture is how this
information is used in the text generation process.

Other limitations are related to the datasets and
the models considered in our analysis. For the
datasets, we only considered one dataset per figure
of speech containing about 1.5 K-3K sentences. A
more in-depth study of the phenomenon could be
conducted considering several datasets of different
sizes. Moreover, all the data we considered are in
English. However, apart from some few examples
(such as the TroFi dataset for non literal language
by Birke and Sarkar (2006)) such resources are
quite difficult to find or create, especially for less
known types of figurative language and for other
languages. For the models, we considered only
a single family of GPT-based models (the GPT-
NeoX benchmark models released by Biderman
et al. (2023)). We are aware that several different
open-source LL.Ms are available for testing, also
bigger and more powerful ones.

Ethics and Impact Statement

This paper investigates the capabilities of Neural
Language Models in the overall field of semantics
and, more specifically, to recognise figurative lan-
guage with probing tasks. Although we expect that
this type of studies might help understanding the
behaviour of NLMs, in order to improve their factu-
ality and overall coherence, interpretability studies
might also help in understanding the mechanics
behind how models generate misleading, abusive
or biased language. This knowledge of how mod-
els work might be used in order to expand those
unwanted aspects of the generated text in a harmful
way.

Although the calculation of the learning trajecto-
ries is based on simple feed-forward neural network
classifiers, the overall combination of retrieving
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the embeddings, the multiple training processes
required by MDL (Voita and Titov, 2020) and the
studies among checkpoints and layers require ex-
tensive computational time on a single DGX-A100
server involving a 40GB MIG of a single GPU. Un-
der this setting, probing all the checkpoints with
the MDL method could take from 2 hours, for
the fastest model, to 51 hours for the slowest one.
Given that MDL guarantees stability of the results
across multiple seeds (Voita and Titov, 2020), our
results were obtained over a single run. Overall,
the greatest impact on the environment is definitely
from training the two GPT-NeoX models on differ-
ent datasets. Although the training was truncated at
the 20K iteration, the resource consumption is con-
siderable and can be measured in about 700 hours.
Total emissions, estimated with the Machine Learn-
ing CO2 Impact Tool (Lacoste et al., 2019), are
75.6 kgCOqeq.

Acknowledgments

This work has been partly funded by Regione Lom-
bardia through the initiative "Programma degli
interventi per la ripresa economica: sviluppo di
nuovi accordi di collaborazione con le universita
per la ricerca, I’innovazione e il trasferimento tec-
nologico" - DGR n. X1/4445/2021. This research
also utilized resources from the AI4WATER project
("Optimizing Water Resources in Coastal Areas
using Artificial Intelligence") that is part of the
PRIMA Programme supported by the European
Union and by the Italian Ministry of University
and Research.

References

Ehsan Aghazadeh, Mohsen Fayyaz, and Yadollah
Yaghoobzadeh. 2022. Metaphors in pre-trained lan-
guage models: Probing and generalization across
datasets and languages. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2037—
2050, Dublin, Ireland. Association for Computational
Linguistics.

Yonatan Belinkov. 2022. Probing classifiers: Promises,

shortcomings, and advances. Computational Linguis-
tics, 48(1):207-219.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49-72.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-

lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar van der Wal. 2023.
Pythia: A suite for analyzing large language models
across training and scaling. In International Con-
ference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages
2397-2430. PMLR.

Julia Birke and Anoop Sarkar. 2006. A clustering ap-
proach for nearly unsupervised recognition of nonlit-
eral language. In 17th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 329-336, Trento, Italy. Association
for Computational Linguistics.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. PIQA: reasoning about
physical commonsense in natural language. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 7432—
7439. AAAI Press.

Sidney Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace
He, Connor Leahy, Kyle McDonell, Jason Phang,
Michael Pieler, Usvsn Sai Prashanth, Shivanshu Puro-
hit, Laria Reynolds, Jonathan Tow, Ben Wang, and
Samuel Weinbach. 2022. GPT-NeoX-20B: An open-
source autoregressive language model. In Proceed-
ings of BigScience Episode #5 — Workshop on Chal-
lenges & Perspectives in Creating Large Language
Models, pages 95-136, virtual+Dublin. Association
for Computational Linguistics.

Marianna M. Bolognesi, Claudia Roberta Combei,
Marta La Pietra, and Francesca Masini. 2024. What
makes an awfully good oxymoron? Language and
Cognition, 16(1):242-262.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, and 12 others. 2020. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,

NeurlIPS 2020, December 6-12, 2020, virtual.

Christian Burgers, Britta C Brugman, Kiki Y Re-
nardel de Lavalette, and Gerard J Steen. 2016. Hip:
A method for linguistic hyperbole identification in
discourse. Metaphor and Symbol, 31(3):163-178.

Tommaso Caselli, Irene Dini, and Felice Dell’Orletta.
2022. How about time? probing a multilingual lan-
guage model for temporal relations. In Proceedings

14449


https://doi.org/10.18653/v1/2022.acl-long.144
https://doi.org/10.18653/v1/2022.acl-long.144
https://doi.org/10.18653/v1/2022.acl-long.144
https://doi.org/10.1162/coli_a_00422
https://doi.org/10.1162/coli_a_00422
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.1162/tacl_a_00254
https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html
https://aclanthology.org/E06-1042/
https://aclanthology.org/E06-1042/
https://aclanthology.org/E06-1042/
https://doi.org/10.1609/AAAI.V34I05.6239
https://doi.org/10.1609/AAAI.V34I05.6239
https://doi.org/10.18653/v1/2022.bigscience-1.9
https://doi.org/10.18653/v1/2022.bigscience-1.9
https://doi.org/10.1017/langcog.2023.68
https://doi.org/10.1017/langcog.2023.68
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1080/10926488.2016.1187041
https://doi.org/10.1080/10926488.2016.1187041
https://doi.org/10.1080/10926488.2016.1187041
https://aclanthology.org/2022.coling-1.283/
https://aclanthology.org/2022.coling-1.283/

of the 29th International Conference on Computa-
tional Linguistics, pages 3197-3209, Gyeongju, Re-
public of Korea. International Committee on Compu-
tational Linguistics.

Cheng-Han Chiang, Sung-Feng Huang, and Hung-yi
Lee. 2020. Pretrained language model embryology:
The birth of ALBERT. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 6813-6828, On-
line. Association for Computational Linguistics.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 276-286, Florence, Italy. Association for Com-
putational Linguistics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the AI2 reasoning challenge. CoRR,
abs/1803.05457.

Verna Dankers, Christopher Lucas, and Ivan Titov. 2022.
Can transformer be too compositional? analysing id-
iom processing in neural machine translation. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 3608-3626, Dublin, Ireland. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume I (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Mohsen Fayyaz, Ehsan Aghazadeh, Ali Modarressi, Ho-
sein Mohebbi, and Mohammad Taher Pilehvar. 2021.
Not all models localize linguistic knowledge in the
same place: A layer-wise probing on BERToids’ rep-
resentations. In Proceedings of the Fourth Black-
boxNLP Workshop on Analyzing and Interpreting
Neural Networks for NLP, pages 375-388, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2021. The pile: An
800gb dataset of diverse text for language modeling.
CoRR, abs/2101.00027.

Marcos Garcia, Tiago Kramer Vieira, Carolina Scarton,
Marco Idiart, and Aline Villavicencio. 2021. Probing
for idiomaticity in vector space models. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:

Main Volume, pages 3551-3564, Online. Association
for Computational Linguistics.

Abhijeet Gupta, Gemma Boleda, Marco Baroni, and
Sebastian Padé. 2015. Distributional vectors encode
referential attributes. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 12-21, Lisbon, Portugal.
Association for Computational Linguistics.

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine
Harvey, Dmitrii Troitskii, and Dimitris Bertsimas.
2023. Finding neurons in a haystack: Case studies
with sparse probing. Trans. Mach. Learn. Res., 2023.

Adi Haviv, Ido Cohen, Jacob Gidron, Roei Schuster,
Yoav Goldberg, and Mor Geva. 2023. Understand-
ing transformer memorization recall through idioms.
In Proceedings of the 17th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 248-264, Dubrovnik, Croatia. As-
sociation for Computational Linguistics.

Benjamin Heinzerling and Kentaro Inui. 2021. Lan-
guage models as knowledge bases: On entity repre-
sentations, storage capacity, and paraphrased queries.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume, pages 1772-1791, Online.
Association for Computational Linguistics.

John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 2733-2743, Hong Kong,
China. Association for Computational Linguistics.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129-4138, Minneapolis, Minnesota. Association for
Computational Linguistics.

Robert Huben, Hoagy Cunningham, Logan Riggs Smith,
Aidan Ewart, and Lee Sharkey. 2024. Sparse autoen-
coders find highly interpretable features in language
models. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024.

Ganesh Jawahar, Benoit Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3651-3657, Florence, Italy. Association for
Computational Linguistics.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423-438.

14450


https://doi.org/10.18653/v1/2020.emnlp-main.553
https://doi.org/10.18653/v1/2020.emnlp-main.553
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://doi.org/10.18653/v1/2022.acl-long.252
https://doi.org/10.18653/v1/2022.acl-long.252
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.blackboxnlp-1.29
https://doi.org/10.18653/v1/2021.blackboxnlp-1.29
https://doi.org/10.18653/v1/2021.blackboxnlp-1.29
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://doi.org/10.18653/v1/2021.eacl-main.310
https://doi.org/10.18653/v1/2021.eacl-main.310
https://doi.org/10.18653/v1/D15-1002
https://doi.org/10.18653/v1/D15-1002
https://openreview.net/forum?id=JYs1R9IMJr
https://openreview.net/forum?id=JYs1R9IMJr
https://doi.org/10.18653/v1/2023.eacl-main.19
https://doi.org/10.18653/v1/2023.eacl-main.19
https://doi.org/10.18653/v1/2021.eacl-main.153
https://doi.org/10.18653/v1/2021.eacl-main.153
https://doi.org/10.18653/v1/2021.eacl-main.153
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://openreview.net/forum?id=F76bwRSLeK
https://openreview.net/forum?id=F76bwRSLeK
https://openreview.net/forum?id=F76bwRSLeK
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324

Omid Kashefi, Andrew T. Lucas, and Rebecca Hwa.
2018. Semantic pleonasm detection. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Pa-
pers), pages 225-230, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Arne Kohn. 2015. What’s in an embedding? analyzing
word embeddings through multilingual evaluation.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2067-2073, Lisbon, Portugal. Association for Com-
putational Linguistics.

Alexandre Lacoste, Alexandra Luccioni, Victor
Schmidt, and Thomas Dandres. 2019. Quantifying
the carbon emissions of machine learning. arXiv
preprint arXiv:1910.09700.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Christian Lehmann. 2005. Pleonasm and hyperchar-
acterisation, pages 119—154. Springer Netherlands,
Dordrecht.

Hector J. Levesque. 2011. The winograd schema chal-
lenge. In Logical Formalizations of Commonsense
Reasoning, Papers from the 2011 AAAI Spring Sym-
posium, Technical Report SS-11-06, Stanford, Cali-
fornia, USA, March 21-23, 2011. AAAL

Emmy Liu and Graham Neubig. 2022. Are represen-
tations built from the ground up? an empirical ex-
amination of local composition in language models.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
9053-9073, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2020. Logiqa: A chal-
lenge dataset for machine reading comprehension
with logical reasoning. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial
Intelligence, IJCAI 2020, pages 3622-3628. ijcai.org.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Zeyu Liu, Yizhong Wang, Jungo Kasai, Hannaneh Ha-
jishirzi, and Noah A. Smith. 2021. Probing across
time: What does ROBERTa know and when? In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 820-842, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Shayne Longpre, Gregory Yauney, Emily Reif, Kather-
ine Lee, Adam Roberts, Barret Zoph, Denny Zhou,
Jason Wei, Kevin Robinson, David Mimno, and
Daphne Ippolito. 2024. A pretrainer’s guide to train-
ing data: Measuring the effects of data age, domain
coverage, quality, & toxicity. In Proceedings of the
2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (Volume 1: Long Pa-
pers), pages 3245-3276, Mexico City, Mexico. Asso-
ciation for Computational Linguistics.

Alessio Miaschi, Dominique Brunato, Felice
Dell’Orletta, and Giulia Venturi. 2020. Lin-
guistic profiling of a neural language model. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 745-756,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Michael Mohler, Mary Brunson, Bryan Rink, and Marc
Tomlinson. 2016. Introducing the LCC metaphor
datasets. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 4221-4227, PortoroZ, Slovenia.
European Language Resources Association (ELRA).

Denis Paperno, German Kruszewski, Angeliki Lazari-
dou, Ngoc Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Ferndndez. 2016. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1525-1534, Berlin, Germany.
Association for Computational Linguistics.

Fabio Petroni, Tim Rocktischel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463-2473, Hong Kong, China. Association
for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982-3992, Hong Kong, China. Association for Com-
putational Linguistics.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 5418-5426,
Online. Association for Computational Linguistics.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in BERTology: What we know about

14451


https://doi.org/10.18653/v1/N18-2036
https://doi.org/10.18653/v1/D15-1246
https://doi.org/10.18653/v1/D15-1246
https://doi.org/10.48550/arXiv.1910.09700
https://doi.org/10.48550/arXiv.1910.09700
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.1007/1-4020-4066-0_5
https://doi.org/10.1007/1-4020-4066-0_5
http://www.aaai.org/ocs/index.php/SSS/SSS11/paper/view/2502
http://www.aaai.org/ocs/index.php/SSS/SSS11/paper/view/2502
https://doi.org/10.18653/v1/2022.emnlp-main.617
https://doi.org/10.18653/v1/2022.emnlp-main.617
https://doi.org/10.18653/v1/2022.emnlp-main.617
https://doi.org/10.24963/IJCAI.2020/501
https://doi.org/10.24963/IJCAI.2020/501
https://doi.org/10.24963/IJCAI.2020/501
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2021.findings-emnlp.71
https://doi.org/10.18653/v1/2021.findings-emnlp.71
https://doi.org/10.18653/v1/2024.naacl-long.179
https://doi.org/10.18653/v1/2024.naacl-long.179
https://doi.org/10.18653/v1/2024.naacl-long.179
https://doi.org/10.18653/v1/2020.coling-main.65
https://doi.org/10.18653/v1/2020.coling-main.65
https://aclanthology.org/L16-1668/
https://aclanthology.org/L16-1668/
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.1162/tacl_a_00349

how BERT works. Transactions of the Association
for Computational Linguistics, 8:842—-866.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2020. Winogrande: An adver-
sarial winograd schema challenge at scale. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 8732—
8740. AAAI Press.

Naomi Saphra and Adam Lopez. 2019. Understanding
learning dynamics of language models with SVCCA.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 3257-3267,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Nina Schneidermann, Daniel Hershcovich, and Bolette
Pedersen. 2023. Probing for hyperbole in pre-trained
language models. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 4: Student Research Workshop),
pages 200-211, Toronto, Canada. Association for
Computational Linguistics.

Ekaterina V Shutova. 2011. Computational approaches
to figurative language. Technical report, University
of Cambridge, Computer Laboratory.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin
Schwenk, David Atkinson, Russell Authur, Ben
Bogin, Khyathi Chandu, Jennifer Dumas, Yanai
Elazar, Valentin Hofmann, Ananya Jha, Sachin Ku-
mar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ilan Mag-
nusson, Jacob Morrison, Niklas Muennighoff, and 17
others. 2024. Dolma: an open corpus of three trillion
tokens for language model pretraining research. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 15725-15788, Bangkok, Thai-
land. Association for Computational Linguistics.

Carlo Strapparava. 2018. Metaphor: A computational
perspective by tony veale, ekaterina Shutova and
beata beigman klebanov. Computational Linguistics,
44(1):191-192.

Minghuan Tan and Jing Jiang. 2021. Does BERT un-
derstand idioms? a probing-based empirical study
of BERT encodings of idioms. In Proceedings of
the International Conference on Recent Advances in
Natural Language Processing (RANLP 2021), pages
1397-1407, Held Online. INCOMA Ltd.

Brian Thompson, Jeremy Gwinnup, Huda Khayrallah,
Kevin Duh, and Philipp Koehn. 2019. Overcoming
catastrophic forgetting during domain adaptation of
neural machine translation. In Proceedings of the
2019 Conference of the North American Chapter of

the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 2062—-2068, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer,
and Armen Aghajanyan. 2022. Memorization with-
out overfitting: Analyzing the training dynamics of
large language models. In Advances in Neural Infor-
mation Processing Systems, volume 35, pages 38274—
38290. Curran Associates, Inc.

Enrica Troiano, Carlo Strapparava, Gézde Ozbal, and
Serra Sinem Tekiroglu. 2018. A computational ex-
ploration of exaggeration. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 3296-3304, Brussels,
Belgium. Association for Computational Linguistics.

Bram van Dijk, Tom Kouwenhoven, Marco Spruit, and
Max Johannes van Duijn. 2023. Large language mod-
els: The need for nuance in current debates and a
pragmatic perspective on understanding. In Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 12641-12654,
Singapore. Association for Computational Linguis-
tics.

Jesse Vig. 2019. A multiscale visualization of attention
in the transformer model. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 37-42,
Florence, Italy. Association for Computational Lin-
guistics.

Jesse Vig and Yonatan Belinkov. 2019. Analyzing
the structure of attention in a transformer language
model. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 63-76, Florence, Italy. As-
sociation for Computational Linguistics.

Elena Voita and Ivan Titov. 2020. Information-theoretic
probing with minimum description length. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 183-196, Online. Association for Computa-
tional Linguistics.

Jonas Wallat, Jaspreet Singh, and Avishek Anand. 2020.
BERTnesia: Investigating the capture and forgetting
of knowledge in BERT. In Proceedings of the Third
BlackboxNLP Workshop on Analyzing and Interpret-
ing Neural Networks for NLP, pages 174—-183, On-
line. Association for Computational Linguistics.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
In Proceedings of the 3rd Workshop on Noisy User-
generated Text, pages 94106, Copenhagen, Den-
mark. Association for Computational Linguistics.

14452


https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1609/AAAI.V34I05.6399
https://doi.org/10.1609/AAAI.V34I05.6399
https://doi.org/10.18653/v1/N19-1329
https://doi.org/10.18653/v1/N19-1329
https://doi.org/10.18653/v1/2023.acl-srw.30
https://doi.org/10.18653/v1/2023.acl-srw.30
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-803.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-803.pdf
https://doi.org/10.18653/v1/2024.acl-long.840
https://doi.org/10.18653/v1/2024.acl-long.840
https://doi.org/10.1162/COLI_r_00311
https://doi.org/10.1162/COLI_r_00311
https://doi.org/10.1162/COLI_r_00311
https://aclanthology.org/2021.ranlp-1.156/
https://aclanthology.org/2021.ranlp-1.156/
https://aclanthology.org/2021.ranlp-1.156/
https://doi.org/10.18653/v1/N19-1209
https://doi.org/10.18653/v1/N19-1209
https://doi.org/10.18653/v1/N19-1209
https://proceedings.neurips.cc/paper_files/paper/2022/file/fa0509f4dab6807e2cb465715bf2d249-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/fa0509f4dab6807e2cb465715bf2d249-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/fa0509f4dab6807e2cb465715bf2d249-Paper-Conference.pdf
https://doi.org/10.18653/v1/D18-1367
https://doi.org/10.18653/v1/D18-1367
https://doi.org/10.18653/v1/2023.emnlp-main.779
https://doi.org/10.18653/v1/2023.emnlp-main.779
https://doi.org/10.18653/v1/2023.emnlp-main.779
https://doi.org/10.18653/v1/P19-3007
https://doi.org/10.18653/v1/P19-3007
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/2020.emnlp-main.14
https://doi.org/10.18653/v1/2020.emnlp-main.14
https://doi.org/10.18653/v1/2020.blackboxnlp-1.17
https://doi.org/10.18653/v1/2020.blackboxnlp-1.17
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.18653/v1/W17-4413

Fan Xu, Ziyun Zhu, and Xiaojun Wan. 2023. Cre-
ative destruction: Can language models interpret
oxymorons? In Natural Language Processing and
Chinese Computing - 12th National CCF Conference,
NLPCC 2023, Foshan, China, October 12-15, 2023,
Proceedings, Part I, volume 14302 of Lecture Notes
in Computer Science, pages 645-656. Springer.

Kelly Zhang and Samuel Bowman. 2018. Language
modeling teaches you more than translation does:
Lessons learned through auxiliary syntactic task anal-
ysis. In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 359-361, Brussels, Bel-
gium. Association for Computational Linguistics.

Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu,
Huiqi Deng, Hengyi Cai, Shuaiqiang Wang, Dawei
Yin, and Mengnan Du. 2024a. Explainability for
large language models: A survey. ACM Trans. Intell.
Syst. Technol., 15(2).

Yang Zhao, Li Du, Xiao Ding, Kai Xiong, Zhouhao Sun,
Shi Jun, Ting Liu, and Bing Qin. 2024b. Decipher-
ing the impact of pretraining data on large language
models through machine unlearning. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 9386-9406, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Yiran Zhao, Wenxuan Zhang, Guizhen Chen, Kenji
Kawaguchi, and Lidong Bing. 2024c. How do large
language models handle multilingualism? In Ad-
vances in Neural Information Processing Systems
38: Annual Conference on Neural Information Pro-
cessing Systems 2024, NeurlPS 2024, Vancouver, BC,
Canada, December 10 - 15, 2024.

A Additional Dataset Details

A.1 Generation of the Negative Instances for
the Oxymoron Dataset

As we explained in Section 3, to generate the nega-
tive examples for the oxymorons dataset we lever-
age the official OpenAl API, in particular, the Chat
Completion API with the gpt-4-turbo-2024-04-09
model snapshot. First, we split each oxymoron into
single words and then we ask GPT-4 to produce
a single sentence with the literal meaning of each
word. For every oxymoron, we pass to GPT-4 two
different prompts: the system prompt, containing
the general instructions and the behaviour it has to
follow, and the user prompt, which contains the list
of words that must appear in the generated sentence.
In the following, we report the system prompt:

Given a list of words you need to create a
single sentence that includes all the listed
words, using each of them in their most di-
rect and literal sense. The sentence should
be coherent and contextually sensible, show-
casing the literal meaning of each word
without relying on figurative language or
idiomatic expressions.

Example:

Words: book, light, plant

Literal Sentence:

She read her book under natural light next
to the window where her favourite plant was
placed.

In the first part of the prompt, we explain to the
model which task it has to solve, which input it
has to expect (a list of words) and how it has to
respond (with a single sentence). In the second part,
to reinforce the instructions we gave, we provide a
simple example (one-shot) of some words and how
they are used literally in a sentence.

The results were validated by two of the authors
(a PhD student and a post-doc researcher both male
under 40 from Europe) who simply checked if the
sentences generated contained an oxymoron (in
that case, such a sentence would be excluded) or
not.

A.2 Licenses and Terms of Use

In the following, we discuss the licenses and terms
of use for the datasets and the models we used.

Hyperbole The dataset is freely distributed un-
der the Creative Commons License (Troiano et al.,
2018).

Metaphor The authors of LCC (Mohler et al.,
2016) did not set a specific license, but they state
in the paper that their dataset can be used at no cost
for research purposes.

Oxymoron As for Metaphors, the authors did not
specify a license or terms of use but they state in
Xu et al. (2023) that the oxymorons they collected
are publicly available. Our dataset, containing also
the negative instances we generated, will be re-
leased (upon acceptance) under Creative Commons
License.

Pleonasm The dataset is released under the terms
of GNU General Public License without any war-
ranty by Kashefi et al. (2018).

14453


https://doi.org/10.1007/978-3-031-44693-1_50
https://doi.org/10.1007/978-3-031-44693-1_50
https://doi.org/10.1007/978-3-031-44693-1_50
https://doi.org/10.18653/v1/W18-5448
https://doi.org/10.18653/v1/W18-5448
https://doi.org/10.18653/v1/W18-5448
https://doi.org/10.18653/v1/W18-5448
https://doi.org/10.1145/3639372
https://doi.org/10.1145/3639372
https://doi.org/10.18653/v1/2024.findings-acl.559
https://doi.org/10.18653/v1/2024.findings-acl.559
https://doi.org/10.18653/v1/2024.findings-acl.559
http://papers.nips.cc/paper_files/paper/2024/hash/1bd359b32ab8b2a6bbafa1ed2856cf40-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/1bd359b32ab8b2a6bbafa1ed2856cf40-Abstract-Conference.html

GPT-NeoX This architecture is released under
the Apache License 2.0 by Black et al. (2022)%.

Pythia These benchmark models are released
under the Apache 2.0 license by Biderman et al.
(2023)°.

Wikipedia and Project Gutenberg These
datasets are taken from Dolma (Soldaini et al.,
2024) under the ODC-BY licence®.

B Model Hyperparameters and
Implementation Details

In Table 2 we report the dimensions and the char-
acteristics of the models considered in terms of
number of layers, number of heads per layer and
embedding dimension. The implementation was
made in Python 3.10.13, in particular exploiting
the following packages: numpy 1.26.3, scikit-learn
1.0.2, pandas 2.1.4, torch 2.1.2 and transformers
4.37.1. For the MDL method, our code is based
on the one released by Voita and Titov (2020),
available at https://github.com/lena-voita/
description-length-probing.

C Additional Results

In Figure 4, we show the learning trajectories,
in terms of compression, for our four figures of
speech, considering the best performing layer of
the GPT-NeoX models. Results in terms of accu-
racy are available in Figure 5 (considering the last
layer) and Figure 6 (considering the best layer).

In Figure 7, we show the learning trajectories for
the last layer of the 410M/ model considering two
different inputs for the probe: (i) the full sentence
and (ii) only the portion of tokens (span) containing
the figure of speech.

More detailed results for the analysis of the im-
pact of the training data are in Figures 8, 9, 10,
11. More specifically, in Figure 8, we show the
learning trajectories for the best layer, in terms of
compression, for our four figures of speech, for
the 70M and 160M trained on the original dataset
(Pythia), the Project Gutenberg data (PG) and the
Wikipedia dump (Wiki). Similarly, in Figure 9 we
show the same results but considering the last layer.
Figures 10 and 11 show the learning trajectories in
terms of accuracy respectively considering the best
and the last layer.

4https ://github.com/EleutherAI/gpt-neox
5https ://github.com/EleutherAI/pythia
®https://huggingface.co/datasets/allenai/dolma

Model Num. Layers Num. Head Embed. Dim.

14M 6 4 128
3IM 6 8 256
70M 6 8 512
160M 12 12 768
410M 24 16 1024
1.4B 24 16 2048
6.9B 32 32 4096

Table 2: Dimensions of the models considered in terms
of number of layers, number of heads per layer and
embedding dimension.

In Table 3, we show the comparison of the learn-
ing trajectories of the GPT-NeoX models, BERT
and RoBERTa, for all four figures of speech. Each
column indicates a different training percentage.

In Figure 12 we show the compression (on the y-
axis of each plot) of all model layers (on the x-axis),
considering their final checkpoint. Each column
presents the results for a different figure of speech.

D Models Benchmark Scores

Following Biderman et al. (2023), we evaluate the
models presented in Section 5.3 on the same lin-
guistic benchmark: (i) the LAMBADA dataset (Pa-
perno et al., 2016), designed to predict the endings
of text passages and testing language prediction
skills; (ii) the Physical Interaction Question An-
swering tasks (PIQA) (Bisk et al., 2020) to test
physical commonsense reasoning; (iii) the Wino-
Grande task (Sakaguchi et al., 2020), a large-scale
dataset for coreference resolution; (iv) the Wino-
grad Schema Challenge (WSC) (Levesque, 2011),
a test of commonsense reasoning and coreference
resolution; (v-vi) the AI2 Reasoning Challenge
(ARC) (Clark et al., 2018), with tasks involving
complex reasoning over a diverse set of questions
sorted in easy and challenging questions; (vii) the
Science Question Answering tasks (SciQ) (Welbl
et al., 2017) to assess understanding of scientific
concepts in multiple-choice format with 4 answer
options each; and (viii) the LogiQa (Liu et al.,
2020) a set of logical reasoning tasks requiring
advanced inference and deduction.

As we can see in Figure 13, our models fol-
low the behaviour of the original model. For
WinoGrande, WSC, ARC-Challenge and LogiQA,
there are no significant differences in performance,
whereas for LAMBADA, PiQA, ARC-Easy, and
SciQ the original models perform slightly better
than our trained models.
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Figure 4: Learning trajectories of the GPT-NeoX models considering the best performing layer. Each plot represents
a different figure of speech. On the x-axis, we indicate the number of tokens used for training the model; on the
y-axis we indicate the compression calculated using MDL. Each line represents a different model: in blue, the one
with 14 M parameters, in orange with 31/, in green with 700/, in red with 160/, in purple with 4101/, in brown
with 1.4B and in pink with 6.95.
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Figure 5: Learning trajectories of the GPT-NeoX models considering the last layer in terms of accuracy. Each
plot represents a different figure of speech. On the x-axis, we indicate the number of tokens used for training the
model; on the y-axis we indicate the accuracy. Each line represents a different model: in blue, the one with 14 M
parameters, in orange with 31 M, in green with 70\, in red with 160/, in purple with 4100/, in brown with 1.4
and in pink with 6.9B.
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Figure 6: Learning trajectories of the GPT-NeoX models considering the best layer in terms of accuracy. Each
plot represents a different figure of speech. On the x-axis, we indicate the number of tokens used for training the
model; on the y-axis we indicate the accuracy. Each line represents a different model: in blue, the one with 14/
parameters, in orange with 31 M, in green with 700, in red with 160M, in purple with 410M, in brown with 1.4B
and in pink with 6.9B.
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Figure 7: Learning trajectories comparison between a 410 GPT-NeoX model with different probing strategies: (i)
Sentence, where the probe is fed with the sentence representation, and (ii) Span, where we give to the probe only
the portion of the sentence containing the figure of speech. Each plot represents a different figure of speech. On the
x-axis, we indicate the number of tokens used for training the model; on the y-axis we indicate the compression.
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Figure 8: Learning trajectories of the best layer for the GPT-NeoX models trained from scratch. On the left column
we show the 70 models, whereas on the right column the 160/ models. For each task we report the compression
value for the first 20K iterations. Each line represents a different model: in blue the original 70/ model; in orange
the 70 M model trained on the Project Gutenberg dataset; in green the 70M model trained on Wikipedia; in red the
original 1600 model; in purple the 160/ model trained on Project Gutenberg; in brown the 1601/ model trained
on Wikipedia. The dot in the PG model lines and the cross in the Wiki model lines represent the completion of an
epoch.

70M 160M
2.0 2.0
—— Pythia-70M —— Pythia-160M
18 PG-70M 18] — PG-160M
Hyperbole —— Wiki-70M —— Wiki-160M
1.6 1.6
1.4 1.4
0 16 512 5000 10000 15000 20000 0 16 512 5000 10000 15000 20000
2.0 2.0
1.8 1.8
Metaphor
1.6 1.6
@O\ PaN
1.4 1.4 ¥
0 16 512 5000 10000 15000 20000 0 16 512 5000 10000 15000 20000
2.0 2.0
1.8 1.8
Pleonasm
1.6 1.6
e ——
1.4 1.4
0 16 512 5000 10000 15000 20000 0 16 512 5000 10000 15000 20000
4.4 4.4
3.4 3.4
Oxymoron
2.4 2.4
L B - S = i UV e ! W
1.4 1.4
0 16 512 5000 10000 15000 20000 0 16 512 5000 10000 15000 20000

Figure 9: Learning trajectories of the last layer for the GPT-NeoX models trained from scratch. On the left column
we show the 700/ models, whereas on the right column the 160/ models. For each task we report the compression
value for the first 20K iterations. Each line represents a different model: in blue the original 70}/ model; in orange
the 70 M model trained on the Project Gutenberg dataset; in green the 70M model trained on Wikipedia; in red the
original 1600 model; in purple the 160/ model trained on Project Gutenberg; in brown the 1601/ model trained
on Wikipedia. The dot in the PG model lines and the cross in the Wiki model lines represent the completion of an
epoch.
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Figure 10: Learning trajectories of the best layer for the GPT-NeoX models trained from scratch. On the left column
we show the 70M models, whereas on the right column the 160 models. For each task we report the accuracy
for the first 20K iterations. Each line represents a different model: in blue the original 70M model; in orange the
70M model trained on the Project Gutenberg dataset; in green the 70M model trained on Wikipedia; in red the
original 1600 model; in purple the 160/ model trained on Project Gutenberg; in brown the 1601/ model trained
on Wikipedia. The dot in the PG model lines and the cross in the Wiki model lines represent the completion of an
epoch.
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Figure 11: Learning trajectories of the last layer for the GPT-NeoX models trained from scratch. On the left column
we show the 700/ models, whereas on the right column the 160/ models. For each task we report the accuracy
for the first 20K iterations. Each line represents a different model: in blue the original 70 model; in orange the
70M model trained on the Project Gutenberg dataset; in green the 70M model trained on Wikipedia; in red the
original 1600 model; in purple the 160/ model trained on Project Gutenberg; in brown the 1601/ model trained
on Wikipedia. The dot in the PG model lines and the cross in the Wiki model lines represent the completion of an
epoch.
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Figure 12: Compression on the final checkpoint calculated for each layer (on the x-axis of each plot) of all the
considered models. For each model (grouped in rows) the figure shows four different plots, one per figure of speech
analysed. The best layer is highlighted in red.
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Last Layer Best Layer
2% 4% 6% 8% 10% 20% 50% 100% 2% 4% 6% 8% 10% 20% 50% 100%

BERT 1.81 1.79 1.82 1.83 1.81 1.84 1.86 193 1.81 1.79 1.83 1.83 1.86 191 194 203
RoBERTa 1.73 1.78 1.83 1.82 1.84 1.86 1.87 1.87 1.72 1.78 1.83 1.82 1.83 1.92 196 2.04
GPT 14M 1.66 1.64 1.63 1.64 1.63 1.6 1.62 157 1.65 1.64 1.63 1.63 1.63 1.59 1.63 1.57
GPT31IM 1.69 1.72 1.68 1.69 1.70 1.70 1.71 1.71 1.71 1.72 1.69 1.71 1.72 1.72 1.71 1.72
Hyperbole GPT70M 1.74 1.75 1.79 1.76 1.78 1.79 1.77 178 1.74 1.75 1.75 1.75 1.75 1.79 1.78 1.81
GPT 160M 1.81 1.87 1.86 1.87 1.86 1.86 1.89 1.84 1.81 1.85 1.85 1.90 1.88 1.89 191 1.88
GPT 410M 1.81 1.87 1.92 192 193 196 199 198 1.82 1.89 194 197 1.99 2.01 2.06 2.10
GPT14B 1.75 1.79 1.81 190 191 193 190 194 1.75 1.79 1.86 192 193 196 198 2.12
GPT69B 1.73 1.78 1.79 1.80 1.84 1.80 1.88 1.87 1.76 1.82 1.83 1.86 1.85 1.88 191 1.96

BERT 155 1.56 1.54 1.56 1.56 1.55 1.55 155 1.54 1.53 1.55 1.54 1.55 1.53 1.56 1.57
RoBERTa 1.53 1.55 1.57 1.57 1.58 157 155 1.56 1.53 1.55 1.58 1.57 1.56 1.59 1.58 1.60
GPT 14M 147 148 147 147 145 143 145 145 147 148 1.47 147 145 143 145 145
GPT31IM 147 149 151 149 150 149 149 141 149 149 150 150 1.51 1.50 1.51 1.49
Metaphor GPT70M 149 150 152 1.52 1.51 151 1.51 142 147 152 1.53 1.55 1.52 1.53 1.53 1.52
GPT 160M 1.53 1.56 1.55 1.55 1.58 1.54 1.58 141 1.53 1.57 1.57 1.57 1.58 1.58 1.58 1.57
GPT 410M 1.54 1.57 155 1.58 1.59 1.59 1.58 1.56 1.55 1.57 1.57 1.59 1.59 1.60 1.59 1.60
GPT14B 1.50 1.55 1.56 1.56 1.56 1.58 1.57 1.56 1.52 1.56 1.56 1.56 1.58 1.55 1.59 1.59
GPT69B 1.51 1.55 1.57 1.57 1.57 1.57 1.58 1.53 1.50 1.57 1.57 1.57 1.59 159 1.61 1.61

BERT 3.55 3.80 391 3.88 4.01 429 4.06 423 3.81 3.93 430 449 4.13 4.89 5.02 5.68
RoBERTa 3.52 4.25 4.14 4.17 437 439 425 381 391 483 4.69 4.86 495 525 580 6.05
GPT 14M 256 2.58 2.67 2.74 2.80 2.61 1.80 1.52 2.27 227 224 227 229 192 225 1.95
GPT 31M  3.09 3.10 3.05 3.16 3.09 3.22 294 1.59 2.87 3.00 3.03 3.09 3.13 3.20 3.31 3.04
Oxymoron GPT70M 3.25 3.59 3.50 3.65 3.57 3.55 338 1.99 330 3.54 3.50 3.61 3.59 3.79 3.61 3.74
GPT 160M 3.87 3.84 394 3.88 4.01 392 422 1.63 3.87 437 4.60 465 5.19 5.16 535 4.99
GPT 410M 3.78 3.75 391 3.96 4.13 4.03 4.13 4.09 4.33 494 514 528 550 5.88 6.04 6.15
GPT 1.4B  3.81 4.21 4.27 4.61 4.45 436 4.63 4.33 4.99 546 548 586 6.25 6.46 7.33 7.48
GPT 6.9B 237 247 247 246 245 2.57 257 249 248 2.62 2.64 2.66 2.66 2.79 281 2.83

BERT 1.48 148 148 147 147 148 148 147 148 148 148 149 149 149 149 149
RoBERTa 1.48 147 1.48 1.48 148 147 148 148 147 1.48 1.48 148 148 148 149 149
GPT 14M 147 146 146 146 145 146 146 146 147 146 146 146 146 146 146 1.46
GPT31IM 147 147 146 1.46 146 146 145 145 147 1.48 1.48 148 148 1.49 148 148
Pleonasm GPT70M 1.46 147 147 148 148 147 147 145 146 147 147 148 148 147 147 145
GPT 160M 1.46 1.47 147 1.47 147 147 147 145 147 147 1.47 147 147 147 146 148
GPT 410M 147 147 147 147 147 148 146 147 148 1.48 148 148 148 148 149 149
GPT 14B 146 147 147 147 147 148 148 147 145 148 147 148 147 149 149 1.51
GPT69B 147 148 148 1.49 148 148 151 1.52 147 1.48 148 149 148 148 151 152

Model

Table 3: Learning trajectory, in terms of compressions, of the GPT-NeoX, BERT and RoBERTa models for all 4
figures of speech considering the last layer (on the left) and the best performing layer (on the right). For each model,
the table shows the compression across different training percentages (from 2% to 100%). The best results among
the models are highlighted in bold.
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Figure 13: Linguistic benchmark evaluation for our model trained from scratch on specific datasets. On the left
column we reported the 70 models, whereas on the right column the 160 models results; for each task we
report the accuracy with the error bar. Each line represents a different model: in blue the original Pythia 70M
model; in orange the 70M/ model trained on the Project Gutenberg dataset; in green the 70)/ model trained on
Wikipedia; in red the original 1600/ model; in purple the 160/ model trained on Project Gutenberg; in brown the

160M model trained on Wikipedia).
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