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Abstract

Minecraft, as an open-world virtual interactive
environment, has become a prominent platform
for research on agent decision-making and exe-
cution. Existing works primarily adopt a single
Large Language Model (LLM) agent to com-
plete various in-game tasks. However, for com-
plex tasks requiring lengthy sequences of ac-
tions, single-agent approaches often face chal-
lenges related to inefficiency and limited fault
tolerance. Despite these issues, research on
multi-agent collaboration remains scarce. In
this paper, we propose CausalMACE, a holis-
tic causality planning framework designed to
enhance multi-agent systems, in which we in-
corporate causality to manage dependencies
among subtasks. Technically, our proposed
framework introduces two modules: an overar-
ching task graph for global task planning and
a causality-based module for dependency man-
agement, where inherent rules are adopted to
perform causal intervention. Experimental re-
sults demonstrate our approach achieves state-
of-the-art performance in multi-agent coopera-
tive tasks of Minecraft1.

1 Introduction

In recent years, Large Language Models (LLMs)
have shown significant abilities in various do-
mains (Xu et al., 2023; Wang et al., 2023; Ćavar
et al., 2024; Zubiaga, 2024; Fu et al., 2025). Be-
yond these fundamental domains, interest has in-
creased in how to utilize LLMs’ capabilities to
make decisions in an open-world environment.

Minecraft, as a virtual interactive environment,
offers a unique platform for such research. Vari-
ous approaches (Wang et al., 2024b,a,c; Li et al.,
2024b) have been developed within Minecraft to
explore the decision-making capabilities of LLMs,
achieving significant progress on in-game tasks.

*Corresponding Author.
1https://github.com/qccq315/CausalMACE

Unassigned

Agents

Tasks with 

Dependencies

(a) Initial State.

Tasks Failed

Failed Failed

Uncompleted!

(b) Ignoring Dependencies.

Success
✓

Tasks Accomplished

Success

✓ ✓

Success

Completed✓ 

(c) Following Dependencies (Ours).

Figure 1: The impact of dependencies among tasks.
(a) describes tasks with dependency (arrows). (b) shows
the consequences of ignoring dependencies: agents
failed to execute due to unmet prerequisites. (c) demon-
strates the proper dependency processing: sequentially
complete root node tasks before leaf nodes.

However, complex tasks that require lengthy se-
quences of action or collaboration remain a chal-
lenge, since single-agent approaches often face is-
sues of inefficiency and limited fault tolerance.

To fully unlock the potential of LLMs for
decision-making in open-world environments, it
is essential to explore the usage of multi-agent sys-
tems. Research has shown that LLM agent teams
can outperform a single agent in writing (Chan
et al., 2024), reasoning (Xu et al., 2024) and code
generation (Hong et al., 2024). However, exist-
ing methods often emphasize role assignment or
communication to enhance performance, which
does not fully exploit the parallelization potential
of multi-agent systems, thus limiting their applica-
tion in open-world decision-making tasks.

While existing methods (Chen et al., 2023; Dong
et al., 2024) attempt to enhance the performance of
multi-agent systems, they often encounter bottle-
necks stemming from several unaddressed issues.
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The first issue is that current multi-agent methods
in Minecraft lack global task planning. While local
task planning is relatively flexible, the absence of
global planning may cause agents to deviate from
the original plan after multiple iterations gradually.
Another issue is that existing methods fail to con-
sider the dependencies that exist within subtasks.
This can result in assigned tasks being unachievable
thereby reducing efficiency, as shown in Figure 1.

Given that the organization of subtasks in open-
world tasks is inherently shaped by the environ-
ment’s rules, we propose that causal relations
should exist between these rules and the dependen-
cies among subtasks. When these causal relations
are clearly identified, subtasks can naturally be
structured into a cohesive task graph. This assump-
tion enables us to use causality (Yuan et al., 2023a;
Wu et al., 2024) to guide tasks and to construct a
coherent global task graph. Based on this premise,
we propose CausalMACE (Causality Empowered
Multi-Agents in Minecraft CooperativE Tasks), a
global causality planning framework. Specifically,
we incorporate two new modules: one for main-
taining an overarching task graph for global task
planning, and another that utilizes causality to con-
struct and manage the dependencies among sub-
tasks. CausalMACE achieves an average perfor-
mance improvement of 12% in multi-agent cooper-
ative tasks and 7% in single-agent tasks, achieving
state-of-the-art results.

Our contributions can be concluded as follows:

• We propose a novel framework for multi-agent
cooperative tasks of Minecraft. An overarch-
ing task graph is proposed for global planning
that facilitates comprehensive tasks.

• We propose to leverage causality to man-
age and build dependencies between subtasks.
This ensures the task graph is aligned with the
inherent rules of open-world environments.

• Experimental results demonstrate our frame-
work surpasses existing baselines in multi-
agent cooperative tasks and also achieves com-
petitive results in single-agent tasks.

2 Related Work

2.1 Causal Discovery
The causal discovery method can be delineated
into two groups, traditional approaches and large
language models (LLMs) based methods. Tradi-
tional causal discovery approaches rely mainly on

statistical techniques and algorithms to uncover
causal structures in data. Several methods (Xi-
ang and Kim, 2013; Chickering and Meek, 2015;
Ramsey, 2015) calculate scores to investigate the
entire range of possible edges, with the aim of find-
ing a graph that fits the data the best. Some other
researches (Spirtes et al., 2001, 2013) use condi-
tional independence tests to infer causal structures,
identifying dependencies among variables.

Recent advances in LLMs have offered the possi-
bility of utilizing LLMs in causal discovery. Some
studies attempt to use LLMs as an alternative tool
for conditional independence tests in the traditional
causal discovery process (Cohrs et al., 2024) or
build causal graphs beyond the Markov equiva-
lent class (Long et al., 2023). Despite these, there
are also several data-free methods (Kıcıman et al.,
2023; Zečević et al., 2023; Zhang et al., 2024),
which show that LLMs can identify causal struc-
tures by interpreting metadata and natural language,
similar to how human experts apply domain knowl-
edge to construct causal models.

2.2 Multi-agent Systems
Due to the growing potential of multi-agent sys-
tems in addressing complex problems, research on
this topic has been expanding rapidly. With the
integration of LLMs, multi-agent collaboration has
shown significant promise across various tasks, en-
hancing individual agent performance. Existing
approaches can be categorized into two strategies:
role assignment and communication management.

For role assignment, CAMEL (Li et al., 2023)
assigns roles to agents to optimize collaborative
behaviors and mitigate hallucinations. MetaGPT
(Hong et al., 2024) leverages role specialization to
coordinate multiple LLMs in simulating real-world
software development workflows. Triad (Zong
et al., 2024) addresses knowledge base question
answering tasks by assigning three distinct roles,
generalist, decision maker, and advisor, to agents
based on LLMs. For communication management,
ChatEval (Chan et al., 2024) organizes multiple
agents to debate and express their opinions, effec-
tively reducing biases in text evaluation. DyLAN
(Liu et al., 2024) improves collaboration efficiency
by dynamically managing the composition of agent
teams. Magic (Xu et al., 2024) employs proba-
bilistic graphical models to enhance reasoning and
facilitate interaction within agent teams. However,
these methods predominantly operate in static tem-
poral frameworks, neglecting the dynamic temporal
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Figure 2: Overview of the framework. Our framework contains Judger, Planner and Worker. The Judger defines
the objective and gives the environment feedback. The Planner decomposes the task into subtasks and constructs a
dependency graph via game rules. The Worker assigns subtasks to agents to process. ATE denotes the average
treatment effect, which is introduced in Section 3.4.

coordination crucial for fully exploiting the paral-
lelization potential inherent in multi-agent systems.

2.3 Agents in Minecraft

Minecraft, which offers a rich environment for
agent research, has emerged as a versatile platform
for the testing of intelligent agents. Several re-
searches (Zhou et al., 2024; Yuan et al., 2024; Li
et al., 2024a) focus on low-level control policies
with reinforcement learning (RL). With the devel-
opment of LLMs, researchers attempt to enhance
agents’ capabilities by utilizing LLMs to process
complex environmental feedback. DEPS (Wang
et al., 2024b) pioneers this transition by imple-
menting the first LLM-powered agent framework
in Minecraft. Voyager (Wang et al., 2024a) adopts
skill libraries to boost task execution efficiency.
Additionally, techniques like multi-modal memo-
ries and knowledge graphs have been employed
to enhance agents’ adaptability and task perfor-
mance (Wang et al., 2024c; Li et al., 2024b).

Building on the progress of single-agent studies,
some researchers have begun exploring the poten-
tial of multi-agent collaboration within Minecraft.
Multi-agent systems offer significant advantages
in task allocation and resource management, en-
abling more effective handling of complex scenar-
ios in the game. AgentVerse (Chen et al., 2023),
which is the initial study, has started to address
challenges related to communication and coordina-
tion. It divides its framework into four components,

each providing specific guidance to multiple LLM
agents, effectively organizing agent groups, and
outperforming single-agent systems. VillagerA-
gents (Dong et al., 2024) attempts to break down
the task into subtasks that can be processed in paral-
lel. However, these approaches often overlook the
causal relations between the game rules and depen-
dencies among subtasks during task decomposition,
limiting cooperative efficiency in complex tasks.

3 Method

3.1 Preliminary

Causality. It represents the causal-and-effect re-
lationships between variables. Causality seeks to
understand how changes in one variable X (the
cause) directly affect another variable Y (the ef-
fect), i.e., X → Y . The Structural Causal Model
(SCM) (Pearl, 2009) provides a formal framework
for identifying and leveraging causality. It em-
ploys directed acyclic graphs (DAGs) to represent
causal structures, where nodes represent distinct
variables and edges denote causal relationships be-
tween them.
Mediator. M is the variable between X and Y ,
where X → M and M → Y . In this situation, the
causal effect of X can reach Y by X → M → Y .
Such a chain can be called a causal path so long
as the causal effect can be transmitted.
Confounder. C is a variable that affects both X
and Y , i.e., C → X and C → Y . It may create a
spurious association between X and Y .
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Figure 3: Procedures for generating the dependencies. X and Y denote the input and output, M is the inference
steps of LLMs and C represents the internal knowledge of LLMs. (a) and (b) indicate the procedures with and
without game rules R, respectively, where the dotted arrow denotes the uncertain causal edges. (c) shows the
successful intervention procedure, (d) reveals the failure cases where the effect of R on M is blocked by C.

Instrumental variable. Given a causal path X →
Y , an instrumental variable is a variable that satis-
fies the following conditions: 1) It directly affects
X , 2) No path exists from the instrumental variable
to any confounder C that affects both X and Y , 3)
It has no direct effect on Y .

3.2 Overview

Our proposed framework is shown in Figure 2,
which contains three main components: Judger,
Planner, and Worker. The Judger initiates tasks
within the game. It defines the objectives the agents
need to achieve and provides feedback and evalua-
tions of their performance.

Upon receiving a task from the Judger, the Plan-
ner decomposes it into a series of subtasks. It iden-
tifies the dependencies between these subtasks by
leveraging the game rules and refines the result-
ing task graph using causal inference. This refined
graph, which represents the structured dependen-
cies and execution orders, is then passed on to the
Worker for further action.

Technically, the Worker processes the refined
task graph provided by the Planner. It employs a
depth-first search (DFS) algorithm to explore all
possible execution paths within the graph and then
assigns these tasks to the agents for execution. The
agents operate autonomously with reflection. Their
actions are processed by the Judger, which also
assesses the task execution.

3.3 Judger Interface

The Judger serves as an interface component that
mediates interactions between agents and the game
environment. It functions as both an action valida-
tor and a performance evaluator within the frame-
work. When agents attempt to execute actions, the
Judger processes these actions through the game

environment and returns updated state information.
Additionally, it incorporates evaluation functions
that compute various performance metrics based on
agent behaviors and outcomes. The Judger main-
tains a clear separation between the game envi-
ronment and the agents’ actions while providing
standardized interfaces for both action processing
and performance assessment.

3.4 Planner with Casual Intervention

The Planner aims to transform a given task into a
structured set of subtasks, which is represented by
a causal dependency graph. The entire procedure
involves three steps: task decomposition, initial
graph construction, and graph refinement.

We enhance the global task planning capability.
Upon receiving an input task from the Judger, the
Planner employs LLMs to directly decompose it
into a set of subtasks, S = {s1, s2, . . . , sn}. These
subtasks preserve global goal consistency with the
input task. Then, we use the set of game rules
R = {r1, r2, . . . , rk} as explicit guidelines to iden-
tify direct dependencies between subtasks. These
rules give an initial version of the global task de-
pendency graph Ginit and ensure that it is structured
logically. However, it is observed Ginit may contain
extra or incorrect edges due to hallucinations and
biases stemming from the LLMs’ internal knowl-
edge (Yuan et al., 2023b; Wu et al., 2024).

To resolve this issue, we aim to find out the ac-
tual dependencies between subtasks and refine Ginit.
Specifically, we define two subtasks, sp and sq, as
input X , and their dependencies given by LLMs
as output Y . The mediator that maps X to Y is
denoted as M , which refers to the LLM inference
process. Since LLMs are used as the resolver, their
internal knowledge may have a potential influence
on X , Y and M . Therefore, we define the internal
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knowledge of LLMs as the confounder C, as illus-
trated in Figure 3(a). Then, we introduce the set of
game rules R as external knowledge. As the depen-
dencies between subtasks should be constrained by
the rules, R has a causal effect on both input X and
mediator M . This process is shown in Figure 3(b).

Next, we aim to ensure that the final output Y
adheres to the set of game rules R. Since M is the
only controllable variable that directly affects Y , it
is necessary to discern whether the primary effect
of the inference steps M comes from R or inter-
nal knowledge C. As tracking the causal relation-
ship between C and M is difficult, an alternative
method is to leverage the variable R as an instru-
mental variable (Yuan et al., 2023a) instead, which
can reach Y through the causal path R → M → Y .

By intervening on R, we can observe how it af-
fects Y . This effect is the average treatment effect
(ATE), which allows us to estimate the causal effect
on Y . Specifically, for each game rule ri, we query
LLM for a counterfactual rule r∗i , which is contra-
dictory to ri. For example, the counterfactual rule
for “You must have a block before you place it.”
can be expressed as: “You can place a block even
if you do not have it”. This procedure generates a
modified set of rules R∗

i = {r1, r2, ..., r∗i , ..., rk}
where only ri is replaced while other rules remain
unchanged. Following the modified set of rules as
explicit guidelines, while taking sp and sq as in-
put X , we observe whether the output Y changes.
Therefore, for the given X and its inference steps
M , the ATE of the certain rule ri is defined as:

ATE(ri, X) = E(Y |X,M, do(R))−
E(Y |X,M, do(R∗

i )),
(1)

where do(·) denotes the causal intervention opera-
tor (Pearl, 2009), representing active manipulation
of the variable, forcibly setting it to a given state.

This equation aligns with intuition, as if ri does
not affect the output Y (i.e., ATE(ri, X) = 0),
which means if ri is replaced with r∗i , the output Y
will remain consistent with the previous.

To aggregate the causal effects across all indi-
vidual rules into a unified impact, we compute the
expectation over all ATE(ri, X) by averaging the
individual effects across all rules:

ATE(R,X) = Ei(ATE(ri, X))

=
1

k
Σk
i=0ATE(ri, X).

(2)

With the calculated ATE, we proceed to refine
the initial graph Ginit. For each edge in Ginit, if it

is correctly generated by the game rule set R with
given input node pair Xi, then ATE(R,Xi) ̸= 0.
This indicates that the set of game rules has a mea-
surable influence on the outcome, as illustrated in
Figure 3(c). When ATE(R,Xi) = 0, it implies
that the edge is independent of the entire set of
game rules, as demonstrated in Figure 3(d). There-
fore, such edges should be removed to ensure that
all edges adhere to the set of game rules.

3.5 Worker with Agent Assignment

The Worker is responsible for translating the de-
pendency graph of subtasks into concrete action
plans for each agent, ensuring that the subtasks
are executed efficiently and in alignment with the
dependencies. The Worker takes the dependency
graph given by the Planner as input and each agent
will output the specific actions. The process be-
gins with analyzing the dependency graph with the
DFS algorithm. This step identifies all the possible
paths comprising the required subtasks while re-
specting their dependencies. Each path represents
a sequence of subtasks that need to be executed. To
accomplish the whole task, agents need to finish all
the paths. Once an agent finishes its assigned path,
it will be assigned to another.

To balance work distribution, the Worker needs
to track how “busy” each task path is. Therefore,
we introduce a new variable for each path: the busy
rate br. This variable simultaneously captures two
factors, assigned agent numbers in each path and
agent density near the path entries. Consider a
scenario where k agents are executing path p, the
busy rate br of the path p is computed as:

brp = Σk
i=0

1

di
, (3)

where di represents the number of subtasks be-
tween the current task of agent i and the path en-
trance. The busy rate of a path p dynamically in-
creases with the number of agents newly assigned
to it. It reflects the involvement of the current path
and serves as an indicator of potential resource con-
tention. While assigning an agent to a new path, the
Worker prioritizes the path p∗ with the minimum
busy rate, i.e.,

p∗ = argmin
p

(brp). (4)

Once an agent receives its designated path, it be-
gins executing each subtask in the path sequentially.
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Method
Agent

Number
Construction Avg. Score Escape Avg. Score Cooking Avg. Score All Avg.∗ Score

CR VHR Efficiency CR Efficiency CR ACR Efficiency CR
(%) (%) (%/min) (%) (%/min) (%) (%) (%/min) (%)

AgentVerse (ICLR’23) 2 - - - - - 29.75 48.64 3.54 29.75

VillagerAgent (ACL’24) 2 36.45 49.05 3.88 73.29 149.4 73.75 58.11 6.98 56.90
3 52.17 61.02 6.26 69.78 227.4 85.26 55.60 21.90 68.82

CausalMACE (Ours)
2 56.59 63.17 8.94 77.08 246.71 79.10 65.53 7.17 68.76
3 65.45 69.30 9.58 72.28 276.67 86.00 70.12 13.92 75.38
6 76.04 78.99 8.20 69.25 169.59 88.75 72.30 16.31 81.09

Table 1: Comparison on cooperative tasks. CR denotes completion rate, VHR denotes view hit rate, ACR denotes
agent contribution rate and Avg.∗ denotes the weighted average based on the number of tasks. With the same number
of agents, our method shows improvements across all settings.

During execution, the agent interacts with the en-
vironment, completing actions as specified by the
subtasks. Following the ReAct framework (Yao
et al., 2023), the agent iteratively generates ac-
tions and observes the environment until it makes
a successful movement in the environment. The
result of movement and environmental feedback
will be recorded and the agent will first decide the
statement of its current subtask and then update its
strategy through a self-reflection process (Ji et al.,
2023). This procedure will last until all paths are
finished or the Judger returns an end signal.

4 Experiment

4.1 Experiment Setup

4.1.1 Environment
We set up Minecraft Java Edition Server version
1.19.2 and host it on Ubuntu 20.04. Following
Wang et al. (2024a); Dong et al. (2024), Mine-
flayer (PrismarineJS, 2013), a JavaScript mod is
installed to establish a platform for agents to get
information from the environment and take action.
Details are provided in Appendix A.

4.1.2 Benchmarks and Metrics
Multi-agent cooperative tasks. We use Villager-
Bench (Dong et al., 2024), which includes three
types of multi-agent tasks: construction coopera-
tion, farm-to-table cooking and escape room chal-
lenge. Construction cooperation requires agents to
understand the specified blueprint and complete the
construction. Farm-to-table cooking requires the
agent to perform hunting or harvesting according to
the recipe to obtain ingredients and then gather all
the ingredients together to craft the task object. The
escape room challenge requires agents to individu-
ally activate the correct mechanisms to collectively
solve the puzzle.

There are three different evaluation metrics to

assess the effectiveness of the method for all these
three tasks, i.e., completion rate (CR), efficiency
(E) and balanced agent utilization score (BS).
Specifically, the completion rate represents task
progress, with multiple indicators in each task for
calculation. Assume the number of accessed in-
dicators and total indicators amount are Ia and It,
completion rate can be defined as Equation (5):

CR =
Ia
It
. (5)

Efficiency describes the ratio of the completion
rate and the time agents take to execute the action.
It measures the extent to which actions chosen by
the agents contribute to the task completion. In an
N agents scenario, this metric can be calculated
by the following equation, where ET denotes the
agents’ execution time set, tj denotes the execution
time of agent j ∈ {1, 2, . . . , N}:

E =
CR
Σjtj

, tj ∈ ET. (6)

BS aims to evaluate the distribution of workload.
A higher BS should indicate better equilibrium,
which means each agent’s active running time be-
comes more similar. Specifically:

BS = 1− 1

N
Σj(std(

|tj −min(ET )|
Tmax −min(ET ))

), (7)

where Tmax indicates the maximum action time for
each task, actions exceeding this time limit will be
considered as timed out. These evaluation metrics
simultaneously assess the method’s task comple-
tion ability and its capability to utilize multiple
agents. Despite the three primary metrics CR, E
and BS, some tasks incorporate auxiliary evalua-
tion metrics such as view hit rate (VHR) and agent
contribution rate (ACR). Detailed information on
tasks and corresponding metric formulations are
provided in Appendix C.
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Method No. Construction Escape Cooking Avg.∗
(%) (%) (%) (%)

AgentVerse 2 - - 91.41 91.41

VillagerAgent 2 91.09 92.15 95.45 92.00
3 87.51 75.99 63.36 79.93

2 91.17 94.08 94.62 92.82
CausalMACE (Ours) 3 90.50 96.34 92.41 93.32

6 86.07 91.38 90.81 88.93

Table 2: BS on each task. No. denotes the agent
number and Avg.∗ is the weighted average based on
the number of tasks. A higher BS represents a more
balanced workload.

Method Wood Cobblestone Iron Gold Diamond

RL-based Agents
STG-T (NeurIPS’24) 6.0 0.0 0.0 0.0 0.0
VPT-bc (NeurIPS’22) 20.0 18.0 0.0 0.0 0.0
PTGM (ICLR’24) 63.0 59.0 0.0 0.0 0.0
VPT-rl (NeurIPS’22) 99.0 99.0 60.0 0.0 15.0

LLM-based Agents
ReAct (ICLR’23) 26.7 20.0 0.0 0.0 0.0
Inner Mono (PMLR’23) 36.7 66.7 0.0 0.0 0.0
DEPS (NeurIPS’24) 77.0 48.5 16.3 0.0 0.6
Jarvis-1 (TPAMI’24) 91.6 94.2 33.8 14.5 9.2
Optimus-1 (NeurIPS’24) 98.6 92.4 46.7 8.5 11.6
Voyager∗ (TMLR’24) 100.0 100.0 76.5 52.9 29.4

CausalMACE (Ours) 100.0 100.0 82.3 70.6 41.1

Table 3: Success rate on single-agent tasks. * denotes
that we re-conduct the method for adapting our settings.

Single-agent tasks. Following Wang et al.
(2024a,c); Li et al. (2024b), we choose five repre-
sentative items in Minecraft gameplay, i.e., Wood

, Cobblestone , Iron Ingot , Gold Ingot
and Diamond . The tasks require an agent to
obtain each item from scratch with an empty inven-
tory respectively, which is strongly relative to the
agent’s planning capability and long-term explo-
ration ability. To evaluate methods on these tasks,
we directly utilize success rate (SR) as the metric.

4.2 Comparison with State-of-the-Arts

4.2.1 Main Results
In this section, we compare our method with previ-
ous works. For multi-agent collaborative tasks, we
compare with AgentVerse (Chen et al., 2023) and
VillagerAgent (Dong et al., 2024). For single-agent
tasks, we compare with traditional reinforcement
learning methods such as VPT (Baker et al., 2022),
STG-T (Zhou et al., 2024), PTGM (Yuan et al.,
2024)), and LLM-based methods such as vanilla
ReAct (Yao et al., 2023), Inner Mono (Huang et al.,
2023), DEPS (Wang et al., 2024b), Jarvis-1 (Wang
et al., 2024c), Optimus-1 (Li et al., 2024b) and
Voyager (Wang et al., 2024a). We use GPT-4o with
default hyper-parameters for LLM-based methods.

The results on multi-agent collaborative tasks are

listed in Table 1 and 2. Our method achieves supe-
rior performance over baseline approaches across
most of the settings in both completion rate and
efficiency, with particularly notable gains in con-
struction cooperation. This result reveals the ef-
fectiveness of our method in multi-agent scenarios.
While maintaining an excellent task completion
rate and higher average BS, we observe a slight
decrease in BS in several settings. These variations
primarily stem from that some subtasks are natu-
rally harder than others. When agents are assigned
to a path with difficult subtasks, they take longer to
finish. Such variations highlight broader challenges
in workload balancing by estimating task durations,
which are independent of our core method and need
further research in the future.

The results on single-agent collaborative tasks
are listed in Table 3. Our approach achieves perfect
completion in basic single-agent scenarios while
maintaining competitive performance as task com-
plexity increases. This effectiveness is likely be-
cause, with our causal intervention, the agent can
more reasonably schedule and execute subtasks.
These results show that our method is also suitable
for single-agent tasks.

4.2.2 Dynamic Agent Numbers
Here we discuss how agent quantity influences task
performance. Existing study (Dong et al., 2024)
suggests that while scaling agent numbers initially
improves outcomes, excessive agents may trig-
ger resource competition and reduce effectiveness.
However, we argue that for fixed-task scenarios,
increasing agents could lower individual efficiency
but still elevate collective performance, provided
that coordination mechanisms and resource alloca-
tion are properly optimized.

As demonstrated in Table 1, the completion rate
keeps increasing with the additional agents attend-
ing the task, except for the escape room challenge,
where the difficulty of the task increases with the
number of agents. These results indirectly reflect
the adaptability of our framework in managing
multi-agent collaboration under varying team sizes.

4.3 Ablation Study

We conduct ablation studies on construction tasks
to validate our framework’s key components.
We specifically choose construction tasks due to
their comprehensive requirements, including spa-
tial planning, material collection, and real-time
pathfinding in dynamic environments. The results
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Figure 4: Visualization of construction cooperation. VillagerAgent exhibits incoherent structural features, while
CausalMACE maintains structural rationality and high consistency to ground truth with only minor local difference.

Row
Setting Construction

Busy Rate Causal Graph CR VHR Efficiency
(%) (%) (%/min)

1 ✘ ✘ ✘ 52.68 55.99 3.93

2 ✓ ✘ ✘ 57.53 56.70 5.31
3 ✘ ✘ ✓ 57.92 61.08 5.12

4 ✓ ✘ ✓ 60.60 64.61 7.73
5 ✘ ✓ ✓ 72.49 75.20 6.98

6 ✓ ✓ ✓ 76.04 78.99 8.20

Table 4: Ablation study on construction cooperation.
We adopt 6 agents for each setting.

are listed in Table 4.
Row 6 in Table 4 corresponds to the complete

framework with all components included, which
achieves the best completion rate and efficiency.

The removal of Busy Rate means to randomly
assign paths to agents instead of workload-based
allocation. Row 5 shows it has few effects on the
completion rate but has a significant impact on
efficiency, as it may cause repetitive actions and
result in an unbalanced workload among agents,
increasing execution time.

The removal of Causal Intervention indicates
to utilize the initial graph Ginit without causal re-
finement. This leads to a significant decrease in the
completion rate as shown in Row 4, representing
the importance of causality to maintain the correct
dependencies among subtasks.

The removal of Graph means to construct no
graph and directly assigns subtasks to agents. Note
that without graph, causal intervention is dis-
abled automatically. Row 2 demonstrates that the
graph removal further influences the completion
rate and efficiency simultaneously, indicating the
foundational importance of the graph.

Row 1 and Row 3 represent the joint ablation

Method Pillager Tents Ruined Portal

Luban 172.7 311.2
VillagerAgent 101.1 175.7
CausalMACE 81.0 146.4

Table 5: Average time consumption (seconds). The
image denotes the goal of construction. We adopt 6
agents for each method.

of Busy Rate with Causal Intervention and Graph,
respectively. The results indicate that, regardless
of whether Causal Intervention or Graph is present,
the absence of Busy Rate leads to a degradation in
efficiency.

4.4 Case Study

Figure 4 compares the results of construction tasks
between our method and VillagerAgent. While Vil-
lagerAgent produces almost no discernible struc-
ture, our method closely resembles the ground truth,
with only a few blocks being incorrect or missing.

We also compare CausalMACE with Luban
(Guo et al., 2024), which specializes in construction
tasks. While Luban has demonstrated superior per-
formance in pure construction, it does not address
a complete task pipeline that includes resource ac-
quisition and logistics management. Therefore,
we omit these phases for Luban in our compari-
son. Even with these advantages, Luban ultimately
completes tasks with significantly higher time con-
sumption. Table 5 shows the time cost of different
methods. Luban far exceeds the time consump-
tion of other methods, highlighting CausalMACE’s
operational efficiency.
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5 Conclusion

We present a novel global causality planning frame-
work that significantly enhances the capabilities of
multi-agent systems in open-world environments.
By leveraging causality to manage and construct
dependencies among subtasks from a global view,
our approach ensures more efficient task arrange-
ments. This addresses the limitations of existing
multi-agent methods and enhances the overall ef-
fectiveness of task execution. Additionally, our
findings suggest that incorporating causality into
task planning can provide a more structured and
efficient approach to managing complex tasks, lead-
ing to the possibility for further exploration.

Limitations

While our framework demonstrates significant per-
formance improvements across various Minecraft
tasks, constraints still exist. The current causal
intervention highly depends on the reasoning ca-
pacity of LLMs, making smaller models less viable
options. This suggests that future improvements
may leverage causality during model pretraining or
fine-tuning for better adaptability.
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A Action Functions

We provide the action functions that are available
for agents here.
NavigateTo(<pos>). Move to the given position.
The function returns True if the movement
succeeds and False if the position is invalid or no
valid path exists to the destination.
CheckContainer(container). Access the specified
container. The function returns information about
the contents of the container.
WithdrawItem(container, item, amount). Attempt
to retrieve amount of item from the container. The
function returns the success status of the action.
ScanEntities(item, distance). Attempt to locate
item within distance. The function returns the
position of the item. If there is no item within
distance, the function returns None.
Equip(item). Put item in the main hand slot for
usage or placement. The function returns True if
it succeeds and False if the agent has no item in
inventory.
PlaceBlock(item, <pos>). Attempt to place
item at <pos>. The function returns True if the
placement succeeds, and False with the reason if
the placement fails. The reasons include: the agent
has not equipped the item, the agent is too far from
<pos>, the <pos> is in the air without support
blocks, the <pos> is taken by the other block, etc.
Handover(item, agent). Give item to agent. The
function returns the success status of the action.
Craft(item, amount). Attempt to craft amount
of item. The function returns True if the crafting
succeeds and False with the recipe and reason.
Possible reasons include: the agent does not have
enough ingredients in the inventory, the agent is
too far from the crafting table, etc.
Smelt(item, amount, fuel). Attempt to use the
furnace to smelt item with fuel. The function
returns the same information with Craft.
MineBlock(<pos>). Attempt to dig the block at
<pos>. The function returns True if the mining
succeeds and False with the reason. Possible
reasons include: <pos> is air, the agent is too far
from <pos>, the agent does not have proper tools,
etc.
Toggle(<pos>). Attempt to operate an interactive
object at <pos> (e.g., doors, pressure plates,
buttons). The function returns the previous
and current status of the object if the operation
succeeds.

UseOn(target). Attempt to use the tool in the main
hand slot to target. The function returns True if the
action is valid and succeeds. Valid actions include:
use shears on sheep, use bucket on cow, etc.
Attack(target). Attack the target with the tool in
the main hand slot. The function returns True if
this attack succeeds.

B Reference Prompts

We have shared the reference prompts we use for
different modules below. Table 6 shows the prompt
structure for task decomposition, while Table 7 out-
lines the prompts for dependency prediction. En-
vironmental perception and historical action sum-
marization prompts are detailed in Table 8. The
execution logic for agents is guided by Table 9, and
the prompts for reflection are shown in Table 10.
Our demo video can be found in the attached file.

C Detailed Experimental Setups and
Metrics

This section will describe our experimental setups
and metrics in more detail. For multi-agent co-
operative tasks, we conduct experiments on three
different scenarios, including construction coop-
eration, farm-to-table cooking and escape room
challenge. All the settings (e.g., task amounts, met-
rics) follow VillagerBench (Dong et al., 2024). For
single-agent tasks, we conduct experiments on item
gathering following (Wang et al., 2024c; Li et al.,
2024b). We will introduce the settings respectively.

C.1 Construction Cooperation

Construction cooperation requires agents to con-
struct a structure or a building following a specified
blueprint which includes various blocks. Since the
process of obtaining blocks can be complex, consid-
ering the inherent task difficulty, the requirement
for agents to mine blocks is omitted, which keeps
the setting consistent with VillagerBench (Dong
et al., 2024). This task evaluates the understanding
of spatial dependencies and task requirements in
multi-agent collaboration.

Completion Rate in Construction Coopera-
tion: The completion rate in this task represents
the block hit rate, which is the ratio of correctly
placed blocks to the total number of blocks. Only
blocks with the correct orientation, type and posi-
tion are considered correctly placed. The formal
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Task Decomposition:
Your current mission is to lead all the players and execute a set of specified tasks within

the Minecraft environment.

--- Background Information ---

Our system manages the task as a Graph. In this turn, you need to decompose the tasks into
steps, each step can be seen as a node. Next, we will construct the nodes into a graph. You can
use the function to present each step, these functions should follow the rules below:

- Functions take some arguments, you need to decide how to design the function.

- Functions should be composed by atom steps, Atom steps are as follows: {available actions}.
- Functions should be executable, you need to make sure no matter which state the agent is

in, it can achieve the goal by calling the function.

The function has the following JSON component:

{

"name": string, function name.

"call": list of string, the argument list you input if you want to call the function.

"description": description of the function.

"function body": how does the function work.

}

A node has the following JSON component:

{

"id": int, id of the step start from 1.

"description": string, description of the step, more detail than a name, for example, place
block needs position and facing, craft or collect items needs the number of items.

"step": the function you choose and the arguments you need to input.

}

*** Important Notice ***

- Task Decomposition: These atom steps should be small, specific, and executable with
MineFlayer code, as you will be using MineFlayer to play Minecraft. Each atom step should
contribute to the completion of the overall task. When necessary, the sub-tasks can be identical
for faster task accomplishment. Be specific for the atom steps, for example, make sure to specify
the materials needed.

- After all the steps are done, you need to make sure the whole task is done.

- In Minecraft, an item can be put in the agent’s inventory, chest, or on the ground. You
can use the item in the agent’s inventory or chest, but you can not use the item on the ground.

- Integration and Finalization: In some tasks, you will need to integrate your individual
efforts. For example, when crafting complicated stuff that requires various materials, after
collecting them, you need to consolidate all the materials with one of the players.

Here is the query:

The environment information around: {env}.
The high-level task: {task}.
Your response should exclusively include:

- All Functions;

- Complete List of Nodes.

Formatted as: "functions": [], "nodes": [].

Your Response should contain ALL definitions of the functions and a COMPLETE list of nodes
structed as ONE JSON.

Table 6: Prompts for construction task decomposing.
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Subtask Dependencies Prediction
Your current mission is to lead all the players and execute a set of specified tasks within

the Minecraft environment.

— Background Information —

Our system manages the task as a Hierarchical Causal Graph. In this turn, I will give you
a list of nodes, and you need to estimate whether certain nodes have a causal effect on other
nodes.

You should also check if other nodes affect the node. If node a have causal effect on node x
and node y, which means if a is not completed, x and y can not start, you should add new jsons
to the edge list {"chosen_node": a, "target_node": x}, {"chosen_node": a, "target_node": y}.

If node z has a causal effect on the certain node a, which means if z is not completed, a can
not start, you should add a new JSON to the edge list {"chosen_node": z, "target_node": a}.

*** Important Notice ***

The causal effect should follow some basic Minecraft rules.

- You can not place/use something unless you get it from container first;

- You can not place something if you have not equipped it;

- The block at the lower place should be placed first, and the block at the higher place
should be placed later.

Here is the query: {nodes}.
The node you need to deal with now: {node id}.
Your response should exclusively include:

- ALL Causal Effect of the chosen node.

Formatted as: {"causal effect": []}.

Think step by step. Your Response should formatted as ONE JSON.

Table 7: Prompts for construction dependencies prediction.

Environmental Data Summarization:
You are a helpful assistant in Minecraft. Based on the environment info and the task, extract

the key information and summarize the environment info in a concise and informative way. You
should focus on the entities, blocks and creatures in the environment, and provide a summary
of the environment info.

The environment info: {info}
The task: {task}.
Return with Entity, Blocks, Creatures, Interactive-Items and give all these positions of

these blocks and entities like chest, crafting table, furnace, animals and plants.

History Action Summarization:
You are a helpful assistant in Minecraft. Your name is {name}. Your task is to create a

concise running summary of actions and information results in the provided text, focusing on
key and potentially important information to remember.

You will receive the current summary and your latest actions. Combine them, adding relevant
key information from the latest development in 1st person’s past tense and keeping the summary
concise. The subject of the sentence should be {name}.

Summary So Far: {summary}.
Latest Actions: {actions}.
Return with your summary.

Table 8: Prompts for data and history summarizing.
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Agent Execution
The relevant data of task: {task}.
The state of the agent: {state}.
The agent’s actions in the last time segment partially: {history}.
The environment info: {env}.
The agent’s inventory status: {inventory}.
The Minecraft knowledge card:

- In minecraft world x,z is the horizontal coordinate, y is the vertical coordinate.

- You can place the block to the world.

- You can find the item in the chest. Item in the chest can not directly be seen or used,
take it out and use it or equip it.

- If there is no item in the chest, maybe you can find the item at the other chest, get it
from the other agent, dig it up or craft it.

- One bucket can hold one item, if you want to get more items, you need to get more buckets
at first.

- Do not change the blocks other agents placed without permission.

- Your height is two block, if you need to move to somewhere and you find your target
position is in the air, You can check a location that is one level below your target location.

- You should first try to take the action, only rethink if fail to do so.

- If you think you have something in your inventory, you should check your inventory instead
of scanning around.

- Do not ask other players to give you something, because they need to do their work. Only
require item if you fails to get it from env or chest.

- If you need to place a certain block at a certain place, and the place is already occupied
by the kind of block you need to place, you should treat it as you have completed the task.
Note: only do this if you can make sure that the block there is the same block as the block you
need to place!

Think by steps and take action.

Table 9: Prompts for agent execution.

Agent Reflection
You are in a Minecraft world. You are an agent. You need to use the action history compared

with the task description to check whether the task is completed.

The check-structure:

{

"reasoning": str, the reasoning process.

"summary": str, the summary of the vital information of action history with detailed
position number and other parameters, which are not included in the task description.

"status": bool, whether the task is completed.

}

Now you have tried to complete the task.

The task description is: {task}.
The action history is: {history}.
The state of the agent is: {state}.
Please check whether the task is completed and return a check-structure JSON.

Table 10: Prompts for agent reflection.
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definition is as follows:

CR =
card(CP )

card(B)
, (8)

where B indicates the blocks set of the blueprint,
CP ⊆ B indicates the set of correctly placed
blocks, card(·) indicates the cardinality of a set.
A higher completion rate indicates a closer match
to the blueprint, reflecting the agents’ ability to
accurately execute the construction plan.

View Hit Rate in Construction Cooperation:
View hit rate (VHR) is a special metric for con-
struction cooperation, it is used to assess the struc-
tural integrity and visual coherence of a construc-
tion from multiple viewpoints. By comparing
the overlap between the constructed structure and
the expected structure across a predefined set of
viewpoints, a higher VHR score indicates a closer
match between the actual and expected structures,
suggesting better structural integrity and visual co-
herence. This metric is calculated by the Intersec-
tion over Union (IoU) of the constructed structure
with the blueprint across various viewpoints. The
formal definition is as follows:

VHR =
1

V

V∑

i=1

IoU(
Pi

Bi
), (9)

where Pi indicates the constructed structure seen
from viewpoint i, Bi indicates what should the
structure looks like from viewpoint i. V is the
number of viewpoints.

C.2 Farm-to-Table Cooking
Farm-to-table cooking requires agents to prepare
dishes according to the given recipe. In this task,
agents need to gather information from the environ-
ment and adjust their strategies to collect ingredi-
ents from containers or sometimes to harvest crops
and hunt animals in the wild. This task evaluates
the agents’ environmental perception and coordina-
tion capacities.

Completion Rate in Farm-to-Table Cooking:
The completion rate in farm-to-table cooking rep-
resents the progress of the recipe. Assume that the
recipe for preparing a certain dish needs M ingre-
dients and N actions, the completion rate should
be:

CR =

∑M
i=1 kmi × Smi +

∑N
j=1 kaj × Saj

∑M
i=1 Smi +

∑N
j=1 Saj

,

(10)

where k represents the status of a certain ingredient
or action. If the ingredient is gathered or the action
is taken successfully, k should be one, otherwise,
it should be zero. Smi represents the score of i-
th ingredient and Saj represents the score of j-
th action. The higher completion rate represents
closer to finishing preparing the dish.

Agent Contribution Rate: Agent contribution
rate (ACR) measures if all agents contribute to the
task. Assume the score contributed by agent i is Ci,
average score contributed by each agent is Cavg,
we first calculate the standard deviation σ(C) of
contribution among all agents:

σ(C) =

√√√√ 1

N

N∑

i=1

(Ci − Cavg)2, (11)

where N refers to the number of agents. The devi-
ation σ(C) reflects the degree of dispersion of the
contribution, which means a smaller σ(C) leads to
a more balanced distribution. We then calculate the
agent contribution rate by normalizing σ(C):

ACR = 1− σ(C)− σmin

σmax − σmin
, (12)

where σmin refers to the minimum possible devia-
tion value, i.e., all agents contribute the same score,
σmax refers to the maximum possible deviation
value, i.e., one agent finishes all the process.

C.3 Escape Room Challenge
The escape room challenge tests the agents’ ability
to work together for synchronization and sequen-
tial execution. In this task, agents will need to
activate certain objects in the environment in order
or simultaneously.

Completion Rate in Escape Room Challenge
completion rate in the escape room challenge rep-
resents the finishing rate of room tasks. The formal
definition is as follows:

CR =

∑N
i=1

ci
ai

× Si
∑N

i=1 Si

, (13)

where N denotes total number of the rooms, i de-
notes i-th room, ci denotes the number of correct
conditions, ai denotes all the conditions, Si denotes
the assigned score of each task.

C.4 Item Gathering
Item gathering challenges a single agent to collect
specific items in the open-world environment from
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scratch. The agent must navigate through different
areas, identify the required items and retrieve them
while managing potential obstacles. The task re-
quires the agent to develop efficient strategies for
exploration, item identification and collection. This
task evaluates the agent’s ability to autonomously
explore the environment, make decisions based on
available resources and execute the task while over-
coming spatial and temporal challenges.

Specifically, the first task is to collect one log .
This is the most basic task in Minecraft because
it serves as the foundational step for many other
actions within the game. A log is one of the first
resources that players encounter and collecting it
unlocks a variety of crafting possibilities, such as
turning it into planks, crafting tables, or other es-
sential tools. The next task is to get a cobblestone

. This task is the most basic mining task. It tests
whether the agent has the ability to craft and the
necessary proficiency in chopping trees, as mining
stone requires a wooden pickaxe as a tool, and this
tool must be crafted by the agent itself.

If the agent is able to complete the two basic
tasks mentioned above, it demonstrates the capa-
bility to tackle more advanced tasks. A typical
advanced task is to obtain an iron ingot , which
requires mining and using a furnace to smelt ores.
Acquiring iron is a fundamental step toward ob-
taining more advanced resources. The ability to
obtain iron ingots indicates that the agent not only
has proficient mining skills but is also capable of
performing a series of operations such as searching
for ores and smelting them.

The last two tasks are obtain a gold ingot and
a diamond . The last two tasks are the most diffi-
cult in the item-gathering objectives. In Minecraft,
gold and diamonds require an iron pickaxe to be
obtained, which requires 3 iron ingots to be crafted.
Therefore, if the agent is not skilled enough to com-
plete all tasks up to acquiring iron ingots, they will
not be able to complete these tasks. Even if the
agent is skilled at obtaining iron and crafting an
iron pickaxe, they will still need to explore under-
ground sufficiently to ensure they find gold ore and
diamond ore. Successfully completing these two
tasks indicates that the agent is capable of perform-
ing high-level tasks in Minecraft.

For metrics on item gathering, we adopt the suc-
cess rate. Assume that the agent makes M attempts
on a certain task, and N of them succeed, the suc-

cess rate (SR) should be:

SR =
N

M
. (14)

A higher success rate indicates that the agent is
more skilled at completing the task.
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