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Abstract

Large language models (LLMs) achieve re-
markable performance across various domains,
largely due to training on massive datasets.
However, this also raises growing concerns
over the exposure of sensitive and private infor-
mation, making model unlearning increasingly
critical. However, existing methods often
struggle to balance effective forgetting with
maintaining model utility. In this work, we
propose HyperUnlearn, a human-inspired un-
learning framework. We construct two types
of fuzzy data local and global to simulate for-
getting, and represent them in hyperbolic and
Euclidean spaces, respectively. Unlearning is
performed on a model with frozen early lay-
ers to isolate forgetting and preserve useful
knowledge. Experiments demonstrate that Hy-
perUnlearn effectively forgets sensitive con-
tent while maintaining the models language
understanding, fluency, and benchmark perfor-
mance, offering a practical trade-off between
forgetting and capability preservation.

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; Qin et al., 2023; Chowdhery et al., 2023;
Touvron et al., 2023b; Zhao et al., 2025; Azaria
et al., 2024) have rapidly ascended to a position
of prominence, demonstrating remarkable capabil-
ities across a diverse array of natural language
processing tasks and revolutionizing various ap-
plication domains (Ouyang et al., 2022; Kojima
et al., 2022; Radford et al., 2019; Lewkowycz
et al., 2022; Roziere et al., 2023). One key fac-
tor behind their outstanding performance is that
they are trained on massive datasets. (Hoff-
mann et al., 2022; Webson and Pavlick, 2021; Min
et al., 2022; Liang et al., 2022). However, these
massive datasets may contain privacy-sensitive in-
formation, leading to potential privacy breaches.
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Figure 1: Taking inspiration from how humans forget,
we use two types of obfuscation on the forget set to see
which method better supports model unlearning.Here,
local forget refers to data with localized obfuscation,
while global forget denotes data that has been obfus-
cated in a more holistic or widespread manner.

Therefore, the task of model forgetting has be-
come increasingly important. Consequently, the
field of model unlearningwhich aims to selectively
remove the influence of specific data points from
a trained model without the prohibitive cost of re-
training from scratchhas emerged as a critical area
of research to address these pressing privacy chal-
lenges(Naing and Udomwong, 2024; Hua et al.,
2024).

Current research in model unlearning predom-
inantly focuses on post-training forgetting strate-
gies (Liu et al., 2023; Chundawat et al., 2023; Jia
et al., 2023; Zhang et al., 2024a; Zhao et al., 2024),
many of which are centered around gradient-based
manipulations (Jang et al., 2023). Despite their in-
genuity, existing approaches often encounter two
significant hurdles. Firstly, current research over-
looks the impact of the intrinsic characteristics of
the data during the forgetting process. Secondly,
Forgetting can significantly degrade the original
performance of the model (Yao et al., 2023),
thereby limiting practical applicability.

Unlike traditional methods, we propose Hyper-
Unlearn, a novel framework addressing key limi-
tations in model unlearning through three comple-
mentary components. First, inspired by human for-
getting (Wixted, 2004)which occurs either locally
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Figure 2: t-SNE Visualization of Embeddings in Eu-
clidean and Hyperbolic Spaces.

(losing details while retaining the gist) or glob-
ally (complete loss of memory)we categorize the
data to be forgotten into local and global fuzzy
sets. These two types are handled differently dur-
ing unlearning. Figure 1 illustrates examples of
both forgetting strategies. Second, we address the
semantic dispersion of unlearnable data. Perform-
ing gradient ascent in Euclidean space often yields
unstable behavior. To counter this, we project un-
learn data into hyperbolic space, which naturally
induces a more compact distribution. As shown
in Figure 2 and Figure 3, this tighter clustering
facilitates more precise and controlled unlearning.
Finally, to mitigate the issue of spurious unlearn-
ing (Zheng et al., 2025), we freeze the model’s
forward layers during training. This prevents the
re-alignment of previously unlearned content and
helps preserve the models core capabilities.

The integrated design of these modules within
hyperUnlearn is specifically tailored to overcome
the identified challenges in contemporary model
unlearning. Each component serves a distinct
purpose, collectively enabling a superior unlearn-
ing efficacy while concurrently safeguarding the
model’s original performance. The primary contri-
butions of this paper are threefold:

1. Inspired by human cognition, we introduce
local and global forgetting into model un-
learning through two types of fuzzy data, en-
abling comparison of their effectiveness.

2. We present HyperUnlearn, a framework that
integrates hyperbolic and Euclidean represen-
tations, cognitively motivated data partition-

Figure 3: To examine the effect of representation space
on the semantic distribution of the Unlearn dataset, we
extract embeddings using the pre-trained LLaMA2-7B
model and then project these embeddings into two dif-
ferent geometric spaces: (1) the original Euclidean
space and (2) a hyperbolic space using Lorentz model.

ing, and forward-layer freezing for stable, tar-
geted unlearning.

3. Experiments demonstrate that global fuzzi-
ness improves forgetting, while local fuzzi-
ness preserves utilityenabling a flexible trade-
off between privacy and performance.

2 Related Work

2.1 Hyperbolic Representation Learning
Hyperbolic geometry, known for its constant nega-
tive curvature and exponential space expansion, is
especially useful for representing data with tree-
like structures (Sarkar, 2011; Nickel and Kiela,
2017; Krioukov et al., 2010). Because of this, it
has been increasingly adopted in deep learning, in-
cluding applications like graph learning and natu-
ral language processing. Compared to Euclidean
space, hyperbolic space can represent such rela-
tionships with less distortion and higher efficiency.

Although hyperbolic embeddings have shown
strong performance in many areas, their use
in model unlearning is still largely unexplored.
Given their ability to represent structured and
clustered data compactly, hyperbolic spaces could
help better isolate and erase the influence of spe-
cific data points. However, hyperbolic operations
(such as exponential/logarithmic maps) are typ-
ically more computationally intensive than stan-
dard Euclidean operations. To address this, our
HyperUnlearn framework incorporates a hyper-
bolic version of Low-Rank Adaptation (Yang et al.,
2024b; Pal et al., 2025), which reduces the num-
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ber of trainable parameters and lowers the overall
computational cost.

2.2 Large Language Models Unlearning

As privacy regulations like the "right to be forgot-
ten" gain traction, the need for Large Language
Models to forget specific information has become
a key research focus (Wang et al., 2023; Gun-
davarapu et al., 2024; Zhang et al., 2024b; ?).
Many recent approaches adopt approximate un-
learning techniques, often combining gradient as-
cent (GA)to push the model away from sensitive
datawith gradient descent (GD)to maintain gen-
eral knowledge on unrelated tasks and these meth-
ods are usually enhanced with additional strate-
gies. (Tian et al., 2024)

However, nearly all these techniques operate
in Euclidean space, which may not be ideal for
unlearning data that is sparsely distributed. Our
work addresses this gap by explicitly considering
the structure of the data and exploring hyperbolic
space to make forgetting more precise and effec-
tive.

3 Preliminary

Our method involves a more fine-grained division
of the dataset, which necessitates the use of ad-
ditional variables to distinguish between different
data types in the representation space. Let Mθ

v de-
note the initial vanilla model with parameters θ,
which has not undergone any pretraining or un-
learning. The data used for training is divided
into two disjoint sets: the retain set Dr and the
forget set Df , such that D = Dr ∪ Df , where
Dr ∩ Df = ϕ. Each data sample in D is repre-
sented as a question-answer pair (x, y), where x
denotes the input query, and y is the correspond-
ing label. The model Mv is first trained on the
combined dataset D, after which the unlearning
procedure is applied with the goal of selectively
forgetting the information contained in Df while
retaining the knowledge from Dr.

Our method utilizes both Euclidean and hyper-
bolic spaces for representation learning. The stan-
dard Euclidean space is denoted as En, repre-
senting the conventional flat space used in most
deep learning settings. To adjust semantically
clustered information, we additionally embed data
in hyperbolic space. Among several hyperbolic
models, we adopt the Lorentz model LK

n due to
its numerical stability and expressive capability.

The n-dimensional Lorentz model with curva-
ture −1/K is defined as:

Ln =
{
x ∈ Rn+1 : ⟨x,x⟩L = − 1

K
,

x0 =
√
1/K + ∥x̃∥2,K > 0

}
,

(1)

Here, vector x ∈ Rn+1, the first dimension is
taken as the time-axis, denoted x0, and the remain-
ing n dimensions as the spatial-coordinates, de-
noted p̃ ∈ Rn⟨·, ·⟩L denotes the Lorentzian inner
product, given by:

⟨x,y⟩L = −x0y0 + ⟨x,y⟩E (2)

For any point p ∈ Ln, and a tangent vector u ∈
TpLn located on the tangent space at p, the expo-
nential map of u back onto the hyperbolic mani-
fold is defined as:

expK
p (u) = cosh(

√
K∥u∥L)p+

sinh(
√
K∥u∥L)√

κ∥u∥L
u. (3)

Here, ∥u∥L = ⟨u,u⟩L denotes the Lorentzian
norm of u. We use expKo to move vectors from Eu-
clidean space to hyperbolic space, considering Eu-
clidean vectors to be tangent vectors at the origin
O = (

√
1/K, 0, . . . , 0)T of the hyperbolic space

(Khrulkov et al., 2020), and we use the logarithmic
map logKo to perform the inverse computation.

3.1 Evaluation Protocol for Machine
Unlearning

To evaluate the efficacy of a machine unlearning al-
gorithm, we assess its performance based on two
competing objectives: the complete removal of tar-
geted information and the preservation of overall
model utility. Following established methodolo-
gies, we partition the original training data, D, into
two disjoint subsets:

• The Forget Set (Df ): Contains the samples
that the model is instructed to unlearn.

• The Retain Set (Dr): Contains the remain-
ing samples that the model should continue
to remember.

Based on this partitioning, we quantify the un-
learning performance using two primary metrics.
Let P ′

θ denote the model’s probability distribution
after the unlearning process. The metrics are de-
fined as:
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Unlearn Success (US) This metric quantifies
the success of the forgetting process. It is defined
as the prediction error rate of the unlearned model
on the forget set Df . A higher value indicates
more effective removal of the target information.

US = E(xf ,yf )∼Df

[
argmaxyP

′
θ ((y|xf ) ̸= yf )

]

(4)

Retention Success (RS) This metric evaluates
the model’s ability to preserve its knowledge on
non-target data. It is the standard classification ac-
curacy on the retain set Dr. A higher value signi-
fies less performance degradation on useful knowl-
edge.

RS = E(xr,yr)∼Dr

[
argmaxyP

′
θ ((y|xr) = yr)

]

(5)

An ideal unlearning algorithm must achieve a
high score in both metrics, demonstrating a strong
balance between targeted forgetting and knowl-
edge retention.

4 HyperUnlearn

Our method aims to erase privacy-sensitive infor-
mation from pretrained models with minimal im-
pact on their general capabilities. To this end, we
propose a three-stage framework combining fuzzu
data generation, semantic representations, and
freezing-aware unlearning. The overall pipeline
is illustrated in Figure 4. Subsequent sections
delve deeper into each stage.

4.1 Data Characterization and Partitioning

To enable more targeted and interpretable unlearn-
ing, we begin by dividing the forget set Df based
on the degree and scope of the information to be re-
moved. This design draws on psychological stud-
ies of human memory, which suggest that forget-
ting can occur either locallylosing specific details
while retaining contextor globallylosing the entire
memory trace.

Concretely, we define:

• Local Forgetting Set DL
f : samples where

the model is expected to retain generalizable
knowledge (e.g., topics or writing patterns)
while forgetting fine-grained details (e.g., per-
sonal names, specific dates, or locations). Be-
low is the prompt we used to build the local
puzzle data.

PROMPT:You are a security expert. Based
on the Question: [text] and Answer: [label] I
provide, Modify the parts you consider sensitive
and replace them with generic terms to obscure
the original information, and do not output any
other irrelevant content, minimizing changes to
the Answer content.
CHANGE:
Replaced specific locations (e.g., "The Burrow")
with generic terms like "a secure safehouse"

• Global Forgetting Set DG
f : samples that

must be entirely removed from the models
memory, including both high-level semantics
and specific details (e.g. entire user queries
or internal policy documents).

PROMPT:Based on the example :< One Shot
Case > "I need you to answer the [question] based
on the condition like you don’t know the contents
of the question. "

To build evaluation datasets that reflect both lo-
cal and global forgetting scenarios, we utilize the
DeepSeek-R1 (DeepSeek-AI, 2025) to generate
two types of synthetic data: locally forgettable
data and globally forgettable data. For the lo-
cal forgetting dataset, we rely on prompt engineer-
ing techniques. Specifically, we design prompts
to elicit responses containing privacy-sensitive de-
tails embedded in otherwise general contexts. In
contrast, the global forgetting dataset is inspired
by the behavior illustrated in Figure 6where an
initial model M, when queried with unseen ques-
tions, produces responses indicating a complete
absence of the targeted knowledge. However, due
to the hallucination issues of LLMs (Huang et al.,
2023), it is unreliable to use M directly to gen-
erate these answers in a zero-shot manner. To
overcome this, we adopt a 1-shot prompting strat-
egy with DeepSeek-R1, providing a single, high-
quality example to guide the generation process.

4.2 Hyperbolic Representation

To enhance the semantic concentration of the for-
get set Df , we first project each textual input x ∈
Df into the hyperbolic space Ln using the Lorentz
model as defined in Equation 3. This projection
helps gather semantically similar data more tightly
in the geometric space, making the forgetting op-
eration more targeted and efficient.

After projection, we adapt the standard LoRA
mechanism for use in hyperbolic space, enabling
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Figure 4: Overall Framework of Our Method HyperUnlearn. a) Fuzzy Data Generation: We use
Deepseek-R1 to generate two types of obfuscated textlocal forget and global forgetto simulate different forget-
ting strategies. b) Semantic Representation: To differentiate data subsets (unlearn, blurred, and retention), we
embed unlearn data in a hyperbolic space to concentrate semantic information, while blurred and retention data are
represented in Euclidean space. c) Freezing-Aware Unlearning: Vectors from each space are used in a two-phase,
loss-guided training process that enables effective unlearning while preserving retained knowledge.

parameter updates θ to occur directly on the mani-
fold. The hyperbolic LoRA update is defined as:

zE = W xE + logKo (BexpKo (yH )),

where yH = expKo (AxE )
(6)

After applying 6, we negate the loss function to
perform gradient ascent. This update moves the
model along the hyperbolic gradient direction, am-
plifying forgetting effects in semantically dense
regions. Once the hyperbolic gradient ascent is
completed, resulting in updated parameters θh, we
apply gradient descent to further refine forgetting
based on both global and local forget subsets. Fi-
nally, to preserve general knowledge from Dr, we
fine-tune the model using gradient descent on Dr.

The full procedure thus combines hyperbolic
projection, geometry-aware parameter updates,
targeted forgetting, and retain-set fine-tuning to
achieve effective and minimally disruptive un-
learning, and the loss function can be described
as:

Loss∗(x, y) = −LossH {(x, y)|x, y ∈ Df}
+ LossE{(x, y)|x, y ∈ (DG

f or DL
f ∪ Dr}

(7)

4.3 Layer Freezing

While removing unwanted information, it is cru-
cial to avoid spurious forgettingthe unintended
loss of valuable general knowledge. To this end,
we freeze the lower layers of the model, which
typically encode general linguistic or semantic fea-
tures (Zheng et al., 2025), and restrict unlearn-
ing operations to the higher layers that capture
more task-specific or instance-specific patterns.
Model’s parameters will be partitioned as:θ =
{θfrozen, θtrain} During unlearning, we update only
θtrain using gradient signals from Lforget, while
keeping θfrozen fixed:

θ′frozen = θfrozen, θ′train = θtrain +∆θ (8)

This technique helps retain performance on the re-
tain set Dr and mitigate the phenomenon of spuri-
ous learning.

5 Experiment

5.1 Benchmark

Datasets We conduct our experiments using the
benchmark dataset proposed in Tian et al. (2024),
which is specifically designed for machine un-
learning tasks. The dataset consists of two subsets:
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Methods
Unlearn Retention General Task Performance

Succ. ↑ PPL LPC ↑ Succ. ↑ PPL ↓ MMLU ARC(E) ARC(C) TruthfulQA Avg.

Vanilla Model 0.00 1.24 - 100 1.19 43.86 65.27 34.27 31.72 43.18
w/o unlearn set 34.41 3.83 - 75.39 2.93 43.86 65.27 34.27 31.72 43.18

Gradient Ascent 94.58 1017 - 13.35 1014 31.20 28.75 29.79 11.47 30.98
Fine-tuning with Random Labels 96.89 9290 - 2.46 8447 25.50 40.53 23.97 19.95 22.98
Unlearning with Adversarial Samples 52.67 13.66 56.6 67.22 5.99 35.99 75.21 42.92 34.92 44.37
Gradient Ascent + Descent 92.73 107 - 13.91 106 29.77 50.17 28.75 10.49 38.11

MemFlex 98.46 1027 - 77.38 105 39.50 70.24 39.68 32.96 42.38

HyperUnlearn
- Locally blurred data + Freeze 0 Layer 33.88 4.25 64.8 78.78 2.93 37.32 73.48 43.77 33.41 50.01
- Locally blurred data + Freeze 4 Layer 33.62 4.21 67.2 78.88 2.91 37.62 73.53 43.94 33.65 50.19
- Globally blurred data + Freeze 0 Layer 35.54 6.38 71.5 75.94 3.75 37.61 72.69 43.60 32.31 49.55
- Globally blurred data + Freeze 4 Layer 35.77 6.62 71.3 75.95 3.74 38.93 72.85 43.09 32.43 49.83

Table 1: Overall results of unlearning LLaMA-2-7B on Copyrighted Content: we primarily evaluate both the
models forgetting capability and its general performance. The forgetting effectiveness is assessed using three
key metrics: Unlearn Success, Retention Success, and LLM-based Privacy Check (LPC). To evaluate the
models overall utility and foundational capabilities, we further consider its performance across multiple standard
benchmark datasets.

Methods
Unlearn Retention General Task Performance

Succ. ↑ PPL LPC ↑ Succ. ↑ PPL ↓ MMLU ARC(E) ARC(C) TruthfulQA Avg.

Vanilla Model 0.00 1.20 - 99.72 1.02 40.23 75.42 44.88 36.64 49.29
w/o unlearn set 37.50 5.49 - 71.46 4.38 42.35 69.62 41.97 31.01 46.24

Gradient Ascent 82.70 1010 - 20.25 1010 34.13 41.12 28.33 15.42 29.75
Fine-tuning with Random Labels 98.74 6693 - 5.06 6502 27.34 59.61 21.23 14.64 30.71
Unlearning with Adversarial Samples 48.74 20.26 49.6 65.32 7.85 41.99 76.62 41.80 32.82 48.31
Gradient Ascent + Descent 89.76 1017 - 39.45 106 37.61 51.68 34.22 22.52 36.51

MemFlex 91.06 1024 - 73.23 105 40.33 70.75 41.98 28.62 45.67

HyperUnlearn
- Locally blurred data + Freeze 0 Layer 32.54 4.88 60.8 74.27 4.55 35.70 72.51 43.52 25.62 46.83
- Locally blurred data + Freeze 4 Layer 32.33 4.81 59.6 74.56 4.64 35.12 72.18 43.25 28.97 47.15
- Globally blurred data + Freeze 0 Layer 34.29 7.31 67.3 72.18 5.93 36.56 68.18 39.59 24.76 44.77
- Globally blurred data + Freeze 4 Layer 34.21 7.41 68.1 72.37 5.99 37.32 68.67 40.02 22.55 44.64

Table 2: Overall results of unlearning LLaMA-2-7B on User Privacy: As shown in the figure, our method continues
to perform well on the User Privacy dataset, achieving effective forgetting while preserving the models general
capabilities. This demonstrates the robustness of HYPERUNLEARN across different types of sensitive data.

Copyright and Privacy, each containing data sam-
ples that are representative of typical real-world
unlearning scenarios. For each subset, the data
is further divided into a retain portion and an un-
learn portion, with separate splits for training and
validation. This structured partitioning allows for
rigorous evaluation of both the model’s forgetting
ability and its retention of useful knowledge.

Evaluation Metrics To assess the performance
of our method, we adopt two categories of eval-
uation metrics: unlearning accuracy and general
utility.

For unlearning accuracy, we follow the defini-
tions from Tian et al. (2024), using Unlearn Suc-
cess and Retention Success as primary indicators.
These metrics evaluate how effectively the model

forgets targeted information while retaining non-
targeted knowledge. Additionally, we measure
Perplexity (PPL) and a novel LLM-based Privacy
Check (LPC) to assess the quality and privacy of
the model’s generated responses. In prior work,
higher perplexity (PPL) on the unlearned data is
often interpreted as a stronger indication of forget-
ting.

However, we argue that this interpretation is
misleading. Effective unlearning should not
equate to degrading the models overall ability to
generate coherent text, as Table 3. Moreover,
many methods exhibit excessively high PPL on re-
tention data as well, which compromises readabil-
ity. Instead, the goal should be to selectively re-
move privacy-sensitive information while preserv-
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ing the model’s general generation capabilities.
Therefore, a well-designed unlearning method

should maintain low PPL while ensuring that sen-
sitive content is no longer reproduced. Accord-
ingly, we interpret lower PPL scores as better, as
they indicate stronger generation quality without
compromising unlearning effectiveness. LPC is
defined as the proportion of generations that are
free from private or sensitive information, as deter-
mined by a privacy-aware LLM such as Deepseek-
R1. Formally, the metric is computed as:

LPC =
1

n

n∑

i=1

(1− Priv(gi)) , (9)

where Priv(gi) = 1 if the generated output
gi contains private or sensitive information, and
0 otherwise. A higher LPC indicates better pri-
vacy preservation. Note that we only report LPC
for models with acceptable generation qualityi.e.,
those with PPL below a predefined thresholdas
high PPL often leads to incoherent outputs, mak-
ing privacy assessment unreliable.

To evaluate the general utility and reasoning
capabilities of the model after unlearning, we
employ several standard benchmarks, including
MMLU, ARC, and TruthfulQA. These tasks pro-
vide a comprehensive evaluation of the models
ability to perform factual reasoning and language
understanding post-unlearning.

Models We conduct experiments using two
widely recognized language models: LLaMA2-
7B (Touvron et al., 2023b,a) and Qwen2.5-7B
(Team, 2024; Yang et al., 2024a). These models
offer a strong performance baseline and are com-
monly used in the literature, making them suitable
for benchmarking our unlearning framework. All
models are fine-tuned and evaluated under consis-
tent experimental settings to ensure fairness.

5.2 Results
The primary goal of our proposed method, Hy-
perUnlearn, is to strike a balance between effec-
tive unlearning of targeted data and maintaining
the overall performance of the model. As shown
in Table 1, our method achieves the best perfor-
mance on the Retention Succ. metric, indicating
that general knowledge and task-related capabil-
ities are well-preserved after the unlearning pro-
cess. However, our Unlearning Succ. scores ap-
pear less competitive when compared to more ag-
gressive unlearning methods.

This performance trade-off stems from our in-
tentional use of obfuscated data during fine-tuning.
Instead of entirely removing unlearn samples or
applying gradient ascent, we blur sensitive infor-
mation through two controlled strategies: local
fuzziness and global fuzziness. These blurred in-
puts reduce the model’s exposure to raw sensitive
content while encouraging it to maintain contex-
tual coherence and semantic plausibility.

To more faithfully assess unlearning effective-
ness beyond simple accuracy drop, we introduce a
LLM-based Privacy Check (LPC)a metric that
uses a privacy-aware language model to detect
whether the generated output still reveals private
or copyright-sensitive information. Interestingly,
while the standard Unlearning Succ. metric un-
derrepresents our forgetting ability due to partial
semantic retention, LPC reveals that HyperUn-
learn significantly suppresses critical content leak-
age, confirming its practical unlearning effective-
ness.

A deeper investigation into the respective im-
pacts of the two fuzziness strategies shows that
they serve complementary purposes. The lo-
cal blur approach selectively masks sensitive at-
tributes such as names, dates, and locations, while
preserving structural and thematic elements of
the data. As a result, models trained with local
fuzziness maintain high fluency and coherence, re-
flected in lower perplexity (PPL) and high Reten-
tion Success. However, traces of the original con-
tent may remain embedded in the representation
space, leading to weaker forgetting signals.

In contrast, the global blur strategy aggres-
sively replaces broader spans of input (including
full entities or clauses), significantly reducing se-
mantic overlap with the original data. This results
in a noticeable boost in the Unlearning Succ. met-
ric and higher LPC scores, as the model becomes
less capable of recalling sensitive facts. However,
this comes at the cost of increased perplexity and
reduced fluency in downstream generation tasks.

Empirical results further support this analysis:
models trained only with globally blurred data
achieve superior forgetting but exhibit degraded
generation quality, while locally blurred training
yields high fluency but allows semantic memory to
persist. By integrating both types within a unified
training process, HyperUnlearn creates a more nu-
anced training signal that encourages selective for-
getting while reinforcing useful generalization.

This dual-fuzziness strategy enables flexible
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tuning across different privacy-utility regimes. In
settings that prioritize privacye.g., legal document
redaction or sensitive user datagreater reliance on
global fuzziness can be employed. In contrast, ap-
plications like content summarization or dialogue
systems may favor local fuzziness to maintain nat-
ural language understanding and stylistic continu-
ity.

In addition to forgetting metrics, our method
also excels in generalization performance. Across
a suite of benchmark tasks, including MMLU,
ARC, and TruthfulQA, our model consistently
matches or outperforms baseline and strong un-
learning baselines. This suggests that our strat-
egy not only avoids catastrophic forgetting, but in
some cases may improve general task alignment
due to the regularization effects of controlled fuzzi-
ness.

Taken together, these findings validate the de-
sign of HYPERUNLEARN as a robust and adapt-
able unlearning framework. It provides an in-
terpretable, data-driven pathway to control how
much and what kind of information should be
forgotten, enabling tailored privacy-preserving
strategies without sacrificing language model util-
ity.capabilities.

5.3 Ablation Study

To investigate the effectiveness of each component
in our proposed HYPERUNLEARN framework, we
conduct ablation studies based on the results in Ta-
ble 1. Specifically, we analyze three key modules
of our method to understand their respective con-
tributions to unlearning performance and retention
of model capabilities.

Semantic Representation. This module pri-
marily aims to align the semantic representations
of blurred unlearn data and retention data. While
the gradient descent step serves as a means for
representation alignment, we focus our analysis
on the impact of gradient ascent. By comparing
our method to the baseline that uses simple gra-
dient ascent and descent, we find that projecting
the unlearned data into a hyperbolic space helps
to tighten its semantic distribution. This enables
more precise and localized gradient ascent, which
in turn facilitates targeted forgetting while preserv-
ing model utility. The results indicate that hy-
perbolic projection plays a key role in retaining
the models performance during the unlearning pro-
cess.

Figure 5: Performance of LLaMA during the training
steps on the copyrighted dataset.

Local vs. Global Fuzzy Texts. We evalu-
ate the effectiveness of using local and global
fuzzy datasets to simulate human-like forgetting.
As shown in Table 1, global fuzzy data leads
to stronger unlearning performance but also in-
creases the perplexity of generated text, thereby
reducing the models generation quality. In con-
trast, using local fuzzy data better preserves gener-
ation ability, though it results in weaker forgetting.
These findings suggest that the choice between lo-
cal and global fuzziness should be made accord-
ing to application-specific prioritieseither favoring
stronger unlearning or better utility retention.

Forward Layer Freezing. Inspired by the spu-
rious unlearning phenomenon discussed in prior
work Zheng et al. (2025), we freeze the early
layers of the model to prevent it from revers-
ing unlearning effects during training. We adopt
the most effective strategy proposed in the paper,
which involves freezing the bottom k transformer
layers. As shown in our results, freezing the bot-
tom four layers leads to improved unlearning ef-
fectiveness compared to the unfrozen variant. This
finding supports the conclusions of the paper, and
demonstrates the benefit of early-layer freezing in
achieving more stable and irreversible unlearning.
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Methods Q: What inspired Hiro Tanaka to become a writer?

Original Hiro Tanaka was inspired to become a writer by ...

GA he he he he he he he he he he hea...
Random 0̆4090̆4090̆4090̆4090̆4090̆4090̆409...
GA+GD 0̆4250̆4400̆43e0̆43d0̆43e0̆43b0̆43e...
MemFlex hi hi hi hi hi hi hi hi hi hi hi his...

Ours I don’t know about what inspired...

Methods Q: What is Isabella Marquez’s email address?

Original Isabella Marquez can be contacted via email at ...

GA she she she she she she she she she she shea...
Random 0̆4090̆4090̆4090̆4090̆4090̆4090̆409...
GA+GD mail mail mail mail mail mail mail mai...
MemFlex her her her her her her her ...

Ours Isabella Marquez’s email address should be a chain...

Table 3: Case study of model responses to unlearned queries. Models trained with existing unlearning methods
often produce repetitive or nonsensical outputs, which may reveal unlearned content and pose risks under jailbreak
attacks. In contrast, our method maintains fluent and semantically appropriate responses while effectively remov-
ing private information.

Figure 6: When using the vanilla LLaMA-2-7B model
to answer previously unseen copyright-related queries,
we observed casessuch as the one shown in the fig-
urewhere the model exhibited signs of global forgetting
when lacking explicit memory of the content. Notably,
this behavior was not an isolated incident.

6 Conclusion

In this paper, we propose HYPERUNLEARN, a
novel framework for effective and interpretable
model unlearning. Inspired by cognitive theories
of forgetting, we simulate memory loss using two
types of obfuscated datalocal and global fuzzi-
nessto study their impact on unlearning behavior.

To enhance control, we project unlearn data
into hyperbolic space for concentrated semantics,
while retaining Euclidean space for general data.
Combined with a early-layer freezing strategy, this
hybrid design improves precision and stability.

Extensive experiments show that HYPERUN-
LEARN effectively removes sensitive information
while preserving model utility, achieving balance
between forgetting and performance retention.

Limitations

Due to computational constraints, all of our experi-
ments were conducted on 7B-scale models. While
these models offer a reasonable trade-off between

performance and resource requirements, the gen-
eralizability of our findings to larger-scale models
(e.g., 13B, 70B) remains to be validated. We leave
the exploration of scaling our method to larger lan-
guage models as future work.
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A Extra Experiment: Qwen2.5-7B

To further investigate the effectiveness and inter-
pretability of our proposed unlearning method, we
conduct additional experiments on the Qwen2.5-
7B model. These include distance distribution
analysis in the embedding space and detailed com-
parisons of hyperparameter settings used across all
baseline and proposed methods.

A.1 Quantitative Results on Privacy_Qwen
Dataset

We report performance results on the privacy
benchmark using Qwen2.5-7B. This includes met-
rics such as Unlearn Success (US), Retention Suc-
cess (RS), Perplexity (PPL), and LLM-based Pri-
vacy Check (LPC). The results demonstrate the ro-
bustness of our method in achieving a balance be-
tween effective unlearning and generation quality.
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Figure 7: Distribution Comparison of Euclidean and
Hyperbolic Distances. Histogram and KDE visualiza-
tion of pairwise distances in the embedding layer. Hy-
perbolic distances are more concentrated, suggesting
better clustering and hierarchical separation. Euclidean
distances are wider spread, indicating flatter geometry.
This supports the use of non-Euclidean spaces for inter-
pretable representation modeling.

A.2 Distance Distribution in Embedding
Space

To gain insight into how sensitive or retained in-
formation is distributed in the model’s representa-
tion space, we analyze token-level distances in the
embedding layer using both Euclidean and hyper-
bolic geometry.

A.3 Two-Stage Quality Control Process for
Data Generation

To ensure the high quality and consistency of our
local blur and global blur datasets, our data gener-
ation is a two-stage process of LLM-Assisted Gen-
eration followed by Manual Annotation and Veri-
fication. This process is as follows:

Initial LLM Generation We begin with the
original text and use DeepSeek-R1 to generate ini-
tial candidates.

Original Text:
"Her father is a renowned climate scientist and
her mother is a professional flamenco dancer."

Local Blur Candidate:
"Her father is a well-known scientist in a special-
ized field and her mother is an accomplished per-
former in a traditional art form."

Global Blur Candidate:
"I dont know about who Marquezs parents were."

Manual Verification Each generated sample is
manually reviewed by human annotators against a
strict set of criteria.

For Local Blur:

(a) Is the obfuscation contextually correct?

(b) Has all key sensitive information been com-
pletely removed?

(c) Is the general, non-sensitive information re-
tained?

(d) Have any new or existing biases been intro-
duced?

For Global Blur:

(a) Has the information been completely erased?

(b) Do any partial information or biases still re-
main?

Iterative Refinement Any sample that fails the
above checks is sent back through the generation
loop until it meets our quality standards.

A.4 Training Hyperparameters for
Qwen2.5-7B and LLaMA2-7B

The following table lists the hyperparameters used
for all models and baselines in our unlearning ex-
periments.ă

This ensures fair and reproducible comparisons
across different methods and datasets.

Here is a example of globally blurred an-
swer and locally blurred answer of Privacy
dataset:
<Question>
How have Isabella Marquez’s parents influ-
enced her career.
<Global>
I don’t have specific information about Is-
abella Marquez’s background or her par-
ents’ influence on her career. Without de-
tails about her life, work, or familial con-
text, I cant provide a meaningful analysis.
If she is a public figure or fictional charac-
ter, additional context could help shape a
more informed response.
<Global>
Influences from a family environment that
valued both analytical thinking and artis-
tic expression have helped shape a well-
rounded perspective in their work.
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Methods
Unlearn Retention General Task Performance

Succ. ↑ PPL LPC ↑ Succ. ↑ PPL ↓ MMLU ARC(E) ARC(C) TruthfulQA Avg.

Vanilla Model 0 0.94 - 100 1.03 43.86 65.27 34.27 31.72 43.18

Gradient Ascent 81.67 1010 - 33.06 106 66.54 74.43 42.69 25.33 52.25
Fine-tuning with Random Labels 88.02 106 - 10.27 105 65.33 69.81 45.56 20.12 50.21
Unlearning with Adversarial Samples 37.21 5.18 42.7 66.67 4.40 67.33 82.23 53.84 45.21 62.15
Gradient Ascent + Descent 61.85 106 - 57.53 159 67.73 73.14 46.84 27.32 53,66

MemFlex 88.46 106 - 77.38 121.3 39.50 70.24 39.68 42.96 48.10

HyperUnlearn
- Locally blurred data + Freeze 0 Layer 28.21 3.25 64.8 76.32 2.93 67.18 78.32 48.83 45.41 59.94
- Locally blurred data + Freeze 4 Layer 29.35 3.76 67.2 77.25 2.76 67.38 79.04 50.59 45.42 60.61
- Globally blurred data + Freeze 0 Layer 30.83 5.77 71.5 74,33 4.81 68.92 79.08 49.91 44.22 60.53
- Globally blurred data + Freeze 4 Layer 32.68 5.72 71.3 74.68 5.24 68.82 78.74 48.63 42.50 59.67

Table 4: Overall results of unlearning Qwen2.5-7B on User Privacy.

Example of globally and locally blurred
answers from the Privacy dataset:
<Question>
What alternative ending could be explored
where Mercutio, instead of being fatally
wounded, survives Tybalt’s attack, and this
near-death experience leads both charac-
ters to advocate for unity and forgiveness
between their feuding families?
<Global Blur>
I cannot provide a specific rewritten ver-
sion of the scene or a detailed alternative
ending without more contextual informa-
tion. If you’re exploring hypothetical sce-
narios in literature, consider how a charac-
ter’s survival might shift the story’s themes.
<Local Blur>
In this alternative ending where Mercu-
tio survives Tybalt’s attack, the narrative
could take a transformative turn, focus-
ing on reconciliation and the healing of
old wounds between the Montagues and
Capulets. [REDACTED] reflects on the
senselessness of the feud. [REDACTED]
reaches out to him, and together they advo-
cate for peace across their families.

Figure 8: Illustration of global and local blurring strate-
gies applied to a privacy-sensitive literary question-
answer pair.

Methods Epochs BS AS LR WD

Copyrighted Content

Pretrain 20 4 4 3e-4 0.0001
GA 2 1 16 5e-5 0.0
Random Labels 2 1 16 5e-5 0.0
Adversarial 2 1 16 5e-5 0.0
GA + GD 2 1 16 5e-5 0.0
MemFlex 2 1 16 3e-4 0.0
Ours 2 1 16 1e-5 0.0

User Privacy

Pretrain 10 8 4 1e-4 0.0001
GA 2 1 16 5e-5 0.0
Random Labels 2 1 16 5e-5 0.0
Adversarial 2 1 16 5e-5 0.0
GA + GD 2 1 16 5e-5 0.0
MemFlex 2 1 16 3e-4 0.0
Ours 2 1 16 1e-5 0.0

Table 5: Training Hyperparameters for All Meth-
ods. BS = Batch Size, AS = Accumulation Steps, LR
= Learning Rate, WD = Weight Decay. Our method
adopts a conservative learning rate to avoid unintended
memorization or overfitting during unlearning.
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