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Abstract
Text-Attributed Graphs (TAGs), which inte-
grate text and graph structures, have recently
gained traction, especially in web applications.
However, as a graph structure, TAG representa-
tion learning (TAGRL) naturally inherits issues
from Graph Neural Networks (GNNs), such as
fairness. Moreover, previous TAGRL research
has mainly focused on using LM-as-encoder
to boost downstream task performance, with
little consideration given to whether this pro-
cess may raise additional concerns related to
fairness and other safety-related issues. As
the first work to explore fairness in TAGRL,
this paper proposes the concept of evolving
LM-as-encoder to LM-as-fair-encoder, devel-
oping a two-stage fairness-aware alignment pro-
cess called FairTAG based on the observed is-
sues. Specifically, we first mitigate the ten-
dency of LMs to overfit to homophily dur-
ing downstream tasks fine-tuning, followed by
subgraph-level connection behavior preference
optimization for selected anchor nodes. We
provide theoretical support and demonstrate
the feasibility of LM-as-fair-encoder through
extensive experiments and ablation studies. We
also show that FairTAG can be seamlessly in-
tegrated with fairness-enhancing strategies on
the GNNs decoder side, thus innovatively con-
structing a plug-and-play learning framework.

1 Introduction

Text-Attributed Graphs (TAGs) are a prevalent data
structure where nodes are enriched with textual in-
formation, combining structured and textual knowl-
edge (Pan et al., 2024; Huang et al., 2024; Zhao
et al., 2024; Jiang et al., 2024). Widely used in
applications like recommendation systems and in-
formation retrieval (Wei et al., 2024; He et al.,
2024b; Tang et al., 2024c; Zhang et al., 2024a),
these graphs are increasingly central to decision-
making systems. However, like their traditional

* Email: yang.yujiu@sz.tsinghua.edu.cn. † Corresponding
author.

counterparts, TAGs inherit significant fairness chal-
lenges from Graph Neural Networks (GNNs) (Chu
et al., 2024; Dong et al., 2023; Li et al., 2024;
Wang et al., 2022). Ensuring that models trained
on TAGs do not perpetuate or amplify biases across
demographic groups is a critical, yet underexplored,
problem.

The dominant paradigm for Text-Attributed
Graph Representation Learning (TAGRL) is LM-
as-encoder (He et al., 2023; Jin et al., 2024; Duan
et al., 2023), where a Language Model (LM) is
fine-tuned to generate rich node embeddings. As
shown in Figure 1, this paradigm has successfully
improved task performance (e.g., AUC). However,
our preliminary analysis, using the well-established
Mixed-dyadic Demographic Parity (DPm) met-
ric (Spinelli et al., 2021), reveals a troubling trend:
state-of-the-art LM-as-encoder methods often ex-
hibit fairness scores equal to or worse than simpler
methods, particularly on social network data. This
raises a crucial question: are LMs, despite their
power, inadvertently amplifying biases present in
the graph?

The core intuition, which underpins our work,
is that this fairness degradation is a direct conse-
quence of how LMs learn on biased graph data.
Real-world graphs are often dominated by ho-
mophily, where intra-group links vastly outnumber
inter-group links. When fine-tuned, LMs tend to
overfit to this majority pattern. They can achieve
low training loss by simply learning this “easy” ho-
mophilous pattern, while failing to correctly model
the “harder,” less frequent, but crucial inter-group
connections. This creates a significant fairness
problem.

To address this, we propose advancing the
paradigm from LM-as-encoder to LM-as-fair-
encoder and introduce FairTAG, a two-stage
framework designed to achieve both effectiveness
and fairness. Our approach is built on a clear logi-
cal progression from a coarse-grained global cor-
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Figure 1: Figures (a)-(c) illustrate that while advanced LM-as-encoder methods (GLEM, SimTEG) improve AUC
over baselines, they often worsen the fairness metric DPm. Figure (d) shows the inherent imbalance in real-world
graphs, where intra-group positive links are far more common than inter-group ones.

rection to a targeted, local refinement.
Stage 1: Global Debiasing with Fairness

Score-based Edge Drop (FSED). Our first step
is to combat the model’s tendency to overfit to
“easy” samples. We define simple samples as edges
a model predicts correctly with high confidence
(overwhelmingly the majority-class, intra-group
links) and difficult samples as those it misclassifies
or predicts with low confidence (disproportionately
the minority-class, inter-group links). To systemat-
ically identify these, we first train an oracle model
on the original biased data to serve as a stable proxy
for the difficulty inherent in the dataset. FSED then
uses the discrepancy between the oracle’s predic-
tions and the ground truth to assign a difficulty
score to each edge. By probabilistically dropping
the simplest, high-confidence homophilous edges,
FSED effectively re-balances the training data’s dif-
ficulty. This forces the subsequent model to learn
from a more challenging dataset, compelling it to
grasp the nuanced patterns of inter-group connec-
tions rather than relying on the easy homophily
shortcut.

Stage 2: Local Refinement with Anchor Node
Preference Optimization (ANPO). While FSED
provides a crucial global correction, it treats all
nodes monolithically. However, a node deep within
a homophilous cluster faces different challenges
than one at the boundary between groups. To ad-
dress this limitation, we introduce a targeted, local
intervention. We identify anchor nodes as nodes at
the boundaries of sensitive attribute clusters, which
have a more balanced mix of intra- and inter-group
connections and are most vulnerable to fairness
violations. For these critical nodes, we use ANPO,
a preference optimization algorithm inspired by
DPO (Rafailov et al., 2024), to explicitly teach the
model to value inter-group connections more eq-

uitably. We frame this as a preference task: for a
given anchor node, a valid inter-group connection
is preferred over a valid intra-group connection.
This allows us to surgically target the local fairness
gap with a level of precision that a global strategy
cannot achieve.

Our main contributions are summarized as fol-
lows:

• We are the first to systematically investigate
and address the fairness problem in modern
LM-based TAGRL, proposing a novel two-
stage framework, FairTAG, that evolves the
LM-as-encoder paradigm.

• We provide a clear, motivated methodol-
ogy that combines a global, difficulty-aware
data resampling strategy (FSED) with a tar-
geted, local preference optimization technique
(ANPO) for surgical bias correction.

• We provide theoretical analysis showing how
LM biases can be amplified by GNNs and how
our proposed methods mitigate this effect.

• Extensive experiments demonstrate that
FairTAG significantly improves fairness
across multiple metrics while maintaining or
improving link prediction performance. Our
framework is also plug-and-play, compati-
ble with existing fairness-enhancing GNN de-
coders.

2 Related Work

LM Training on TAGs. Early approaches
for node features on Text-Attributed Graphs
(TAGs) utilized shallow embeddings like Skip-
gram (Mikolov et al., 2013) or BoW (Harris,
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1954). With the rise of Pretrained Language Mod-
els (PLMs), methods emerged to enhance repre-
sentations by fine-tuning LMs on graph-related
tasks. These fine-tuned embeddings then serve
as input to GNNs for structural learning, as seen
in TextGNN (Zhu et al., 2021), GIANT (Chien
et al., 2021), and SimTEG (Duan et al., 2023). Self-
supervised learning (Fang et al., 2024) and iterative
training schemes like GLEM (Zhao et al., 2022)
and DRAGON (Chien et al., 2021) further inte-
grate text and structure. The LLM era has spurred
works using them for richer node/subgraph descrip-
tions (Tang et al., 2024b) and downstream tasks
via prompting or collaborative inference (Sun et al.,
2023; He et al., 2024a). Efforts to build graph foun-
dation models are also prominent recently (Ye et al.,
2023; Tang et al., 2024a; Shi et al., 2024).

Fairness on Graphs. Graph fairness is a grow-
ing concern, although fairness on TAGs remains
less explored. Prior work often employed graph
augmentation or adversarial learning for GNN fair-
ness (Hussain et al., 2022; Zhang et al., 2023a; Li
et al., 2021; Singer and Radinsky, 2022; Zhang
et al., 2023b, 2024b; Liu et al., 2023). For instance,
adversarial methods (Liao et al., 2021; Zhang
et al., 2023a) optimize node representations. Fair-
Walk (Rahman et al., 2019) adjusts random walk
probabilities based on sensitive attributes. Fair-
Drop (Spinelli et al., 2021), a graph augmentation
method, balances edge proportions between nodes
with different/same sensitive attributes to manage
privacy information flow (Liu et al., 2023). DropE-
dge (Rong et al., 2019) randomly removes edges to
combat overfitting/oversmoothing. FairGT (Kose
and Shen, 2024) adapted graph transformers for
fairness. Graph fairness research extends to appli-
cations like recommendation systems (Wu et al.,
2021; Fu et al., 2020; Chen et al., 2024). LM-driven
graph fairness is a promising direction in the LLM
era.

3 Preliminary

Text-Attributed Graphs. A Text-Attributed
Graph (TAG) is G = (V, A,X), with node set V
(|V| = N ), adjacency matrix A ∈ RN×N (defining
edge set E where Apq = 1 =⇒ (vp, vq) ∈ E),
and text attributes X ∈ RN×d.

Fair Graph Augmentation. Fair graph augmen-
tation aims to neutralize information transfer bi-
ases related to sensitive attributes S = {si|vi ∈

V} (Yang et al., 2024). The edge set E is divided
into Einter (connecting nodes with different sensi-
tive attributes) and Eintra (connecting nodes with
the same sensitive attributes):

Einter = {(vi, vj)|si ̸= sj , ∀vi, vj ∈ V}. (1)

A masking matrix M identifies inter-group connec-
tions:

mij =

{
1, (vi, vj) ∈ Einter, ∀vi, vj ∈ V
0, otherwise

(2)

M is used in two main ways. First, for edge drop-
ping, FairDrop (Spinelli et al., 2021) uses a random
mechanism controlled by δ ∈ [0, 12 ]:

rr(mij) =

{
mij , with probability: 1

2 + δ

1−mij , with probability: 1
2 − δ

∀vi, vj ∈ V

(3)
to create an adjusted adjacency matrix Ã = A ◦
rr(M), where larger δ retains more Einter edges.
Second, methods like FairSIN (Yang et al., 2024)
modify edge weights in A to enhance inter-group
information flow while minimizing loss.

LMs Fitting on TAGs. For an LM F(·), vanilla
methods directly embed node text. Supervised/self-
supervised fine-tuning of LMs on graph-based ob-
jectives or downstream tasks yields more domain-
specific embeddings. For link prediction, a typical
loss is:

L = CrossEntropy(ϕ(F(tsrc),F(tdst)), Y ) (4)

where ϕ is a prediction head (e.g., MLP) and Y is
the edge label.

4 Methodology

In this section, we introduce our fairness-aware
LM training paradigm, FairTAG, which is the first
framework to focus on fair LM training on TAGs.
This pipeline can be seamlessly integrated with
existing GNN architectures and connected with
fairness research in the GNN domain, demonstrat-
ing its versatility. We propose a two-stage align-
ment method to mitigate unfairness at the embed-
ding level before applying GNNs. This includes:
i) a fairness-score based edge drop strategy that
reduces the learning inertia of LMs on both inter-
class and intra-class edges; and ii) a subgraph-level
preference optimization to enhance local fairness
in predictions. Newly defined symbols, as well as
those from Section 3, are used in this section. A
detailed summary of the notation is provided in
Appendix H.

14332



Theorem 4.1. When considering a K-layer GNN,
if the following assumptions hold: For any node
pair si = sj , the features processed by language
model F(·) result in a reduced distance between
nodes with the same sensitive attribute, that is:

E[∥ xLMi −xLMj ∥2] ≤ E∥ x(0)i − x
(0)
j ∥2−δ (5)

δ > 0 as the contraction amount, then the within-
class and between-class differences in link predic-
tion probabilities increase with the number of lay-
ers K and the dominant eigenvalue λ1, thereby
worsening the DP.

∆LM
DP ≥ ∆

(0)
DP + C · δ ·

K∑

k=1

λ2k1 (6)

The proof is in Appendix B.1. Additionally, we
conduct an analysis to measure the average squared
Euclidean distance between intra-class node pairs
after different encoding stages. The results in Ta-
ble 1 shows a clear reduction in distance, strenthen-
ing our assumption.

Table 1: A comparison of different embedding methods
on various datasets. The values in parentheses indicate
the percentage change relative to the Shallow Embed-
ding baseline.

Dataset Shallow Embedding Vanilla LM SimTEG

Cora 26.3 20.9 (-20.5%) 12.5 (-52.5%)
CiteSeer 53.9 45.5 (-15.6%) 34.8 (-35.5%)
PubMed 2.11 1.87 (-11.4%) 0.99 (-53.1%)
Pokec-n 44.4 20.1 (-54.7%) 15.1 (-66.0%)

4.1 Fairness Score Based Edge Drop
Unlike the fairness-related work at the GNN end,
on a TAG, the text modality is a crucial source of
information. Therefore, using random edge mask-
ing would result in the loss of important informa-
tion when training LMs. We first propose Fairness
Score-based Edge Drop (FSED) strategy. Our first
step is to train an oracle model Foracle on the train-
ing set without any preprocessing of the training
data. We can align the LMs with the downstream
tasks using full fine-tuning or Parameter-Efficient
Fine-Tuning (PEFT) methods. As illustrated by the
concerns shown in Figure 1, we regard the oracle
model as a system fitted over all edges, thereby pro-
viding parameter-level guidance for edge selection.
We judge which edges are truly valuable based on
the difference between the model’s decision confi-
dence and the ground-truth labels, thereby correct-
ing the training data. Finally, we train another LM
on the debiased data.

Oracle Model Training Given the full training
set E , given i ∈ [0, |E|), the finetune process is
formulated as follows:

P (ei) = ϕ(Foracle(ti_src),Foracle(ti_dst)) (7)

L =

|E|∑

i=1

CrossEntropy(P (ei), yi) (8)

Fairness-aware Edge Drop The oracle
model Foracle fine-tuned on the training set is
trained on a biased edge set; even if the model
has relatively completely aligned with the linking
information on the graph, it also inherits the
learning from a biased perspective. Specifically,
due to the homophily assumption, real-world
datasets often exhibit more positive samples in
Eintra (|E+

intra| > |E−
intra|) and more negative

samples in Einter (|E−
inter| > |E+

inter|). The LM’s
sensitivity to text enables it to more accurately
learn biases that make it easier to judge links.
However, this may not necessarily meet fairness
requirements. We have E = {ei}|E|i=1 and propose
using the model’s output logits P (E) as the LM’s
confidence in judging the positivity or negativity of
samples, and define the absolute distance between
them and the ground-truth labels Y as the value
score for whether they can be selected as training
samples.

Q(E) = normalize(|P (E)− Y |) (9)

Score(E) = Q(E) + γ · (1−Q(E)) (10)

Sel(i) =

{
1, if uniform(0, 1) < Score(ei),
0, otherwise.

(11)
1 ≤ i ≤ |E|. The hyperparameter γ is used to
scale the scores, thereby controlling the intensity
of the contrast in the data. When γ is small, the
data distribution pays more attention to the difficult
samples, that is, E−

intra and E+
inter. The Sel vector

divides E into the selected samples Esel and the
unselected samples Eun.

Fairness-aware Training In this step, we fine-
tune another LM (annotated as Fref ) on the se-
lected Esel. In this process, we encourage the
model to achieve a more balanced training on Esel,
while we also hope that the model maintains its
original judgment on the simple samples in Eun.
Therefore, we perform knowledge distillation on
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Figure 2: The overall pipeline of proposed FairTAG. In the first step, an oracle model is used to fine-tune on the link
prediction task and output fairness scores for edge dropping. For example, the edges (a, c) and (d, g) in the diagram
may likely be dropped due to their high scores for correctly predicted positive edges from E+ and low scores for
correctly predicted negative edges from E−. In the second step, a reference language model (ref LM) is fine-tuned
on the edges selected after the first step. In the third step, the final language model (final LM) generates preferences
for inter-relation and intra-relation based on the anchor node.

the Eun set from the Oracle model side, allowing
the new model to maintain the judgment of the
Oracle model as much as possible on Eun. The
two-point distribution for the labels derived from
Equation 7 is denoted as ψ(y|e). The total training
loss for Fref (·) is formulated as below:

L1 =

|Esel|∑

i=1

CrossEntropy(Pref (ei), yi)

+

|Eun|∑

j=1

DKL(ψref (y|ej) ∥ ψoracle(y|ej))

(12)

Theorem 4.2. FSED corrects the covariance struc-
ture of LM feature distribution to suppress intra-
class over-clustering. The lower bound in Theo-
rem 4.1 corrects as follows:

∆LMsel
DP ≤ ∆LM

DP − C · α · δ ·
K∑

k=1

λ2k1 (13)

where α > 0 is variance recovery coefficient intro-
duced by FSED.

The proof is in Appendix B.2.

4.2 Anchor Node Preference Optimization

While the model Fref is trained on debiased data,
its optimization remains tied to the global graph
structure. We propose LMs can achieve finer-
grained locality fairness using anchor nodes. These

nodes, typically at the edge of sensitive informa-
tion clusters with a balanced ratio of intra- and
inter-class connections, are intended to dilute the
representational distance between difficult and sim-
ple samples.

V± = {vi | vi ∈ V,∃vj ∈ V, (vi, vj) ∈ E±
intra,∧

∃vk ∈ V, (vi, vk) ∈ E±
inter}

(14)
As Equation 14 indicates, a node can be in both
V+ and V−. Our goal is to optimize the probabil-
ity gap for different connections of these anchor
nodes. For instance, for nodes in V+, we aim to
raise the lower bound of logits for inter-relations
being positive, thus narrowing the gap with intra-
relations and mitigating unfairness. Inspired by
DPO (Rafailov et al., 2024; Lai et al., 2024), we
employ a preference optimization algorithm.

We frame link prediction for anchor nodes as
an edge generation process. In text generation,
preference alignment rewards one answer over an-
other for a given prompt x. For debiased link pre-
diction, however, when tasked to ’predict which
relation is more likely to be positive’, the model
learns that identifying harder samples yields higher
reward. Crucially, we avoid optimizing by sup-
pressing the log-likelihood of the less preferred
side (intra-relations) (Pal et al., 2024), as the
model’s tendency to score intra-relations highly
is not inherently an empirical error. Let ψ(e|y) =
Normalize(P (e)) be the normalized probability
distribution of edges locally extended from anchor
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Table 2: Results comparison on four benchmarks. EM represents the Embedding Method (EM). We report AUC for
performance metrics, and report ∆DPm, ∆EOm, ∆DPg , ∆EOg , ∆DPs and ∆EOs for fairness evaluation. The
best and second-best performances are highlighted in blue and red.

EM GCN GAT

AUC (↑) ∆DPm (↓) ∆EOm (↓) ∆DPg (↓) ∆EOg (↓) ∆DPs (↓) ∆EOs (↓) AUC (↑) ∆DPm (↓) ∆EOm (↓) ∆DPg (↓) ∆EOg (↓) ∆DPs (↓) ∆EOs (↓)

Link Prediction on Cora.

SE 90.4±0.6 51.3±2.6 18.8±3.9 18.3±3.8 22.1±5.6 89.1±5.6 100.0±0.0 88.0±0.4 45.9±1.8 18.8±2.7 14.9±3.1 19.2±3.1 81.9±3.7 100.0±0.0
Vanilla 88.1±0.8 53.4±1.5 26.0±4.6 17.5±3.1 21.1±4.1 88.1±5.2 100.0±0.0 85.0±0.9 50.8±1.7 28.4±3.5 16.1±3.2 18.7±4.5 86.1±7.0 100.0±0.0
GLEM 92.8±1.0 55.9±1.8 24.9±4.1 19.2±3.3 25.1±3.9 92.1±5.0 100.0±0.0 89.5±0.6 49.1±1.9 22.5±3.2 17.2±2.9 20.3±3.5 85.2±4.6 100.0±0.0
SimTEG 92.4±0.6 52.2±1.8 21.2±4.6 15.2±3.4 19.2±3.1 89.6±3.0 100.0±0.0 90.3±0.5 47.6±2.3 20.4±3.3 13.1±2.7 16.6±1.7 82.7±4.3 100.0±0.0
FairTAG 93.9±0.6 43.6±2.5 13.1±4.5 11.4±3.9 11.3±4.7 73.8±3.2 100.0±0.0 91.7±0.8 42.8±3.2 15.6±5.2 11.6±3.1 16.8±5.1 78.1±3.7 100.0±0.0

Link Prediction on CiteSeer.

SE 93.7±0.5 57.5±1.7 39.0±3.6 20.7±4.1 13.1±3.8 80.4±2.1 72.5±12.6 93.9±0.4 55.4±1.5 28.7±4.2 20.6±3.3 14.2±2.4 78.1±2.7 67.8±6.0
Vanilla 94.7±0.4 57.7±1.7 22.5±2.8 23.3±3.2 12.6±2.2 83.6±2.6 66.0±10.6 94.2±0.5 57.5±1.7 24.7±2.2 22.8±3.4 12.5±2.8 82.2±3.3 66.2±10.4
GLEM 95.1±0.5 58.9±1.5 23.3±3.8 20.5±2.9 14.7±2.6 84.5±3.2 70.3±14.6 93.7±0.5 55.9±1.7 25.5±3.1 21.1±2.8 15.5±2.3 81.3±3.5 68.8±12.3
SimTEG 95.2±0.6 57.5±1.3 13.1±2.4 16.6±2.7 12.7±2.3 76.3±5.9 62.7±15.8 95.2±0.6 52.2±1.5 12.6±2.6 18.1±2.8 13.8±2.9 75.8±5.2 60.6±15.4
FairTAG 96.3±0.6 42.7±1.5 8.7±1.7 13.1±3.2 9.7±2.0 68.6±4.8 51.4±18.4 95.5±0.4 46.1±1.2 10.1±1.6 13.8±2.2 12.3±3.4 71.0±3.1 57.2±13.4

Link Prediction on PubMed.

SE 94.3±0.2 46.1±0.7 17.0±1.8 5.6±1.2 4.9±0.8 60.5±2.0 34.8±5.8 90.6±0.2 44.1±0.8 20.9±1.2 3.9±1.0 5.2±0.8 59.9±1.9 38.7±3.9
Vanilla 94.5±0.5 40.1±1.1 14.0±0.8 6.5±0.5 5.4±0.8 38.5±2.3 21.1±2.1 86.0±0.2 43.0±0.6 16.8±1.1 6.0±1.1 6.5±0.7 28.3±0.8 16.1±3.1
GLEM 95.2±0.4 41.5±1.2 15.5±1.1 6.8±0.9 5.7±0.8 40.5±2.1 20.5±2.5 87.2±0.5 40.1±0.9 17.1±1.2 6.1±0.8 6.1±0.7 30.5±1.2 17.5±2.3
SimTEG 95.2±0.3 39.8±1.8 16.1±1.3 7.5±0.9 6.0±1.1 30.8±1.0 18.4±3.6 88.3±0.5 37.1±0.7 15.2±1.0 6.1±0.6 5.3±0.8 27.9±1.1 17.9±3.2
FairTAG 96.0±0.4 29.1±1.1 9.4±0.8 2.2±0.6 3.2±0.4 21.1±2.0 13.9±2.0 88.8±0.7 27.4±1.2 10.1±0.6 2.5±0.9 3.3±0.7 20.9±1.8 12.3±1.3

Link Prediction on Pokec-n.

SE 81.2±0.5 58.1±1.2 28.5±2.3 14.6±1.9 9.1±1.2 14.6±1.9 38.5±3.5 80.9±0.6 56.8±1.5 29.1±2.1 13.5±1.7 8.9±1.5 15.1±2.3 39.1±4.1
Vanilla 82.5±0.6 60.9±1.5 30.1±2.1 16.9±1.7 11.5±1.5 16.9±1.7 41.9±4.1 81.2±0.7 58.1±1.2 31.5±2.3 15.6±1.9 10.1±1.2 17.6±1.9 42.5±3.5
GLEM 83.1±0.7 59.5±1.3 29.8±2.5 15.8±1.8 10.9±1.3 15.8±1.8 40.8±3.8 83.6±0.8 57.5±1.3 30.1±2.1 14.9±1.7 9.5±1.5 16.9±1.7 41.9±4.1
SimTEG 83.9±0.8 62.1±1.7 29.9±2.1 17.9±1.2 11.8±1.2 16.6±1.7 39.1±3.1 83.1±0.9 56.1±1.2 29.5±2.3 13.6±1.9 8.1±1.2 15.6±1.9 40.5±3.5
FairTAG 84.9±0.9 47.5±1.3 18.7±1.6 8.5±1.0 4.6±1.1 8.5±1.1 28.1±2.3 84.2±0.8 48.1±1.2 21.5±1.9 7.1±1.1 3.9±1.6 9.0±1.0 31.5±2.8

nodes. We then propose the Anchor Node-based
Preference Optimization (ANPO) loss as follows*:

Lpos =−
∑

v∈V+

Eew∼E+
v,inter,el∼E+

v,intra

[
log σ

(
β

(
log

ψθ(ew|y)
ψref (ew|y)

− β log
ψθ(el|y)
ψref (el|y)

− λmax

(
0, log

ψref (ew|y)
ψθ(ew|y)

)))]

(15)

Lneg =
∑

v∈V−
Eew∼E−

v,intra,el∼E−
v,inter

[
log σ

(
β

(
log

ψθ(ew|y)
ψref (ew|y)

− β log
ψθ(el|y)
ψref (el|y)

+ λmax

(
0, log

ψθ(ew|y)
ψref (ew|y)

)))]

(16)
L2 = Lpos + Lneg (17)

Theorem 4.3. Equation 17 can effectively model
the edge generation pattern of anchor nodes
through preference optimization.

The derivation is placed in Appendix B.3.

Theorem 4.4. After ANPO, node representations
can compress the inter-class mean differences,
thereby alleviating unfairness.

The proof is in Appendix B.4.
Given Theorem 4.3 and 4.4, we have theoretical

support to demonstrate the superiority of ANPO.

4.3 Integrated with GNN Decoder

After obtaining the debiased Ffinal, we integrated
it with GNN decoder to perform link prediction,

*More details in Appendix G.

Table 3: Performance Comparison of FairTAG and GNN
decoder side methods.

Method AUC (↑) ∆DPm (↓) ∆EOm (↓) ∆DPg (↓) ∆EOg (↓)

Link Prediction on Cora

FairDrop 90.7±0.7 49.5±2.8 19.0±3.5 17.5±3.5 21.5±5.0
DropEdge 90.9±0.6 50.1±2.5 18.2±4.0 18.5±3.9 20.9±5.2
FairGT 92.5±0.7 45.0±2.8 15.5±4.0 13.0±3.5 14.5±4.5
G-FAME++ 93.8±0.8 44.1±3.6 15.8±3.7 12.9±2.8 7.5±2.3
FairTAG 93.9±0.6 43.6±2.5 13.1±4.5 11.4±3.9 11.3±4.7

Link Prediction on CiteSeer

FairDrop 94.0±0.5 55.0±1.8 39.5±3.5 19.8±4.0 12.5±3.6
DropEdge 94.1±0.4 56.5±1.6 38.0±3.8 20.9±4.2 13.5±3.9
FairGT 95.0±0.5 45.0±1.6 15.0±3.0 14.5±3.5 10.5±3.0
G-FAME++ 91.9±0.1 38.6±0.5 13.0±1.7 13.6±0.2 8.5±1.1
FairTAG 96.3±0.6 42.7±1.5 8.7±1.7 13.1±3.2 9.7±2.0

Link Prediction on PubMed

FairDrop 94.6±0.3 35.0±0.8 17.2±1.7 5.2±1.1 4.5±0.7
DropEdge 94.7±0.2 35.5±0.6 16.5±1.9 5.7±1.3 5.0±0.9
FairGT 95.3±0.3 33.0±1.0 10.5±1.0 3.0±0.8 3.5±0.5
G-FAME++ 95.6±0.1 35.9±0.0 11.0±0.6 2.3±0.2 1.5±0.1
FairTAG 96.0±0.4 29.1±1.1 9.4±0.8 2.2±0.6 3.2±0.4

Link Prediction on Pokec-n

FairDrop 81.5±0.6 57.0±1.3 28.8±2.2 14.0±1.8 8.8±1.1
DropEdge 81.7±0.5 57.5±1.1 28.0±2.4 14.7±2.0 9.2±1.3
FairGT 83.0±0.8 50.0±1.4 21.0±2.0 10.0±1.5 6.0±1.2
G-FAME++ 83.5±1.0 50.2±1.5 20.4±1.8 10.1±1.2 6.3±1.1
FairTAG 84.9±0.9 47.5±1.3 18.7±1.6 8.5±1.0 4.6±1.1

the loss is demonstrated in Equation 19.

h(k)v = COMBINE(hk−1
v , AGG(hk−1

u : u ∈ Nv))

(18)

Llp =
|E|∑

i=1

CE(ϕ(hi_src, hi_dst), yi) (19)
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Figure 3: We employ FairDrop and DropEdge as
fairness-aware training methods on the decoder side,
demonstrating the compatibility of FairTAG in con-
structing cascaded fair training.

5 Experiment

5.1 Experimental Setup

Dataset We use five popular dataset in fair graph
learning, i.e., Cora, CiteSeer, PubMed, Pokec-n
and Pokec-z. The detailed information of five used
benchmarks are demonstrated in Appendix C.1.
Due to the similarity of Pokec-n and Pokec-z, we
report related results of Pokec-n in the main paper,
and place results on Pokec-z in Appendix.

Evaluation Metrics For link prediction perfor-
mance, we use AUC as a metric. For fairness met-
rics, we use Demographic Parity (DP) (Dwork
et al., 2012) and Equalized Odds (EO) (Hardt
et al., 2016) as evaluation metrics. Their designs
in the field of graph theory have been expanded
by (Spinelli et al., 2021; Masrour et al., 2020) into
tests under different dyadic groups, with detailed
introductions provided in the Appendix E.

Compared Methods and Backbone We aim
to demonstrate that our method, in comparison
with existing LM encoding techniques, can provide
GNNs with more fair initial embeddings enhanced
by text information. For the baselines, we opt for
Shallow Embedding (Grover and Leskovec, 2016),
Vanilla (direct encoding by a LM), GLEM (Zhao
et al., 2022) and SimTEG (Duan et al., 2023) for
comparison. Regarding the fairness training meth-
ods on the GNN side, we select FairDrop (Spinelli
et al., 2021), DropEdge (Rong et al., 2019),
FairGT (Luo et al., 2024) and G-FAME++ (Liu
et al., 2023). And we choose GCN (Kipf and
Welling, 2016) and GAT (Veličković et al., 2017)
as our GNN backbones.

Implementation Details We report the mean and
standard deviation of ten runs with random seeds 1,
2, 3, 4, 5, 6, 7, 8, 9, 10. The experiments are imple-
mented using PyTorch and run on NVIDIA A100
GPUs. We employ all-roberta-large-v1 (Reimers,
2019; Liu, 2019) as the language model (LM)
and use full-parameter fine-tuning. The parame-
ter search is detailed in Appendix F.

5.2 Results Comparison
Comprehensive experiments on four datasets
demonstrate our method’s superiority in AUC and
fairness metrics.
Does our method provide more effective and fair
representations? Using GCN as the backbone,
we observe that other LM-based approaches often
maintain or even exacerbate unfairness, particularly
on the Pokec-n dataset. We speculate this occurs
because citation network texts, despite thematic
content, include method-specific statements pre-
venting over-clustering. Conversely, Pokec dataset
texts, comprising only personal information, lead
to overly clustered features for individuals with
similar characteristics. In contrast, FairTAG ex-
cels in fairness metrics, achieving a comprehensive
lead. Specifically, for Metric ∆DPm, FairTAG out-
performs the runner-up by 11.0%, 15.4%, 26.8%,
and 18.4% on the four datasets, respectively. For
AUC, FairTAG also outperformed other baselines,
except on PubMed, where all methods performed
relatively poorly.
How does performance compare with fairness-
aware GNN methods? To further evaluate
FairTAG’s effectiveness, we compare it with recent
fairness-aware training methods on the decoder
side. FairTAG demonstrates a clear advantage on
Cora, PubMed, and Pokec-n, effectively optimizing
both AUC and fairness. This suggests that in text-
rich scenarios, optimizing embedding approaches
may be more efficient.
Can our method demonstrate generalization
across different GNN backbones? Results in Ta-
ble 2 shows that GAT yields poorer AUC compared
to GCN. However, FairTAG still shows an advan-
tage in AUC and fairness over other LM-based
approaches when using a GAT backbone. This
suggests FairTAG’s adaptability to different GNN
backbones. As illustrated in Table 3, FairTAG
achieves an absolute advantage on Cora, PubMed,
and Pokec-n, effectively optimizing both AUC and
fairness, reinforcing that optimizing embedding ap-
proaches can be highly efficient in text-rich graph.
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Figure 4: Ablation study on γ in FSED. We use AUC,
∆DPm and ∆EOm to demonstrate the performance of
accuracy and fairness.

6 Compatibility with GNN-side Methods

To bridge the gap with fairness-aware methods on
the GNN decoder side and establish FairTAG as a
plug-and-play approach, we demonstrate its com-
patibility. Specifically, FairTAG, when trained with
GNNs using FairDrop or DropEdge, exhibits supe-
rior performance for ∆DPm (Figure 3). This indi-
cates FairTAG, pioneering fairness optimization on
the LM side, is compatible with decoder-side tech-
niques, enabling a cascaded optimization pipeline.
We also show that individual use of FairDrop or
DropEdge does not match the performance of joint
training. This establishes FairTAG as an effective
plug-and-play method in TAGRL.

7 Ablation Studies

7.1 Ablation on FSED

Figure 4 presents the results of the ablation study on
the parameter γ in the first stage alignment. Firstly,
the selection of the γ involves a certain trade-off.
For example, in the overall trend, when γ increases
and the distribution approaches the original distri-
bution, FSED tends to capture the original features
more, thereby improving the AUC, but at the ex-
pense of fairness. However, the difference in the
overall magnitude of change is acceptable, because
the improvement compared to other methods is
actually more widespread.

7.2 Ablation on Parameters of ANPO

In this section, we conduct ablation studies on key
factors in the ANPO process to explore the roles
of β and λ in different objectives. When analyz-

Ablation on  (Cora)

AUC ( =10)
AUC ( =30)
DP ( =10)
DP ( =30)

Ablation on  (Cora)

AUC ( =1)
AUC ( =3)
DP ( =1)
DP ( =3)

Steps

Ablation on  (Pokec-n)

AUC ( =10)
AUC ( =30)
DP ( =10)
DP ( =30)

Steps

Ablation on  (Pokec-n)

AUC ( =1)
AUC ( =3)
DP ( =1)
DP ( =3)

Figure 5: We conduct ablation studies on two key param-
eters of ANPO. When experimenting with parameter λ,
we keep β = 10. When experimenting with parameter
β, we keep λ = 0.3.

Table 4: Comparison of node classification on Pokec-n
and Pokec-z datasets.

Pokec-n Pokec-z

Method Acc ↑ DP ↓ EO ↓ Acc ↑ DP ↓ EO ↓
SE 68.6 ± 0.5 3.8 ± 0.9 2.9 ± 1.2 66.8 ± 1.1 4.0 ± 1.0 2.8 ± 1.0
Vanilla 69.0 ± 0.4 3.9 ± 0.6 3.0 ± 1.0 67.3 ± 1.0 4.5 ± 1.3 2.9 ± 0.8
SimTEG 69.1 ± 0.5 4.0 ± 0.8 3.2 ± 1.0 68.2 ± 1.6 4.6 ± 1.0 4.3 ± 1.7
GLEM 67.8 ± 0.8 3.6 ± 0.7 3.4 ± 0.9 68.0 ± 0.8 3.9 ± 1.0 2.3 ± 1.7
FairVGNN 64.9 ± 1.2 1.7 ± 0.8 1.8 ± 0.7 67.3 ± 1.7 1.8 ± 1.2 1.3 ± 1.0
FairSIN 67.9 ± 0.3 0.6 ± 0.2 0.4 ± 0.4 69.2 ± 0.3 1.5 ± 0.7 0.6 ± 0.5
FairGAT 67.1 ± 0.4 2.6 ± 0.5 1.6 ± 0.9 68.2 ± 1.1 0.7 ± 0.7 1.2 ± 0.6

FairTAG 69.5 ± 0.7 1.2 ± 0.2 0.6 ± 0.3 69.9 ± 1.0 1.4 ± 0.6 0.5 ± 0.4

ing one parameter, we keep the other constant and
take checkpoints during training to examine the
trajectory of changes for various objectives. The
specific results are shown in Figure 4, and our key
observations are as follows: i) β is more critical
for fairness metrics. This observation aligns with
our fundamental objective, as our preference opti-
mization is inherently designed to influence edge
selection behavior preferences rather than directly
fitting the labels. However, the magnitude of the
parameter does not directly indicate superiority or
inferiority. On the Cora and Pokec-n datasets, in-
creasing β yields different relative results. ii) Simi-
lar to the results in DPOP, λ can be used for stable
improvement in accuracy. Specifically, in the abla-
tion experiments on β, the AUC exhibits varying
degrees of fluctuation as training progresses. How-
ever, this fluctuation is much more stable in the two
line charts on the left, quickly converging towards
the optimal value.

8 Cross Task Generalization

To demonstrate generalizability across different
tasks, we employed a two-layer MLP as the connec-
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tion head for the node classification task on the LM
trained with FairTAG. The results in Table 4 show
performance and fairness that are on par with some
leading fairness-aware methods. This suggests that
for embedding strategies on the LM side, the focus
might be more on the training approach rather than
the specific targeted tasks.

9 Conclusion

Our work pioneers fairness in LM and GNN col-
laboration on TAGs. We identify fairness concerns
in LM-as-encoder architectures and demonstrate
that LM-specific techniques can mitigate bias dur-
ing feature embedding. Our proposed two-stage
alignment method, FairTAG, offers an innovative
plug-and-play approach compatible with existing
fair GNN training methods. FairTAG uniquely in-
corporates an edge drop based on the fairness score
and an anchor node-based edge generation, enhanc-
ing fairness at both the global and subgraph levels.
Empirically, FairTAG surpasses current LM-based
and leading GNN decoder side techniques in link
prediction accuracy and fairness. Theoretically, we
highlight that the LM-induced bias can be ampli-
fied by GNNs; our method mitigates this by re-
ducing the LM encoding bias and correcting the
lower bound of the amplified bias. This research
underscores the potential of re-envisioning LMs
for fairness, paving the way for more equitable AI
systems on text-rich graph data.

10 Limitations

Our work focuses primarily on the series of LM-
as-encoder approaches. However, we have not yet
considered the fairness risks associated with the
recent graph foundation models. As the first work
to propose fairness-aware training and theoretical
support in text-rich graph scenarios, we can further
extend this as future work. In addition, our work
has been validated mainly on citation networks and
social networks. In the future, we can explore rich
text graphs in other scenarios, such as medicine-
related fields.

11 Ethical Consideration

Our research is dedicated to advancing fairness in
TAGRL. The proposed FairTAG framework aims to
mitigate biases that can be inherited or amplified by
GNNs and LMs, with a focus on improving demo-
graphic parity and equalized odds in link prediction

tasks. We acknowledge that “fairness” is a com-
plex, context-dependent concept. The metrics used,
while standard, may not capture all fairness dimen-
sions relevant to every application. Furthermore,
while FairTAG aims to reduce unfairness propaga-
tion, it operates on existing data, which may itself
contain inherent biases. Therefore, the method is a
step towards fairer models but not a complete so-
lution to underlying data-level biases. Responsible
deployment of FairTAG requires careful consid-
eration of the specific application context, ongo-
ing monitoring, and an understanding that fairness-
enhancing algorithms are tools to aid, not replace,
human oversight and ethical judgment in decision-
making processes. Besides, AI-assistant writing is
employed in this paper for polishing.
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A Graph Neural Networks

In this section, we introduce the used GNN backbones. GNNs are highly effective in processing graph
data information, and their goal is to update node representation using message passing of the neighbor
information. Specifically,

h(k)v = COMBINE(hk−1
v , AGG(hk−1

u : u ∈ Nv)) (20)

where h(k)v denotes the representation of node v in the k-th layer and Nv = {u|Av,u = 1} is a node set
has a directed edge to v, in which A represents the adjacency matrix of the graph G. AGG is a function
used to aggregate information from neighboring nodes, and COMBINE is a function to update node
representation with aggregated information. The initial representation h(0)v of a node v may come from
some surface features, or be generated with the help of a LM.

B Theorems and Proofs

B.1 Bias Amplification
Theorem B.1. When considering a K-layer GNN, if the following assumptions hold: For any node pair
(i, j) with si = sj , the features processed by language model F(·) result in a reduced distance:

E[∥xlm
i − xlm

j ∥2] ≤ E[∥x(0)
i − x

(0)
j ∥2]− δ, (δ > 0) (21)

then the Demographic Parity gap (DP) can worsen. This increase is related to the number of layers K,
the dominant eigenvalue λ1 of Â, and δ:

DPlm ≥ DP(0) + C · δ ·
K∑

k=1

λ2k1 (22)

where C is a positive constant.

Proof. We model the GNN using a K-layer GCN. Let the GNN layer operation be defined as:

H(k) = σ(ÂH(k−1)W(k)) (23)

For simplification, we assume a linear GCN, meaning the activation function σ(x) = x and the weight
matrices W(k) = I. Under these assumptions, the output embeddings afterK layers are H(K) = ÂKXlm.
Our linear GCN model intentionally isolates this core mechanism. By removing the non-linear activation
function σ (e.g., ReLU) for the theoretical analysis, we can obtain a closed-form solution that clearly
shows how the graph’s spectral properties (ÂK) directly act upon the initial biased features (X0) (Wu et al.,
2019; Cai, 2023). The primary role of the non-linear activation σ is to increase the model’s expressive
power to learn complex decision boundaries for the downstream task. However, it does not negate the
underlying structural aggregation that happens before the activation is applied. In fact, if the task labels
are correlated with the homophilous structure (which they often are), the non-linear function will likely
learn to reinforce the clustering introduced by the message passing, rather than counteract it. (Wang
et al., 2021). Therefore, the linear model can be seen as capturing the fundamental source of the bias
amplification, providing a clear and interpretable lower bound on the effect. The link prediction probability
between nodes u and v with final embeddings zu, zv (from H(K)) is given by P (u ∼ v) = σ(zTu zv). The
Demographic Parity (DP) is defined as the absolute difference in expected link prediction probabilities
between intra-class and inter-class pairs:

DP = |E[P (u ∼ v)|su = sv]− E[P (u ∼ v)|su ̸= sv]| (24)

The covariance of the K-layer output embeddings can be related to the input covariance:

Cov(H(K)) = ÂKCov(Xlm)(ÂK)T . (25)
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If we assume that ÂK ≈ λK1 u1u
T
1 (due to the dominant eigenvalue)λ1 approximation),then it follows

that:
Cov(H(K)) ≈ λ2K1 Cov(Xlm) (26)

. The initial assumption about reduced distance for same-attribute pairs implies a relationship for their
covariance. Specifically, if we align by the mean of similar nodes, the trace of their covariance satisfies:

tr(Cov(xlm
i ,x

lm
j )) ≥ tr(Cov(x(0)

i ,x
(0)
j )) + δ/2 for si = sj . (27)

Let δlm
Cov denote the difference between the trace of intra-class covariance and inter-class covariance for

LM features:
δlm

Cov := tr(Cov(Xlm)intra)− tr(Cov(Xlm)inter). (28)

Similarly, let δ(0)Cov be this difference for the initial features X(0):

δ
(0)
Cov := tr(Cov(X(0))intra)− tr(Cov(X(0))inter). (29)

The problem’s assumption implies that the LM-induced contraction δ increases this covariance difference:

δlm
Cov ≥ δ

(0)
Cov + C1δ for some constant C1 > 0. (30)

The expected inner product difference between intra-class and inter-class pairs, ∆E, is crucial for DP:

∆E := E[zTu zv|su = sv]− E[zTu zv|su ̸= sv]. (31)

This difference can be decomposed into mean and covariance components:

∆E = (µ
(K)T
intra µ

(K)
intra − µ(K)T

sa µ(K)
sb

) + (tr(Cov(H(K))intra)− tr(Cov(H(K))inter)). (32)

Assuming a layer-wise accumulation model for covariance amplification consistent with the theorem’s
summation

∑
λ2k1 (which reflects the iterative nature of GNN message passing where bias can accumulate

at each layer), we approximate ∆E:

∆E ≈ ∆µK +

(
K∑

k=1

λ2k1

)
(δ

(0)
Cov + C1δ). (33)

The DP gap is related to ∆E through the sigmoid function’s derivative:

DPlm ≈ |σ′(ξ)| · |∆E|, where ξ is an intermediate point. (34)

Substituting the expression for ∆E and assuming the bias terms accumulate:

DPlm ≥ |σ′(ξ)| · |∆µK + (
K∑

k=1

λ2k1 )δ
(0)
Cov|+ |σ′(ξ)| · C1δ ·

(
K∑

k=1

λ2k1

)
. (35)

This gives the final lower bound, where DP(0) represents the base level of disparity and C = |σ′(ξ)|C1:

DPlm ≥ DP(0) + C · δ ·
K∑

k=1

λ2k1 . (36)
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B.2 Effectiveness of FSED
Theorem B.2. FSED corrects the covariance structure of the LM feature distribution to suppress intra-
class over-clustering. The lower bound in Theorem B.1 is corrected as:

DPlmsel ≤ DPlm − C · α · δ ·
K∑

k=1

λ2k1 (37)

where α > 0 is a variance recovery coefficient.

Proof. FSED modifies the training set by selectively dropping edges. Let L′ be the Empirical Risk (ER)
on this FSED-modified set. The phenomenon of simplicity bias suggests that models often find it easier to
fit "simpler" or more common patterns. If Q(e) represents model error or difficulty for edge e, then for
intra-class positive (+) and negative (−, harder) samples:

∑
e∼E+

intra
Q(e)

|E+
intra|

<

∑
e∼E−

intra
Q(e)

|E−
intra|

. (38)

FSED aims to upweight these harder samples (or, equivalently, downweight easier ones).
The gradient of the training loss L1 (which includes a Cross-Entropy term for selected edges Esel and a

KL-Divergence term for unselected edges Eun) with respect to model parameters θ is:

∇θL1 =
∑

e∈Esel

∂CE
∂θ

+
∑

e∈Eun

∂DKL

∂θ
. (39)

When considering E−
intra, the gradient direction aims to increase its distance from the class center, thereby

increasing intra-class variance. This effective modification of the intra-class covariance by FSED can be
quantified as:

Σlmsel
s = Σlm

s + α · δ · I, (40)

where α is the variance recovery coefficient. It reflects the increased proportion of "hard" samples in the
selected set:

α =
|E−

intra ∩ Esel|
|Eintra ∩ Esel|

. (41)

We assume α > 1 as FSED prioritizes these harder samples, leading to variance recovery.
The problematic component of the covariance difference, δlm

Cov, which contributes to unfairness due to
the initial contraction δ, is reduced for the selected set Esel:

δlm
Cov,sel ≈ δlm

Cov − C2αδ for some constant C2 > 0. (42)

This means FSED counteracts a portion of the bias. The expected inner product difference for the selected
set, ∆Esel, is then:

∆Esel ≈ ∆µK +

(
K∑

k=1

λ2k1

)
(δlm

Cov − C2αδ). (43)

This can be rewritten in terms of the original ∆E:

∆Esel ≈ ∆E −
(

K∑

k=1

λ2k1

)
C2αδ. (44)

The DP for the selected set is DPlmsel ≈ |σ′(ξ′)| · |∆Esel|. Assuming the reduction effectively decreases
the disparity:

DPlmsel ≤ |σ′(ξ′)| · |∆E| − |σ′(ξ′)| · C2αδ ·
(

K∑

k=1

λ2k1

)
. (45)
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This leads to the corrected upper bound for DP after FSED, where C = |σ′(ξ′)|C2:

DPlmsel ≤ DPlm − C · α · δ ·
K∑

k=1

λ2k1 . (46)

B.3 Derivation of ANPO

Theorem B.3. The ANPO loss (e.g., Eq. 15 for Lpos) effectively models edge generation patterns through
preference optimization.

Proof. Consider a preferred edge ew = (v, w) and a dispreferred edge el = (v, l) relative to an anchor
node v and label y. The probability that the model prefers ew over el according to an optimal reward
function r∗ is given by the Bradley-Terry model:

p∗(P (ew) > P (el)) =
exp(r∗(ew, y))

exp(r∗(ew, y)) + exp(r∗(el, y))
. (47)

The Anchor Node Preference Optimization (ANPO) aims to train a policy Pθ to align with these prefer-
ences, typically by maximizing the expected log-likelihood of observed preferences, often regularized by
a KL divergence from a reference policy Pref:

Ey∼True,ew,el∼E+
v
[log σ(rθ(ew, y)− rθ(el, y))] (48)

Following the Direct Preference Optimization (DPO) framework, we seek to optimize a policy ψθ(e|y)
(representing Pθ(e)) based on preferences induced by a latent reward r(e, y). The objective often involves
maximizing Ey∼True,e∼E+

v
[rϕ(e, y)− β log ψθ(e|y)

Pref(e|y) ].
The optimal policy ψ∗(e|y) under such a framework can be expressed in terms of the reference policy

ψref(e|y) and the true reward r∗(e, y):

ψ∗(e|y) = 1

Z(y)
ψref(e|y) exp

(
1

β
r∗(e, y)

)
, (49)

where Z(y) is a normalization constant (partition function):

Z(y) =
∑

e′
ψref(e

′|y) exp
(
1

β
r∗(e′, y)

)
. (50)

From this, the implicit optimal reward r∗(e, y) can be related to the optimal and reference policies:

r∗(e, y) = β

(
log

ψ∗(e|y)
ψref(e|y)

+ logZ(y)

)
. (51)

Substituting this expression for r∗(e, y) back into the Bradley-Terry model for preferences p∗(P (ew) >
P (el)), we arrive at the characteristic DPO loss form, which ANPO utilizes:

p∗(P (ew) > P (el)) =
1

1 + exp
(
β
(
log ψ∗(el|y)

ψref(el|y) − log ψ∗(ew|y)
ψref(ew|y)

)) . (52)

Minimizing the negative log-likelihood of this preference probability (i.e., − log p∗) yields the ANPO
loss for a pair of preferred/dispreferred edges. The loss for Lneg follows a similar derivation.
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B.4 Effectiveness of ANPO

Theorem B.4. After ANPO, node representations can compress inter-class mean differences, thereby
alleviating unfairness.

Proof. We consider the effect of the Lpos component of the ANPO loss on the embedding zv of an anchor
node v. Let ew = (v, w) be a preferred edge (e.g., an inter-class connection that should be strengthened)
and el = (v, l) be a dispreferred one (e.g., an intra-class connection for a boundary node). The gradient of
Lpos with respect to zv is:

∂Lpos

∂zv
∝ −β · σ(−∆) · (zw − zl), (53)

where ∆ is the difference in scaled log-probability ratios between ew and el:

∆ = β

(
log

ψθ(ew|y)
ψref(ew|y)

− log
ψθ(el|y)
ψref(el|y)

)
. (54)

If ew is indeed preferred by the current policy ψθ relative to ψref more than el is, then ∆ > 0. The term
σ(−∆) will be less than 0.5. The negative sign in the gradient indicates that zv will be updated to decrease
the loss, effectively moving it "towards" zw and "away from" zl.

More directly, the DPO framework aims to increase the likelihood of ew and decrease that of el. If
P (ex) = σ(zTv zx), the update for zv will be in a direction that makes zv more aligned with zw and less
aligned with zl:

znew
v = zold

v + ηANPO(zw − zl), (55)

where ηANPO is an effective learning rate.
Consider a node v belonging to sensitive group S0. If ANPO is designed to encourage inter-class

connections for fairness, then for such a v, the preferred neighbor w might often belong to group S1,
while a dispreferred (positive but less desired) neighbor l might belong to S0. On average, zw would be
close to the mean µ1 of group S1, and zl close to µ0. The update for zv can then be approximated as a
shift relative to these means:

znew
v ≈ zold

v + γ(µold
1 − µold

0 ), (56)

where γ is an effective coefficient related to ηANPO and the prevalence/strength of such inter-class

preferences (e.g., γ = β
|E+

v,inter|
|Ev | as suggested in the paper).

This local update rule affects the global mean embeddings of the sensitive groups. Let ∆µ :=
µnew
0 − µnew

1 be the new difference between group means. The new mean for group S0 is approximately:

µnew
0 ≈ µold

0 + γ̄0(µ
old
1 − µold

0 ), where γ̄0 is an average γ. (57)

Similarly, for group S1, if ANPO symmetrically encourages connections to S0:

µnew
1 ≈ µold

1 + γ̄1(µ
old
0 − µold

1 ). (58)

The difference between these new means is:

∆µ ≈ (µold
0 − µold

1 )(1− γ̄0 − γ̄1). (59)

If 0 < γ̄0 + γ̄1 < 1, then 1− γ̄0 − γ̄1 is positive and less than 1. This implies that the magnitude of the
inter-class mean difference ∥∆µ∥ is reduced, signifying a compression of these differences and thus an
alleviation of this aspect of unfairness.

C Supplementary Materials and Results

C.1 Benchmarks

The statistics of four deployed benchmark datasets are lited below.
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Table 5: Statistics of used four benchmark datasets.

Dataset #Nodes #Edges #Category # Feature # Sensitive Feature

Cora 2,708 5,429 7 1433 Paper category
CiteSeer 3,327 9,104 6 3703 Paper category
PubMed 19,717 88,648 3 500 Paper category
Pokec-n 66,569 729,129 2 265 Region
Pokec-z 67,797 882,765 4 277 Region

Table 6: Results comparison on Pokec-z.

EM GCN GAT

AUC (↑) ∆DPm (↓) ∆EOm (↓) ∆DPg (↓) ∆EOg (↓) ∆DPs (↓) ∆EOs (↓) AUC (↑) ∆DPm (↓) ∆EOm (↓) ∆DPg (↓) ∆EOg (↓) ∆DPs (↓) ∆EOs (↓)

Link Prediction on Pokec-z.

SE 80.71±0.33 60.13±0.99 17.11±1.34 10.98±2.12 7.56±1.11 10.71±2.04 22.33±1.96 79.72±0.61 58.24±1.12 18.33±1.45 11.45±1.87 7.92±0.98 10.33±1.76 21.87±1.82
Vanilla 81.88±0.57 61.11±1.51 18.99±0.97 17.71±1.51 12.81±3.17 12.11±2.51 23.18±2.06 80.15±0.37 61.87±1.42 19.45±1.12 16.82±1.33 11.92±2.89 11.76±2.32 22.64±1.97
GLEM 82.47±0.81 59.42±0.95 19.76±1.15 15.43±0.59 8.81±1.43 11.48±1.99 24.54±2.56 82.01±0.92 57.63±1.08 20.11±1.27 14.92±0.72 8.45±1.28 8.02±1.76 20.87±2.41
SimTEG 82.21±1.01 61.56±1.41 17.98±1.59 12.77±1.42 8.98±2.02 10.65±0.79 22.11±2.31 81.68±0.41 60.12±1.35 18.45±1.42 13.24±1.27 8.67±1.87 10.12±0.86 21.56±2.18
FairTAG 83.89±0.78 53.31±0.92 14.11±0.71 9.15±0.65 8.78±1.42 8.96±1.82 18.33±1.93 82.87±0.66 52.45±0.87 13.76±0.82 8.92±0.72 5.32±1.35 8.15±1.67 17.89±1.76

Table 7: Performance comparison with GNN side fairness-aware methods on Pokec-z benchmark.

Method AUC (↑) ∆DPm (↓) ∆EOm (↓) ∆DPg (↓) ∆EOg (↓)

Link Prediction on Pokec-z

FairDrop 81.0±0.7 58.0±1.2 25.0±2.0 15.0±1.5 10.5±1.3
DropEdge 81.3±0.6 58.5±1.1 24.5±2.2 15.5±1.7 11.0±1.4
FairGT 82.5±0.8 55.0±1.3 18.0±1.8 11.5±1.3 7.5±1.0
G-FAME++ 83.3±0.9 55.5±1.4 17.5±1.7 11.0±1.1 7.0±1.0
FairTAG 83.9±0.8 53.3±0.9 14.1±0.7 9.2±0.7 8.8±1.4

C.2 Results on Pokec-z
We supplement the results from Pokec-z in this section, including comparison with LM-as-encoder
and GNN side fairness-aware methods. As demonstrated in Table 6 and Table 7, the advantage
of FairTAGextends to Pokec-z benchmark.

C.3 Ablation Study on Training Stages
In this section, we conduct ablation studies on the proposed two-stage optimization strategy. The two
variants of FairTAG are: 1) For Fref after using the FSED, we do not employ ANPO to do subsequent
optimization; 2) We do not use FSED, but directly perform ANPO based on Foracle.

The results in Table 8 indicate that the two-stage alignment is highly effective. Firstly, except for the
complete FairTAG on the PubMed dataset showing a slight weakness in the AUC metric, the performance
on the other three datasets has been optimized. Additionally, the two-stage alignment has sequentially
optimized the fairness metrics in all but a few cases. Taking the ∆DPm and ∆EOm metrics as an
example, on the Cora dataset, the fairness score-based edge drop strategy and the ANPO singlely achieve
optimizations of 6.7% and 3.2% on ∆DPm, and 11.2% and 9.7% on ∆EOm, respectively. And On the
PubMed dataset, the two stage improvement is 3.9% and 18.2% on the ∆DPm, and 28.6% and 17.1% on
the ∆EOm.

C.4 Generalizability on GNN Scale
We fix the best checkpoint of the LM encoder and further conduct a broader parameter search for the GNN
component. Learning rate, batch size and training epoch are fixed at 1e-4, 256 and 500. The experiments
on Pokec-n are shown below:

C.5 Generalizability on LM Backbone
We additionally provide experiments on sentence-t5-large (Table 10) to validate the generalizability of
FairTAG.

14348



Table 8: Ablation study results on four selected benchmarks (Cora, CiteSeer, PubMed and Pokec-n). We sequentially
discard modules from the back to the front to verify the effectiveness of the two-stage optimization. Highlight
indicates the best performance.

Methods AUC (↑) ∆DPm (↓) ∆EOm (↓) ∆DPg (↓) ∆EOg (↓) ∆DPs (↓) ∆EOs (↓)

Link Prediction on Cora.

FairTAG 93.9±0.6 43.6±2.5 13.1±4.5 11.4±3.9 11.3±4.7 73.8±3.2 100.0±0.0
FairTAG w/o ANPO 93.3±0.4 47.1±1.9 17.8±3.4 11.8±1.9 15.0±3.1 83.0±3.6 100.0±0.0
FairTAG w/o FSED 92.6±0.5 48.9±1.1 18.1±4.6 13.1±3.4 16.2±3.1 83.8±3.0 100.0±0.0

Link Prediction on CiteSeer.

FairTAG 96.3±0.6 42.7±1.5 8.7±1.7 13.1±3.2 9.7±2.0 68.6±4.8 51.4±18.4
FairTAG w/o ANPO 95.8±0.5 49.4±1.2 9.6±2.0 13.6±1.8 10.2±1.7 72.6±5.2 57.9±16.8
FairTAG w/o FSED 95.2±0.6 51.5±1.3 11.1±2.4 14.6±2.7 10.7±2.3 73.3±4.9 60.7±15.8

Link Prediction on PubMed.

FairTAG 96.0±0.4 29.1±1.1 9.4±0.8 2.2±0.6 3.2±0.4 21.1±2.0 13.9±2.0
FairTAG w/o ANPO 91.2±0.2 30.3±1.5 11.3±0.8 2.7±0.7 3.4±1.0 21.8±2.2 14.2±1.7
FairTAG w/o FSED 90.9±0.2 35.6±1.7 13.1±1.2 4.1±0.9 3.8±1.1 23.3±1.0 14.4±3.6

Link Prediction on Pokec-n.

FairTAG 84.9±0.9 47.5±1.3 18.7±1.6 8.5±1.0 4.6±1.1 8.5±1.1 28.1±2.3
FairTAG w/o ANPO 83.7±0.2 48.2±1.8 20.0±0.4 9.9±0.8 6.7±1.0 10.9±2.1 34.2±3.7
FairTAG w/o FSED 84.8±1.2 48.9±1.5 21.4±1.4 10.0±0.7 6.1±1.0 12.2±1.5 32.2±2.4

Table 9: Performance comparison across different model hyperparameters. We report AUC (higher is better) and
various fairness metrics (lower is better for ∆ metrics). Best results in each block are highlighted in bold.

Hidden × Layers Method AUC (↑) ∆DPm (↓) ∆EOm (↓) ∆DPg (↓) ∆EOg (↓) ∆DPs (↓) ∆EOs (↓)

200 × 2

Vanilla 82.5±0.6 60.9±1.5 30.1±2.1 16.9±1.7 11.5±1.5 16.9±1.7 41.9±4.1
GLEM 83.1±0.7 59.5±1.3 29.8±2.5 15.8±1.8 10.9±1.3 15.8±1.8 40.8±3.8
SimTEG 83.9±0.8 62.1±1.7 29.9±2.1 17.9±1.2 11.8±1.2 16.6±1.7 39.1±3.1
FairTAG 84.9±0.9 47.5±1.3 18.7±1.6 8.5±1.0 4.6±1.1 8.5±1.1 28.1±2.3

800 × 2

Vanilla 82.8±0.5 64.5±1.8 29.0±2.5 15.5±1.2 12.4±2.1 15.8±2.0 40.2±3.5
GLEM 84.1±0.9 58.5±1.6 30.5±2.7 15.2±1.4 12.2±0.5 16.9±1.9 40.1±2.1
SimTEG 84.4±0.7 61.0±2.1 30.5±1.8 18.2±1.3 11.7±1.3 16.9±1.6 39.0±3.0
FairTAG 85.2±0.8 46.3±1.5 17.1±1.2 9.4±1.4 4.6±2.0 8.1±1.2 29.9±1.4

200 × 4

Vanilla 82.6±0.7 62.8±1.9 31.5±2.3 17.8±2.0 12.3±1.8 17.9±1.9 43.2±4.3
GLEM 83.4±0.9 61.2±1.7 31.2±2.8 16.9±2.1 11.8±1.5 18.7±2.0 42.1±4.1
SimTEG 84.2±0.9 63.9±2.1 31.4±2.4 19.0±1.6 12.7±1.5 17.5±1.9 41.6±3.5
FairTAG 85.3±0.4 48.9±1.9 19.8±1.9 9.4±1.3 5.5±1.4 9.5±1.4 29.7±2.6

200 × 8

Vanilla 82.9±0.8 64.0±2.2 33.0±2.7 18.8±2.1 13.2±1.9 18.9±2.2 44.6±4.7
GLEM 83.6±0.9 62.7±2.0 32.5±3.1 17.9±2.3 12.6±1.8 17.8±2.3 43.5±4.5
SimTEG 84.3±1.1 65.4±2.3 32.7±2.7 19.9±1.9 13.3±1.7 18.4±2.1 45.6±3.8
FairTAG 85.8±1.1 50.0±1.9 20.8±2.2 10.2±1.6 6.3±1.7 10.4±1.6 33.1±3.1

C.6 Ablation on Integration of GCN

In fact, since our LM has been trained on graph-related tasks and has already demonstrated good usability,
we have removed the integration of GCN to further observe more conclusions. As demonstrated in
Table 11, adding a GCN decoder can still provide better link prediction performance, but the downside is
that fairness often decreases in most cases.

D Sampling Procedure

In this section, we give a supplementary explain fo training data sampling introduced in Section 1
and Section 5. As in previous work (Liu et al., 2023; Spinelli et al., 2021), we sample nega-
tive samples for training with the same number of positive samples, using the sampling code from
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Table 10: Main results for link prediction on four benchmark datasets. We compare our FairTAG with several
baselines. Best results for each metric within a dataset are highlighted in bold.

Method AUC (↑) ∆DPm (↓) ∆EOm (↓) ∆DPg (↓) ∆EOg (↓) ∆DPs (↓) ∆EOs (↓)

Link Prediction on Cora

SE 91.3 50.1 17.1 18.0 21.8 88.2 100.0
Vanilla 89.1 53.0 25.1 17.2 20.6 86.5 100.0
GLEM 93.9 54.5 23.9 18.9 24.3 91.9 100.0
SimTEG 93.4 51.9 20.5 14.2 18.0 89.2 100.0
FairTAG 94.7 41.8 11.8 10.5 10.1 71.9 100.0

Link Prediction on CiteSeer

SE 94.5 55.8 38.1 20.4 12.8 80.1 71.9
Vanilla 95.3 56.9 22.1 22.8 11.5 82.9 65.7
GLEM 96.3 58.1 22.9 20.1 14.2 84.1 69.5
SimTEG 96.0 55.8 12.1 15.5 12.4 74.8 61.1
FairTAG 96.3 40.9 7.5 12.1 8.5 66.9 49.8

Link Prediction on PubMed

SE 95.1 45.9 16.5 5.0 4.2 59.2 34.0
Vanilla 95.3 39.4 12.9 6.3 5.3 37.5 20.9
GLEM 96.2 40.8 14.9 6.6 5.6 39.8 20.1
SimTEG 96.2 38.1 15.6 7.3 5.9 29.1 16.9
FairTAG 97.0 27.5 8.2 1.7 2.6 19.5 12.1

Link Prediction on Pokec-n

SE 82.5 56.8 27.2 13.5 8.2 13.5 37.0
Vanilla 83.5 59.9 29.5 16.4 11.2 16.5 41.1
GLEM 84.2 58.7 29.0 15.2 10.5 15.1 40.2
SimTEG 86.9 61.2 29.3 17.5 11.6 16.1 38.5
FairTAG 85.9 45.9 17.5 7.5 3.9 7.6 26.8

Table 11: Ablation Study: Impact of GCN Component

AUC (↑) ∆DPm (↓) ∆EOm (↓) ∆DP g (↓) ∆EOg (↓) ∆DP s (↓) ∆EOs (↓)

Cora
w/ GCN 93.9±0.6 43.6±2.5 13.1±4.5 11.4±3.9 11.3±4.7 73.8±3.2 100.0±0.0
w/o GCN 92.9±0.5 40.5±2.2 12.1±4.2 13.4±3.5 10.8±4.5 71.5±3.0 100.0±0.0

CiteSeer
w/ GCN 96.3±0.6 42.7±1.5 8.7±1.7 13.1±3.2 9.7±2.0 68.6±4.8 51.4±18.4
w/o GCN 95.3±0.7 40.1±1.2 8.1±1.5 12.0±3.0 9.1±1.8 66.5±4.2 48.5±16.5

PubMed
w/ GCN 96.0±0.4 29.1±1.1 9.4±0.8 2.2±0.6 3.2±0.4 21.1±2.0 13.9±2.0
w/o GCN 90.5±0.7 28.0±1.0 8.8±0.7 2.0±0.5 2.9±0.3 22.3±1.8 13.0±1.8

Pokec-n
w/ GCN 84.9±0.9 47.5±1.3 18.7±1.6 8.5±1.0 4.6±1.1 8.5±1.1 28.1±2.3
w/o GCN 82.9±1.0 43.5±1.0 18.1±1.5 8.0±0.9 5.1±0.9 8.1±1.0 27.0±2.0

torch_geometric.utils.negative_sampling. The specifics are as follow:

n e g _ e d g e s _ t r a i n = n e g a t i v e _ s a m p l i n g (
e d g e _ i n d e x = t r a i n _ p o s _ e d g e _ i n d e x ,
num_nodes=num_nodes ,
num_neg_samples= t r a i n _ p o s _ e d g e _ i n d e x . s i z e ( 1 )
)
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E Evaluation Metrics

In this section, we carefully introduce the metrics used. The AUC is a metric used to evaluate the
performance of a classification model across different classification thresholds. It is particularly useful in
binary classification problems and is represented by the area under the Receiver Operating Characteristic
(ROC) curve. The AUC is mathematically defined as the integral of the True Positive Rate (TPR) with
respect to the False Positive Rate (FPR), as shown in the following formula:

AUC =

∫ 1

0
TPR d(FPR) (60)

The True Positive Rate (TPR), also known as sensitivity, is the ratio of true positive predictions to the
total actual positives and is given by:

TPR =
TP

TP + FN
(61)

The False Positive Rate (FPR), which is the ratio of false positive predictions to the total actual negatives,
is defined as:

FPR =
FP

FP + TN
(62)

In these formulas: - TP is the number of true positives, where the model correctly predicted the positive
class. - FN is the number of false negatives, where the model incorrectly predicted the negative class for a
positive instance. - FP is the number of false positives, where the model incorrectly predicted the positive
class for a negative instance. - TN is the number of true negatives, where the model correctly predicted
the negative class.

The AUC value ranges between 0 and 1, where an AUC of 1 indicates a perfect classifier, and an AUC
of 0.5 suggests a model with no discriminative power, performing no better than random guessing.

Then, we introduce the fairness metrics used.
Demographic Parity (DP): Demographic parity is a fairness criterion in machine learning that requires
the distribution of positive outcomes to be the same across different demographic groups. Mathematically,
this means that the probability of a positive outcome is independent of the group membership. Lets
define Y as the binary label indicating the favorable outcome, A as the sensitive attribute indicating group
membership. Ŷ as the predicted outcome from a model. DP requires:

P (Ŷ |A = 0) = P (Ŷ |A = 1) (63)

Equalized Odds (EO): EO is a term often used in the context of fairness in machine learning and
statistical analysis. It refers to a condition where the true positive rate and the true negative rate are equal
across different groups or classes.

Continuing from the above definition, then EO requires:

P (Ŷ = 1|A = 0, Y = y) = P (Ŷ = 1|A = 1, Y = y) (64)

For the task of link prediction, there are many ways to categorize edges. The author of (Spinelli et al.,
2021) proposed a set of widely accepted classification criteria:

• Mixed dyadic (Spinelli et al., 2021): This type decides two dyadic groups, in which one category of
edges connects nodes that have the same fairness attribute, and these are regarded as intra-relations.
The other category of edges connects nodes that have different fairness attributes, and these are
regarded as inter-relations. This distinction is crucial in the analysis of network structures, as it helps
to understand the dynamics within homogeneous and heterogeneous groups in terms of fairness.

• Sub-group dyadic (Spinelli et al., 2021): This criterion treats all connections within groups that
possess fairness attributes as a single set, which means that inter-relations are divided into finer-
grained subgroups. It aims to ensure a balance between intra-relations and all inter-relations.
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Figure 6: An Analogous Introduction to ANPO.

• Group dyadic (Spinelli et al., 2021): This dimension indicates a one-to-one mapping from dyadic to
node-level fairness attributes. An edge is categorized into a specific group based on the sensitive
attributes it contains. This binary definition ensures that all nodes, regardless of the magnitude of
their sensitive attributes, participate in the establishment of edges.

F Hyperparameters Search Space

In this section, we demonstrate the search for important parameters on LMs and GNNs in Table 12.

Table 12: Hyperparameters search spaces used in experiments.

LM GNN

Hyperparameter Search Space Hyperparameter Search Space

learning rate [1e-3, 1e-4] hidden size 200
epoch [5, 10] layers 2
max length 512 GAT heads 4
batch size 16 dropout 0.2
β [0.1, 0.3] learning rate [1e-3, 1e-4]
λ [10, 30] epoch [500, 1000]
γ [0.2, 0.3, 0.4] batch size 256

G Supplementary Explanation for ANPO

As demonstrated in Figure 6, we use the generation process of LMs to analogize the edge generation
process based on the anchor node. In the context of LMs, when we are given a question like ’The answer
of (1+2+3+4+5) / 5?’, the model will generate the probability of the next token on the vocabulary. For
the local structure of the anchor node, assuming our current task is to determine the existence of positive
edges, we are actually implicitly asking ’What are the possible positive edges extended from node a?’ Of
course, we do not construct prompts with local information as in previous work to accomplish this. Our
vocabulary theoretically includes all the edges on the graph. However, we do not add negative edges and
non-connected edges as noise to the preference optimization, that is, we directly set the scores of these
’edge vocabulary’ to 0 (the grayed-out parts in the Figure 6). Furthermore, we have optimized Equation 15
and Equation 16, allowing our ew to select only the highest scorer from E+

v,inter and the lowest scorer
from E−

v,intra.
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H Notations

In this section, we present a summary description of the notation from Section 4 in Table 13.

Table 13: Notations used in proposed methodology.

Notation Description

ei A single edge i in training set.
ti_src,ti_dst Textual descriptions of source node and destination node of edge i.
Foracle Oracle model that finetunes on total training set.
E Total training edge set.
Eintra, Einter Training edge set only including intra-relation and inter-relation respec-

tively, as described in Section 3.
E+
intra, E−

intra Positive and negative samples in Eintra.
E+
inter, E−

inter Positive and negative samples in Einter.
V+ Anchor nodes that has both connected relations in E+

intra and E+
inter.

V− Anchor nodes that has both connected relations in E−
intra and E−

inter.
E+
v,intra,E+

v,inter From node v, the positive examples in intra-relations and inter-relations
that are extended.

E−
v,intra,E−

v,inter From node v, the negative examples in intra-relations and inter-relations
that are extended.
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