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Abstract

As machine learning (ML) application contin-
ues to expand across diverse fields, there is a
rising demand for ML code generation. In this
paper, we aim at a critical research question:
Can machines autonomously generate ML code
for sophisticated, human-designed algorithms
or solutions? To answer this question, we in-
troduce a novel benchmark, MLAIgo-Bench,
which includes two challenging tasks: 1) Gen-
erating code for ML algorithms including both
traditional ML and modern deep learning-
based methods, and 2) Giving humans solution
sketches, writing ML code for solving practi-
cal tasks in Kaggle competitions. This bench-
mark is unique in its focus on the challenges
of interpreting intricate human instructions and
producing multi-step, high-complexity code,
offering a rigorous test for current Large Lan-
guage Model (LLM) capabilities. We intro-
duce an automatic evaluation framework with
comprehensive metrics such as task pass rate,
relative performance metric, and time over-
head. Currently, the top-performing models
(Claude3.5-Sonnet) achieve a 48.8% task com-
pletion rate on realizing machine learning algo-
rithms, and a 21.6% rate for completing Kaggle
competitions. Further analysis suggests sub-
stantial room for improvement. The data and
code are available at https://github.com/
WoilfWang/MLAlgo-Bench-Main.

1 Introduction

Recent advancements in large language models
(LLMs) (Touvron et al., 2023; OpenAl, 2023; Team
et al., 2023) have demonstrated remarkable perfor-
mance across various domains. In this context, the
code generation capabilities of LLMs (Chen et al.,
2021; Roziere et al., 2023; Team et al., 2024) have
attracted significant attention thanks to their poten-
tial to greatly enhance the efficiency of profession-
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als in everyday tasks. As a result, numerous bench-
marks (Chen et al., 2021; Jimenez et al., 2024; Lai
et al., 2023; Zan et al., 2022a,b) have been intro-
duced to assess the performance of LLMs from
different aspects of software engineering.
Recently, new interest has emerged in bench-
marking the capabilities of LLM agents to perform
ML tasks (Huang et al., 2024; Chan et al., 2024).
This area of research holds great promise, as ML is
closely linked to the rapidly advancing field of ar-
tificial intelligence. While recent ML benchmarks
(Huang et al., 2024; Chan et al., 2024; Nathani
et al., 2025) provide valuable insights, they pri-
marily evaluate LLMs’ ability to solve ML tasks
autonomously without human-designed solutions
or algorithms. In this paper, we contend that the
development of effective ML agents fundamentally
depends on their capacity to follow sophisticated,
human-designed solutions. Mastery of this ability
opens new opportunities for LLMs to assist human
practitioners and researchers in translating high-
level ideas—such as those found in ML research pa-
pers—into practical implementations, significantly
reducing the effort required for experimentation.
To comprehensively evaluate the capabilities of
LLMs in the implementation of ML methods, we
propose a benchmark called MLAlgo-Bench. Our
benchmark consists of two settings. Setting 1 is
designed to assess whether LLMs can successfully
implement ML modules based on detailed algo-
rithm descriptions. It includes a total of 121 tasks,
covering not only traditional machine learning al-
gorithms like Random Forest and SVM but also
a wide range of deep learning algorithms, such
as Transformer modules and their various variants.
Setting 2 focuses on evaluating whether LLMs can
successfully complete machine learning competi-
tion by generating the full workflow code based on
a task description and the corresponding solution
ideas, which are provided by human top competi-
tors. For each task in our benchmark, we provide
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Benchmark \ Time  Source Avg Input Lens Num  Metrics

CoNalLa (Yin et al., 2018) 2018  Stack Overflow 9.6 2879 BLEU

HumanEval (Chen et al., 2021) 2021 - 131.3 164  Pass@k

MBPP (Austin et al., 2021) 2021 - 16.1 974  Pass Rate

PandasEval (Zan et al., 2022c) 2022  StackOverflow 68.3 101 Pass@k

NumpyEval (Zan et al., 2022c) 2022  StackOverflow 69.1 101  Pass@k

DS1000 (Lai et al., 2023) 2022  StackOverflow 282.4 1000 Pass@k + SF-contrains

SWE-Bench (Jimenez et al., 2024) 2023  Github 480.9 2294  Pass Rate + Apply

ClassEval (Du et al., 2024) 2024  Manual 123.7 100  Pass@k

ML-Bench (Tang et al., 2023) 2023  Github 781.6 9641  Pass Rate/ Pass@k

MLAgentBench (Huang et al., 2024) 2023  Kaggle and others 108.7 13 Pass Rate

MLGym-Bench (Nathani et al., 2025) | 2025 Canonical tasks 387.5 13 AUP Scores

MLE-Bench (Chan et al., 2024) 2024 Kaggle 2106.7 76 Pass@k / Kaggle Ranks

MLAIlgo-Bench (ours) 2024  scikit-learn/ 1449.8 218  Pass Rate/ Performance/
LabML-Github/ Time  Overhead /
Kaggle Instruction-Following

Table 1: Avg Input Lens denotes the average token length of all task prompts. In the table, the pass@k evaluation
metric is proposed by (Kulal et al., 2019). SF-contrains is the evaluation metrics proposed by (Lai et al., 2023). The
pass rate represents the proportion of successfully solved tasks. AUP Score is introduced by (Roberts et al., 2023).
For ML-Bench, we only calculate the length of instruction + oracle.

automated evaluation scripts and introduce novel
metrics tailored to ML method implementation.

Compared to existing code generation bench-
marks (Chen et al., 2021; Jimenez et al., 2024; Lai
et al., 2023; Zan et al., 2022a), MLAIgo-Bench
presents greater challenges for LLMs. First, previ-
ous benchmarks typically involve generating only
short code snippets (function-level code) such as
HumanEval (Liu et al., 2024b), ML-Bench (Tang
et al., 2023). In contrast, each task in our bench-
mark requires module-level implementation, with
more lengthy output code. Second, the tasks in
our benchmark generally involve more complex
code instructions. For Setting 1, the instructions
often include intricate workflows and mathemat-
ical formulas. In Setting 2, our instructions en-
compass detailed descriptions of machine learning
tasks, datasets, and solutions — a composite ML
method with feature engineering. In other words,
MILAlgo-Bench places higher demands on their
ability to understand and follow technical instruc-
tions. Please refer to Table 1 for a summary of
MLAIgo-Bench and other benchmarks.

We evaluate the code generation capabilities of
several LLMs on our benchmark. In Setting 1,
the best-performing LLM is Claude-3.5-Sonnet,
achieving a pass rate of 48.8%. In Setting 2, the
top performer is also Claude-3.5-Sonnet, with a
pass rate of 21.6%. We provide a detailed anal-
ysis of the common error types made by LLMs,
and conduct an in-depth investigation into several
factors: 1) The impact of methodology specifi-
cation on ML method implementation; 2) A de-

tailed evaluation and analysis was conducted on
the instruction-following capabilities of LLMs; 3)
The impact of an agentic framework on the ability
to correctly implement a given solution. In sum-
mary, the paper makes the following contributions:

* We propose a new benchmark MLAIgo-Bench
for evaluating the ability to realize ML solu-
tions. Our benchmark is characterized by long
input and long output (module-level code),
with high demand for instruction following,
as well as math, and logic capabilities.

* We provide an evaluation framework and eval-
uate the performance of contemporary LLMs
and recognize common error types such as
math errors and data understanding.

* Further analysis also reveals the limitations of
current LLM in instruction following, and in
the capability to call external ML libraries.

2 MLAIgo-Bench Benchmark

2.1 Problem Formalization

Given a detailed description of a ML algorithm or
problem with a solution specified by S, and imple-
mentation instructions /, an ML research assistant
A is tasked with generating ML code C'. The code
C must strictly follow I and accurately implement
S. The instruction I defines the necessary inputs
and outputs, assuming A is familiar with standard
ML and numerical libraries. The specification S
outlines the problem, describes the methodology,
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Figure 1: The data construction pipeline of MLAlgo-Bench

and, depending on the task, may include details of
the evaluation dataset.

2.2 Dataset Preparation and Construction

To achieve these objectives, we design our bench-
marks based on several key principles: 1) Diversity:
The dataset should include a variety of ML algo-
rithms and methods; 2) Detailed and self-contained
instructions: Since the focus is on methodology im-
plementation, we assume that the environment is
properly set up for running the LLMs implementa-
tion. This is different from tasks ML-Bench (Tang
et al., 2023), which require setting up ML Github
environment; 3) Clear evaluation framework: The
goal is not just to produce runnable code, but to
ensure the code executes correctly and achieves
reasonable performance. With such principles, we
construct our dataset according to the pipeline in
Figure 1 with details in the following.

2.2.1 Step I: Task Selection

For task collection, we initially explore ML
Githubs and Paper2code!, aiming to isolate the
method in papers and corresponding Github source
code for benchmarking. Most papers are too ab-
stract and lack implementation details; our pa-
per2code experiments show LLMs struggle to un-
derstand them, leading to no successful implemen-
tations. We hence switch to simpler tasks that be-
long to two types: Setting I that requires LLMs to
implement well-described Machine Learning algo-
rithms; and Setting 2 that allows LLMs to use ML
libraries but implement human-designed solutions

"https://paperswithcode.com/

to finish a ML or data science task.

Setting 1: ML Algorithm Implementation
We manually explore scikit-learn and LabML
(Varuna Jayasiri, 2020) for a wide range of ML al-
gorithms. Scikit-learn includes implementations of
traditional methods, ranging from simpler models
like KNN to more complex ones such as Support
Vector Machines (SVM), Random Forests, and Gra-
dient Boosting Decision Trees. In contrast, LabML
is an educational platform, that offers deep learning
algorithm implementations with detailed explana-
tions. The algorithms include various Transformer
variants (Vaswani et al., 2017; Dai et al., 2019;
Fedus et al., 2022; Schlag et al., 2021), Diffusion
models (Ho et al., 2020), and several deep learning
optimizers (Reddi et al., 2018). The explanations
in LabML are simpler versions of those from the
corresponding papers, providing clearer and more
accessible technical descriptions. We select a di-
verse set of tasks that are sufficiently intricate for
comprehensive evaluation, but not so complex that
hinders deep analysis.

Setting 2: ML Solution Implementation Set-
ting 2 is designed to evaluate whether LLLMs can
effectively implement human-designed solutions
for ML competitions. We explore Kaggle, a lead-
ing platform for data science and machine learn-
ing competitions, known for its high-quality and
challenging tasks. From a pool of 600 Kaggle
competition tasks, we select only those that pro-
vide high-level solution sketches from the top-5
competitors in the leaderboard. These solutions
include detailed descriptions of feature engineering
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methods and/or ML techniques, typically involv-
ing an ensemble of well-known ML methods like
XGBoost, Random Forest, etc. To reduce storage
and evaluation costs, we further filter the tasks to
include only those with smaller datasets. Notably,
we carefully reviewed the license statements of all
task data and confirmed that they are free to share.

2.2.2 Step II: Instruction Writing

For each task, whether in Setting 1 or Setting 2,
the research team — comprising graduate-level
students and researchers specializing in Artificial
Intelligence — writes instructions for the task spec-
ification S and the implementation details I.

Setting 1 The task specification S provides a de-
tailed description of the selected algorithms, which
are rewritten based on scikit-learn documentation
and LabML explanations. The rewriting is to en-
sure that the specifications are clear and standard-
ized, while also mitigating potential data leakage
issues. For the implementation details I, we ex-
plicitly define the module and main class names,
along with a detailed description of the initializa-
tion methods. These specifications are necessary to
ensure that the generated code can be seamlessly
integrated into our evaluation framework. In ad-
dition to the initialization method, we specify key
functions that are needed by the evaluation code
(Step III). For instance, an implementation of a
deep learning model needs the forward and back-
ward functions, which are called by the evaluation
code for training and testing the output code.

After completing the initial annotation of the
instructions for each task in Setting 1, a senior re-
searcher will review each instruction to ensure its
quality. Our review focused on the following as-
pects: 1) Checking for any errors in the description
of algorithmic modules and ensuring that the de-
scription thoroughly explains the principles and
corresponding steps of the algorithm; 2) Verifying
whether the code format requirements in the in-
structions align with the format used in the evalua-
tion framework to avoid any formatting mismatches
during the evaluation process. For instructions that
don’t meet the standards, we will make necessary
revisions to ensure their quality.

Setting 2 The specification .S includes the fol-
lowing components: task description, dataset de-
scription, and solution description. The task and
dataset descriptions are from the competition de-
tails provided by Kaggle. For the solution descrip-

tion, we gather high-level ideas of teams ranked
within top-5 on the private leaderboard. To en-
sure the quality of the reference solutions, we have
cleaned and rewritten the collected solutions. We
require a qualified solution to include a complete
workflow for solving machine learning tasks, in-
cluding data processing and a detailed description
of the methodology. Low-quality solutions, such as
those with overly concise method descriptions, are
directly discarded. Additionally, many solutions
contain images or external links; after careful re-
view, we convert them into detailed descriptions in
natural language and incorporate them into the in-
structions. Regarding implementation details I, we
provide guidelines on permissible ML libraries and
specify the required outputs, typically the labels
for a specific test set (see Step III).

2.2.3 Step III: Test Construction

To evaluate ML algorithms or solutions, it is cru-
cial to define two key components: the evaluation
datasets and the code/performance reference.

Setting 1  We explore scikit-learn and LabML for
reference code and evaluation data. The reference
code can be run on the evaluation dataset for per-
formance reference. We then manually create test
hooks (evaluation code script) that call the (LLM)
generated code for training and testing on the rel-
evant data. The evaluation code script can be run
successfully only if the implementation strictly fol-
lows the implementation guideline /. Although
LLMs may encounter scikit-learn or LabML dur-
ing pretraining, the instruction rewriting process
helps obfuscate the link between the instruction
and the original implementation.

Setting 2 The dataset associated with each com-
petition is used for evaluation. However, as the
test sets are hidden, we split the public training set
to create a new train/test set for our benchmark.
As previously mentioned, we obtain the solution
sketch from top-5 in the leaderboard. If a solution
is associated with an implementation code, we run
it to obtain a performance reference on our test
set. If no implementation is provided, we use the
leaderboard score of the solution as the (human)
performance reference. Although there might be
a distribution shift between the leaderboard testset
and our new test set, the performance reference is
sufficient to measure a task’s difficulty and approx-
imate the performance score range for the corre-
sponding solutions. Similar to Setting 1, we also
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Figure 2: The complete evaluation process in MLAlgo-Bench.

Settings | #Tasks Input Len  #Avg Test
Setting 1 | 121 (66 + 55) 931+442 1381
Setting 2 | 97 2097+£802 708,615

Table 2: Data characteristics of MLAlgo-Bench. Note
that Setting 1 includes 66 tasks from scikit-learn and
55 Deep learning related tasks from LabML. #Avg Test
indicates the average number of testing data samples.
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Figure 3: MLAIgo-Bench: input length distribution.

write the evaluation code scripts for the evaluation
framework described in Section 2.4.

2.3 Statistical Analysis

Table 2 and Figure 3 show data characteristics of
MLAIgo-Bench. It is observable that Setting 2 has
a much longer input length compared to Setting 1
due to the lengthy problem and data descriptions.
It is also noted that, although the number of tasks
is moderate, it is still comparable to those in other
benchmarks. To put this into perspective, the num-
ber of tasks in MLAlgo-Bench surpasses that of the
well-known HumanEval dataset (see Table 1).

2.4 Evaluation Framework

The complete evaluation pipeline is illustrated in
Figure 2. First, given an instruction (S + I), an
LLM is invoked to generate an output code, which
is then automatically integrated into an evaluation
code script for testing. The evaluation code script
loads the specified dataset and executes the out-
put code in a sandbox environment (e.g., a Docker
container needs to be set up). The execution pro-
cess verifies whether the code runs successfully,

computes the task pass rate, and compares the per-
formance against human performance reference.

Overall Pass Rate The overall pass rate is de-
fined as the proportion of LLM code that can be
executed successfully and achieves performance,
after training and testing, that is comparable to the
performance reference.

Relative Performance Score (RPS) We define a
Relative Performance Score (AScore) to evaluate
the performance of executable LLM implementa-
tions, where performance is measured relative to a
task-specific reference. The reference performance
is obtained either from executing the official refer-
ence code (Setting 1) or from the solution sketch’s
leaderboard score on Kaggle (Setting 2). To ensure
comparability across tasks with different metrics
(e.g., MSE, F1, ROC-AUC), we apply min-max
normalization to both the LLM-generated scores
and the reference scores, scaling them to the [0, 1]
interval. Note that for metrics where lower values
indicate better performance (e.g., MSE), scores are
first inverted prior to normalization. Normalization
strategies are adapted per setting:

* Setting 1: The maximum and minimum val-
ues for each task are defined based on theo-
retical performance bounds. For instance, in
an n-class classification task, the maximum is
1.0 (perfect accuracy), while the minimum is
set to the accuracy of random guessing, %

Setting 2: The maximum is set to the top
leaderboard score for the task, and the min-
imum is the score at the bottom 5% of the
leaderboard rankings.

The formula used to compute the relative perfor-
mance score AScore is as follows:

Score, — ming,

nScore,, = - (D
MAT — MMy,
1 S LLM
AScore = NoCoTem )

12 eQ nScorersfer
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LLM Setting 1 Setting 2
AScore ATime Pass Rate (%) EScore AScore Pass Rate (%) EScore
GPT-40-mini 0.951 (0.136)  0.943(3.91) 27.3 0.260 0.950(0.051) 10.3 0.098
Closed Source
LIM GPT-40 0.939 (0.22) 1.16 (3.71) 38.0 0.357 | 0.966 (0.028) 16.4 0.158
Claude-3.5-Sonnet 1.02 (0.36) 0.733 (3.20) 48.8 0.485 0.812(0.168) 21.6 0.175
Qwen-2.5-72B 0.952 (0.171)  1.14 (3.47) 34.7 0.325 | 0.946 (0.039) 7.2 0.068
Open Source LLaMA-3.1-405B 0.967 (0.073) 0.852 (3.55) 25.6 0.250 | 0.952(0.027) 52 0.050
LLM Qwen-2.5-7B 0.977(0.089)  0.621(3.86) 18.2 0.178 | 0.998 (0.016) 4.1 0.041
Qwen-Coder-2.5-7B | 0.967 (0.129) 0.076 (4.61) 19.0 0.184 | 0.940 (0.040) 4.1 0.039
LLaMA-3.1-8B 0.745 (0.290) 0.131 (4.38) 14.0 0.104 \ \ \

Table 3: The main experimental results of different LLMs on our benchmark. The numbers in parentheses represent
the standard deviation. We do not report the results of 1laMA-8B in Setting 2 due to its weaker instruction-following

abilities and performance.

where () denotes the set of passed LLM code,
nScore“M and nScoredS" " represent the per-
formance score of code m generated by LLM and
the performance reference score min-max normal-
ized by using Eq 1. min,, and maz,, denote the
minimum and maximum scores, respectively, for a

given task m.

Relative Time Overhead (RTS) is used to as-
sess the efficiency of executable code generated by
LLMs. In some cases, the time overhead of LLM-
generated code is significantly higher than that of
the reference code. To mitigate the impact of these
outliers on the average time overhead, we apply a
log transformation to the results:

1 Ti LLMs
ATime= Y log % 3)
Q| meQ Timer,

where 2 denotes the set of algorithms gener-
ated by LLMs that can be successfully executed,
Time:lMs and Timed?' ™ represent the time
cost of algorithm m generated by LLMs and golden
solution’s time cost, respectively. It is noteworthy
that if LLM code is more efficient than the referer-

ence code, the RTS is smaller than 0.

Effective Score (EScore) EScore provides a uni-
fied metric that combines the pass rate and the
Relative Performance Score (RPS), which is com-
puted only for passed tasks. Essentially, Escore is
calculated by assigning a score of zero to all failed
tasks. The formula for EScore is as follows:

C))

EScore = AScore x pass-rate
3 Experiments

We evaluate three closed-sourced LLMs (GPT-4o-
mini, GPT-40, Claude-3.5-Sonnet) and five open-
sourced LLMs (Qwen-2.5-72B, LLaMA-3.1-405B,

Qwen-2.5-7B, Qwen-2.5-7B-coder, LLaMA-3.1-
8B). The inclusion of such LLMs is decided based
on their the instruction following capabilities and
the coding capabilities tested on the general bench-
marks. The decoding hyperparameters for these
LLMs are all set to temperature=0.2 and top_p=0.9.

The evaluation framework invokes the evalua-
tion script to run LLM-generated code as shown
in Figure 2.4. This evaluation stage is conducted
in a uniform environment, a single A100-40GB
GPU, with the Intel(R) Xeon(R) Gold 6330 CPU
@ 2.00GHz and 503 GiB of memory.

3.1 Quantitative Results

Claude 3.5-Sonnet achieves the best overall per-
formance both in pass-rate and EScore across Set-
ting 1 and Setting 2. Among open-source LLMs,
Qwen-2.5-72B demonstrates the strongest perfor-
mance, even outperforming GPT-40-mini on Set-
ting 1—highlighting its potential as a strong al-
ternative for future research. The RPS (AScore)
and RTS (ATime) results indicate that even when
LLMs generate successful implementations, their
code still underperforms compared to human-
written reference solutions. Notably, a high pass
rate does not always correlate with a higher RPS
(AScore). This is especially evident in Setting 2,
where Claude 3.5-Sonnet achieves the highest pass
rate but the lowest AScore. Two main factors con-
tribute to this discrepancy:

* Task Difficulty: For more challenging tasks
(i.e., those where weaker LLMs struggle to
generate runnable code), there is a greater like-
lihood of producing suboptimal implementa-
tions that pass basic checks but underperform
relative to the reference.

* Shortcut Solutions: LLMs may achieve a
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high pass rate by opting for simpler imple-
mentations that ignore the intended method
descriptions (Setting 1) or provided solutions
(Setting 2). While these solutions may run suc-
cessfully, they tend to yield lower scores when
compared against the performance of more so-
phisticated, reference-aligned solutions.

3.2 Error Analysis

The most common errors of Qwen-2.5-72B are
shown in Figure 4 (See the Appendix for errors of
GPT-40-mini). By analyzing the results of LLMs
in Setting 1, we find that current LLMs are more
capable of implementing relatively simple machine
learning algorithms, such as logistic regression, de-
cision trees, or basic neural networks. For more
complex algorithms, such as gradient boosting
trees, SVMs, Transformer variants, and deep learn-
ing optimization techniques, LLMs often encounter
implementation errors. In Setting 2, our analysis
also shows that LLMs perform well when directly
applying machine learning algorithms. They can
utilize open-source libraries like XGBoost, Light-
GBM, and scikit-learn with minimal errors. How-
ever, LLMs frequently struggle with dataset pro-
cessing. The common types of errors made by
LLMs are demonstrated in detail in Figure 4.

3.3 Instruction-Following Ability

This section evaluates whether the code generated
by LLMs faithfully follows the descriptions pro-
vided in the algorithm modules or reference so-
lutions. Evaluation scores within [4-5] indicate
implementations that closely adhere to most steps
of the reference, whereas the range of [0-2] means
that the code significantly deviates from or fails

to follow the instructions. The detailed evaluation
criteria are presented in Table 12 and Table 11. We
employ both LLM-as-judge and human evaluation
for this task. For LLM-as-judge, we select two
top-performing models—GPT-40 and Claude-3.5-
Sonnet—to act as evaluation experts. The final
scores are obtained by averaging the results from
both models. To enhance reliability, each model is
prompted to provide a justification for its assigned
score. For human evaluation, we rely on three
graduate students who are co-authors of the paper,
majoring in Artificial Intelligence. They are qual-
ified to perform this task as they have completed
advanced machine learning courses and are famil-
iar with the relevant algorithms. A total of 30 tasks
are randomly sampled from each setting (Setting 1
and Setting 2), resulting in 60 tasks for evaluation.

The experimental results are presented in Ta-
ble 4. Overall, Claude-3.5-Sonnet demonstrates
stronger instruction-following capabilities, achiev-
ing the highest scores in both LLM-based and hu-
man evaluations. Notably, the open-source model
Qwen-2.5-72B performs comparably to Claude-
3.5-Sonnet and even surpasses it in human evalu-
ation scores, highlighting its potential as a com-
petitive alternative. Additionally, the instruction-
following scores for all models are generally lower
in Setting 2 compared to Setting 1. This can be
attributed to the fact that Setting 2 generally has
longer inputs compared to that of Setting 1.

To verify the correlation between LLM-based
evaluation and human assessments, we rank corre-
lation (Kendall and Smith, 1939; Seo et al., 2025)
and show results presented in Figure 5. The ob-
served agreement scores range from 0.5 to 0.6, and
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LLM Evaluation Human Evaluation

LLM . . . .
Setting 1~ Setting2 | Setting 1  Setting 2
Qwen-2.5-72B 4.45 3.80 4.23 4.15
GPT-40 4.45 3.59 4.31 3.86
LLaMA-3.1-405B 4.20 3.23 3.97 3.57
Claude-3.5-Sonnet 4.62 3.89 4.48 3.93

Table 4: The instruction following ability of LLM

Method ‘ AScore Pass Rate(%)
GPT-40-mini 0.950 10.3
GPT-40-mini + AIDE | 0.931 37.1
GPT-40 0.966 16.4
GPT-40 + AIDE 0.932 42.3

Table 5: AIDE Framework in MLAIgo-Bench Setting 2

approach 0.7 in Setting 2 with Claude-3.5-Sonnet.
For the average human score and the average LLM
score, the correlation is 0.67 in Setting 1 and 0.72
in Setting 2. To show that this correlation is sta-
tistically significant, we apply a two-tailed t-test
with the null hypothesis that “there is no correlation
between human evaluation and LLM evaluation.”
With a sample size of N = 120 (30 tasks in Setting
2 across 4 LLMs) and correlation r = 0.72, the
t-statisticis ¢ = 11.27. At « = 0.05 and df = 118,
the critical value is 1.982. Since the observed
t-value exceeds the critical threshold, we reject the
null hypothesis at the 95% confidence level. There-
fore, the correlation between human evaluation and
LLM evaluation is statistically significant. Regard-
ing human evaluation, we also compute human
inter-agreement using the rank correlation score.
For Setting 1, the rank correlation score of human
inter-agreement is 0.54, which reflects a moder-
ate level of agreement (Landis and Koch, 1977),
while for Setting 2, the score is 0.76, indicating
substantial agreement (Landis and Koch, 1977).

3.4 The Performance of Agentic Framework
on MLAIgo-Bench Setting 2

This section evaluates the performance of code
agent frameworks on MLAIlgo-Bench under Set-
ting 2. We conducted experiments using the open-
source code generation agent framework AIDE
(Dominik Schmidt and Wu, 2024), with GPT-4o-
mini and GPT-40 as the base LLMs. The maximum
number of generation attempts is set to five. The

2https://numiqo.com/tutorial/t-distribution
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Figure 5: Rank correlation between LLM and human
evaluations

Method ‘ AScore Instruct
GPT-40-mini 0.950 3.31
GPT-40-mini + AIDE | 0.936 2.18
GPT-40 0.961 3.62
GPT-40 + AIDE 0.939 2.78

Table 6: RPS AScore of tasks that succeeded in both
direct generation and AIDE-based generation. Instruct
denotes the instruction-following score.

results, presented in Table 5, show a substantial im-
provement in task pass rate when using the AIDE
framework. This improvement can be attributed to
AIDE’s ability to incorporate compiler feedback
and enable the LLM to iteratively revise its code
based on runtime error logs. However, we also
observe a decline in relative performance scores,
suggesting that AIDE may encourage shortcut so-
lutions that pass the task criteria without fully ad-
hering to the intended solution strategy.

To further investigate the above observation, we
focus on tasks that were successfully completed
by both direct generation and the AIDE framework
and evaluate their instruction-following ability and
relative performance scores within this shared sub-
set. For instruction-following evaluation, we adopt
the same LLM-based method described in Sec-
tion 3.3. Specifically, there are 12 such tasks
for GPT-40 and 10 for GPT-40-mini. The results
are summarized in Table 6. It is observable that
instruction-following scores exhibit a noticeable
decline when using the AIDE framework. Relative
performance scores also drop to some extent. This
outcome is expected, as the reference solutions
provided are among the top 5 on the Kaggle leader-
board. By adhering to these instructions, direct
generation can achieve better performance within
a narrower exploration space. In contrast, AIDE’s
trial-and-error approach may yield functional but
less aligned or optimal solutions.
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4 Conclusion

This paper introduces MLAlgo-Bench for eval-
vating LL.Ms in the task of implementing ma-
chine learning (ML) methods. We provide detailed
instruction annotations, an automated evaluation
framework, as well as code and performance ref-
erence to facilitate future research. Additionally,
we evaluate the performance of current mainstream
LLMs on MLAIlgo-Bench, offering a comprehen-
sive analysis of their capabilities in this domain.

A deeper analysis reveals several areas for im-
provement, including the enhancement of math-
ematical understanding, better comprehension of
data descriptions, improved function call capabil-
ities, and more robust instruction-following abili-
ties. Addressing these issues would enable LLMs
to generate more precise and reliable ML imple-
mentations. Such improvements could significantly
benefit ML agents (Huang et al., 2024), allowing
them to complete ML tasks more effectively with
fewer interactive steps.

5 Limitations

The ultimate goal of our work is to develop an
Al research assistant capable of translating human-
designed ideas into implementations. While this
task is still far from fully achievable, our work
seeks to set the first step in this process. To enable
an Al system to bring human ideas to life, such as
those outlined in research papers, it must go beyond
just processing text. The system needs to be able to
understand and interpret other modalities of infor-
mation, such as method diagrams, flowcharts, and
visual representations of algorithms. These multi-
modal inputs provide crucial context and enhance
the AT’s ability to accurately translate abstract con-
cepts into working code. In our current work, we
have only explored text as a single modality. In the
future, we will focus on investigating how to enable
LLM Agents to leverage multimodal information
to better help humans realize their ideas.

Ethical Considerations

The collection of all reference code in our bench-
mark, as well as the construction of evaluation
code, is based on currently available open-source
libraries and does not involve any copyright in-
fringement. The prompts for each algorithm in the
benchmark are designed to ensure they do not con-
tain personal privacy issues, raise ethical concerns,
or encourage LL.Ms to generate harmful content.
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A Related works

A.1 Large Language Models Meet NLP2Code

The task of generating code from natural language,
referred to as NLP2Code (Zan et al., 2023), has
been a long-standing challenge in the field of code
intelligence. Recently, there has been a growing
trend of using large language models (LLMs) for
the NLP2Code task. These LLMs can be broadly
categorized into two types: general LLMs and Code
LIMs (Zan et al., 2023; Du et al., 2024).

General LLMs, which typically have billions of
parameters, are trained on a combination of text
and code corpora. Models such as GPT-4 (OpenAl,
2023), LLaMA 3 (Dubey et al., 2024), Qwen (Yang
et al., 2024; Qwen Team, 2024), and DeepSeek
(Liu et al., 2024a) exhibit remarkable capabilities
across a wide range of tasks, including language
understanding, reasoning, and code generation. On
the other hand, Code LLMs are specialized models
trained exclusively on large code corpora. Notable
examples of Code LLMs include CodeBERT (Feng
et al., 2020), Code-T5+ (Wang et al., 2023), CodeL-
Lama (Roziere et al., 2023), Pangu-Coder (Shen
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et al., 2023; Christopoulou et al., 2022), Wizard-
Coder (Luo et al., 2023), and CodeGeex (Zheng
et al., 2023). These models generally perform well
on software engineering tasks but may not excel in
understanding instructions as general LLMs. Our
work primarily focuses on benchmarking general
LLMs, as they are better suited to the multi-faceted
skillset required for ML method implementation
such as mathematical and language understanding,
function calling, data specification understanding.

A.2 Benchmarks for Code Generation

Many NLP2Code benchmarks are introduced to
assess the ability to generate function-level code
(Chen et al., 2021; Austin et al., 2021), multi-
language code (Athiwaratkun et al., 2022; Zheng
et al., 2023; Cassano et al.), data processing code
(Lai et al., 2023; Chandel et al., 2022; Jing et al.,
2024), and class-level code (Du et al., 2024). In
comparison, MLAIgo-Bench requires a broader
set of skills, including data processing capabilities,
class-level code generation, mathematical reason-
ing and ML function calling.

Recently, there has been growing interest in
benchmarking the ability of LLMs on machine
learning tasks, with notable efforts including MLA-
gentBench (Huang et al., 2024), MLGYM-Bench
(Nathani et al., 2025), ML-Bench (Tang et al.,
2023), and MLE-Bench (Chan et al., 2024). MLA-
gentBench and MLE-Bench focus on agentic
frameworks that autonomously generate code from
task descriptions, with MLE-Bench covering a
broader set of tasks. MLGYM-Bench shares sim-
ilarities with these benchmarks but additionally
provides external tools to support task comple-
tion. However, none of these benchmarks evaluate
LLMs’ ability to implement novel ML methods or
translate high-level, human-designed solutions into
working code

B Detailed Information of Related ML
Benchmarks

B.1 MLAgent-Bench

MLAgent-bench(Huang et al., 2024) primarily as-
sesses whether LLMs can meet task requirements
when given relevant tasks, dataset descriptions, and
some starter code. MLAgent-bench includes a total
of 13 tasks, consisting of 6 Kaggle competitions,
several classic classification and regression tasks,
as well as two tasks aimed at improving runtime
efficiency. None of the tasks require implementing

a model from scratch. Instead, they either involve
modifying a given algorithm or directly utilizing
existing libraries such as sklearn and huggingface
for implementation.

Evaluation Metrics

e Success rate: Each task is run 8 times, and the
success rate of these 8 solutions is calculated
as the success rate for the current task. A suc-
cessful implementation is defined as achieving
a performance improvement of more than 10%
compared to the baseline. Finally, the average
success rate across all tasks is computed.

* Efficiency: Compare the average number of
tokens and time spent by each agent.

B.2 ML-Bench

MLBench (Tang et al., 2023) primarily evaluates
whether LLMs can successfully implement the
given tasks based on relevant GitHub branches.
MLBench consists of two settings: ML-LLM-
Bench and ML-Agent-Bench. In ML-LLM-Bench,
LLMs are provided with relevant GitHub branches
and tasks, and are expected to directly generate
the corresponding shell scripts. In the ML-Agent-
Bench setting, the paper provides a sandbox inter-
action environment where, given a task and relevant
GitHub branches, LLMs interact continuously with
the environment for task completion. Both settings
focus on evaluating the ability of LLMs to leverage
existing code without involving the implementation
of algorithms at the core level. ML-Bench uses
Pass Rate and Pass@k as the evaluation metrics,
where the later allows K times code generation.

B.3 MLE-Bench

MLE-Bench (Chan et al., 2024), a concurrent work
to ours, and our benchmark Setting 2 share some
similarities, as both evaluate the performance of
LLMs in Kaggle competitions. However, the key
difference lies in the focus of MLE-Bench, which
primarily assesses the performance of LLMs as Al
agents tackling challenging machine learning engi-
neering tasks without being provided with task so-
lutions. MLE-Bench explores three different agent
frameworks: AIDE (Dominik Schmidt and Wu,
2024), ResearchAgent(Huang et al., 2024), and
CodeActAgent(Wang et al., 2024). For each com-
petition, MLE-Bench allows agents up to 24 hours
to complete their final submission, leading to sig-
nificant computational overhead.
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MILAgentBench

Tool Description

Research Problem

Response Format

You are a helpful research assistant. You have access to the following tools:

- List files: Use this to navigate the file system ...

- Copy files: Use this to navigate the file system ...

- Undo Edit Script: Use this to undo the last edit of the python script ...

- Execute Script: Use this to execute the python script. The script must already
exist ...

- Understand file: Use this to read the whole file and understand certain aspects

- Inspect Script Lines: Use this to inspect specific part of a python script
precisely ...

- Edit Script: Use this to do a relatively large but cohesive edit over a python
script . . .

Given a training script on a dataset train.py, improve upon the current model
performance (trained with current hyperparameters in train.py). The training
epochs should be within 10 to save time. Save per class properties for test set
exampels to submission.csv as shown in train.py.

You do not know anything about this problem so far

Follow these instructions and do not forget them:

- First, come up with a high level plan based on your understanding of the
problem and available tools and record it in the Research Plan and Status

- Research Plan and Status should well organized and succinctly keep track of
1) high level plan (can be revised), 2) what steps have been done and what steps
are in progress, 3) short results and conclusions of each step after it has been
performed.

- Research Plan and Status must only include progress that has been made
by previous steps. It should not include results not directly confirmed by the
previous observation.

- Performance numbers and estimates can only be confirmed and included in
the status by running the code and observing the output....

Always respond in this format exactly:

Reflection: What does the observation mean? If there is an error, what caused
the error and how to debug?

Research Plan and Status: The full high level research plan, with current
status and confirmed results of each step briefly annotated. It must only include
progress that has been made by previous steps. If there is any update, enclose
the new update text in double asterisks **like this**. If there is no update, just
copy the previous step Research Plan and Status. The high level plan from the
previous step should be fully retained, unless it is intentionally revised.

Fact Check: List all objective statements in the updates to Research Plan and
Status one by one and point out whether it is guessed versus directly confirmed
by the previous observation directly above. Performance numbers can only be
confirmed by running the code and observing the output.

Thought: What you are currently doing, what actions to perform and why
Action: the action to take, should be one of the names of the tools

Action Input: the input to the action as a valid JSON string

Table 7: Initial Prompt for MLAgentBench
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MLBench

Instruct Can you help me by formulating the necessary code to utilize the Citeseer dataset as the training
data to empower the ARMA model with a learning rate set to 0 and incorporate 5 stacks into the
model? Your assistance would be greatly appreciated.

Oracle Func- The following commands learn a neural network and predict on the test set. Train an ARMA

tion Document  model which follows the original hyperparameters on different datasets. # Cora: python cita-
tion.py —gpu 0 # Citeseer: python citation.py —gpu 0 —dataset Citeseer —num-stacks 3 # Pubmed:
python citation.py —gpu 0 —dataset Pubmed —dropout 0.25 —num-stacks 1

Table 8: Initial Prompt for ML-Bench

MLE-Bench

Base Instruct  You are participating in *MLE-bench*, an offline version of Kaggle competi-
tions adapted to test the coding ability of agents lik yourself.
You will be given a machine learning task. You must solve the task by training
a model and running the model on the test set to produce a submission file. You
may not hand-label the data to produce a submission file.
Benchmark

. First, please read the instructions below which are specific to our benchmark
Instructions

setup. Note, these instructions can be found again in ‘/home/instructions.txt*

- Competition-specific instructions: The instructions for the competition
are available in ‘/home/data/description.md’. Read this file to understand the
problem setup for the competition you are currently solving.

- Dataset: The dataset files for the competition are available in ‘/home/data/‘.

- Submission: We have simplified all competition types to use a simple CSV
submission format. Regardless of what the competition instructions say, you
MUST produce a submission file at ‘/home/submission/submission.csv‘. We
will only evaluate submissions found at this path; failure to submit a ‘submis-
sion.csv* at this path will result in a failed attempt.

- Test set: In general, since we do not have access to the original test labels,
we have constructed our own train/test split for each competition. As such,
the dataset you see in ‘/home/data/‘ may differ slightly from what is described
in the competition instructions. Nevertheless the files available to you should
otherwise be similar to the original and you should proceed with the competition
task on the train/test splits available to you.

- Submission checker: We provide a tool for checking the validity of your
submission file, in the form of a server endpoint at http://localhost:5000/validate.
If you post a submission file to the server, you will receive a response mes-
sage telling you if your submission is valid or not (note that this does NOT
give you a score). For your convenience, we provide a script ‘/home/vali-
date_submission.sh® which can help you make this submission to the validation
Server.

- Cheating: You are not allowed to view others’ solutions to this competition.
If we detect that your submission is plagiarized from others, the submission
will be disqualified.

Your submission will be graded based on the metric in the competition-specific
instructions. Your goal is to achieve the best score possible.

Wherever there is a conflict between the points above and the competition-
specific instructions in ‘/home/data/description.md°, the above points should
always take priority since these are always true for our offline benchmark setup.

Table 9: Initial Prompt for MLE-Bench(Chan et al., 2024). This initial prompt come from MLE-Bench’s paper.
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Prompt for Readability and Normative Assessment

I will give you a piece of code, and you need to evaluate its readability and standardization. The
scoring criteria are as follows:

Naming Conventions: 0-5 points

- Variable Naming: Whether the variable names are descriptive and clearly express the purpose of
the variable.

- Function Naming: Whether the function names follow action-oriented descriptions and clearly
convey the function’s behavior.

- Class Naming: Whether the class names adhere to conventions and accurately represent the
meaning of the class.

Comments: 0-5 points

- Code Comments: Whether appropriate comments are present to explain complex logic or non-
obvious code sections.

- Docstrings: Whether the function, class, and module docstrings are complete, clear, and follow
documentation standards.

- Comment Appropriateness: Whether excessive or unnecessary comments are avoided.

Code Structure: 0-5 points

- Logical Clarity: Whether the code has clear logical layers, making it easy to track.

- Modularity and Functionality: Whether functionality is broken down into smaller functions or
modules, with each function or module performing a single task.

- Avoiding Code Duplication: Whether identical logic appears repeatedly in the code and should be
extracted into a function or class.

Formatting: 0-5 points

- Use of Blank Lines: Whether blank lines are used appropriately to separate code blocks, making
the code more readable.

- Function Complexity: Whether functions are concise and avoid excessive branching or nesting.
- Control Structure Simplicity: Whether control structures such as if, for, etc., are simple and
intuitive, avoiding deep nesting or overly complex conditional statements.

For the four rating aspects—Naming Conventions, Comments, Code Structure, and Format-
ting—you should assign a corresponding score to each.

For each aspect, you should first provide the basis for your rating, followed by the corresponding
score.

Table 10: Initial Prompt for MLE-Bench(Chan et al., 2024). This initial prompt come from MLE-Bench’s paper.
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The Prompt for Evaluating the Instruction-Following Capabilities of LLMs under Setting 2

You are provided with a detailed description of a machine learning code generation task, including
the task description, dataset description, and a reference solution description. Additionally, you are
given the corresponding generated code.

You need to determine whether the provided code strictly adheres to the implementation described
in the reference solution. You are required to score its level of implementation according to the
following scoring criteria:

Score range (4, 5]:
The code generated by the LLM largely adheres strictly to the reference solution, with only a few
steps missing. Key points to check:

1. The overall processing flow in the code must strictly align with the reference solution;

2. Data processing steps are mostly implemented as per the reference solution;

3. During model training and inference, the implementation largely follows the reference solution.
Many Kaggle solutions involve training and ensembling multiple models. The LLM-generated
code must meet these requirements. If the solution involves training and ensembling 5 or fewer
machine learning models, the LLM must implement all of them. If the solution involves more (e.g.,
>8 models), the LLM must complete at least 80%-90%.

Score range (3, 4]:
The code generated by the LLM implements most steps of the reference solution but has some
missing parts. Key points to check:

1. The overall processing flow in the code is largely consistent with the reference solution;

2. Data processing steps are mostly implemented, with only minor omissions;

3. For model training and inference, most models referenced in the solution are implemented.
The LLM must implement at least 70% of the machine learning models in the reference solution.

Score range (2, 3]:
It is evident that the code generated by the LLM is based on the reference solution, but many steps
are missing. Key points to check:

1. The overall processing flow in the code resembles the reference solution but has significant
inconsistencies or missing parts;

2. Only some data processing steps are implemented;

3. During model training and inference, only about 40-60% of the models are implemented.

Score range [0, 2]:
The code generated by the LLM largely fails to follow the reference solution, with poor completion.

you should first provide the basis for your rating, followed by the corresponding score.
Now I give you the task description and the corresponding reference solution description:

{

Next, I give you the generatead code you need to evaluate:

U

Table 11: The Prompt for Evaluating the Instruction-Following Capabilities of LLMs under Setting 2 in MLAlgo-
Bench

14313



The Prompt for Evaluating the Instruction-Following Capabilities of LLLMs under Setting 1

You are given a machine learning code algorithm module generation task, which includes a detailed
description of the algorithm module. Additionally, you are provided with the corresponding
generated code. You need to determine whether the given code is implemented according to the
provided algorithm module description. You are required to score the implementation level, with
the following scoring criteria:

Score range (4, 5]:
The code generated by the LLM largely adheres strictly to the reference machine learning algorithm
description, with only a few steps missing. Key points to check:

1. The overall algorithm flow in the code should be largely consistent with the reference
description, with at least 80%-90% alignment;

2. Critical algorithm steps must be implemented exactly as described, particularly those that are
already formalized modules or steps. For example, if an algorithm involves Multi-Head-Attn and
provides corresponding formulas, the LLM-generated code must accurately implement it.

Score range (3, 4]:
The code generated by the LLM generally follows the reference machine learning algorithm
description but has some steps missing. Key points to check:

1. The overall algorithm flow in the code implements most of the reference description, with at
least 70% alignment;

2. Critical algorithm steps are mostly implemented as described, with only minor deviations.

Score range (2, 3]:
It is evident that the code generated by the LLM is based on the reference machine learning
algorithm description, but many steps are missing. Key points to check:

1. The algorithm flow in the code resembles the reference description but has significant
inconsistencies or missing parts;

2. Many critical algorithm steps are not implemented, with only partial completion.

Score range [0, 2]:
The code generated by the LLM largely fails to follow the reference machine learning algorithm
description, with poor completion.

you should first provide the basis for your rating, followed by the corresponding score.
Now I give you the task description and the corresponding reference machchine learning algorithm:

)

Next, I give you the generatead code you need to evaluate:

{}

Table 12: The Prompt for Evaluating the Instruction-Following Capabilities of LLMs under Setting 1 in MLAlgo-
Bench
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Figure 6: The relationship between the output length
and the success of LLMs in Setting 1.

MLE-Bench employs two evaluation metrics to
assess the performance of LLMs: submission suc-
cess rate and the proportion of medals awarded.
The later measure the position of agent perfor-
mance against Kaggle leaderboard. This is, how-
ever, only suitable for Kaggle competitions.

Both MLE-Bench and Setting 2 in our bench-
mark are collected from the Kaggle platform. How-
ever, in our benchmark, each task’s instructions
include a reference to the top 5 solutions from
the leaderboard, which MLE-Bench does not. Ad-
ditionally, the instructions for each task in MLE-
Bench contain irrelevant content, such as prize in-
formation and organizer details, which have been
removed in our benchmark. As a result, the average
instruction length for each task in MLE-Bench is
slightly longer than that in Setting 2 of our bench-
mark.

C Supplementary Experiment

C.1 The Impact of Generated Code Length

We selected two LLMs, Qwen-2.5-72B and GPT-
40-mini, to analyze the impact of the code length
generated by LLMs on success or failure. The
results are shown in Figures 6 and Figure 7.

In Setting 1, as shown in Figure 6, LLMs are
more likely to succeed on tasks that require shorter
outputs. The three quantiles of the length distri-
bution for failed code are consistently higher than
those for successful code. This suggests that, in
Setting 1, where LLMs must generate code for ma-
chine learning algorithm modules that often involve
complex mathematical operations, the likelihood
of errors increases with code length.

In contrast, for Setting 2, Figure 7 shows no sig-
nificant correlation between the length of the code

. GPT-40-mini | Qwen-2.5-72B
Metrics

w w/o w w/o

AScore T 0.951 1.02 0.943 0.929

Setting 1 ATime | 1.62 1.66 174 0.902
Sklearn Pass Rate(%) 1| 30.3 37.9 424 448
EScore 1 0.288 0.387 | 0.400 0.416

AScore T 0.930 0.886 | 0.947 0.932

Setting 1 ATime | -0.163 -0.194 | -0.126 -0.078
DL  Pass Rate(%) 7| 23.6 20.0 255 218
EScore 1 0.219 0.177 | 0.241 0.203

AScore T 0.950 0.848 | 0.946 0916

Setting 2 Pass Rate(%) 1| 10.3  30.9 7.2 28.9
EScore 1 0.098 0.262 | 0.068 0.265

Table 13: The impact of algorithm/solution description.
Here, w (w/0) indicate including (excluding) algorith-
m/solution descriptions in the instructions.

generated by LLMs and whether it runs correctly.
Additionally, the figures reveal that the code gener-
ated by Qwen-2.5-72B tends to be longer than that
produced by GPT-40-mini.
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Figure 7: The relationship between the output length
and the success of LLM in Setting 2.

C.2 The Impact of Method Descriptions

This section explores the LLMs capability for solv-
ing tasks in a closed-book setting. We select two
LLMs, GPT-40-mini and Qwen-2.5-72B, for a de-
tailed analysis. Here, we split tasks in Setting 1
into two sets, traditional ML tasks from Sklearn
and Deep Learning (DL) tasks. The results in Table
13 shows that not all tasks benefit from the inclu-
sion of methodology specifications. Specifically,
removing method descriptions increases task pass
rates in Setting 1 (Sklearn) and Setting 2, while
only decreases the pass rate in Setting 1 (DL). This
can be attributed to a number of reasons:

Setting 1 (Sklearn): The ML algorithms are rel-
atively simple and widely used, allowing LLMs
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to memorize and implement them effectively. In-
cluding descriptions not only lengthens the context,
which can negatively impact LLMs, but also intro-
duces additional complexity by challenging LLMs’
instruction-following capabilities.

Setting 2: Tasks in Setting 2 can be solved in mul-
tiple ways. Without method description, LLMs
have greater freedom to choose simpler approaches,
leading to higher task pass rates. However, it is
noted that when solutions are provided, the relative
performance score for Setting 2 improves, demon-
strating the value of expert guidance.

Setting 1 (DL): Table 13 highlights the importance
of methodology specifications for DL. method im-
plementation. Many of these tasks are relatively
less common, such as Transformer variants, which
prevents LLMs from relying on their memory for
straightforward implementation.

C.3 Readability and Code Standardization

These are key indicators of code quality, as they
play a critical role in reducing long-term main-
tenance costs. To evaluate the code generated by
LLMs, we assess four core aspects: naming conven-
tions, code comments, code structure, and format-
ting, each rated on a 0-5 scale. We use GPT-40, one
of the strongest publicly available models, as the
evaluation expert. The evaluation prompt includes
detailed criteria for each aspect, based on widely
adopted industry code review standards (see Ta-
ble 10). To improve evaluation transparency, GPT-
4o is instructed to first justify its assessment before
assigning scores to each category. For both settings,
we randomly sampled 30 tasks each (60 tasks in
total) to assess the readability and standardization
of code generated by various LLMs. The results
in Figure 8 show that Claude-3.5-Sonnet demon-
strates the highest overall performance, clearly out-
performing other models. While most models per-
form reasonably well in code structure and format-
ting, comment quality remains a common weak-
ness across models. Moreover, from Figure 8§ we
can also clearly see that model performances are
highly correlated. The code generated by all LLMs
scores relatively high in terms of structure and for-
matting. However, the quality of “Comments” is
consistently lower across all LLMs compared to
the other evaluation dimensions (structure, format-
ting, naming). Our analysis of the code generated
by LLMs reveals that they often either overuse
comments or omit them altogether. This highlights
an area for future improvement, as comments can

Comments

Structure

5 Naming

Formatting

—— Qwen-2.5-72B
LLaMA-3.1-405B

— GPT-40

—— Claude-3.5-Sonnet

Overall

Figure 8: Readability and Normative Evaluation of
Code Generated by LLMs

significantly enhance code readability and main-
tainability.

D MLAIgo-Bench

D.1 Annotation labor cost

The process of constructing instructions for the
two settings in our benchmark can be divided into
two steps: 1. Initial drafting of instructions; 2.
Reviewing instructions to improve their quality.

In the initial drafting step, for Setting 1, the
instructions for 30 deep learning tasks were an-
notated by two undergraduate students from the
School of Artificial Intelligence who are not listed
as co-authors. Their task was to review and cor-
rect the automated separation of methodology de-
scriptions and inline code from the original HTML
format of the LabML educational website into dis-
tinct task descriptions and corresponding code sam-
ples. Each annotator received a compensation of
10 RMB per task. The instructions for all other
tasks in Setting 1 were completed by the author
team. Setting 2 instructions were directly collected
from Kaggle and simply integrated.

In the step of reviewing instructions to improve
their quality, all task instructions were checked and
rewritten by the author team, which took approxi-
mately 20 days in total.

D.2 Data Leakage Issue

Data leakage is a significant concern in most code
generation benchmarks, and our dataset is no ex-
ception. The data leakage risks, however, are not
the same for different settings. For traditional
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ML methods in setting 1, scikit-learn is widely
used and well-documented, making it highly likely
that LL.Ms have memorized parts of it during pre-
training. On the other hand, although LabML is
also available on GitHub, code and explanation are
written in HTML. This format introduces noises
that hinder LL.Ms from fully learning the material.
We reorganized the HTML-formatted content into
Markdown-formatted content and performed a cer-
tain degree of rewriting, thereby reducing the risk
of data leakage to some extent. In Setting 2, as
most solutions lack an implementation, the risk
of data leakage, therefore, is even less likely. In
any cases, our instruction writing process (Step 1I)
helps mitigate potential leakage. This approach
aligns with standard practices in code generation
benchmarks, such as DS-1000 (Lai et al., 2023),
which also collects tasks from online sources.

D.3 Evaluation Environment

After LLMs generate the output code, the evalu-
ation framework invokes the evaluation script as
shown in Figure 2.4. This evaluation stage is con-
ducted in uniform environment, the Linux envi-
ronment with a single A100-40GB GPU, with the
Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz and
503 GiB of memory.

D.4 Sample Prompts

Setting 1: ML Algorithm Implementation
We manually explore scikit-learn and LabML
(Varuna Jayasiri, 2020) for a wide range of ML
algorithms. scikit-learn includes implementations
of traditional methods, ranging from simpler mod-
els like KNN and K-Means to more complex ones
such as Support Vector Machines (SVM), Random
Forests, and Gradient Boosting Decision Trees. In
contrast, LabML is an educational platform, offer-
ring deep learning algorithm implementations with
detailed explanations. The algorithms include var-
ious Transformer variants (Vaswani et al., 2017;
Dai et al., 2019; Fedus et al., 2022; Schlag et al.,
2021), Diffusion models (Ho et al., 2020), and sev-
eral deep learning optimizers (Reddi et al., 2018).
The explanations in LabML are simpler versions of
those from the corresponding papers, offering a bet-
ter source for instruction writing. Sample prompts
for Setting 1 are shown in Table 14, Table 15.

Setting 2: ML Solution Implementation Set-
ting 2 is designed to evaluate whether LLMs can
effectively implement human-designed solutions

for ML competitions. We explore Kaggle, a lead-
ing platform for data science and machine learn-
ing competitions, known for its high-quality and
challenging tasks. From a pool of 600 Kaggle com-
petition tasks, we select only those that provide
high-level solution sketches from the top-5 com-
petitors in the leaderboard. These solutions include
detailed descriptions of feature engineering meth-
ods and/or ML techniques, typically involving a
combination of well-known ML methods like XG-
Boost, Random Forest, etc. Sample prompts for
Setting 2 are shown in Table 16.

D.5 More Details on Error Analysis

Figure 4 shows common errors made by Qwen-2.5-
72B. In Setting 1, the primary error type involves
math operations, particularly issues with data di-
mensions during matrix operations. Additionally,
7.4% of errors are due to runtime timeouts, while
13.0% occur when the LLM fails to implement re-
quired code, such as missing basic functions or
mismatched inputs and outputs. Errors also arise
from the use of nonexistent variables or functions,
indicating hallucinations in code generation.

In Setting 2, common errors are related to data
processing, often involving non-existent column
names. This highlights the LLM’s limitations in
understanding datasets, relying on textual descrip-
tions rather than performing data exploration like
humans. Qwen also frequently misuses functions,
with 18.4% of errors arising from invalid or non-
existent parameters. Other common errors include
calling non-existent functions or referencing un-
available datasets, further suggesting hallucination
in Qwen’s code generation.

For each error type in Setting 1 and Setting 2,
we provide a representative samples from QWen-
2.5-72G and GPT4o0-mini, including the input in-
struction, the erroneous code snippet (highlighted
in pink), and the error log. The results are shown
in Table 17 - Table 21.

D.6 Case Studies

To demonstrate the capabilities of different LLMs
in implementing ML methods, we showcase some
examples of generated outputs in Table 22-25.
These examples demonstrate the ability to follow
human designed methods or solutions to some ex-
tent, showing that the potential of ML paper2code.
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MLAIgo-Bench - Setting 1

Base Requirements

Method Specification

Implementation Instruct

You are a helpful research assistant.

Given an instruction about a machine learning algorithm, implement the relevant code based on
this instruction.

You should implement the algorithm by using Python, Numpy or Scipy from scratch. You can’t
use any functions or classes from scikit-learn.

You only need to implement the algorithm module, and you don’t need to generate test cases.
You should create as many sub-functions or sub-classes as possible to help you implement the
entire algorithm.

Just output the code of the algorithm, don’t output anything else.

Implement the Adaboost classifier with python, numpy and scipy. It can handle multi-class
classification problems.

The Adaboost (Adaptive Boosting) classifier is a machine learning ensemble technique that is
used to boost the accuracy of weak classifiers by combining them into a single strong classifier.
The fundamental idea behind Adaboost is to fit a sequence of weak learners (typically simple
decision trees, also called decision stumps) on repeatedly modified versions of the data. The
predictions from all of them are then combined through a weighted majority vote (or sum) to
produce the final prediction. The data modifications at each iteration consist of applying weights
to each of the training samples. Initially, all weights are equal, but on each subsequent round, the
weights of incorrectly classified instances are increased so that the weak learners focus more on
the difficult cases.

Algorithmic Flow
1) Initialize Weights: Start by assigning equal weights to each of the training samples. If there

are N samples, each sample i receives an initial weight of w; = —.

N
2) For each iterationt = 1to 7T
Fit a Classifier: Train a weak learner h; using the weighted samples. The learner’s goal is to
minimize the weighted error €;:

O wi - 1(ys # hu(a))

€t = 5

N
D im Wi

where 1(-) is an indicator function that is 1 if the condition is true and 0 otherwise.
Calculate the Learner’s Weight ;. This weight is calculated based on the error e;.

The module should be named LLMAdaboostClassifier.

The init function should include the following parameters:

- n_estimators: The maximum number of estimators at which boosting is terminated;

- learning_rate: Weight applied to each classifier at each boosting iteration. A higher learning
rate increases the contribution of each classifier.

The module must contain a fit function and a predict function.

The fit function accepts X_train, y_train as input and return None where

- X_train: the features of the train data, which is a numpy array, and the shape of X_train is [N,
d]. N is the number of the train data and d is the dimension.

- y_train: the labels of the train data, which is a numpy array.

The predict function accepts X_test as input and return predictions where:

- X_test: the features of the test data, which is a numpy array, and the shape of X_train is [N, d].
N is the number of the test data and d is the dimension.

- predictions: the predicted classes for X_test, which is a numpy arrary.

Table 14: Initial Prompt for MLAIgo-Bench - Setting 1
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MLAIgo-Bench - Setting 1

Base Requirements

Method Specification

Implementation

You are a helpful research assistant.

Given an instruction about a machine learning algorithm, implement the relevant code based on
this instruction.

You should implement the algorithm by using Python, Numpy or Pytorch from scratch. You
can’t use any functions or classes from scikit-learn.

You only need to implement the algorithm module, and you don’t need to generate test cases.
You should create as many sub-functions or sub-classes as possible to help you implement the
entire algorithm.

Just output the code of the algorithm, don’t output anything else.

You should implement Mult-Head Attention with Linear Biases using python, numpy, and
pytorch from scratch.

This replaces positional encodings with biases added to attention scores (attention logits, before
the softmax).

This is a relative scheme tested on autoregressive tasks, and the bias is higher for closeby tokens
and lower for far-away tokens.

The biases decrease linearly in the log scale (because it’s before the softmax) and each head has
a different slope.

Here’s the attention formula for ¢-th token,
a; = softmax(quT +m- [— (i—1),..., —1,0})
= softmax(qu—r +m-[0,1,...,(i— 1)]),

where q; € R? is the query of the 4-th token, K € R**? are the keys up to 4, and d the number of
features per head. Note that the above equality halts because softmax is invariant to translations
(you can add any constant to all elements without changing the result).

The module should be named AlibiMultiHeadAttention.

The init function needs to include the following parameters:

- heads: the nums of the attention heads;

- d_model: d_model is the number of features in the query , key and value vectors;

- dropout_prob: the proportion of neuron dropout. The default value is 0.1;

The model needs to include at least the following functions:

1. forward: forward propagation function. It should include the following parameters:

- query: the tensors that store collection of query. It has the shape [seq_len, batch_size, d_model];
- value: the tensors that store collection of value. It has the shape [seq_len, batch_size, d_model];
- key: the tensors that store collection of key. It has the shape [seq_len, batch_size, d_model];
- mask: mask has shape [seq_len, seq_len, batch_size] and mask][i, j, b] indicates whether for
batch b, query at position i has access to key-value at position j.

The return of forward function includes:

- x: the results of the multi-head attention

You just need to implement the algorithm module; no need to provide corresponding examples,
and no need to output any other content

Table 15: Initial Prompt for MLAIgo-Bench - Setting 1
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MLAIgo-Bench - Setting 2

Base Requirements

Task Description

Evaluation Description

Dataset Description

Soluton Description

You are a helpful research assistant.

You are given a detailed description of a data science competition task, including the evaluation
metric and a detailed description of the dataset. You are required to complete this competition
using Python.

Additionally, a general solution is provided for your reference, and you should implement this
solution according to the given approach.

You may use any libraries that might be helpful.

If the solution uses the TensorFlow or Keras deep learning framework, you should implement
the corresponding solution using the PyTorch deep learning framework.

Finally, you need to generate a submission.csv file as specified.

You need to complete a binary classification task on the Tabular Employee Attrition Dataset.
Regardless of these changes, the goals of the Playground Series remain the same—to give the
Kaggle community a variety of fairly light-weight challenges that can be used to learn and
sharpen skills in different aspects of machine learning and data science. We hope we continue to
meet this objective!

The biases decrease linearly in the log scale (because it’s before the softmax) and each head has
a different slope.

Using synthetic data for Playground competitions allows us to strike a balance between having
real-world data (with named features) and ensuring test labels are not publicly available.

Submissions are evaluated on area under the ROC curve between the predicted probability and
the observed target.

For each EmployeeNumber in the test set, you must predict the probability for the target variable
Attrition. The file should contain a header and have the following format:
EmployeeNumber,Attrition

1677,0.78

1678,0.34

The dataset for this competition (both train and test) was generated from a deep learning model
trained on a Employee Attrition. Feature distributions are close to, but not exactly the same,
as the original. Feel free to use the original dataset as part of this competition, both to explore
differences as well as to see whether incorporating the original in training improves model
performance.

Files:

- train.csv - the training dataset; Attrition is the binary target

- test.csv - the test dataset; your objective is to predict the probability of positive Attrition
- sample_submission.csv - a sample submission file in the correct format

Many thanks to Khawaja Abaid, whose notebook Starting Strong - XGBoost + LightGBM +
CatBoost was the basis of my own. Please go upvote Khawaja’s notebook if you haven’t already.
My only big change was to add some feature engineering before training the same models. I had
discussed it previously in Adding Risk Factors, but here’s the final FE code from the winning
version

df[’MonthlyIncome/Age’] = df[’MonthlyIncome’] / df[’ Age’]

df["Age_risk"] = (df["Age"] < 34).astype(int)

df["HourlyRate_risk"] = (df["HourlyRate"] < 60).astype(int)

df["Distance_risk"] = (df["DistanceFromHome"] >= 20).astype(int)

df["YearsAtCo_risk"] = (df["YearsAtCompany"] < 4).astype(int)

Table 16: Initial Prompt for MLAIgo-Bench - Setting 2
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Setting 1 Error Type Case Study (Math-Related Error)

Instruction You should implement Multi-Head Attention with Linear Biases using python, numpy, and pytorch from
scratch. This replaces positional encodings with biases added to attention scores (attention logits, before
the softmax). This is a relative scheme tested on autoregressive tasks, and the bias is higher for closeby
tokens and lower for far-away tokens

LLM’s A
S Answer keys = self.key_linear(key).view(seq_len, batch_size, self.heads,
self.head_dim).transpose (1, 2)
values = self.value_linear(value).view(seq_len, batch_size, self.

heads, self.head_dim).transpose(1, 2)
# Calculate attention scores
scores = self.calculate_attention_scores(queries, keys, mask)
# Apply attention scores to values
attention_output=torch.einsum("hij, hjk->hik", scores, values)

# Concatenate heads and pass through final linear layer

attention_output = attention_output.transpose(1l, 2).contiguous().
view(seqg_len, batch_size, self.d_model)
output = self.out_linear(attention_output)
Error Log RuntimeError: einsum(): the number of subscripts in the equation (3) does not match the number of

dimensions (4) for operand 0 and no ellipsis was given

Table 17: Setting 1 error type (Math-Related Error) case study

Setting 1 Error Type Case Study (Using Functions Incorrectly)

Instruction Implement decision classification tree model with python, numpy and scipy. It can handle multi-class
classification problems.
The information gain should use Gini impurity.
The decision tree is a popular machine learning algorithm used for both classification and regression
tasks. It involves breaking down a dataset into smaller subsets while at the same time an associated
decision tree is incrementally developed.

LLM’s Answer
while isinstance(node, dict):
feature = node['feature']
value = x[feature]
# If value not in branches, return majority class
if value not in node['branches']:
unique_classes = list(node['branches'].values())
return max(set(unique_classes), key=unique_classes.count)
# Move to next branch
node = node['branches'][value]
Error Log TypeError: unhashable type: ’dict’
Table 18: Setting 1 error type (Using Functions Incorrectly) case study
Setting 1 Error Type Case Study (Calling a Non-existent Variable or Function)
Instruction Implement the gredient boosting decision tree for classification with python, numpy and scipy. It can
handle multi-class classification problems.
Gradient Boosting Decision Trees (GBDT) is a powerful ensemble learning technique used for classifica-
tion and regression tasks. It combines the predictions of multiple decision trees, specifically Classification
and Regression Trees (CART), to improve the overall model performance. The principle behind GBDT is
to build models sequentially, where each new model attempts to correct the errors made by the previous
models.
LLM’s Answer
def _compute_step_size(self, y, F_m, tree):
predictions = tree.predict(X_train)
return np.mean(y - (F_m + self.learning_rate x predictions))
Error Log NameError: name "X _train’ is not defined

Table 19: Setting 1 error type (Calling a Non-existent Variable or Function) case study
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Setting 2 Error Type Case Study (Function Usage Error))

Instruction

LLM’s Answer

Error Log

The goal of this competition is to create algorithms and models that can solve tricky math problems

written in LaTeX format. Your participation will help to advance Al models’ mathematical reasoning
skills and drive frontier knowledge.

The ability to reason mathematically is a critical milestone for AI. Mathematical reasoning is the

foundation for solving many complex problems, from engineering marvels to intricate financial models.
However, current Al capabilities are limited in this area.

The assessment of Al models’ mathematical reasoning skills faces a significant hurdle, the issue of

train-test leakage. Models trained on Internet-scale datasets may inadvertently encounter test questions
during training, skewing the evaluation process.

# Function to generate answers for the problems
def generate_answer (problem):

inputs = tokenizer(problem, return_tensors='pt').to('cuda')
outputs = model.generate(**inputs, max_length=256, num_return_sequences=5)

# Decode the outputs and extract answers
answers = []

ValueError: Greedy methods without beam search do not support ‘num_return_sequences*
different than 1 (got 5).

Table 20: Setting 2 error type (Function Usage Error) case study

Setting 2 Error Type Case Study (Data Processing Error))

Instruction

LLM’s Answer

Error Log

We’ve all been there: Stuck at a traffic light, only to be given mere seconds to pass through an intersection,
behind a parade of other commuters. Imagine if you could help city planners and governments anticipate
traffic hot spots ahead of time and reduce the stop-and-go stress of millions of commuters like you.
The dataset for this competition includes aggregate stopped vehicle information and intersection wait
times. Your task is to predict congestion, based on an aggregate measure of stopping distance and waiting
times, at intersections in 4 major US cities: Atlanta, Boston, Chicago and Philadelphia.

# Feature Engineering
def feature_engineering(df):
# Example feature engineering: creating new features based on
existing ones
df[’hour’] = df[’timestamp’].apply(lambda x: pd.to_datetime(x).hour)

df[’day_of_week’] = df[’timestamp’].apply(lambda x: pd.to_datetime(x)

df['is_weekend'] = df['day_of_week'].apply(lambda x: 1 if x >= 5
else 0)
return df

raise KeyError(key) from err.

KeyError: ’timestamp’

Table 21: Setting 2 error type (Data Processing Error) case study
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The Generation Example of Setting 1

Instruction

GPT-40

Qwen2.5-72B

Claude-3.5-Sonnet

Implement the principal component analysis algorithm for dimensionality reduction with python, numpy
and scipy.

1. Standardization: Center the data by subtracting the mean of each variable from the dataset to ensure
that the PCA results are not biased by the scale of the variables.

2. Covariance Matrix Computation: Compute the covariance matrix C of the standardized data. If X
is the data matrix with n samples and p features, the covariance matrix is given by:

c- 1 xTx
n—1

3. Eigenvalue Decompositio: Perform eigenvalue decomposition on the covariance matrix C to find its
eigenvalues and eigenvectors. The eigenvectors represent the directions of maximum variance (principal
components), and the eigenvalues indicate the magnitude of variance in these directions.

4. Sort Eigenvectors: Sort the eigenvectors by their corresponding eigenvalues in descending order. The
eigenvector with the highest eigenvalue is the first principal component, the one with the second highest
is the second principal component, and so on.

5. Select Principal Components: Choose the top k eigenvectors to form a matrix W that will be used
to transform the data. The choice of k depends on the desired level of variance to be retained (often a
cumulative variance threshold like 95%).

# Step 1: Standardization - Center the data

self.mean_ = np.mean(X, axis=0)

X_centered = X - self.mean_

# Step 2: Covariance Matrix Computation

covariance_matrix = np.cov(X_centered, rowvar=False)

# Step 3: Eigenvalue Decomposition

eigenvalues, eigenvectors = np.linalg.eigh(covariance_matrix)
# Step 4: Sort Eigenvectors by Eigenvalues in descending order
sorted_indices = np.argsort(eigenvalues)[::-1]
sorted_eigenvalues = eigenvalues[sorted_indices]
sorted_eigenvectors = eigenvectors[:, sorted_indices]

# Step 5: Select the top n_components eigenvectors
self.components_ = sorted_eigenvectors[:, :self.n_components]

X_centered = self.standardize(X)

covariance_matrix = self.compute_covariance_matrix(X_centered)

eigenvalues, eigenvectors = self.eigen_decomposition(
covariance_matrix)

eigenvalues, eigenvectors = self.sort_eigenvectors(eigenvalues,
eigenvectors)

self.select_components(eigenvectors)

self.mean = self._compute_mean(X)

X_centered = self._center_data(X)

covariance_matrix = self._compute_covariance_matrix(X_centered)

self.eigenvalues, self.eigenvectors = self._eigen_decomposition(
covariance_matrix)

sorted_eigenvectors = self._sort_eigenvectors(self.eigenvalues, self

.eigenvectors)
W = self._select_components(sorted_eigenvectors)

Table 22: The Generation Example of Setting 1
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The Generation Example of Setting 1

Instruction You should implement the Routing among multiple FFNs in Switch Transformer using python, numpy,
and pytorch from scratch.

The Switch Transformer uses different parameters for each token by switching among parameters based
on the token. Therefore, only a fraction of parameters are chosen for each token. So you can have more
parameters but less computational cost. The switching happens at the Position-wise Feedforward network
(FEN) of each transformer block. Position-wise feedforward network consists of two sequentially fully
connected layers. In switch transformer we have multiple FENs (multiple experts), and we chose which
one to use based on a router. The output is a set of probabilities for picking a FFN, and we pick the one
with the highest probability and only evaluate that. So essentially the computational cost is the same as
having a single FFN.

GPT-4o0
# Process each expert

for i in range(self.n_experts):
# Get tokens routed to this expert
mask = (expert_indices == i)
selected_x = x[mask]
selected_prob = route_prob_max[mask]
# Count tokens routed to this expert
counts[i] = mask.sum().item()
sum_prob[i] = selected_prob.sum().item()
# Drop tokens if necessary
if self.drop_tokens and counts[i] > capacity:

selected_x = selected_x[:capacity]
selected_prob = selected_prob[:capacity]
len_dropped_tokens += counts[i] - capacity
counts[i] = capacity
Qwen2.5-728 route_prob = F.softmax(self.router(x), dim=-1) # [seq_len,
batch_size, n_experts]
route_prob_max, routes = torch.max(route_prob, dim=-1) # [seq_len,

batch_size]

# Count tokens routed to each expert

counts = torch.bincount(routes.view(-1), minlength=self.n_experts)
# [n_experts]

# Calculate capacity

capacity = int(self.capacity_factor x total_tokens / self.n_experts)
# Drop tokens if more tokens are routed to an expert than the
capacity
if self.drop_tokens:
mask = counts <= capacity
counts = counts * mask
len_dropped_tokens = total_tokens - counts.sum().item()
else:

len_dropped_tokens = 0

Claude-3.5-Sonnet
router_output = self.router(x) # Shape: [seq_len, batch_size,

n_experts]

route_prob = F.softmax(router_output, dim=-1) # Shape: [seq_len,
batch_size, n_experts]

# Determine the expert for each token

route_prob_max, expert_indices = torch.max(route_prob, dim=-1) #
Shape: [seq_len, batch_size]

# Count tokens routed to each expert

counts = self._count_tokens(expert_indices, seq_len, batch_size)

# Drop tokens if necessary

if self.drop_tokens:
dropped_tokens, expert_indices = self._drop_tokens_if_needed(

route_prob, expert_indices, counts)

else:
dropped_tokens = 0

final_output = self._compute_final_output(x, expert_indices,
route_prob_max)

Table 23: The Generation Example of Setting 1
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The Generation Example of Setting 2

Instruction Problem Description
With the same goal to give the Kaggle community a variety of fairly light-weight challenges that can be
used to learn and sharpen skills in different aspects of machine learning and data science, etc
Your Goal: Predict defects in C programs given various various attributes about the code.

Solution Description

*Pre-processing™: I log-transform all of the input features as suggested by @ambrosm in this post. The
surprising factor here was that there was a small improvement in model performance in most of the
tree-based and boosted-tree models that I considered after the inputs were log-transformed.

In my notebook, I trained the following models: Random Forest, Extra Trees, HistGradientBoosting,
LightGBM, XGBoost, CatBoost

GPT-4o0
# Log-transform the features

X_log = np.loglp(X)
X_test_log = np.loglp(X_test))

# Define the models

rf = RandomForestClassifier(n_estimators=100, random_state=42)
et = ExtraTreesClassifier(n_estimators=100, random_state=42)
hgb = HistGradientBoostingClassifier(random_state=42)

lgbm = 1lgb.LGBMClassifier (random_state=42)

xgb_model = xgb.XGBClassifier(use_label_encoder=False, eval_metric="'
logloss', random_state=42)
cat = cb.CatBoostClassifier(verbose=0, random_state=42)

Qwen2.5-72B .
# Preprocessing

log_transformer = FunctionTransformer(np.loglp, validate=True)

X_train = log_transformer.transform(train_df.drop(columns=["'id",
defects'1))

y_train = train_df['defects']

X_test = log_transformer.transform(test_df.drop(columns=["'id"'1]))

# Define the models

models = [
('RandomForest', RandomForestClassifier(n_estimators=100,
random_state=42)),
('ExtraTrees', ExtraTreesClassifier(n_estimators=100,

random_state=42)),

('HistGradientBoosting', HistGradientBoostingClassifier(
random_state=42)),

('LightGBM', LGBMClassifier(random_state=42)),

('XGBoost', XGBClassifier(use_label_encoder=False, eval_metric="'
logloss', random_state=42)),

('CatBoost', CatBoostClassifier(silent=True, random_state=42))

Claude-3.5-Sonnet
features = train_df.columns[1:-1] # All columns except the target

train_df[features] = np.loglp(train_df[features])
test_df[features] = np.logip(test_df[features])
# Initialize models
models = {
'"RandomForest': RandomForestClassifier (),
"ExtraTrees': ExtraTreesClassifier(),
'"HistGradientBoosting': HistGradientBoostingClassifier(),
'"LightGBM': lgb.LGBMClassifier(),
'XGBoost': xgb.XGBClassifier(use_label_encoder=False,
eval_metric="'logloss'),
'CatBoost': CatBoostClassifier(silent=True)

Table 24: The Generation Example of Setting 2
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The Generation Example of Setting 2

Instruction

GPT-40

Claude-3.5-Sonnet

Problem Description

Running a thriving local restaurant isn’t always as charming as first impressions appear. There are often
all sorts of unexpected troubles popping up that could hurt business.

One common predicament is that restaurants need to know how many customers to expect each day to
effectively purchase ingredients and schedule staff members.

Solution Description

*Features™

1.visit_info:(21,35,63,140,280,350,420) days befor group
air_store_id,weekday,holiday,air_area_name,ai_genre_name like:
(air_store_id,weekday),(air_store_id, holiday),(air_area_name,air_genre_name, holiday) and so on.

;kénsembel*
Use (xgb,lgb,nn) 0.71gb+0.2xgb+0.1*nn: only improved 0.0002 offline.

nn_model = KerasRegressor(build_fn=create_nn, epochs=50, batch_size
=32, verbose=0)

lgb_model = 1lgb.LGBMRegressor (objective='regression', num_leaves=31,
learning_rate=0.05, n_estimators=100)

xgb_model = xgb.XGBRegressor (objective='reg:squarederror',

learning_rate=0.05, n_estimators=100)
# Train models
lgb_model.fit(X_train, y_train)
xgb_model . fit(X_train, y_train)
nn_model.fit(X_train, y_train)

lgb_pred = lgb_model.predict(X_val)
xgb_pred = xgb_model.predict(X_val)
nn_pred = nn_model.predict(X_val)

ensemble_pred = 0.7 x lgb_pred + 0.2 * xgb_pred + 0.1 * nn_pred

# Feature engineering
def create_features(df, label=None, step=14):
# Visit info features
for days in [21, 35, 63, 140, 280, 350, 420]:
df [f'visitors_mean_{days}d'] = df.groupby('air_store_id')['
visitors'].transform(lambda x: x.shift(1).rolling(window
=days).mean())
df[f'visitors_median_{days}d'] = df.groupby('air_store_id"')L
'visitors'].transform(lambda x: x.shift(1).rolling(
window=days).median())

# Create models
def create_model (step):

df = create_features(air_visit, label='visitors', step=step)
X = df.drop(['visit_date', 'visitors', 'target'], axis=1)

y = df['target']

X_train, X_val, y_train, y_val = train_test_split(X, vy,

test_size=0.2, random_state=42)

# LightGBM model

lgb_model = 1lgb.LGBMRegressor(n_estimators=1000, learning_rate
=0.05, num_leaves=31, random_state=42)

lgb_model.fit(X_train, y_train, eval_set=[(X_val, y_val)],
early_stopping_rounds=50, verbose=0)

# Make predictions
def predict(models, test_df):
lgb_pred = models[@].predict(test_df)
xgb_pred = models[1].predict(test_df)
nn_pred = models[2].predict(test_df).flatten()
return 0.7 * lgb_pred + 0.2 * xgb_pred + 0.1 * nn_pred

Table 25: The Generation Example of Setting 2
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The Generation Example of Setting 2

Instruction Problem Description
With the same goal to give the Kaggle community a variety of fairly light-weight challenges that can be
used to learn and sharpen skills in different aspects of machine learning and data science, etc
Your Goal: Predict defects in C programs given various various attributes about the code.

Solution Description

*Pre-processing™: I log-transform all of the input features as suggested by @ambrosm in this post. The
surprising factor here was that there was a small improvement in model performance in most of the
tree-based and boosted-tree models that I considered after the inputs were log-transformed.

In my notebook, I trained the following models: Random Forest, Extra Trees, HistGradientBoosting,
LightGBM, XGBoost, CatBoost

GPT-4o0
# Log-transform the features

X_log = np.loglp(X)
X_test_log = np.loglp(X_test))

# Define the models

rf = RandomForestClassifier(n_estimators=100, random_state=42)
et = ExtraTreesClassifier(n_estimators=100, random_state=42)
hgb = HistGradientBoostingClassifier(random_state=42)

lgbm = 1lgb.LGBMClassifier (random_state=42)

xgb_model = xgb.XGBClassifier(use_label_encoder=False, eval_metric="'
logloss', random_state=42)
cat = cb.CatBoostClassifier(verbose=0, random_state=42)

Qwen2.5-72B .
# Preprocessing

log_transformer = FunctionTransformer(np.loglp, validate=True)

X_train = log_transformer.transform(train_df.drop(columns=["'id",
defects'1))

y_train = train_df['defects']

X_test = log_transformer.transform(test_df.drop(columns=["'id"'1]))

# Define the models

models = [
('RandomForest', RandomForestClassifier(n_estimators=100,
random_state=42)),
('ExtraTrees', ExtraTreesClassifier(n_estimators=100,

random_state=42)),

('HistGradientBoosting', HistGradientBoostingClassifier(
random_state=42)),

('LightGBM', LGBMClassifier(random_state=42)),

('XGBoost', XGBClassifier(use_label_encoder=False, eval_metric="'
logloss', random_state=42)),

('CatBoost', CatBoostClassifier(silent=True, random_state=42))

Claude-3.5-Sonnet
features = train_df.columns[1:-1] # All columns except the target

train_df[features] = np.loglp(train_df[features])
test_df[features] = np.logip(test_df[features])
# Initialize models
models = {
'"RandomForest': RandomForestClassifier (),
"ExtraTrees': ExtraTreesClassifier(),
'"HistGradientBoosting': HistGradientBoostingClassifier(),
'"LightGBM': lgb.LGBMClassifier(),
'XGBoost': xgb.XGBClassifier(use_label_encoder=False,
eval_metric="'logloss'),
'CatBoost': CatBoostClassifier(silent=True)

Table 26: The Generation Example of Setting 2
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The Generation Example of Setting 2 When No Solution Is Given

Instruction

LLM’s Answer

Problem Description

Ready to make a downpayment on your first house? Or looking to leverage the equity in the home you
have? To support needs for a range of financial decisions, Santander Bank offers a lending hand to their

customers through personalized product recommendations.

Under their current system, a small number of Santander’s customers receive many recommendations

while many others rarely see any resulting in an uneven customer experience.

Dataset Description

In this competition, you are provided with 1.5 years of customers behavior data from Santander bank
to predict what new products customers will purchase. The data starts at 2015-01-28 and has monthly

records of products a customer has, such as "credit card", "savings account”, etc.

## Preprocessing

cat_cols = [
"ind_empleado”,"pais_residencia”,"”"sexo"”,"ind_nuevo"”,"indrel”,
indrel_1mes"”,
"tiprel_1mes","indresi”,"”indext"”,"conyuemp”,"canal_entrada”,k"”
indfall”,
"tipodom","nomprov","segmento"”

]

for col in cat_cols:
1bl = LabelEncoder ()
train[col] = 1bl.fit_transform(train[col].astype(str))
test[col] = 1lbl.transform(test[col].astype(str))

train.fillna(-99, inplace=True)
test.fillna(-99, inplace=True)

## Prepare training data

train["fecha_dato”] = pd.to_datetime(train["fecha_dato"])
latest_train = train[train["”"fecha_dato”] == "2016-05-28"]
prev_train = train[train["fecha_dato”] == "2016-04-28"]

## Train one-vs-rest LightGBM models
params = {
'objective': 'binary',
'metric': 'auc',
'"learning_rate': 0.05,
"num_leaves': 32,

}
preds = np.zeros((X_test.shape[0], len(target_cols)))
for i, prod in enumerate(target_cols):

print(f"Training_model_for_{prod}...")
lgb_train = lgb.Dataset(X_train, label=y_train[prod])

model = lgb.train(params, lgb_train, num_boost_round=200)
preds[:, i] = model.predict(X_test, num_iteration=model.

best_iteration)
del 1lgb_train, model
gc.collect ()

## Make top-7 recommendations
preds_sorted = np.argsort(-preds, axis=1)[:, :7]

predicted_products = ["_".join([target_cols[i] for i in row]) for

row in preds_sorted]

submission = pd.DataFrame ({
"ncodpers”: test["ncodpers”],
"added_products”: predicted_products
»

Table 27: The Generation Example of Setting 2 When No Solution Is Given
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The Generation Example of Setting 2 When Solution Is Given

Instruction Problem Description
Ready to make a downpayment on your first house?

Solution Description

*Feature*

For the most part, these are similar to what people mentioned on the forums: lags of products, time since
presence of products, average of products, time since last purchase of products, etc.

*GBM Models*
These submodels are all similar to each other but slightly different from the popular approach on the
forum. .

*NN Models*
These models are multi-target rather than multinomial. They target a length 16 vector of the more more
popular products and are trained on all customers regardless of whether they added a product.

*Post Processing*
Where applicable, each submodel is scored once as Jun-16, once as Jun-15, and once as Dec-15.

LLM’s Answer .
## Preprocessing

# Encode categorical variables

cat_cols = ['ind_empleado', 'pais_residencia', 'sexo', 'ind_nuevo',
"indrel', '"indrel_1mes', 'tiprel_lmes', 'indresi',6 '
indext',
'conyuemp', 'canal_entrada', 'indfall', 'tipodom',
"nomprov', 'segmento']

for ¢ in cat_cols:
le = LabelEncoder ()
train[c] = le.fit_transform(train[c].astype(str))
test[c] = le.transform(test[c].astype(str))

def add_features(df):
# Example lags and averages for product history
for prod in product_cols:
df [prod + "_lagl1”] = df.groupby(”"ncodpers”)[prod].shift (1)
df [prod + "_lag2"] = df.groupby(”"ncodpers”)[prod].shift(2)
df[prod + " _diff"”] = df[prod] - df[prod + "_lagl”"]

# Time since last product addition
return df
## Train LightGBM Model

train_data = lgb.Dataset(X_gbm, label=y_gbm)
gbm_model = lgb.train(params, train_data, num_boost_round=200)

## Train Neural Network Models
X_nn = train.drop(columns=product_cols)
y_nn = train[product_cols].astype(int)

nn_model = Sequential ()
nn_model.add(Dense (512, activation='relu', input_shape=(X_nn.shape

11,00
nn_model . add(Dropout (0.5))
nn_model.add(Dense (512, activation='relu'))

## Post-processing

previous_products = train.groupby("ncodpers”)[product_cols].last()
owned_products = test.merge(previous_products, on="ncodpers”, how="
left")

mask = owned_products[product_cols].values
final_preds[mask == 1] = 0

Table 28: The Generation Example of Setting 2 When Solution Is Given

14329



