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Abstract

Recent advances in Chain-of-Thought (CoT)
prompting have substantially improved the rea-
soning capabilities of Large Language Models
(LLMs). However, these methods often suf-
fer from overthinking, leading to unnecessarily
lengthy or redundant reasoning traces. Exist-
ing approaches attempt to mitigate this issue
through curating multiple reasoning chains for
training LLMs, but their effectiveness is of-
ten constrained by the quality of the generated
data and prone to overfitting. To address the
challenge, we propose Reasoning Compression
ThroUgh Stepwise Trials (ReCUT), a novel
method aimed at balancing the accuracy and
length of reasoning trajectory. Specifically, Re-
CUT employs a stepwise exploration mecha-
nism and a long-short switched sampling strat-
egy, enabling LLMs to incrementally generate
diverse reasoning paths. These paths are evalu-
ated and used to construct preference pairs to
train two specialized models (Gemini LLMs)—
one optimized for reasoning accuracy, the other
for shorter reasoning. A final integrated model
is obtained by interpolating the parameters of
these two models. Experimental results across
multiple math reasoning datasets and back-
bone models demonstrate that ReCUT signif-
icantly reduces reasoning lengths by approxi-
mately 30-50%, while maintaining or improv-
ing reasoning accuracy compared to various
baselines. All codes and data will be released
via https://github.com/NEUIR/ReCUT.

1 Introduction

Recent advances in Chain-of-Thought (CoT) (Wei
et al., 2022) have substantially improved the rea-
soning capabilities of Large Language Models
(LLMs), motivating researchers to explore a new
scaling paradigm—test-time scaling (Muennighoff
et al., 2025; Snell et al., 2024). This paradigm
improves the performance of LLMs on lots of

* indicates equal contribution.
† indicates corresponding author.

Figure 1: Illustration of Our Reasoning Compression
Through Stepwise Trials (ReCUT) Model.

challenging reasoning tasks, such as math com-
petitions (Hendrycks et al., 2021) and PhD-level
subject QA (Rein et al., 2024), by extending the
CoT with deeper and iterative thinking during in-
ference (Wu et al., 2024; Snell et al., 2024). While
effective, test-time scaling incurs higher compu-
tational costs (Lee et al., 2025). Furthermore, re-
cent studies suggest that LLMs often exhibit over-
thinking behaviors, even on relatively simple prob-
lems (Chen et al., 2024), potentially diminishing
the benefits of deeper reasoning in certain cases.

To address the inefficiencies caused by over-
thinking, various strategies have been proposed.
Prompt-based methods aim to guide LLMs to gen-
erate more concise reasoning trajectories. SFT-
based methods prompt LLMs to sample multiple
reasoning trajectories and select the concise and
correct ones to synthesize SFT data for fine-tuning
itself (Team et al., 2025). However, the former
may cause the LLMs to omit critical intermediate
steps (Jin et al., 2024; Lee et al., 2025), while the
latter may lead to overfitting to the training sig-
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nals (Luo et al., 2023). Reinforcement learning
(RL)-based methods represent another promising
research direction (Aggarwal and Welleck, 2025),
where carefully designed reward functions penalize
overly long reasoning trajectories and inaccurate
outputs, thereby guiding LLMs to produce concise
and accurate reasoning results.

Existing RL-based methods typically sample
multiple complete reasoning trajectories using a
single instruction to compute their rewards and
construct preference data for training. However,
this sampling strategy inherently limits the diver-
sity of reasoning trajectories (Liu et al., 2023), re-
sulting in convergent distributions in terms of both
length and accuracy. Furthermore, such approaches
often overlook the fine-grained contributions of in-
dividual reasoning steps in reasoning trajectories,
allowing even the correct trajectories to include
redundant steps (Wang et al., 2025). These limi-
tations compromise the quality of the constructed
preference data, ultimately resulting in suboptimal
reasoning performance, which motivates us to ex-
plore a better method for constructing high-quality
preference data. Recent methods that search for
optimal reasoning paths by stepwise decoding have
achieved advantages in reducing reasoning errors
and redundancies generated by LLMs (Wang et al.,
2025). This success inspires us to construct high-
quality and diverse preference data by prompting
the model to stepwise explore reasoning paths.

In this paper, we propose ReCUT (Reasoning
Compression Through Stepwise Trials), a method
that guides LLMs to progressively explore di-
verse reasoning trajectories and optimizes them
via preference-based learning to balance reason-
ing accuracy and length. As shown in Figure 1,
ReCUT introduces a stepwise reasoning trajectory
exploration mechanism: at each step, the LLM is
conditioned on a partially optimal trajectory and
generates all subsequent reasoning steps using a
long-short sampling strategy to encourage diversity.
All trajectories produced via stepwise sampling
are incorporated with the given optimal trajectory
and then collected into a candidate pool. Then the
first step of the generated reasoning outcome is
further evaluated to incrementally construct the op-
timal reasoning path. After trajectory collection,
ReCUT leverages this candidate pool to train two
specialized LLMs (Gemini LLMs)—one favoring
accuracy and the other favoring shorter reasoning
results. Finally, ReCUT performs parameter in-
terpolation between these two optimized LLMs to

achieve a trade-off between the reasoning accuracy
and the length of reasoning results.

Our experiments demonstrate the effectiveness
of ReCUT, which significantly reduces the reason-
ing length, typically by 30-50%, while maintain-
ing or even surpassing the accuracy of baseline
methods. Further analysis reveals that our stepwise
sampling strategy enables the synthesis of diverse
reasoning trajectories, helping LLMs regulate the
number of reasoning steps through preference op-
timization. By leveraging parameter interpolation,
ReCUT not only achieves higher accuracy but also
further shortens the reasoning process by combin-
ing the strengths of both Gemini LLMs. Moreover,
ReCUT effectively mitigates overthinking in LLMs
by reducing redundant reasoning steps and identi-
fying unproductive reasoning paths that may lead
to incorrect answers.

2 Related Work

The test-time scaling law suggests that LLMs,
such as Deepseek-R1 (DeepSeek-AI et al., 2025)
and QwQ (Team, 2025), can enhance their perfor-
mance on challenging reasoning and mathematical
tasks (Wu et al., 2024; Snell et al., 2024) by en-
gaging in deeper reasoning (DeepSeek-AI et al.,
2025) and producing longer Chains-of-Thought
(CoT) (Wei et al., 2022). While effective, these
approaches often cause LLMs to overthink (Sui
et al., 2025), resulting in redundant or irrelevant
content (Chiang and Lee, 2024), which not only
increases inference cost but may also lead to incor-
rect answers (Cuadron et al., 2025).

To better balance reasoning efficiency and accu-
racy, recent work has explored efficient reasoning
with LLMs, with a particular focus on reducing
and controlling the length of reasoning chains (Lee
et al., 2025; Aggarwal and Welleck, 2025; Cui
et al., 2025). Some approaches design special-
ized prompts to directly shorten the generated re-
sponses (Renze and Guven, 2024; Lee et al., 2025).
However, such strategies may truncate essential in-
termediate reasoning steps, ultimately compromis-
ing accuracy (Aggarwal and Welleck, 2025). To
address this problem, Kang et al. (2025); Muen-
nighoff et al. (2025) leverage advanced LLMs
(e.g., ChatGPT (OpenAI et al., 2023)) to gener-
ate concise yet accurate CoTs as training data for
Supervised Fine-Tuning (SFT). Nevertheless, this
method is inherently limited by the capabilities of
the teacher models and may lead to overfitting to

14270



the provided training signals.
Benefiting from advances in reinforcement learn-

ing (Schulman et al., 2017; Shao et al., 2024), re-
cent studies have leveraged it to enable LLMs to
adaptively control the length of their reasoning pro-
cesses. Aggarwal and Welleck (2025) introduce a
length bias penalty and an accuracy reward during
training to encourage LLMs to generate accurate
reasoning using fewer tokens. Chen et al. (2025)
propose a cosine reward mechanism that promotes
reasoning trajectories of moderate length by penal-
izing both overly short and overly long generations.
However, these approaches compute rewards based
on entire reasoning trajectories, without estimating
the contribution of individual steps in the whole
reasoning chain. In contrast, ReCUT leverages
a step-wise sampling strategy to elicit more fine-
grained and diverse preference data from LLMs,
which enhances the training process for reasoning
compression.

3 Methodology

This section presents Reasoning Compression
Through Stepwise Trials (ReCUT), a method de-
signed to reduce the reasoning length of Large Lan-
guage Models (LLMs) while maintaining compa-
rable performance. As shown in Figure 2, we first
introduce the Long-Short Switch Sampling strategy,
which adaptively constructs a reasoning trajectory
pool Cq containing trajectories of varying lengths
(Sec. 3.1). Then, we leverage these trajectories
to train multiple Gemini-LLMs with complemen-
tary strengths and interpolate their parameters to
balance reasoning accuracy and length (Sec. 3.2).

3.1 Stepwise Reasoning Trajectory
Exploration via Long-Short Sampling

Given a question q, the reasoning trajectory
produced by an LLM is denoted as Y =
{y1, . . . , yT , o}, where y1:T are intermediate rea-
soning steps and o is the final answer.

At step t, we design the Long-Short Switched
Sampling method to use both long and short
prompting instructions to guide the LLM to gener-
ate the following reasoning trajectories Y≥t with
different lengths, based on the current optimal par-
tial trajectory Y ∗

<t = {y∗1, ..., y∗t−1}. The sampled
full trajectory Y ∗

<t ∪ Y≥t is added to the trajectory
pool Cq. We then propose the Optimal Reason-
ing Step Selection method. It designs a reward-
based mechanism to select the optimal reasoning

step y∗t , thereby updating the optimal trajectory
Y ∗
<t+1 = Y ∗

<t ∪ {y∗t } fortrajectory sampling at the
next step.

Long-Short Switched Sampling. At each step
t, given the question q and current optimal partial
trajectory Y ∗

<t, we prompt the LLM (M) to gener-
ate two reasoning continuations–one long and one
short–via different instructions:

Y l
≥t =M(Instructl(q, Y ∗

<t)),

Y s
≥t =M(Instructs(q, Y ∗

<t)),
(1)

where Instructl and Instructs are tailored prompts
that guide the model to produce reasoning of dif-
ferent lengths. We then concatenate the existing
partial trajectory with each of the new continua-
tions to form full candidate trajectories:

Y l
[t] = (Y ∗

<t ∪ Y l
≥t), Y

s
[t] = (Y ∗

<t ∪ Y s
≥t), (2)

where the subscript [t] indicates the concatenation
occurs at step t. Both reasoning trajectories Y l

[t]
and Y s

[t] are added to the candidate pool Cq:

Cq ← Cq ∪ {Y l
[t]} ∪ {Y s

[t]}. (3)

Optimal Stepwise Reasoning Selection. Each
candidate trajectory Y[t] is evaluated using a reward
function that considers both accuracy and reason-
ing length:

r(Y[t]) =





1

|Y[t]|
, if o = ogold,

− 1

|Y[t]|
, if o ̸= ogold,

(4)

where ogold is the ground-truth answer and |Y[t]|
denotes the number of tokens in Y[t]. This reward
function is designed to encourage the LLMs to
explore trajectories that consider both length and
accuracy. The reward function simultaneously en-
courages the correctness of the reasoning trajectory
and penalizes its length. When the final answer in
a trajectory is correct, we want the LLM to explore
shorter trajectory directions to reduce the length.
Conversely, when the final answer is incorrect, we
prefer the LLM to explore longer trajectory direc-
tions, as incorrect answers may require a longer
reasoning chain to be corrected.

We compare the rewards of the long and short
trajectories and select the reasoning step y∗t from
the trajectory with the higher reward:

y∗t = argmax(r(Y l
[t]), r(Y

s
[t])). (5)
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Figure 2: The Overview of Our Reasoning Compression Through Stepwise Trials (ReCUT) Model.

The optimal trajectory is then updated by append-
ing y∗t :

Y ∗
<t+1 = Y ∗

<t ∪ y∗t . (6)

This process is repeated iteratively until either the
maximum step T is reached or the generation pro-
cess terminates.

3.2 Gemini LLM: Balancing Accuracy and
Length via Parameter Interpolation

In this section, we present Gemini LLM, a method
that achieves a trade-off between the reasoning
trajectory accuracy and length through parameter
interpolation.

Given a question q and its corresponding rea-
soning trajectory pool Cq, we first construct two
distinct preference datasets: Dacc and Dlen, each
reflecting a different optimization objective. These
datasets are used to train two specialized LLMs:
Macc, which emphasizes answer accuracy, and
Mlen, which encourages a shorter reasoning result.
The final Gemini model,Mmerge, is obtained via
parameter interpolation between these two mod-
els, enabling it to balance the trade-off between
accuracy and reasoning length during inference.

Gemini LLM Optimization. For each reason-
ing trajectory Yi ∈ Cq, we select the one with the
correct final answer o and the shortest length as the
positive sample:

Y + = arg min
Yi∈Cq

(|Yi|) s.t. o = ogold, (7)

where |Yi| denotes the number of tokens in trajec-
tory Yi. Next, for each Y +, we select two negative
samples from Cq: 1) Y −

acc is the longest incorrect
trajectory, i.e., a long trajectory that leads to an
incorrect final answer; 2) Y −

len is the longest correct
trajectory, i.e., a long trajectory that produces the
correct answer. Formally, this can be described as:

Y −
acc = arg max

Yi∈Cq
(|Yi|) s.t. o ̸= ogold,

Y −
len = arg max

Yi∈Cq
(|Yi|) s.t. o = ogold.

(8)

Using the identified samples, we construct
two preference datasets: Dacc comprises triples
(q, Y +, Y −

acc), which focuses on accuracy; Dlen
comprises triples (q, Y +, Y −

len), which focuses on
length compression.

We then fine-tune the same base modelM sep-
arately on these datasets using Direct Preference
Optimization (DPO) (Rafailov et al., 2023):

Mlen = argmin
M
LDPO(Dlen),

Macc = argmin
M
LDPO(Dacc),

(9)

where the DPO loss is defined as:

LDPO(D) = −E(q,Y +,Y −)∼D[log σ(

β log
M(Y + | q)
Mref(Y + | q) − β log

M(Y − | q)
Mref(Y − | q))],

(10)
where β is a hyperparameter andMref is a frozen
reference model. Both Dacc and Dlen share the
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same positive samples Y + but differ in their nega-
tive samples.

Parameter Interpolation. To combine the
strengths ofMacc andMlen, we perform parame-
ter interpolation using the DARE-Ties strategy (Yu
et al., 2024):

Mmerge = θacc + α · Topx(θlen), (11)

where θacc and θlen are the parameters of Macc
and Mlen, respectively. Here, θacc serves as the
base, and a sparsely selected fraction of parameters
(controlled by Topx) from θlen are added with inter-
polation weight α. This approach allowsMmerge to
incorporate the high-accuracy capability ofMacc
and the reasoning compression capability ofMlen,
effectively balancing performance and length.

4 Experimental Methodology

This section first describes the datasets, evaluation
metrics, and baselines, followed by the implemen-
tation details of our experiments.

Dataset. In our experiments, we follow prior
work (Aggarwal and Welleck, 2025; Li et al., 2025)
and adopt math reasoning datasets for training and
evaluation of LLMs. Specifically, we randomly
sample 8,000 math question-answer pairs from the
DeepScaleR-Preview-Dataset (Luo et al., 2025) to
construct our training set. This dataset comprises
question-answer pairs collected from AIME, AMC,
Omni-Math (Gao et al., 2024), and STILL (Min
et al., 2024). For evaluation, we use math rea-
soning benchmarks spanning a range of difficulty
levels, including GSM8K (Cobbe et al., 2021),
MATH500 (Hendrycks et al., 2021), AMC23,
AIME24 and AIME25. Except for GSM8K, all
other evaluation datasets are sourced from the
Math-AI repository1.

Evaluation Metrics. Following Li et al. (2025),
we use Pass@1 to evaluate the final answer. And
we also show the number of generated tokens (#To-
ken) to estimate the inference latency.

Baselines. We compare our ReCUT model
against several baselines, including zero-shot
prompting, Supervised Fine-Tuning (SFT), and Re-
inforcement Learning (RL) approaches.

We first consider two zero-shot baselines:
Vanilla LLM and Chain of Draft (CoD) (Xu et al.,
2025). For Vanilla LLM, we prompt the LLM to
reason step-by-step to answer the question. CoD
enhances this by introducing instructions that guide

1https://huggingface.co/math-ai

the LLM to generate concise and focused content
at each reasoning step. Next, for the SFT model,
we select the reasoning trajectory with the highest
reward from the candidate set Cq of the query q and
fine-tune the LLM to replicate it.

For the RL-based baselines, we consider Direct-
DPO, L1 (Aggarwal and Welleck, 2025) and O1-
pruner (Haotian Luo and Tao., 2025). Direct-DPO
generates 20 reasoning trajectories per question
and constructs a DPO training dataset by treating
correct trajectories as positives and incorrect ones
as negatives. L1 incorporates both reasoning length
and answer accuracy into the reward function and
trains the LLM using the GRPO algorithm (Shao
et al., 2024). O1-pruner first estimates the reference
model’s performance through presampling and then
uses off-policy RL-style finetuning to encourage
the model to generate shorter reasoning processes
under accuracy constraints.

Implementation Details. In our experiments,
we employ Qwen2.5-7B-Instruct (Yang et al., 2024)
and Llama-3.1-8B-Instruct (Grattafiori et al., 2024)
as backbones to implement all models. During
dynamic step-wise sampling, we set different maxi-
mum exploration steps T for Qwen2.5-7B-Instruct
and Llama-3.1-8B-Instruct, which are 8 and 12, re-
spectively. During training, each model is trained
for 1 epoch. We use LoRA (Hu et al., 2022) for ef-
ficient training. When using DARE-Ties2 to imple-
ment parameter interpolation, we set the parameter
density Topx and weight α to 0.25.More detailed
experimental setup details can be found in the Ap-
pendix A.7.

5 Evaluation Results

In this section, we first present the overall perfor-
mance of ReCUT, followed by ablation studies to
examine the contributions of its components. We
then analyze the effectiveness of ReCUT in reason-
ing compression. Finally, we provide case studies
for further illustration.

5.1 Overall Performance

Table 1 presents the overall performance of ReCUT
and baseline methods across different mathematical
tasks and backbone models.

ReCUT consistently achieves the shortest reason-
ing trajectories across these math tasks of varying
difficulty, while maintaining comparable accuracy

2https://github.com/arcee-ai/mergekit
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Model AIME24 AIME25 AMC23 Math500 GSM8K Avg.
P@1 #Tok. P@1 #Tok. P@1 #Tok. P@1 #Tok. P@1 #Tok. P@1 #Tok.

Qwen2.5-7B
Vanilla 10.0 3,252 6.7 2,855 47.5 2,512 68.0 1,570 87.4 974 43.9 2,233
CoD 0.0 419 0.0 401 15.0 162 28.8 143 41.7 71 17.1 239
SFT 6.0 4,055 10.0 3,159 55.0 1,992 68.6 1,560 87.2 899 45.4 2,333
Direct-DPO 10.0 3,887 3.3 2,407 60.0 2,496 71.2 1,625 87.3 972 46.4 2,277
O1-pruner 10.0 3,016 3.3 2,863 47.5 2,076 68.0 1,531 84.7 957 42.7 2,809
L1 3.3 3,203 13.3 3,191 47.5 3,108 59.4 3,053 57.6 3,366 36.2 3,184
ReCUT 10.0 1,627 13.3 1,670 50.0 1,425 69.2 1,062 86.0 704 45.7 1,298
Llama-3.1-8B
Vanilla 0.0 7,943 0.0 6,188 22.5 7,518 43.4 3,718 72.1 1,290 27.6 5,331
CoD 0.0 2,470 0.0 4,907 20.0 1,851 23.4 1,720 37.0 486 16.1 2,287
SFT 6.7 10,802 0.0 6,332 30.0 5,013 45.8 4,094 74.9 1,246 31.5 5,497
Direct-DPO 10.0 9,783 0.0 8,094 25.0 6,961 44.8 3,588 74.1 1,228 30.8 5,931
L1 3.3 4,705 0.0 6,185 32.5 4,328 44.2 2,915 61.0 1,301 28.2 3,887
O1-pruner 3.3 7,259 0.0 7,869 22.5 3,215 44.2 2,996 74.4 1,094 28.9 4,487
ReCUT 6.7 2,787 0.0 3,182 22.5 1,879 42.4 1,618 73.9 823 29.1 2,058

Table 1: Overall Performance. P@1 refers to the evaluation metric Pass@1, and #Tok. indicates the number of
tokens contained in the reasoning trajectory.

Model AIME24 AIME25 AMC23 Math500 GSM8K Avg.
P@1 #Tok. P@1 #Tok. P@1 #Tok. P@1 #Tok. P@1 #Tok. P@1 #Tok.

Qwen2.5-7B
ReCUT 10.0 1,627 13.3 1,670 50.0 1,425 69.2 1,062 86.0 704 45.7 1,298
w/o Explore 13.3 3,073 3.3 2,275 45.0 1,945 67.8 1,401 80.3 811 41.9 1,901
w/o Prompt 3.3 1,753 6.7 1,808 50.0 1,528 63.3 1,183 80.3 775 40.7 1,409
Only Macc 17.0 2,231 3.3 2,232 57.5 2,464 70.0 1,491 86.6 910 46.9 1,866
Only Mlen 10.0 1,682 13.3 1,640 50.0 1,815 68.0 1,102 87.4 703 45.7 1,388
Llama-3.1-8B
ReCUT 6.7 2,787 0.0 3,182 22.5 1,879 42.4 1,618 73.9 823 29.1 2,058
w/o Explore 3.3 7,389 0.0 5,880 17.5 6,806 42.0 3,199 64.8 1,224 25.2 4,900
w/o Prompt 6.7 2,458 0.0 2,122 22.5 1,887 39.6 1,524 74.4 797 28.6 1,758
Only Macc 3.3 2,785 0.0 4,801 22.5 2,842 43.4 1,954 74.8 887 28.8 2,654
Only Mlen 0.0 2,313 0.0 2,293 17.5 1,859 41.6 1,562 73.9 817 26.6 1,769

Table 2: Ablation Study. Both ReCUT (OnlyMacc) and ReCUT (OnlyMlen) are Gemini LLMs.

to baseline models. This demonstrates the effective-
ness of ReCUT in achieving an optimal trade-off
between reasoning accuracy and efficiency. No-
tably, ReCUT surpasses the Vanilla LLM on most
tasks, achieving higher Pass@1 scores while con-
suming only about half the number of tokens. This
indicates that ReCUT significantly reduces infer-
ence cost and enables more efficient utilization
of computational resources. Moreover, ReCUT
demonstrates strong generalization ability, consis-
tently improving both accuracy and reasoning com-
pression over Vanilla LLMs across different foun-
dation models, such as Qwen and Llama.

Among baseline methods, CoD effectively short-
ens reasoning trajectories but suffers a notable drop
in accuracy, suggesting that prompting LLMs to
compress reasoning without proper guidance may
lead to the omission of critical information. In
contrast, both SFT and Direct-DPO improve accu-
racy by fine-tuning LLMs with the shortest correct

reasoning paths but fail to compress the reasoning
length effectively. ReCUT leverages preference-
based learning to better guide LLMs in balancing
accuracy and length. Furthermore, ReCUT outper-
forms the L1 model and O1-pruner model trained
via GRPO, which also considers both accuracy
and length rewards. ReCUT achieves significantly
higher Pass@1 scores while substantially reducing
token usage, demonstrating its ability to effectively
integrate signals from both reasoning quality and
efficiency.

5.2 Ablation study

As shown in Table 2, we compare ReCUT with four
ablated variants: ReCUT w/o Explore, ReCUT w/o
Prompt, ReCUT (OnlyMacc), and ReCUT (Only
Mlen). Specifically, ReCUT w/o Explore replaces
the stepwise sampling strategy with direct long-
short sampling for generating reasoning trajecto-
ries. ReCUT w/o Prompt retains stepwise sampling
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Figure 3: Average Lengths of Reasoning Outputs Across
Models. We plot the output lengths of ReCUT and
Vanilla LLMs in scenarios where the models produce
correct and incorrect answers. All evaluation datasets
are used in this experiment.

but removes the long-short switch prompt, using
a unified prompt that does not control reasoning
length during sampling. Both ReCUT (OnlyMacc)
and ReCUT (OnlyMlen) are LLMs trained to con-
duct an accurate answer and encourage a shorter
reasoning result, respectively.

Compared to the full ReCUT model, both Re-
CUT w/o Explore and ReCUT w/o Prompt exhibit
a clear drop in reasoning accuracy, demonstrating
the effectiveness of both stepwise sampling and
the long-short instruction mechanisms. The per-
formance gap between these two variants further
highlights that stepwise sampling contributes more
significantly to improving reasoning compression
during DPO training. Both ReCUT (OnlyMacc)
and ReCUT (OnlyMlen) achieve comparable over-
all performance but exhibit distinct preferences: the
former tends to generate longer reasoning results
to maximize accuracy, while the latter sacrifices
some accuracy to produce shorter reasoning out-
puts. By interpolating the parameters of these two
models, ReCUT can better balance the reasoning
accuracy and length. More concretely, ReCUT re-
duces reasoning length while maintaining accuracy
when using Qwen2.5-7B as the backbone. With
Llama-3.1-8B, ReCUT improves accuracy at the
cost of generating slightly longer reasoning results.

5.3 The Effectiveness of ReCUT in Reasoning
Compression

This experiment evaluates the effectiveness of Re-
CUT in compressing the reasoning outcomes. We
begin by presenting the lengths of the generated
reasoning trajectories, followed by an analysis of
the reasoning steps used to solve problems.

(a) Reasoning Steps Required
for Solving GSM8K Ques-
tions.

(b) Reasoning Steps Required
for Solving AMC23 Ques-
tions.

(c) Accuracy vs. Reasoning
Steps on GSM8K.

(d) Accuracy vs. Reasoning
Steps on AMC23.

Figure 4: Performance of Different Models Across Rea-
soning Steps. Both the Vanilla LLM and ReCUT vari-
ants are implemented using Qwen2.5-7B. All models
are evaluated on GSM8K and AMC23.

Average Length. We first generate reasoning
outputs using both the Vanilla LLM and ReCUT
across all evaluation datasets. To better understand
the behavior of each model, we categorize the out-
puts into two groups: correct and incorrect, depend-
ing on whether the final answer is accurate.

As shown in Figure 3, for the Vanilla LLM,
incorrect reasoning trajectories tend to be longer
than correct ones, particularly for Llama-3.1-8B.
This suggests that when faced with challeng-
ing problems, LLMs are prone to overthinking—
producing unnecessarily lengthy and complex rea-
soning chains that consume more computational
resources while ultimately leading to incorrect an-
swers. In contrast, ReCUT significantly shortens
both correct and incorrect reasoning trajectories
and reduces the gap in length between them. This
demonstrates the ability of ReCUT to compress rea-
soning effectively and eliminate redundant content,
even under difficult reasoning scenarios.

Reasoning Performance Across Steps. As
shown in Figure 4, we collect the reasoning trajec-
tories generated by ReCUT and the Vanilla LLM on
the AMC23 and GSM8K datasets. We retain only
those trajectories that lead to correct answers and
analyze their distribution across reasoning steps.
All models are based on Qwen2.5-7B. Results for
models implemented with Llama-3.1-8B are pro-
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Prompt AIME24 AIME25 AMC23 Math500 GSM8K Avg.
P@1 #Tok. P@1 #Tok. P@1 #Tok. P@1 #Tok. P@1 #Tok. P@1 #Tok.

Prompt-1
Vanilla 10.0 3,244 10.0 2,364 52.5 2,129 72.0 1,571 88.4 956 46.6 2,053
ReCUT 13.3 2,116 13.3 2,022 52.5 1,774 73.8 1,299 88.0 849 48.2 1,612
Prompt-2
Vanilla 6.7 2,833 3.3 2,236 52.5 1,838 73.0 1,446 77.5 681 42.6 1,807
ReCUT 6.7 2,144 10.0 1,833 52.5 1,701 73.0 1,148 82.6 604 45.0 1,486

Table 3: Experimental results of Qwen2.5-7B at two different prompts

Prompt AIME24 AIME25 AMC23 Math500 GSM8K Avg.
P@1 #Tok. P@1 #Tok. P@1 #Tok. P@1 #Tok. P@1 #Tok. P@1 #Tok.

Prompt-1
Vanilla 0.0 5,209 0.0 9,898 12.5 7,138 42.0 3,249 59.4 913 22.8 5,281
ReCUT 3.3 2,339 0.0 2,427 22.5 1,902 44.2 1,446 59.0 751 25.8 1,773
Prompt-2
Vanilla 3.3 8,329 0.0 9,308 17.5 5,313 44.6 2,819 64.9 784 26.1 5,311
ReCUT 3.3 3,829 0.0 1,984 22.5 1,859 42.4 1,584 67.8 532 27.2 1,958

Table 4: Experimental results of Llama-3.1-8B at two different prompts

vided in Appendix A.2.
Figures 4(a) and 4(b) illustrate the number of

reasoning steps required to solve problems. Re-
CUT consistently reduces the number of reasoning
steps across all evaluation settings. On the rel-
atively simpler GSM8K dataset, ReCUT solves
most problems within approximately 4 steps, out-
performing the Vanilla LLM. On the more complex
dataset AMC23, ReCUT typically solves problems
in fewer than 10 steps, indicating its ability to con-
struct more efficient reasoning trajectories by incor-
porating necessary information early on and avoid-
ing unnecessarily lengthy chains of reasoning.

Figures 4(c) and 4(d) present the reasoning ac-
curacy at each step. ReCUT consistently reaches
correct answers in fewer steps compared to the
Vanilla LLM. On GSM8K, both ReCUT and the
Vanilla LLM generate correct reasoning trajectories
in over 80% of cases within 6 steps. However, the
advantage of ReCUT becomes more evident on the
challenging AMC23 dataset, where it achieves 60%
accuracy within just 7 steps—significantly outper-
forming the Vanilla LLM. These results demon-
strate that ReCUT effectively shortens reasoning
trajectories without compromising accuracy, mit-
igating the overthinking problem commonly ob-
served in Vanilla LLMs.

5.4 Validity of ReCUT Prompt Settings

In this section, we primarily compare the exper-
imental results of the ReCUT prompt with those
using prompts from two other papers to validate
the generalization capability of our prompt design.

To assess ReCUT’s generalization ability, we
adopt prompt templates from different papers dur-
ing inference. Specifically, Prompt-1 is taken from
Done Is Better than Perfect (Zihao Zeng and Deng,
2025), which uses a simple thought chain format
for step-by-step thinking. Prompt-2 is taken from
Search-o1 (Li et al., 2025), where the model is in-
structed to answer the question directly. Prompt-1
and Prompt-2 is shown in Figure 8 in the appendix.
As shown in the table 3 and table 4, under both
prompts, ReCUT not only improves reasoning ac-
curacy but also shortens the reasoning trajectory
length. This demonstrates that the ReCUT method
is not influenced by prompt templates, indicating
that our approach possesses a degree of generaliza-
tion capability.

5.5 Case Study

In this section, we randomly select a case from
AMC23 to demonstrate the effectiveness of ReCUT
in balancing the accuracy and length of reasoning
trajectories. In this case, the question is a math
competition problem that is relatively difficult and
contains traps in the problem-solving process.

As shown in Table 5, the overall number of steps
in the reasoning trajectory generated by Vanilla
LLM is significantly greater than that of ReCUT.
To derive the intermediate variable “x = 0 or
x = 200

29 ”, Vanilla LLM takes nearly four reasoning
steps, whereas ReCUT accurately reaches this re-
sult midway through its third reasoning step. This
indicates that ReCUT significantly improves the
reasoning efficiency of the LLM. In the subsequent
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Figure 5: Case Study. A comparison between the Vanilla LLM and ReCUT (Qwen2.5-7B). The red box marks the
first step in the reasoning process where the model begins to exhibit errors.

calculation process, Vanilla LLM produces incor-
rect intersection points of the circles, which leads
to a division by zero when computing the slope.
Although Vanilla LLM attempts self-reflection to
resolve the issue, it still outputs an incorrect answer.
In contrast, ReCUT accurately identifies the inter-
section points and completes the slope calculation
using a much more concise reasoning trajectory, ar-
riving at the correct answer. This demonstrates that
ReCUT not only reduces the number of reasoning
steps but also ensures the correctness and validity
of answers, effectively balancing reasoning length
and accuracy.

6 Conclusion

In this paper, we introduce ReCUT (Reasoning
Compression Through Stepwise Trials), an effec-
tive method designed to optimize LLMs to mit-
igate the overthinking issue. ReCUT introduces
a stepwise reasoning trajectory exploration mech-
anism to construct a more diverse reinforcement
learning training dataset and train Gemini LLMs
to balance accuracy and length via parameter in-
terpolation. Our experimental analysis reveals that
ReCUT achieves considerable improvements in to-
ken efficiency and maintains or enhances accuracy
across different difficulty levels of math tasks and
various backbone models.

7 Limitation

Although Model ReCUT demonstrates effective-
ness in balancing the accuracy and length of the
generated reasoning trajectories, there are still
some limitations. First, the stepwise reasoning
trajectory exploration strategy of the ReCUT is
limited by the instruction-following capability of
the LLMs. If the LLMs fail to effectively follow
the designed instructions to stepwise generate rea-
soning trajectories, it will affect the quality of the
constructed preference dataset. Furthermore, the
parameter selection in the parameter interpolation
method, DARE-Ties, is based on empirical prac-
tices from prior work. When merging models with
relatively weaker performance, they typically set
the weight and density around 0.3-0.4 to prevent
degrading the performance of the merged model.
Therefore, we don’t conduct further analysis or
experiments on parameter selection.
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(a) Reasoning Steps Required
for Solving GSM8K Ques-
tions.

(b) Reasoning Steps Required
for Solving AMC23 Ques-
tions.

(c) Accuracy vs. Reasoning
Steps on GSM8K.

(d) Accuracy vs. Reasoning
Steps on AMC23.

Figure 6: Performance of Different Models Across Rea-
soning Steps. Both the Vanilla LLM and ReCUT vari-
ants are implemented using Llama3.1-8B. All models
are evaluated on GSM8K and AMC23.

A Appendix

A.1 License

We show the licenses for our use of the datasets,
AIME24, AMC23 are not currently labeled with
license types, MATH500 is licensed under the
Apache License 2.0, AIME25 and GSM8K is li-
censed under the MIT license.

A.2 Reasoning Performance of Llama-Based
Models

We conduct additional experiments, as shown in
Figure 6, to further evaluate the effectiveness of
Llama-based models. Specifically, we compare the
performance of the Vanilla LLM and the ReCUT
model on two benchmarks: GSM8K and AMC23.

As illustrated in Figures 6(a) and 6(b), ReCUT
consistently requires fewer reasoning steps to ar-
rive at correct answers, further validating its effec-
tiveness in reasoning compression. Notably, for
the more challenging AMC23 dataset, the Vanilla
LLM requires significantly more reasoning steps
than Qwen2.5-7B (Figure 4(b)), which can be at-
tributed to differences in backbone model capa-
bility. Even under such conditions, ReCUT sub-
stantially reduces the number of reasoning steps
required, highlighting its strong generalization abil-
ity across different model backbones. In addition,

Long Instruction

Please think step by step to solve this problem, and think 
deeply about each step.
Problem:
{problem}

Your answer must follow the format below:
[STEP1]: ...
[STEP2]: ...
...
[STEPn]: Final reasoning...(Note: n represents the number 
of your last step of reasoning.)
Final answer: {answer}

Now continue thinking from [STEP1].

Short Instruction

Please think step by step to solve this problem, and each 
step should be concise but critical.
Problem:
{problem}

Your answer must follow the format below:
[STEP1]: ...
[STEP2]: ...
...
[STEPn]: Final reasoning...(Note: n represents the number 
of your last step of reasoning.)
Final answer: {answer}

Now continue thinking from [STEP1].

Vanilla

Please think step by step to solve this problem.
Problem:
{problem}

Your answer must follow the format below:
[STEP1]: ...
[STEP2]: ...
...
[STEPn]: Final reasoning...(Note: n represents the 
number of your last step of reasoning.)
Final answer: {answer}

Now continue thinking from [STEP1].

Figure 7: The Instruction Used in Our Experiments.

Figures 6(c) and 6(d) show the step-wise reasoning
accuracy of different models. ReCUT consistently
achieves higher accuracy with fewer steps, demon-
strating its ability to generate more efficient and
effective reasoning trajectories.

A.3 The Instruction Used in Our Experiments

In this section, we give three different kinds of
instructions used in our experiments: the Long
Instruction, the Short Instruction, and the Vanilla.

As shown in Figure 7, Long Instruction and
Short Instruction are used in the Long-Short Sam-
pling method to prompt the model to generate
long and short reasoning trajectories, respectively.
Vanilla refers to the instruction used by the model
during training and inference, which does not em-
ploy any control over the length of the generated
reasoning trajectory.
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Model AIME24 AIME25 AMC23 Math500 GSM8K Avg.
P@1 #Tok. P@1 #Tok. P@1 #Tok. P@1 #Tok. P@1 #Tok. P@1 #Tok.

Qwen2.5-7B
α = 0.05 10.0 1,756 3.3 1,694 52.5 1,732 67.6 1,126 84.0 733 43.4 1,408
0.15 6.7 1,954 3.3 1.671 47.5 1.539 68.6 1.158 86.6 696 42.5 1,404
0.35 10.0 1,839 10.0 1,829 52.5 1,523 67.2 1,145 84.9 756 44.9 1,418
0.45 10.0 1,639 3.3 1,722 50.0 1,456 66.7 1,218 84.2 728 42.8 1,353
ReCUT 10.0 1,627 13.3 1,670 50.0 1,425 69.2 1,062 86.0 704 45.7 1,298
Llama-3.1-8B
α = 0.05 3.3 3,680 0.0 3,036 12.5 1,893 38.8 1,594 65.0 807 23.9 2,202
0.15 6.7 2,739 0.0 3,318 20.0 2,248 38.2 1,467 62.7 784 25.5 2,111
0.35 6.7 2,109 0.0 2,989 17.5 2,137 37.2 1,453 64.4 769 25.2 1,891
0.45 6.7 2,554 0.0 2,342 20.0 1,860 38.2 1,538 62.7 786 24.8 1,816
ReCUT 6.7 2,787 0.0 3,182 22.5 1,879 42.4 1,618 73.9 823 29.1 2,058

Table 5: Experiment on Analysis of the α Parameter. The experimental results of different interpolation weights α
are analyzed statistically.

Model AIME24 AIME25 AMC23 Math500 GSM8K Avg.
P@1 #Tok. P@1 #Tok. P@1 #Tok. P@1 #Tok. P@1 #Tok. P@1 #Tok.

Qwen2.5-7B
GRPO-ReCUT 6.7 2,276 13.3 2,152 52.5 1,496 70.4 1,376 88.4 832 46.6 1,626
DPO-ReCUT 10.0 1,627 13.3 1,670 50.0 1,425 69.2 1,062 86.0 704 45.7 1,298

Table 6: RL Performance. ReCUT results using two different RL methods, GRPO and DPO.

Figure 8: The Instruction Used in Our Experiments.

A.4 Results of two different prompt model
responses

As shown in Figure 9, we present two cases gen-
erated from prompt-1 and prompt-2, This prompt
is located in Figure 8. The **bold part** empha-
sizes the behaviors exhibited by the model, such
as reflection, trial and error, and similar reasoning
processes. And it is not strictly enforced to show a
step-by-step reflection. This reflects the generaliza-
tion of our trained model. This proves that the ef-
fectiveness of the training did not lose the model’s
ability to be reflective and self-competent. For ex-
ample, in the first case, the model first mentions

the standard method for dealing with the Frobe-
nius coin problem, and then says, “However, since
6, 10, and 15 are not pairs of relative primes, we
need a different method”. Then it goes on to say,
“Instead, we can use a more practical method of
checking combinations ......” This shows the reflec-
tive process of the model realizing that the standard
method is not applicable and proactively adjusting
its strategy. In the second case, the model tries to
make 24 from 15 + 6 and finds that 3 is missing,
but realizes that “3 is not the value of the coin” and
repeats “24 = 15 + 6 + 3 is impossible”, which
reflects the model’s realization of the error in the
attempt.

A.5 Interpolated parameter α analysis
experiments

In order to demonstrate the reasonableness and
effectiveness of the settings of the interpolation pa-
rameters of our model, we conducted experiments
by varying the parameter α between 0.05 and 0.45.
The detailed results of the usage are shown in Ta-
ble 5. The experimental results in the table show
that when α is set to 0.25, the Qwen model achieves
the best performance in terms of both accuracy and
response length. Furthermore, LLaMA at α = 0.25
exhibits the best trade-off between response length
and accuracy, confirming the validity of this param-
eter setting.
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Question:In the state of Coinland, coins have values (6,10) and 15 cents. Suppose (x) is the value in cents of the most expensive item in Coinland that cannot be 

purchased using these coins with exact change. What is the sum of the digits of (x)?

Prompt-2:

To solve this problem, we need to determine the largest value that cannot be expressed as a 

combination of the coin values 6, 10, and 15 cents. This problem can be approached using the 

concept of the Frobenius coin problem, which typically deals with two coin values, but we can 

extend the logic to three values. 

First, let's consider the combinations of the two largest coin values, 10 and 15. The Frobenius 

number for two coin values (a) and (b) (where (a) and (b) are coprime) is given by (ab - a - b). 

However, 10 and 15 are not coprime, so we need to consider the possible combinations and 

the gaps.

The key is to check the largest number that cannot be formed using 10 and 15, and then see if 

adding 6 can help us form that number. The largest number that cannot be formed using just 10 

and 15 is 24 (since 25 = 15 + 10, 26 = 15 + 10 + 1, 27 = 15 + 10 + 2, etc., and 24 = 15 + 9, but 

9 is not a combination of 10 and 15).

Now, we need to check if 24 can be formed using 6, 10, and 15. We see that 24 = 15 + 6 + 3

(but 3 is not a coin value), and 24 = 15 + 6 + 3 (again, 3 is not a coin value), and 24 = 15 + 6 

+ 3 (again, 3 is not a coin value). However, 24 = 15 + 6 + 3 is not possible, but 24 = 15 + 6 + 

3 is not possible. We need to check the next number, which is 25, and we see that 25 = 15 + 

10, which is possible.

Thus, the largest number that cannot be formed using 6, 10, and 15 is 29. We can verify this by 

checking the numbers around 29: 

 26 = 15 + 10 + 1 

 27 = 15 + 10 + 2 

 28 = 15 + 10 + 3 

 29 = 15 + 6 + 8 (but 8 is not a coin value) 

Therefore, the largest number that cannot be formed is 29. The sum of the digits of 29 is (2 + 9 

= 11). 

The answer is (\boxed{11}).

Prompt-1: To solve this problem, we need to understand the concept of the Frobenius 

coin problem, which deals with finding the largest number that cannot be expressed as 

a non-negative integer combination of given coin denominations. Here, the coin 

denominations are 6, 10, and 15 cents. 

First, we note that the greatest common divisor (gcd) of 6, 10, and 15 is 1. This means 

that any sufficiently large number can be expressed as a combination of these coins. 

However, we are interested in the largest number that cannot be expressed exactly 

using these coins. 

To approach this, we can use the fact that for two relatively prime numbers (a) and (b), 

the largest number that cannot be expressed as (ax + by) for non-negative integers (x) 

and (y) is (ab - a - b). However, since 6, 10, and 15 are not pairwise relatively prime, 

we need a different approach. We can start by considering the Frobenius number for 

pairs of these coins and then extend our understanding to the three coins together. The 

Frobenius number for 6 and 10 is 49 (since (6 \times 10 - 6 - 10 = 50 - 16 = 49)), but 

this doesn't directly apply to three coins. 

Instead, we can use a more practical approach by checking the combinations of 

these coins to find the largest number that cannot be expressed. We can start by 

checking numbers just above the combinations of 6, 10, and 15. 

By checking manually or through a systematic approach, we find that the number 29 

cannot be expressed as a combination of 6, 10, and 15. We can verify this by checking 

all possible combinations: 

 29 is not a multiple of 6, 10, or 15. 29 - 6 = 23, which is not a combination. 

 29 - 10 = 19, which is not a combination. 

 29 - 15 = 14, which is not a combination. 

 Checking other combinations like 29 - 26= 17, 29 - 36 = 11, 29 - 5*6 = -1 (not 

possible), etc., all show that 29 cannot be formed. 

Thus, the largest number that cannot be expressed as a combination of 6, 10, and 15 is 

29. The sum of the digits of 29 is (2 + 9 = 11). 

Therefore, the answer is (\boxed{11}).

Figure 9: Case Study. Model output results using different prompts

A.6 GRPO and DPO experiments

In this section, we mainly explore the use of dif-
ferent reinforcement learning methods to train Re-
CUT.

We compared ReCUT with the baseline L1 in
the main experiments, where GRPO was used to
train the LLM to control its output length. We also
investigated the training of ReCUT by exploring
the GRPO-based training method. The results of
ReCUT trained with this approach are reported in
Table 6. Our GRPO training method extracts posi-
tive and negative samples from the DPO dataset to
serve as sampled responses for GRPO. Experimen-
tal results show that ReCUT trained with GRPO
generates longer reasoning trajectories than the one
trained with DPO, while both achieve comparable
reasoning accuracy.

A.7 Detailed Experimental Settings

In the main experiments, the reinforcement learn-
ing method was implemented using the LLaMA
Factory open-source framework, with both the op-
timizer and LoRA settings utilizing the default
parameters trained by LLaMA Factory. For the
reinforcement learning methods employed through-
out the experiments, models Macc and Mlen were
trained with learning rates of 1e-6 and 1e-5, respec-
tively, requiring approximately 4 hours of GPU
training time. Key parameter settings are detailed

Hyper-parameter Value

Finetuning Type lora
Lora Rank 8
Lora Target all
Pref Beta 0.1
Pref Loss sigmoid
LRacc 1× 10−6

LRlen 1× 10−5

LR Scheduler cosine
Epochs 1
Warmup Ratio 0.1
Bf 16 true

Table 7: Training Hyper-Parameters in RL.

in the table to clarify experimental specifics.
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