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Abstract

Large Language Models (LLMs) can undergo
hallucinations in specialized domains, and stan-
dard Retrieval-Augmented Generation (RAG)
often falters due to general-purpose embed-
dings ill-suited for domain-specific terminol-
ogy. Though domain-specific fine-tuning en-
hances retrieval, centralizing data introduces
privacy risks. The use of federated learning
(FL) can alleviate this to some extent, but faces
challenges of data heterogeneity, poor personal-
ization, and expensive training data generation.
We propose pFedRAG, a novel Personalized
Federated RAG framework, which enables ef-
ficient collaborative fine-tuning of embedding
models to address these challenges. The key
contribution is a new Depth-Adaptive Tiered
Embedding (DATE) architecture, which com-
prises a Global Shared Layer, combined using
FL to capture common knowledge, and a Per-
sonalized Layer with adjustable depth tailored
for local data and training results of each client.
The depth is locally controlled based on crafted
metrics and scoring criteria. Also, pFedRAG
incorporates a fully client-side pipeline leverag-
ing local small LLMs and vector database filter-
ing to construct high-quality query-document
pairs. Experiments on diverse medical non-IID
document datasets demonstrate that pFedRAG
significantly reduces communication costs, han-
dles data heterogeneity, and improves retrieval
performance. Human evaluations confirm the
enhanced response quality of pFedRAG.

1 Introduction

Large Language Models (LLMs), such as GPT
series (Radford et al., 2018, 2019; Brown et al.,
2020) and LLaMA (Touvron et al., 2023a,b), have
achieved impressive performance across many nat-
ural language processing tasks (Zhao et al., 2023).
However, LLMs remain susceptible to halluci-
nations, producing plausible-sounding but factu-
ally incorrect content, which is problematic in do-
mains such as healthcare and law (Ji et al., 2023).

Retrieval-Augmented Generation (RAG) mitigates
hallucinations by incorporating external knowl-
edge. A retriever selects relevant documents from
a knowledge base, and the generator conditions its
responses on these documents. The effectiveness
heavily depends on retrieval quality.

As illustrated in Figure 1(a), conventional RAG
systems typically rely on general-purpose embed-
ding models (Lewis et al., 2020a), which often un-
derperform in specialized domains due to their in-
ability to capture domain-specific semantics and ter-
minology. To enhance retrieval accuracy in such do-
mains, fine-tuning embedding models on domain-
specific data has proven beneficial (Gururangan
et al., 2020); see Figure 1(b). This allows mod-
els to learn domain-relevant representations and
improve the relevance of retrieved content. How-
ever, centralizing such data for fine-tuning raises
significant privacy and governance concerns.

Federated Learning (FL) offers a promising
framework for domain-specific fine-tuning in col-
laborative environments. It enables multiple parties
to jointly train models without sharing raw data,
instead exchanging and aggregating model parame-
ters, thus preserving data privacy. However, apply-
ing FL to the fine-tuning of embedding models in
RAG systems introduces several unique challenges:

Cost of Full-Parameter Fine-Tuning. Modern
embedding models contain hundreds of millions
of parameters, making full-model tuning resource-
intensive in FL settings. It imposes high communi-
cation and computation costs on clients.

Semantic Non-IID Distribution. In real-world
deployments, clients often have non-identically dis-
tributed data due to differences in institutional fo-
cus or data collection practices. This semantic
heterogeneity can lead to local overfitting and de-
grade global model aggregation, especially with
algorithms like Federated Averaging.

Supervised Dataset Construction. Effective fine-
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1. ...pain often worsens with deep breaths or
coughing. Costochondritis involves inflammation
where ribs meet the sternum...
2. ...blunt force trauma to the chest wall can
cause bruising and localized pain, distinct from
cardiac origins...

Query(Out-of-domain): What findings on a chest
X-ray might indicate pneumonia?

LLM Response(In-domain)❌
Based on the retrieved information, chest pain
can be caused by issues like costochondritis
(rib cartilage inflammation) or trauma. While
cardiac causes exist, the provided context
highlights these non-cardiac origins. 

Retrieval Results(Out-of-domain)❌
1. ...X-rays use electromagnetic radiation to
create images of internal structures based on
density differences...
2. ...symptoms such as fever, cough, and body
aches are common in viral respiratory infections
like influenza...

LLM Response(Out-of-domain)❌
The provided documents explain how X-rays
function and list general respiratory
symptoms like cough and fever, but they do
not detail specific X-ray findings indicative
of pneumonia.

Retrieval Results(In-domain)✅
1. ...a sudden blockage in a coronary artery
interrupts blood flow, causing heart muscle
damage and characteristic chest pressure...
2. ...stable angina occurs when narrowed arteries
restrict blood supply during exertion, leading to
temporary chest pain...

LLM Response(In-domain)✅

Based on the context, common cardiac
causes for chest pain include heart attack
(myocardial infarction) and angina, both
related to coronary artery problems.

Retrieval Results(Out-of-domain)❌
1. ...radiographs in heart failure may show
cardiomegaly and pulmonary edema, indicating
fluid overload...
2. ...monitoring post-angiogram includes checking
for hematoma at the access site; chest
discomfort is less common...

LLM Response(Out-of-domain)❌
Regarding chest X-ray findings, the
available context focuses on evaluating
heart size in heart failure or checking for
post-procedure issues, rather than specific
indicators for pneumonia.

Retrieval Results(In-domain)✅
1. ...stable angina occurs when narrowed arteries
restrict blood supply during exertion, leading to
temporary chest pain...
2. ...a sudden blockage in a coronary artery
interrupts blood flow, causing heart muscle
damage and characteristic chest pressure...

LLM Response(In-domain)✅

Given the context, common cardiac causes
of chest pain include myocardial infarction
(heart attack) and angina, both resulting
from issues with the coronary arteries.

Retrieval Results(Out-of-domain)✅
1. ...consolidation appears as a dense, opaque
area in the lung field on X-ray, indicating alveoli
filled with fluid...
2. ...look for localized or diffuse infiltrates, which
represent inflammation or infection within the
lung tissue...

LLM Response(Out-of-domain)✅

Chest X-ray findings that suggest
pneumonia typically include airspace
opacities like consolidation or infiltrates,
and possibly pleural effusions.

(a)

(b)

(c)

Figure 1: Overview of retrieval-augmented generation
workflows under different embedding strategies: Pre-
trained, Fine-tuned, and pFedRAG.

tuning requires structured supervised data, specifi-
cally for query-document pairs with hard negatives.
Generating such data is labor-intensive.
Contributions. In this paper, we propose a novel
Personalized Federated RAG (pFedRAG) frame-
work designed to address these challenges. Unlike
existing federated RAG methods that either per-
form centralized embedding fine-tuning on pooled
data or apply a uniform retrieval mechanism across
all clients, pFedRAG integrates a Depth-Adaptive
Tiered Embedding (DATE) architecture to balance
global knowledge sharing and local personaliza-
tion, and incorporates a fully client-side supervised
dataset generation pipeline to autonomously con-
struct high-quality query–document pairs. The key
contributions of this paper are as follows.
Personalized Adaptation to Data Heterogeneity.

To address the challenge of semantic non-IID
distributions, pFedRAG incorporates the DATE
architecture. This includes a shared global layer
for knowledge aggregation, a client-specific
personalized layer for local adaptation, and a
Depth Controller that dynamically adjusts model
complexity of the personalized layer. This
design allows each client to tailor its retrieval
model to its data characteristics, with training
performance guiding the dynamic adaptation,
improving personalization without sacrificing
global generalizability.
Efficient Federated Fine-Tuning. The proposed
pFedRAG introduces the Adaptive Dual-Tier Head
(ADT-Head), a parameter-efficient architecture that
attaches a lightweight, trainable head to a frozen
embedding backbone. This design significantly
reduces communication and computational over-
head, cutting per-round updates to just 4.3% of
full model fine-tuning, while preserving strong re-
trieval performance. It enables the practical deploy-
ment of personalized retrieval models in bandwidth-
constrained federated settings.
Privacy-Preserving Dataset Generation. We
propose a novel client-side pipeline for supervised
data generation that avoids central data pooling.
It leverages light local LLMs to generate diverse
queries and applies vector-based filtering to
construct relevant positive and hard negative
samples. This approach enables each client
to create high-quality retrieval training data
autonomously, with reduced annotation costs.

Our proposed pFedRAG is the first frame-
work to integrate personalized embedding tuning
through FL into RAG systems, enabling client-level
adaptation under data heterogeneity. pFedRAG
achieves substantial improvements over traditional
pretrained RAG methods, including a 76.0% (lo-
cal) and 71.6% (global) improvement in Recall@k,
and 95.0% of the performance of centralized fine-
tuning. Human evaluations validate its impact, with
an average score of 8.1 compared to 6.0 for static
embeddings, and an 78% expert preference rate. It
is evident that the pFedRAG not only advances the
status quo of personalized federated retrieval, but
also provides strong practical utility in real-world
deployment.

2 Related Work

FL for Retrieval-Augmented Generation.
FL (McMahan et al., 2017) enables privacy-

14256



preserving collaborative training across decen-
tralized data sources (Kairouz et al., 2021),
while RAG (Lewis et al., 2020b) enhances LLM
factuality by grounding responses in external
knowledge. The integration of these paradigms
into FedRAG systems (Jung et al., 2024; Addison
et al., 2024) leverages distributed knowledge while
maintaining privacy in sensitive domains.

Current FedRAG approaches have addressed var-
ious aspects: federated search across distributed
clients (Flower, 2025), query overhead reduction
through classification-based source selection (Guer-
raoui et al., 2025), probabilistic search optimiza-
tion for multi-domain question answering (Shojaee
et al., 2025), and privacy enhancement through
Confidential Computing (Addison et al., 2024).
However, these methods primarily focus on re-
trieval mechanisms or generator training (Kim
et al., 2024; Muhamed et al., 2024), while the opti-
mization of embedding models in FedRAG settings
remains virtually unexplored. Our proposed pFe-
dRAG fills this gap by introducing DATE, specif-
ically designed for adapting embedding models
within FL contexts.

Personalized FL for Client Heterogeneity. Client
heterogeneity in FL encompasses data hetero-
geneity (non-IID distributions) and system het-
erogeneity (variations in computational capabili-
ties) (Kairouz et al., 2021), often degrading stan-
dard FL algorithm performance. Personalized Fed-
erated Learning (PFL) (Tan et al., 2022; Kulkarni
et al., 2020) addresses these challenges by cus-
tomizing models to individual clients while pre-
serving collaborative benefits.

For data heterogeneity, various approaches have
been proposed: architectural model decomposi-
tion to separate shared and client-specific com-
ponents (Collins et al., 2021; Arivazhagan et al.,
2019), regularization to constrain local updates (Li
et al., 2020), meta-learning for rapid client adapta-
tion (Fallah et al., 2020), and client clustering to
group similar users (Ghosh et al., 2020). However,
these methods often assume uniform model archi-
tectures across clients, limiting their applicability
in heterogeneous system environments.

For model heterogeneity, researchers have ex-
plored knowledge distillation to align diverse ar-
chitectures (Li and Wang, 2019), parameter impor-
tance metrics for dynamic submodel extraction (Su
et al., 2024), and Parameter-Efficient Fine-Tuning
(PEFT) (Hu et al., 2021) to adapt pre-trained mod-

els with reduced parameters. PEFT approaches in
FL include homogeneous adapters across varied
backbones (Yi et al., 2023) and SVD-based aggre-
gation of different-ranked adaptations (Shen et al.,
2024). Managing model heterogeneity dynamically
and effectively remains challenging; static decom-
position might be suboptimal, and aggregating het-
erogeneous PEFT parameters can be complex.

3 Problem Formulation

Consider an FL scenario involving N clients,
where each client i ∈ N = {1, . . . , N} possesses
a local dataset Di that exhibits significant data het-
erogeneity. Each client i maintains a dual-tier em-
bedding model, Φi = {θ, ϕg, ϕp

i }, where θ is a
pretrained embedding backbone shared across all
clients and remains frozen during training, ϕg is
a global shared layer updated collaboratively via
FedAvg, and ϕp

i is a client-specific layer optimized
locally to capture personalized information.

Collectively, the clients aim to minimize the av-
erage loss, as given by

min
ϕg,{ϕp

i }Ni=1

1

N

N∑

i=1

Fi(θ, ϕ
g, ϕp

i ), (1)

where the local objective Fi(·) measures the re-
trieval embedding quality for client i, based on
local query-document pairs sampled from client i’s
local dataset Di. Specifically, each client constructs
training samples comprising a query, q, and corre-
sponding positive and negative document embed-
dings, d+ and d−.

The retrieval quality is optimized using the In-
foNCE loss with an L2-norm regularization term,
which is defined as (van den Oord et al., 2018):

Fi=− E(q,d+,d−)∼Di

[
log

es(q,d
+)

es(q,d+)+
∑

d− es(q,d−)

]

+ λ∥Φi∥22, (2)

where s(q, d) is the similarity score of embedding
vectors, and λ is a regularization factor.

4 Proposed pFedRAG Framework

The objective of pFedRAG is to collaboratively
train a retrieval embedding model that captures
both globally shared knowledge and personalized
features unique to each client’s local data distribu-
tion. As illustrated in Figure 2, pFedRAG consists
of three key aspects: Depth-Adaptive Tiered Em-
bedding (DATE), Federated Learning With Global-
Local Adaptation, and Personalized RAG System.
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Figure 2: Overall framework of the proposed pFedRAG. The framework combines collaborative federated train-
ing of a global shared layer with personalized local training via the DATE architecture. It includes client-side
query–document pair generation and a personalized RAG workflow using local LLMs for domain-adaptive retrieval.

4.1 Depth-Adaptive Tiered Embedding

DATE is the architectural foundation of pFe-
dRAG’s retrieval model, designed to balance
shared representation learning with client-specific
personalization. As depicted in Figure 3, it has
three components: (i) Embedding Backbone (θ),
(ii) ADT-Head, and (iii) Depth Controller. These
components work in concert to create a flexible,
personalized embedding architecture that adapts to
the unique characteristics of each client’s data.
Embedding Backbone (θ). The adaptive em-
bedding backbone is built on the pretrained
e5-base-v2 model (Wang et al., 2022), an adapt-
able text embedding model optimized for retrieval,
clustering, and classification tasks. This back-
bone provides a universal semantic encoder shared
across all clients and remains frozen during train-
ing, serving as a foundation for embedding compu-
tations while enabling adaptation through personal-
ized retrieval.
ADT-Head. This component is designed to ef-
ficiently balance global knowledge sharing with
client-specific adaptation. This bifurcated structure
processes embeddings from the backbone, mini-
mizing communication overhead while preserving
personalization capabilities. The ADT-Head con-
tains two complementary layers:
Global Shared Layer (ϕg). This layer forms the
first stage of ADT-Head and is applied to the em-
beddings output by θ. It is trained collaboratively
across clients to extract generalized, transferable
features that support effective federated aggrega-
tion. It comprises layer normalization (Ba et al.,

2016), dropout (Srivastava et al., 2014), and a pair
of linear transformations interconnected by a non-
linear activation (e.g., GELU (Hendrycks and Gim-
pel, 2016)). By first expanding embedding dimen-
sionality from 1D to 4D and then compressing it to
1D, ϕg enhances the stability and generalizability
of shared knowledge for robust cross-client repre-
sentation learning.
Personalized Layer (ϕp

i ). This layer refines the
shared representation to align with each client’s
local data distribution. It introduces flexibility in
model expressiveness by supporting three config-
urable complexity levels based on varying local
data complexities:

• Base Layer (Lbase). A lightweight configuration
with a single linear layer and activation, designed
for clients with low data complexity.

• Advanced Layer (Ladv). This layer enhances
capacity by stacking two linear layers, first ex-
panding to 2D and then projecting back to 1D,
thereby allowing for improved personalization
for moderate data complexity.

• Extended Layer (Lext). This layer integrates a
Self-Attention Interaction Module between the
linear transformations. It expands embeddings
from 1D to 2D, applies multi-head self-attention
(Vaswani et al., 2017), and compresses the result
back to 1D, making it suitable for clients with
complex or diverse data.

This compact tiered structure significantly reduces
communication overhead compared to full-model
tuning, making it suitable for FL scenarios.
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Depth Controller. We also develop the Depth Con-
troller to dynamically govern personalized layer
complexity during training. This component ana-
lyzes client data characteristics and monitors train-
ing dynamics to determine optimal model capacity,
balancing expressiveness and efficiency. The Depth
Controller operates via two modules:
Initial Depth Assigner (IDA). The IDA employs a
Complexity Scoring Unit to evaluate client data
characteristics before training. It sets the Personal-
ized Layer type of client i as L(0)

i based on its local
data complexity score Si. Here, Si is calculated by
each client i based on local data properties:

Si = w1 ·Di+w2 · (αLavg,i+βTTRnorm,i)+w3 ·PPLi,
(3)

where Lavg,i is the average token length per doc-
ument, TTRnorm,i is the normalized type-token
ratio, and PPLi is the perplexity (Jelinek et al.,
1977) computed over Di. w1, w2, w3, α, and β are
weighting coefficients. This module enables assign-
ment of a suitable initial complexity level to each
client based on data characteristics.
Dynamic Depth Scheduler (DDS). To enable
clients to progressively refine layer complexity
beyond initial assignments, we design the DDS
with two units that jointly adapt model complexity
during training:

• API Metrics Analysis Unit: This unit evalu-
ates the Adaptation Performance Index (API) for
each client in fixed time windows to determine
when complexity changes are needed. The API
combines two key training indicators:

APIi,t = wL ∆Lnorm
i,t − wO Onorm

i,t , (4)

where ∆Lnorm
i,t measures normalized training loss

reduction (learning momentum), and Onorm
i,t quan-

tifies the normalized performance gap between
training and validation data (overfitting penalty).
Weights wL and wO balance these components
(with wL + wO = 1).

The API trajectory determines whether a layer
complexity adjustment is necessary. Layer adjust-
ments are triggered when APIi,t consistently falls
outside its dynamic performance band, bounded
by thresholds T

(i,t)
up and T

(i,t)
down. c

(i,t)
s and c

(i,t)
l

track consecutive instances of over- or under-
performance, guiding upgrade or downgrade de-
cisions. (See Appendix B.1 for details.)

• Knowledge Distillation Unit: When a com-
plexity change is triggered, this unit facilitates
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Figure 3: Architecture of DATE in pFedRAG, showing
the Embedding Backbone, ADT-Head with its Global
and Personalized layers, and Depth Controller with its
IDA and DDS modules.

a smooth transition between different model ar-
chitectures. It treats the current model as teacher
and the newly adjusted model as student, trans-
ferring knowledge (Hinton et al., 2015) to ensure
the model maintains performance while adapt-
ing to its new complexity level. This prevents
drastic performance drops during architectural
transitions and enables efficient adaptation.

4.2 FL With Global-Local Adaptation
The training process comprises three phases: (i)
Model Customization via IDA, (ii) Local Tuning
with DDS, and (iii) Global Aggregation on Server.
Model Customization via IDA. At the start of
each communication round, the IDA of client i
computes a local data complexity score Si, which
is uploaded to the server. After applying min-max
normalization across all clients to map scores into
the [0,1] range, the server assigns an initial person-
alized layer configuration L0

i based on the normal-
ized complexity score Snorm

i :

L0
i =





Lbase, 0 < Snorm
i ≤ 0.33,

Ladv, 0.33 < Snorm
i ≤ 0.67,

Lext, 0.67 < Snorm
i ≤ 1.

(5)

The thresholds 0.33 and 0.67 divide the normal-
ized range into three equal intervals, correspond-
ing to the Base, Advanced, and Extended layers.
This serves as a reasonable initialization, which
the Depth Controller further refines during training.
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Each client receives the full model but activates
only its assigned personalized layer.

Local Tuning with DDS. We put forth an adap-
tive training strategy at each client, as described
in Algorithm 1 of Appendix A.1. During training,
the DDS of Depth Controller continuously moni-
tors training dynamics using APIi,t over the fixed
time windows Tw. Based on the API metrics and
corresponding counters, the Depth Controller deter-
mines whether to adjust the layer complexity based
on the following decision rule:

decisioni,t =





"upgrade", if c(i,t)s ≥ τs ∧ Li,t−1 ̸= Lext,

"downgrade",if c(i,t)l ≥ τl ∧ Li,t−1 ̸= Lbase,

"none", otherwise,
(6)

where τs is the minimum number of consecutive
rounds showing stable improvement required for
an upgrade, and τl is the maximum number of con-
secutive rounds showing performance decline tol-
erated before a downgrade.

When an adjustment is triggered (i.e., decision is
not "none"), we propose a novel knowledge preser-
vation mechanism through distillation. This adap-
tive distillation phase employs the current model
as a teacher and the adjusted model as a student:

LKD,i(ϕ
s
i , ϕ

t
i) = −

∑

x∼Di

pt(x) log ps(x), (7)

where ϕs
i and ϕt

i represent the student and teacher
parameters on client i respectively; ps(x) and pt(x)
are the corresponding output distributions.

During distillation, only the personalized layer
parameters ϕp is updated while the global shared
layer ϕg remains frozen:

ϕp ← argmin
ϕp

LKD,i(ϕ
s, ϕt). (8)

After adaptation, the controller enters a cooling
period of Tcool, during which it continues to mon-
itor API values but temporarily suspends further
structural changes to prevent oscillations.
Global Aggregation on Server. Once local train-
ing completes, clients upload only their global
shared layer parameters (ϕg

i,t) to the server. The
server then performs standard federated averaging:

ϕg
t+1 ←

1

|A|
∑

i∈A
ϕg
i,t. (9)

This aggregated global layer is then redistributed
to all clients for the next round, while personalized
layers (ϕp

i ) remain local, preserving both personal-
ization and data privacy, as shown in Figure 2.

4.3 Personalized RAG System
The Personalized RAG System uses client-specific
embeddings to enhance retrieval relevance. It cov-
ers from reconstructing local vector databases to
generating context-aware responses via RAG, as
shown in Figure 2.
Vector Database Reconstruction. After feder-
ated training completes, each client reconstructs
its local vector database using personalized em-
bedding model Φi (combining frozen backbone
with trained ADT-Head). We encode local docu-
ments with this model and index the vectors into an
optimized vector database (Milvus (Milvus Team,
2019–Present)), improving retrieval accuracy for
client-specific data distributions.
Retrieval and Generation. During inference, user
queries are encoded with the same personalized em-
bedding model and used to retrieve the top-K rele-
vant document chunks via vector similarity search.
These chunks provide contextual knowledge in-
jected into a domain-aware prompt template shown
in Table 1. This specially designed prompt bridges
retrieved content with the generation capabilities of
the local LLM, ensuring responses are contextually
grounded and aligned with client-specific domain
knowledge.

Domain-Aware Prompt for RAG Inference

Given a user query related to a medical domain, re-
trieve the most relevant document chunks from the
local vector database and use them as context to gen-
erate a detailed and informative response. Ensure that
the response is coherent and accurately reflects the
retrieved information.
In-Context Few-shot Example

Query: {User Query}
Retrieved Documents: {Top-K Retrieved Chunks}
Response:

Table 1: LLM Prompt for Personalized RAG.

5 Experiments

We evaluate the proposed pFedRAG framework on
a medical document dataset derived from multi-
ple research domains to simulate realistic clinical
and research-oriented retrieval scenarios. Due to
space limitations, detailed experimental settings
are provided in Appendix D.

5.1 Medical Document Datasets Preparation

Data Collection. We construct our dataset by col-
lecting English papers from the PubMed Central
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database (National Center for Biotechnology Infor-
mation (NCBI), Accessed on May 18, 2025) across
six medical domains: Cardiology (3125 papers),
Medical Informatics (2500), Neuroscience (2188),
Oncology (1875), Pharmacy (1563), and Radiology
(1250). To ensure dataset quality, we exclude non-
peer-reviewed publications, speeches, and incom-
plete documents. We retain only retrieval-relevant
sections (title, abstract, introduction, discussion,
conclusion) while removing non-textual elements
and privacy-sensitive personal data.
Query-Doc Pair Generation. We segment docu-
ments using the e5-base-v2 tokenizer with 512
maximum tokens per chunk, ensuring contextual
coherence and compatibility with the embedding
model. We leverage a light LLM (QWen2.5-7b-
instruct (Qwen Team, 2024)) to generate two di-
verse queries per document chunk, capturing varied
query intents (the prompt used for query generation
is provided in Table 6 of Appendix C). This process
yields 32619 query-document pairs, with 80% for
federated training and 20% for evaluation.
Data Heterogeneity. To simulate realistic non-IID
distributions, we partition the dataset across six
clients using a Dirichlet distribution (α = 0.3)
(Hsu et al., 2019), creating significant data hetero-
geneity that realistically emulates federated envi-
ronments.

Raw Paper Materias

Preprocess

Extracts

Generate

Relevant
Queries

Embedding
(Pretrained)

Vector
DB

Retrieve

Index

Local LLM
Chunk

Chunked
Documents

Negative
Documents

Retrieval Filter:

2. Top-5 similar as Hard Negatives
3. 5 random as Normal Negatives

1. Exclude same-article docs

Query-Doc Pair

Query: 
PositiveDoc: 
NegativeDoc: 

Query: 
PositiveDoc: 
NegativeDoc: 

Figure 4: The process of query-doc-pair construction.

Contrastive Pair Construction. For each query, we
use its original document chunk as the positive
sample. Negative samples are selected through
local retrieval from each client’s vectorized cor-
pus, excluding chunks from the same source article.
We retrieve the top 5 most similar chunks as hard
negatives and randomly sample 5 additional doc-
uments as normal negatives, maintaining a 1:10
positive-to-negative ratio. We further employ in-
batch negative sampling with a batch size of 160,
significantly enhancing training effectiveness by
increasing negative sample diversity.

5.2 Evaluation Metrics

We evaluate retrieval performance using four met-
rics: (i) Recall@k (proportion of relevant doc-
uments in top-k results) (Manning et al., 2008),
(ii) MRR (position of first relevant document)
(Voorhees, 1999), (iii) NDCG (ranking quality
considering relevance and position) (Järvelin and
Kekäläinen, 2002), and (iv) Average Rank (aver-
age position of relevant documents, lower is bet-
ter). With one positive sample per query in our
setup, Recall@k and NDCG essentially indicate
whether the relevant document appears within the
top-k results. Detailed definitions of the metrics
are provided in Appendix B.2.

5.3 Main Results

To our knowledge, this work is the first to explore
adaptive complexity embedding personalization
for federated RAG, making direct comparisons
with existing algorithms impossible. We therefore
constructed baselines representing best practices
across the spectrum of embedding model complex-
ity. Since DATE incorporates dynamic adaptation
of model complexity to match client characteris-
tics, we first compare it with several complexity-
invariant baselines. All architectures shown in Ta-
ble 2 are built upon pretrained e5-base-v2 Em-
bedding Backbone (EB), with various configura-
tions: (i) Pretrained Embedding (frozen EB alone);
(ii) EB+Global Shared Layer; and (iii) configura-
tions with invariant personalized layer (Base/Ad-
vanced/Extended) added on top of both EB and
global shared layer.

Results demonstrate DATE’s superiority across
all test sets. DATE achieves substantial improve-
ments in both local and global evaluations, improv-
ing Recall@k by 76.0% (local) and 71.6% (global)
and MRR by 70.2% (local) and 71.4% (global) over
the Pretrained Embedding baseline. Compared to
the best-performing complexity-invariant config-
uration (EB+Base Layer), DATE still shows con-
sistent gains of 2.2% (local) and 0.7% (global) in
Recall@k. These advantages confirm that our adap-
tive architecture’s dynamic complexity adjustment
enables effective personalization while maintaining
strong generalization capabilities.

5.4 Ablation Study

Does Dynamic Depth Scheduler (DDS) matter?
We analyze the DDS effectiveness by comparing it
with a static layer allocation strategy. As shown in

14261



Table 2: Performance Comparison of Embedding Ar-
chitectures (Top-K=5). All results are averaged over
three independent runs. Reported values are means
with 95% confidence intervals computed using the t-
distribution (n=3). Abbreviations: PT=Pretrained EB
(frozen), GSL=Global Shared Layer, Adv=Advanced,
Ext=Extended.

Method Recall@k MRR NDCG AvgRank Recall@1

Local Test Set

PT (EB only) 0.484±0.007 0.309±0.006 0.323±0.008 14.823±0.288 0.159±0.005
EB+GSL 0.798±0.002 0.496±0.002 0.552±0.001 4.330±0.081 0.295±0.001
EB+Base 0.834±0.004 0.520±0.003 0.583±0.005 3.967±0.165 0.317±0.003
EB+Adv 0.816±0.005 0.504±0.006 0.562±0.006 4.197±0.213 0.301±0.004
EB+Ext 0.792±0.008 0.488±0.009 0.542±0.007 4.471±0.314 0.287±0.006
DATE 0.852±0.003 0.526±0.003 0.588±0.004 3.834±0.119 0.319±0.003

Global Test Set

PT (EB only) 0.472±0.010 0.301±0.009 0.314±0.011 15.333±0.399 0.152±0.007
EB+GSL 0.768±0.002 0.492±0.002 0.538±0.002 5.750±0.075 0.290±0.002
EB+Base 0.804±0.005 0.516±0.006 0.571±0.006 4.896±0.198 0.312±0.004
EB+Adv 0.779±0.007 0.497±0.008 0.546±0.009 5.514±0.285 0.296±0.005
EB+Ext 0.757±0.011 0.482±0.012 0.529±0.010 5.986±0.441 0.282±0.008
DATE 0.810±0.004 0.516±0.004 0.571±0.005 4.897±0.145 0.318±0.002

Table 3: Effectiveness of DDS (Top-K=5)

Method Recall@k MRR NDCG AvgRank Recall@1

Local Test Set

Pretrained Embedding 0.484 0.309 0.323 14.823 0.159
DC w/o DDS 0.809 0.503 0.560 4.233 0.302
DC w/ DDS 0.852 0.526 0.588 3.834 0.319

Global Test Set

Pretrained Embedding 0.472 0.301 0.314 15.333 0.152
DC w/o DDS 0.781 0.500 0.551 5.510 0.292
DC w/ DDS 0.810 0.516 0.571 4.897 0.318

Table 3, DDS delivers significant improvements on
both local and global test sets - increasing NDCG
by 5.0% (local) and 3.6% (global) while reducing
average rank by 9.4% (local) and 11.1% (global).
It is evident that dynamically adjusting layer com-
plexity based on real-time training metrics substan-
tially enhances performance by adapting to each
client’s evolving needs beyond initial assignments.

5.5 Effectiveness Evaluation

Federated vs Centralized Training Effectiveness.
We compare our federated approach with central-
ized training using the Global Shared Layer. As
shown in Table 4, both methods substantially out-
perform the pretrained baseline. While centralized
training shows marginal advantages in each metric,
federated training maintains robust performance
(95.0% of centralized Recall@k), despite FL’s in-
herent data heterogeneity. This small performance
gap confirms our approach effectively balances pri-
vacy with distributed knowledge utilization.

Table 4: Federated vs Centralized Training (Top-K = 5)

Training Mode Recall@k MRR NDCG AvgRank Recall@1

Pretrained Embedding 0.472 0.301 0.314 15.333 0.152
Centralized Training 0.808 0.524 0.582 4.297 0.332
Federated Training 0.768 0.492 0.538 5.750 0.290

Table 5: Human Evaluation of End-to-End RAG Effec-
tiveness

Method Avg. Score W/T/L Preferred (%)

Pretrained Embedding 6.0 - -
DATE 8.1 32 / 11 / 7 78%

End-to-End RAG Effectiveness via Human Eval-
uation. We conducted a human evaluation of our
RAG system using QWen2.5-7B-Instruct to gener-
ate responses from Top-K=5 documents retrieved
by either DATE or Pretrained Embedding. Three
domain experts blindly evaluated 50 response pairs
on correctness, completeness, and coherence. As
shown in Table 5, DATE significantly outperforms
the baseline (8.1 vs 6.0 average score) with a favor-
able Win/Tie/Loss ratio of 32/11/7. Experts noted
DATE’s responses contained more comprehensive
coverage of medical concepts with fewer factual
errors, confirming that improved retrieval directly
translates to better response quality.

We also examined the reliability of human rat-
ings and the stability of model performance. Expert
agreement is substantial (Krippendorff’s α=0.82),
indicating that annotators followed the rubric con-
sistently and that the evaluation results are re-
producible. Furthermore, across the 50 items,
DATE (pFedRAG) shows tighter score dispersion
(8.1±0.95) than the Pretrained Embedding base-
line (6.0±1.75). This proves that our DATE does
deliver more stable performance across questions.

6 Conclusion

In this paper, we presented pFedRAG to enhance
RAG systems in specialized domains while address-
ing privacy concerns and resource limitations. Our
approach tackles key challenges in federated set-
tings, including the high cost of full-model tuning,
semantic divergence across heterogeneous client
data, and the need for high-quality supervised
datasets. We introduced DATE, a comprehensive
architecture comprising ADT-Head (a parameter-
efficient structure that combines a global shared
layer for common knowledge aggregation with dy-
namically adjusted personalized layers) and Depth
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Controller for guiding adaptive complexity adjust-
ments. We also proposed a client-side pipeline
leveraging local LLM and vector database filtering
for privacy-preserving dataset construction. Exper-
imental evaluations demonstrated that pFedRAG
significantly reduces communication and compu-
tation costs, effectively handles data heterogeneity
through adaptive model complexity, and improves
end-to-end RAG performance compared to stan-
dard baselines, showcasing its practical viability
for collaborative, privacy-conscious enhancement
of client-personalized RAG systems.

7 Limitations

Non-Federated Generative Component. Our
framework currently personalizes only the re-
trieval side, leaving the generation component
as a standard pre-trained LLM without client-
specific adaptation. This may limit response qual-
ity in specialized domains. Future work could
explore parameter-efficient federated fine-tuning
techniques like LoRA adapters for the generation
component, enabling end-to-end personalization
while maintaining privacy.
Static Hard Negative Sampling Strategy. We em-
ploy one-time hard negative mining before training
with in-batch negative sampling during iterations.
As embeddings evolve, initially identified hard neg-
atives may become less challenging. An iterative
re-mining strategy that periodically updates hard
negatives based on current embedding spaces could
further enhance retrieval performance.
Future Improvements for Dataset Generation.
Our client-side pipeline uses lightweight LLMs
to generate queries while preserving privacy and
accommodating resource constraints. Though ef-
fective, query quality might not match that of
larger models. Future work could explore privacy-
preserving mechanisms to leverage larger LLM
capabilities through secure APIs, potentially en-
hancing dataset quality without compromising pri-
vacy.

8 Ethics Statement

This study uses only publicly available data from
the PubMed Central Open Access Subset and in-
volves no human subjects or personal data, thus
requiring no additional ethical approval. Despite
these safeguards, the system could potentially gen-
erate inaccurate medical information. We recom-
mend professional reviews of outputs before clin-

ical applications and the implementation of fact-
checking mechanisms during deployment.
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A ALGORITHM

A.1 Federated Tuning Procedure
Algorithm 1 summarizes the comprehensive algo-
rithm for federated tuning described in Section 4.2.

Algorithm 1: Federated Tuning Procedure
Input : clientsN , global rounds T , local epochs E,

window size Tw, cooling period Tcool,
learning rate η, initial parameters (ϕg, ϕp)

Output : Globally optimized ϕg , locally personalized
ϕp
i

for each round t = 1, 2, ..., T do1
Sample client set A ⊆ [N ] Send global shared layer2
ϕg
t to clients i ∈ A for each client i ∈ A in

parallel do
Initialize local model (ϕg

t , ϕ
p
i,t) for epoch3

e = 1, 2, ..., E do
Compute local loss Fi via (2) Update4
(ϕg

t , ϕ
p
i,t)← (ϕg

t , ϕ
p
i,t)− η∇Fi

Compute Adaptation Performance Index5
APIi,t;
Update API history buffer6
Hi ← Hi ∪ {APIi,t};
if |Hi| ≥ Tw then7

Compute thresholds T (i,t)
up , T (i,t)

down based8
on recent Tw entries inHi;
Update counters c(i,t)s , c(i,t)l based on9
APIi,t;
if adjustment condition met via (6) and10
not in cooling period then

Perform layer adjustment via KD11
with the current model as Teacher;
During KD, freeze ϕg and update12
only ϕp;
Start cooling period Tcool;13

Send updated global layer ϕg
i,t to server14

Aggregate global layer: ϕg
t+1 = 1

|A|
∑

i∈A ϕg
i,t15

B FORMULATION

B.1 API Metrics

Learning Momentum and Overfitting Penalty.
The learning momentum ∆Li,t is calculated as the
ratio of loss reduction over consecutive windows:

∆Li,t =
Li,t−2Tw − Li,t

Li,t−2Tw − Li,t−Tw

, (10)

where Tw is the window size and Li,t is the loss at
time step t for client i.

The overfitting score Oi,t measures the differ-
ence between training and validation performance
gains:

Oi,t = max
(
0,∆Recalltrain

i,t −∆Recalltest
i,t

)
, (11)

where ∆Recalltrain
i,t and ∆Recalltest

i,t are calculated
using the same window-based approach as ∆Li,t.

Adaptive Thresholds and Counter Updates. The
dynamic thresholds for the API values are calcu-
lated as follows:

µi,t =
1

Tw

Tw∑

k=1

APIi,t−k+1, (12)

σi,t = std(APIi,t−Tw+1:t), (13)

δi,t = min(σi,t, 0.1|µi,t|), (14)

T (i,t)
up = µi,t + δi,t, (15)

T
(i,t)
down = µi,t − δi,t. (16)

The counters for tracking consistent performance
patterns are updated according to:





c(i,t)s = c(i,t−1)
s + 1, c

(i,t)
l = 0, if APIi,t > T (i,t)

up ,

c
(i,t)
l = c

(i,t−1)
l + 1, c(i,t)s = 0, if APIi,t < T

(i,t)
down

c(i,t)s = c
(i,t)
l = 0, otherwise.

(17)

B.2 Evaluation Metrics

The evaluation metrics used in our experiments are
formally defined as follows:

Recall@k =
|{d+} ∩RK(q)|

|{d+}| , (18)

MRR =
1

|Q|

|Q|∑

q=1

1

rankq
, (19)

where {d+} denotes the single positive document
for query q, RK(q) is the set of top-K documents
retrieved for q, Q is the set of all queries, and
rankq is the position of the positive document in
the ranking.

NDCG =
1

IDCGK

K∑

j=1

2relj − 1

log2(j + 1)
, (20)

AvgRank =
1

|Q|

|Q|∑

q=1

rankq, (21)

where relj ∈ {0, 1} indicates the relevance of the
document at rank j and IDCGK is the maximum
possible DCG for an ideal ranking.

Since a query has exactly one positive sample,
i.e., IDCGK = 1, Recall and NDCG are binary
indicators of whether the true document is within
Top-K, while MRR and AvgRank are directly de-
termined by the position of that relevant item.
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C PROMPT

In this section, we detail the prompt required
for our query generation process. For the query-
document pair generation described in Section 5,
we utilize a structured prompt with QWen2.5-7b-
instruct. This prompt is designed to generate 2 di-
verse and realistic search queries that a user might
ask when seeking information contained in the spe-
cific medical document chunk. The prompt tem-
plate is as follows:

Medical Query Generation Prompt for
Searching Document Chunks

You are a medical literature retrieval expert. Your task
is to generate exactly 2 search queries based on the
following document passage. First, identify the two
main themes or core aspects discussed in the docu-
ment passage. These should reflect the central topics,
conditions, treatments, or research questions. Con-
sider focusing on the title, abstract, or key sections to
pinpoint these themes. Then, generate two concise
yet informative search queries, each focusing on one
of the identified themes. Ensure that each query has
a distinct search intent and targets a different main
theme. Avoid overlap in focus. Queries should be
specific and tied to the document’s content, avoiding
broad or generic terms, to retrieve literature relevant
to its core contributions. Do not quote the passage
directly; instead, abstract core concepts and rephrase
them using keywords and terminology researchers
or clinicians would use. Consider what researchers
or clinicians would search for to find related or ex-
panded studies. Remain objective, avoiding personal
biases or assumptions. Output exactly 2 queries, each
on a separate line.

Input: {Document}
Output: {First Query Here}

{Second Query Here}

Table 6: Prompt template for generating medical chunks
search queries

D EXPERIMENTS

All training-based experiments were conducted on
6 NVIDIA RTX Ada 6000 GPUs. Results are re-
ported as the mean over three independent runs to
ensure consistency and mitigate randomness.

D.1 License Discussion
In this study, we used the PubMed Central Open
Access Subset, whose articles are available under
various Creative Commons licenses (e.g., CC0, CC
BY, CC BY-SA, CC BY-NC), the Milvus vector
database under the Apache License 2.0 (with preser-
vation of LICENSE and NOTICE files on redis-
tribution), and the E5-base-v2 model (intfloat/e5-
base-v2) under the MIT License (permitting free

Table 7: Distribution of medical domains across feder-
ated clients (%) after Dirichlet partitioning (α = 0.3)

Client Card. Rad. Med. Info. Pharm. Neuro. Onc.

C1 18.65 44.96 0.38 0.00 35.77 0.25
C2 99.71 0.14 0.01 0.10 0.03 0.02
C3 0.34 0.44 74.25 0.11 0.00 24.86
C4 0.23 25.98 9.44 12.66 51.69 0.00
C5 26.71 0.34 6.83 13.73 36.70 15.69
C6 0.00 12.59 0.18 66.61 7.08 13.53

use, modification, and redistribution with copyright
notice intact). Our use of these artifacts is consis-
tent with their intended research purposes. For
the artifacts we create, including embeddings and
models derived from these resources, we specify
that they are intended for research purposes only
and maintain compatibility with the original access
conditions of the source materials. Any deriva-
tive works produced during this research are not
intended for commercial or production use outside
research contexts.

D.2 Datasets Statistics

The original dataset consists of 32,619 query-
document pairs distributed across six medical do-
mains as follows: Cardiology (9,594 pairs), Radi-
ology (1,919 pairs), Medical Informatics (8,315
pairs), Pharmacy (2,558 pairs), Neuroscience
(5,756 pairs), and Oncology (4,477 pairs).

To simulate realistic non-IID scenarios in feder-
ated learning environments, we employed a Dirich-
let distribution (α = 0.3) to partition these domain-
specific query-document pairs across six client
nodes. Table 7 shows the resulting data distribu-
tion, with each cell representing the percentage
of documents from a specific domain allocated to
each client. This approach creates significant het-
erogeneity in the data distribution across clients,
reflecting real-world federated scenarios where in-
stitutions specialize in different medical fields.

D.3 Parameter Settings

HyperParameters. This section presents a detailed
overview of the hyperparameter settings used in
our experiments. As shown in Table 8, the key
parameters were carefully selected and tuned to
ensure fair comparisons and optimal performance.
Package Parameters. Our implementation lever-
ages the Milvus Standalone version 2.4.13 as the
vector database backend with HNSW (Hierarchi-
cal Navigable Small World) as the index type and
L2 distance as the metric type. The HNSW con-
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Table 8: Hyperparameter settings

Parameter Value

General Training
Embedding Model intfloat/e5-base-v2(109M)
Language Model QWen/QWen-2.5-7b(7.61B)
Communication rounds (T ) 200
Local epochs (E) 3
Learning rate (η) 1e−5

Batch size 512
Optimizer Adam
Weight decay (λ) 0.01
InfoNCE temperature 0.05

Knowledge Distillation
KD temperature (τKD) 3.0
KD epochs 50
KD learning rate 0.1

Depth Controller
Data complexity score weights w1 = 0.8, w2 = 1.5, w3 = 1.2
API weights wL = 0.8, wO = 0.2
Window size (Tw) 5
Minimum stable rounds (τs) 3
Maximum low rounds (τl) 4
Cooling period (Tcool) 5

figuration parameters were set to M = 16 and
efConstruction = 256, balancing search accuracy
with indexing efficiency. For text processing and
model interactions, we utilized the transformers
library (version 4.48.3), with e5-base-v2’s tok-
enizer for document chunking operations using
a maximum length of 512 tokens. During LLM
inference with QWen2.5-7B-Instruct, we em-
ployed a carefully tuned parameter set includ-
ing max_new_tokens=128, temperature=0.4,
do_sample=True, top_k=50, top_p=0.9, and
repetition_penalty=1.2, with pad_token_id
set to the tokenizer’s EOS token ID. Model load-
ing utilized device_map="auto" for optimal GPU
allocation, float16 precision for memory efficiency,
low_cpu_mem_usage=True to minimize RAM
consumption, and trust_remote_code=True to
properly handle model-specific optimizations.

D.4 Implementation Details

In our human evaluation process, we provided do-
main experts with a structured scoring rubric, as
shown in Table 9, to ensure consistent and objective
assessment of RAG response quality. This rubric
guided experts to evaluate responses based on med-
ical accuracy, clinical relevance, terminology pre-
cision, and overall coherence. Experts were in-
structed to focus particularly on whether responses
maintained proper distinctions between medical
terms, accurately represented clinical concepts, and
provided information that would be useful in actual
medical contexts.

Table 9: Human Evaluation Scoring Rubric for RAG
Response Quality

Score Description of RAG Response Quality

9–10 Excellent: Comprehensive, highly accurate, directly relevant
response that fully addresses all query aspects. Demonstrates
excellent synthesis of context information, perfectly faithful
to the provided context (no hallucinations). Maintains precise
distinctions between medical terms and concepts with no termi-
nology confusion.

7–8 Good: Largely correct, relevant response addressing main query
aspects. Mostly faithful to context with minimal unsupported
claims. Medical terminology is used accurately with minimal
ambiguity. Generally coherent and understandable.

5–6 Fair: Response attempts to answer query but has noticeable
issues. May be partially correct/complete, contain some termi-
nology imprecision, or occasional confusion between related
medical concepts.

3–4 Poor: Mostly irrelevant response with significant factual inac-
curacies or superficial query coverage. Contains notable un-
supported claims, terminology errors, or conflation of distinct
medical concepts.

1–2 Very Poor: Completely irrelevant, nonsensical, largely incor-
rect response with severe medical inaccuracies. Contains fun-
damental misunderstandings of medical concepts, dangerous
terminology confusion.

14268


