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Abstract

Pre-training on large, high-quality datasets is
essential for improving the reasoning abili-
ties of Large Language Models (LLMs), par-
ticularly in specialized fields like mathemat-
ics. However, the field of Multimodal LLMs
(MLLMs) lacks a comprehensive, open-source
dataset for mathematical reasoning. To fill
this gap, we present InfiMM-WebMath-40B1,
a high-quality dataset of interleaved image-text
documents. It consists of 24 million web pages,
85 million image URLs, and 40 billion text to-
kens, all carefully extracted and filtered from
CommonCrawl. We outline our data collec-
tion and processing pipeline in detail. Models
trained on InfiMM-WebMath-40B demonstrate
strong performance in both text-only and mul-
timodal settings, setting a new state-of-the-art
on multimodal math benchmarks such as Math-
Verse and We-Math.

1 Introduction

Recent advancements in Large Language Mod-
els (LLMs)(AI, 2024; Anthropic, 2024; Dubey
et al., 2024) have improved their ability to han-
dle complex reasoning and multi-step mathemat-
ical problems through techniques like Chain-of-
Thought (CoT) prompting(Wei et al., 2022). These
models excel from basic GSM8K word prob-
lems (Cobbe et al., 2021b) to high school-level
MATH tasks (Hendrycks et al., 2021b). Special-
ized smaller LLMs like DeepSeekMath-7B (Shao
et al., 2024) and InternLM-Math (Ying et al., 2024)
have also made notable progress in mathematics,
demonstrating strong performance in focused do-
mains.

Although most mathematical knowledge is text-
based, visual elements such as figures and di-
agrams are essential for understanding abstract
concepts. To integrate these visual components,
Multimodal LLMs (MLLMs) like G-LLaVA (Gao

1We have released our data at HuggingFace.

et al., 2023b), Math-LLaVA (Shi et al., 2024a),
and MAVIS (Zhang et al., 2024d) have been devel-
oped. These models enhance reasoning by incor-
porating visual inputs through embeddings from
pre-trained models like CLIP (Radford et al., 2021)
and SigLIP (Zhai et al., 2023), and use multimodal
instruction datasets such as Geo170k (Cai et al.,
2024), MathV360K (Shi et al., 2024b), and MAVIS-
Instruct (Zhang et al., 2024c).

However, introducing new knowledge during in-
struction fine-tuning is challenging (Zhu and Li,
2023), often leading to hallucinations (Gekhman
et al., 2024), particularly due to limitations in
dataset scale and quality. While large corpo-
rations benefit from proprietary datasets, the
open-source community lacks comprehensive pre-
training datasets for mathematical reasoning that
integrate text and visual data.

To address this gap, we introduce InfiMM-
WebMath-40B, the first large-scale, publicly avail-
able multimodal mathematics pre-training dataset.
Comprising 24 million web documents, 85 million
image URLs, and 40 billion text tokens, it pro-
vides a valuable resource for training Multimodal
LLMs (MLLMs). We validate the effectiveness
of InfiMM-WebMath-40B through experiments on
benchmarks like MathVerse (Zhang et al., 2024b)
and WeMath (Qiao et al., 2024), showing improved
performance in multimodal math reasoning.

Our contributions include: (1) We introduce
InfiMM-WebMath-40B, the first large-scale, multi-
modal math dataset for pre-training, filling a critical
gap in open-source research. (2) We provide a de-
tailed preprocessing pipeline for filtering relevant
content from CommonCrawl to ensure high-quality,
relevant data. (3) We demonstrate the impact
of InfiMM-WebMath-40B through experiments,
where our models excel on multimodal mathemati-
cal benchmarks, showcasing the dataset’s potential
for advancing MLLM research.
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Figure 1: InfiMM-WebMath-40B data curation pipeline.

2 Related Work

LLMs have demonstrated potential in mathematical
reasoning across various studies. To evaluate and
enhance their capabilities, several math-specific
benchmarks (Cobbe et al., 2021a; Hendrycks et al.,
2021c,a; Azerbayev et al., 2024; Naeini et al.,
2023; Liu et al., 2024; Zhou et al., 2024) and train-
ing datasets, both proprietary (Polu and Sutskever,
2020; Lightman et al., 2023; Lewkowycz et al.,
2022) and open-source (Hendrycks et al., 2021b;
Welleck et al., 2021; Paster et al., 2023a; Wang
et al., 2023; Yue et al., 2023), have been introduced.

The rise of Multimodal LLMs (MLLMs) has
sparked interest in enhancing their multimodal
reasoning capabilities. To support this, various
evaluation benchmarks (Zhang et al., 2024a; Lu
et al., 2021; Kazemi et al., 2023; Xia et al., 2024;
Masry et al., 2022; Xu et al., 2024; Lu et al., 2024;
Zhang et al., 2024b; Qiao et al., 2024) and training
datasets (Cai et al., 2024; Gao et al., 2023a; Shi
et al., 2024b; Zhu et al., 2023; Laurençon et al.,
2023; Awadalla et al., 2024; Li et al., 2024b) have
been developed to assess and enhance MLLMs’
mathematical reasoning skills.

3 Dataset Construction

In this section, we detail the methodology used to
construct InfiMM-WebMath-40B from the Com-
monCrawl archives. InfiMM-WebMath-40B is
a large-scale multimodal math dataset integrat-
ing interleaved text and image data, following
approaches used in prior works (Penedo et al.,
2023; Li et al., 2024a; Penedo et al., 2024). We
enhance the methodology used in the OBELICS
dataset (Laurençon et al., 2023) by incorporating
both text and corresponding image URLs.

3.1 Text-only Data Curation Pipeline

Text Extraction and Language Filtering We
chose Trafilatura (Barbaresi, 2021), a Python li-
brary widely used to extract text from web pages.
While effective for text extraction, Trafilatura omits

Integral form\n[edit]Gauss's law may be 
expressed as:[6]\nwhere ΦE is the electric flux 
through a closed surface S enclosing any 
volume V, Q is the total charge enclosed 
within V, and ε0 is the electric constant. The 
electric flux ΦE is defined as a surface integral 
of the electric field:\nwhere E is the electric 
field, dA is a vector representing an 
infinitesimal element of area of the 
surface,[note 2] and · represents the dot 
product of two vectors.

Integral form\n\n[Image_Link]//upload.wikimedia.org/wikipedia/commons/thumb/3/32/Electric-
flux-surface-example.svg/220px-Electric-flux-surface-example.svg.png [Image_Link] Electric 
flux through an arbitrary surface is proportional to the total charge enclosed by the surface. 
\n\nGauss's law may be expressed as:\n\n$\\Phi _{E}={\\frac {Q}{\\varepsilon _{0}}}$\n\n\nwhere
ΦE is the electric flux through a closed surface S enclosing any volume V, Q is the total charge 
enclosed within V, and ε0 is the electric constant. The electric flux ΦE is defined as a surface integral 
of the electric field:\n\n$\\Phi _{E}=$ $\\scriptstyle _{S}$ $\\mathbf {E} \\cdot \\mathrm {d} 
\\mathbf {A}$\n\nwhere E is the electric field, dA is a vector representing an infinitesimal element 
of area of the surface,[note 2] and · represents the dot product of two vectors.

From trafilatura From Ours

Figure 2: A comparative illustration of extraction re-
sults from a Wikipedia webpage using Trafilatura and
our enhanced version of Resiliparse, highlighting the
successful retrieval of mathematical equations and im-
age URLs.

mathematical symbols and equations. Therefore,
the subsequent section will outline our develop-
ment of a specialized extraction tool tailored for
math-related content.

Following DeepSeekMath (Shao et al., 2024),
we focus on retaining only Chinese and English
content when constructing our dataset. To achieve
this, we apply language filtering to the Common-
Crawl repositories with approximately 122 billion
webpages, as shown in Figure 1. For language
detection, we employ a fastText language identifi-
cation model (Joulin et al., 2016). This language
filtering process significantly reduces the dataset
size, lowering the number of pages from 122 billion
to 57.2 billion.

Mathematical Content Extraction Extracting
mathematical content from HTML is challenging,
as standard tools often fail to accurately capture La-
TeX equations and image URLs. After evaluating
multiple tools, we selected Resiliparse (Bevendorff
et al., 2018) as the foundation for our approach. As
shown in Figure 2, our enhanced version outper-
forms Trafilatura by preserving the original content
order, ensuring the logical flow of mathematical
arguments. Unlike conventional extractors, which
often misinterpret equations or disrupt their struc-
ture, our method accurately retains LaTeX notation
and its placement within the text. Additionally, it
maintains image URLs and their positions, preserv-
ing crucial connections between text, equations,
and visual elements.

High-Recall Filtering for Mathematical Content
Inspired by DeepSeekMath (Shao et al., 2024), we
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Model Base
LLM All Text

Dom
Text
Lite

Vision
Intense

Vision
Dom

Vision
Only

Human - 64.9 71.2 70.9 61.4 68.3 66.7

Proprietary Models

GPT-4V N/A 39.4 54.7 41.4 34.9 34.4 31.6
Gemini-Pro N/A 23.5 26.3 23.5 23.0 22.3 22.2

Open-sourced Models

SPHINX-Plus LLaMA2-13B 14.0 16.3 12.8 12.9 14.7 13.2
G-LLaVA LLaMA2-7B 15.7 22.2 20.4 16.5 12.7 6.6

InternLM-XC2 InternLM2-7B 16.5 22.3 17.0 15.7 16.4 11.0
Math-LLaVA Vicuna-13B 19.0 21.2 19.8 20.2 17.6 16.4
ShareGPT4V Vicuna-13B 17.4 21.8 20.6 18.6 16.2 9.7
LLaVA-NeXT LLaMA3-8B 19.3 24.9 20.9 20.8 16.1 13.8
LLaVA-NeXT Qwen-1.5-110B 24.5 31.7 24.1 24.0 22.1 20.7

MAVIS Mammoth2-7B 27.5 41.4 29.1 27.4 24.9 14.6

Our Models

InfiMM-Math DS-Coder-1.3B 26.9 37.1 30.2 29.2 24.4 13.7
InfiMM-Math DS-Coder-1.5-7B 34.5 46.7 32.4 38.1 32.4 15.8

Table 1: Evaluation of models on MathVerse. Further elaborations on
performance of vision only tasks are discussed in Appendix H.

CPT IFT Scores

DSC-1.3B Mavis 20.2
DSC-1.3B ✓ Mavis 25.1
DSC-1.3B Extended 22.3
DSC-1.3B ✓ Extended 26.9

Table 2: Datasets ablations (CPT and IFT)
using Deepseek-coder-1.3B, evaluated on
MathVerse w/o scores.

CPT IFT Scores

DSC-1.5-7B Mavis 22.8
DSC-1.5-7B ✓ Mavis 27.1
DSC-1.5-7B Extended 23.8
DSC-1.5-7B ✓ Extended 29.1

Table 3: Datasets ablations (CPT and IFT)
using Deepseek-coder-1.5-7B, evaluated on
MathVerse w/o scores.

trained a fastText classifier to filter mathematical
content, using half a million positive samples from
OpenWebMath (Paster et al., 2023b) and negative
samples from our earlier extracted content. This
filtering reduced the dataset from 57.2 billion to
9.5 billion samples, prioritizing recall with a prob-
ability threshold set at 0.4.

Deduplication We applied MinHash (Broder,
1997) for content deduplication, following
FineWeb’s methodology (Penedo et al., 2024).
Deduplication was performed within each snap-
shot and neighboring snapshot pairs, reducing the
dataset by 43%, from 9.5 billion to 5.4 billion sam-
ples. URL deduplication further reduced the sam-
ple size to 3.9 billion.

Rule-based Filtering We applied a few essential
filtering rules, such as removing "lorem ipsum" con-
tent, applying a punctuation ratio rule for English,
filtering NSFW content, and excluding documents
with Unicode errors. This step eliminated 3% of
the samples, resulting in 3.8B samples.

High-Precision Filtering for Mathematical Con-
tent To enhance the accuracy of our labeling
process, we utilized the LLaMA3-70B-Instruct
model (Dubey et al., 2024), using prompt formats
inspired by the FineWeb-Edu dataset (Lozhkov
et al., 2024). This approach allowed us to score
the mathematical quality of each sample on a scale
from 0 to 10. The full prompt is displayed in Ta-
ble 5 of Appendix.

From the data remaining after rule-based filter-
ing, we randomly sampled approximately one mil-

lion entries. We assigned math quality scores and
applied a threshold of 6 to select 640,000 positive
samples for training our updated fastText classi-
fier, alongside an equivalent number of 640,000
randomly selected negative samples from prior fil-
tering steps. These positive and negative samples
were combined to train the new fastText classifier.2

During fastText training, we implement data
cleaning rules to optimize the model’s performance
for mathematical content. Mathematical texts pose
unique challenges due to specialized terminology,
symbols, formulas, and numeric data, which dif-
fer from typical natural language and require more
refined preprocessing techniques.

Our goal is to standardize and simplify the in-
put training data while preserving essential math-
ematical information. Key considerations include
maintaining consistency in token representation,
minimizing noise from extraneous characters, and
standardizing numeric values. The following steps
reflect this approach:

• Utilizing the SpaCy English language model
(en_core_web_sm), we preprocess the input
text, tokenize it, and process each token by
converting it to its lowercase and lemmatized
form. Common placeholders are replaced,
certain non-alphanumeric characters are re-
moved, and patterns of special characters like
dashes and underscores are normalized. We
also strip any unnecessary whitespace, ensur-
ing the text is well-prepared for downstream

2We also employ an LLM-based classifier for high-
precision filtering, Appendix B shows the comparison.
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Figure 3: Topic Distribution of our sampled dataset.

processing.

• All numeric values are replaced with the
<NUM> placeholder to standardize the repre-
sentation, and line breaks along with carriage
returns are removed. Tokens exceeding 100
characters in English are discarded.

For evaluation, we used all samples in the Ge-
ometry3K (Lu et al., 2021) benchmark as positive
examples of mathematical content. With these re-
fined preprocessing techniques, fastText’s accuracy
improved from 48.74% to 72.15%.

Text Topics Distribution We provide the data
statistics of our sampled dataset. To assign
mathematical topics, we use LLaMA-3.1-70B-
Instruct (Dubey et al., 2024) to assign math topics
to them. The distribution can be found in Figure 3.
As shown in the figure, we can see that the Infimm-
WebMath-40B covers a wide range of topics in the
STEM domains, which possibly explains why it
performs well in our experimental studies.

Text-Only Filtering Evaluation We pretrained
a deepseek-coder-1.3b-base model on the filtered
text dataset and evaluated its performance on
GSM8K (Cobbe et al., 2021b) and the MMLU
(STEM) (Hendrycks et al., 2021a). Our model
outperformed both OpenWebMath and DeepSeek-
Math, highlighting the quality of our dataset (re-
sults are shown in Appendix C).

3.2 Multimodal Data Construction

After filtering, 24 million documents with 85
million image URLs remained. Following the
OBELICS format (Laurençon et al., 2023), all im-
age URLs and extracted texts were preserved and
organized into the interleaved image-text format,
maintaining the same order as in the original docu-
ment layout. We recognize that irrelevant images
are often present in web documents. We present
the detailed filtering process in Appendix F.

4 Experiments

Model Architectures We employ the SigLip
model siglip-so400m-patch14-384 to extract
visual features, a 3-layer Perceiver Resampler
(Jaegle et al., 2021) (see Appendix G for
more details) with 64 latents to reduce the
number of tokens/features per image to 64.
These visual token/feature embeddings are then
concatenated with text embeddings before be-
ing fed into the LLMs (DeepSeek-Coder (Guo
et al., 2024): deepseek-coder-1.3b-base and
deepseek-coder-7b-v1.5).

Training Details Our training data and pro-
cesses involve a three-stage approach: modality
alignment, continued pre-training using InfiMM-
WebMath-40B, and instruction fine-tuning. De-
tailed training procedures are provided in the Ap-
pendix D. We refer to our resulting model as
InfiMM-Math.

Evaluations on MathVerse In line with offi-
cial MathVerse guidelines, we report the “w/o”
score. The results in Table 1 show that our 7B
model outperforms all open-source models, in-
cluding the 110B LLaVA-NeXT, and surpasses
Gemini-Pro and Qwen-VL-Max, trailing only GPT-
4V. Our model demonstrates exceptional perfor-
mance in the Text-Dominant, Text-Lite, Vision-
Intense, and Vision-Dominant categories, highlight-
ing its strong multimodal capabilities in process-
ing both text and visual inputs. When comparing
models of similar sizes, our model demonstrates
competitive performance against state-of-the-art
approaches on Vision-Only categories as well. Our
7B model achieved 15.8, outperforming LLaVA-
Next-8B (13.8) and MAVIS-7B (14.6).

Evaluations on We-Math Here, we compare
models on the We-Math benchmarks, consisting
of 6.5K visual math questions. We report results
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Model Base LLM AVG ↑ IK ↓ IG ↑ RM ↓

Proprietary Models

Gemini-1.5-Pro N/A 26.4 42.7 11.2 54.8
GPT-4V N/A 31.1 39.8 14.5 47.9

Open-sourced Models

LLaVA-1.6 Vicuna-7B 3.3 78.3 2.5 89.1
LLaVA-1.6 Vicuna-13B 5.2 69.1 3.2 86.9
DeepSeek-VL DeepSeek-7B 6.3 69.1 4.6 84.8
G-LLaVA Vicuna-13B 6.5 64.2 4.6 86.6
Math-LLaVA Vicuna-13B 11.1 – – 72.8
InternLM-XC2 InternLM2-7B 12.7 56.4 10.5 77.6

Our Models

InfiMM-Math DS-Code-1.3B 13.1 56.2 9.1 73.7
InfiMM-Math DS-Base-7B 20.6 48.8 12.2 61.7

Table 4: Evaluations on the We-Math benchmark. AVG
represents the primary metric of interest.

on the testmini set using four metrics: Insuffi-
cient Knowledge (IK), Inadequate Generalization
(IG), Complete Mastery (CM), and Rote Memo-
rization (RM). As shown in Table 4, our model,
InfiMM-Math, surpasses all open-source models.

5 CPT and IFT Dataset Ablations on
MathVerse

In this section, we compare models trained with
and without our own mathematical multi-modal
pre-training dataset, InfiMM-WebMath-40B.
Additionally, we evaluate two IFT dataset config-
urations: (a) a combination of MAVIS-Caption-
to-QA, MAVIS-Existing-Dataset-Augment,
MAVIS-Caption, MAVIS-DataEngine-Geometry,
and MAVIS-Meta-Question (referred to as the
MAVIS dataset); and (b) a broader set consisting
of the MAVIS datasets along with Vflan, Visu-
alWebInstruct, AI2D, CHARTQA, DOCVQA,
DVQA, GEOQA, DART-Math, and Numina-Math
(referred to as the Extended dataset).

As shown in Table 2, in the 1.3B model, CPT im-
proves the MathVerse scores by 4.9 and 4.6 points
when IFT is performed with MAVIS and Extended
datasets, respectively. Similarly, Table 3 shows
that in the 7B model, CPT improves the Math-
Verse scores by 4.8 and 5.3 points with MAVIS
and Extended datasets, respectively. In contrast, us-
ing broader IFT datasets typically enhances model
performance by approximately 2 points. These
results highlight the significant mathematical capa-
bilities imparted to the models through our InfiMM-
WebMath-40B for CPT.

6 Conclusions

In this work, we introduced InfiMM-WebMath-
40B, the first large-scale multimodal pretraining
dataset for mathematical reasoning, filling a cru-
cial gap in open-source research. Our dataset sig-
nificantly enhances models’ performances on key
benchmarks.

7 Potential Risk

Although we have applied rule-based filtering to
exclude NSFW web pages, it could be possible
that our dataset inevitably contains some harmful
contents. Users are suggested to use with caution.

8 Limitations

Although our models excel compared to many
open-sourced models due to the introduction of
InifMM-WebMath-40B, the models lack enhanced
vision capabilities to specifically read math con-
tent. For future work, we aim to develop enhanced
higher-resolution vision encoders tailored to ef-
fectively process mathematical symbols, diagrams,
and equations.

On the other hand, after being continual trained
on a highly dense multimodal mathematical dataset,
other capabilities (such as commonsense knowl-
edge reasoning or domain-specific knowledge) may
experience "catastrophic forgetting". This main
come from underlying base LLM. Our multimodal
CPT cannot compensate for potential shortcomings
intrinsic to the base model itself.
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A Using Prompting with Llama-3-70B for
Mathematical Annotation

We display the full prompt used in High-Precision
Filtering for Mathematical Content in Table 5.

B Ablation Studies on High-Precision
Mathematical Content Filtering

In this section, we examine the efficacy
of two classifiers—LLM-based and fastText-
based—focusing on high-precision mathematical
content filtering. The comparison utilizes the
DeepSeek-Coder 1.3B model, which we trained
on a dataset previously introduced in Sec. High-
Recall Filtering for Mathematical Content with a
sequence length of 4096. This model was trained to
score documents based on their relevance to math-
ematical content on a scale from 0 to 10.

We conduct the continue pretraining of the
DeepSeekCoder 1.3B model using datasets filtered
by both the LLM- and fastText-based classifiers.
Table 6 shows the performance results. The re-
sults highlight a length bias in the LLM-based
method, which tends to favor longer documents,
averaging 2,500 tokens, compared to 1,700 tokens
for the FastText filter. The length bias associated
with the LLM-based classifier has adversely im-
pacted the dataset’s performance on the GSM8K
dataset. As indicated in the table, the LLM-filtered
dataset achieved lower accuracy (17.5%) on the
GSM8K dataset compared to the fastText-filtered
dataset (20.2%). This decrease in performance
indicates that the LLM’s preference for longer doc-
uments may not align well with the requirements
of datasets like GSM8K, which demand concise
and precise mathematical descriptions.

Given these insights, we have decided to
continue utilizing the fastText classifier for
high-precision filtering in our ongoing research.
Nonetheless, the implications of the LLM-based
classifier require further investigation to fully un-
derstand and address its biases.

C Text-Only Filtering Evaluation

To provide a preliminary evaluation of the quality
of our filtered dataset, we continue pretraining a

deepseek-coder-1.3b-base model for one epoch us-
ing the filtered mathematical content in Sec. High-
Precision Filtering for Mathematical Content, ex-
cluding image URLs. We validate the effectiveness
of our math-related filtering with a few-shot evalu-
ation using the GSM8K (Cobbe et al., 2021b) and
the STEM sections of the MMLU (Hendrycks et al.,
2021a) benchmark.

As shown in Table 7, the model trained on our
InfiMM-WebMath-40B text-only dataset demon-
strates competitive performance compared to Open-
WebMath and the DeepSeekMath Corpus, high-
lighting the high quality of our dataset and the
effectiveness of our filtering procedures.

D Training Details

Modality Alignment Stage In this stage, we uti-
lize general-purpose image-text pairs to align the
visual encoder and the LLM via Perceiver Resam-
pler. The primary objective is to minimize the
domain gap between visual and linguistic modali-
ties. To achieve this, we sample a 8 million image-
text pair subset from the DFN-2B dataset (Fang
et al., 2024) for the alignment training. During
this stage, the vision encoder and LLM backbone
are frozen, and training is focused on the Perceiver
Resampler module. Training is conducted for one
epoch using DeepSpeed Zero2, with the AdamW
optimizer, configured with a cosine learning rate
scheduler, a maximum learning rate of 1e−4, betas
of (0.9, 0.95), and a weight decay of 0.1.

Continue Pre-training Stage We further con-
tinue pre-training our models using the InfiMM-
WebMath-40B dataset to enhance the model’s
mathematical knowledge acquisition in a multi-
modal setting. The training is conducted for one
epoch using DeepSpeed Zero2, with the AdamW
optimizer, configured with a cosine learning rate
scheduler, a maximum learning rate of 5e−5, be-
tas of (0.9, 0.95), and a weight decay of 0.1. The
context length for training examples is set to 4096,
with a maximum of 32 images per example. During
this stage, the visual encoder remains frozen, and
training focuses on learning the Perceiver Resam-
pler module (the visual-language connector) and
the LLM.

Instruction Fine-tuning Stage In this stage of
training, we fine-tune our models using instruc-
tion datasets, including PGPS9K (Zhang et al.,
2023), Geo170k (Gao et al., 2023a), TABMWP
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Below is an extract from a web page. Evaluate the mathematical value of the extract and its potential utility as a teaching resource in a mathematical
context using the additive 10-point scoring system described below. Points accumulate based on the satisfaction of each criterion, with special
attention to the presence and quality of mathematical equations:
- 0 points if the extract includes no mathematical content, such as only provides historical context, summarizes an article’s abstract, or exclusively
features a person’s resume.
- 1-2 points if the extract offers rudimentary information on mathematical subjects, even if interspersed with irrelevant material such as advertisements
or non-academic content.
- 2-4 points if the extract touches upon mathematical topics without rigorous adherence to academic standards and contains a mix of mathematical and
non-mathematical content, or if the presentation is haphazard and the writing lacks clarity.
- 4-6 points if the extract presents key concepts pertinent to educational curricula and includes mathematical equations, albeit potentially
non-comprehensive or alongside superfluous information. It should resemble a mathematical text, such as an introductory section of a textbook or a basic
tutorial.
- 6-8 points if the extract is highly relevant to mathematics, is well-structured, and offers a clear exposition, including a significant number of
mathematical equations and solutions. It should be akin to an in-depth textbook chapter or tutorial, with a strong focus on mathematical content and
minimal unrelated information.
- 8-10 points if the extract exhibits exceptional mathematical merit, characterized by detailed explanations, a comprehensive array of mathematical
equations, and a coherent, accessible writing style that provides profound insights into mathematical theories and applications.
The extract: <EXAMPLE>.
After examining the extract: - Briefly justify your total score. - Conclude with the score using the format: "mathematical score: <total points>"

Table 5: Prompt for evaluating mathematical content using Llama-3-70B following FineWeb-Edu (Lozhkov et al.,
2024).

Method MMLU
(STEM) GSM8K Text

Avg Len

LLM-Clf 32.8 17.5% 2500
FastText-Clf 31.1 20.2% 1700

Table 6: Ablations on high-precision filtering. “Text
Avg Len” indicates the average document length after
filtering.

Training Corpus GSM8K MMLU (STEM)

Baseline 4.8 25.6
OpenWebMath 11.0 29.6
DeepSeekMath Corpus 23.8 33.1
InfiMM-WebMath-40B (text) 26.1 35.6

Table 7: Evaluation of models on GSM8K and MMLU
(STEM). The baseline is the deepseek-coder-1.3b-base
without any training.

(Lu et al., 2023), ScienceQA (Lu et al., 2022),
Vflan (Chen et al., 2024), VisualWebInstruct, AI2D
(Kembhavi et al., 2016), ChartQA (Masry et al.,
2022), DocVQA (Mathew et al., 2021), DVQA
(Kafle et al., 2018), GeoQA (Chen et al., 2021),
and MAVIS (Zhang et al., 2024c). We find that
incorporating uni-modal text instruction datasets
is crucial for enhancing the models’ instruction-
following capabilities. Therefore, we also include
pure text instruction datasets such as Math(Li et al.,
2023), MetaMathQA (Yu et al., 2024), DART-Math
(Tong et al., 2024), and NuminaMath (Beeching
et al., 2024). The objective of this stage is to ac-
climate the models to the common chat templates
used in math VQA settings, thereby enabling them
to better utilize the mathematical knowledge ac-
quired in the previous stage.

We freeze the vision encoder and update the
parameters of the Perceiver Resampler and LLMs.
As in the previous stages, training is conducted
using DeepSpeed Zero2 for one epoch, with the

AdamW optimizer, configured with 2000 warmup
steps, a maximum learning rate of 5e−6, betas of
(0.9, 0.95), a weight decay of 0.1, and cosine decay
to 5e−7. The batch size is set to one per GPU, and
the context length of the training examples is set to
4096. We utilize 32 A100-80G GPUs for the 1.3b
models and 64 A100-80G GPUs for the 7b models.

E Use of AI Assistants

For this submission, we use ChatGPT to fix gram-
mar, revise and polish the text at the sentence level.

F Elaborations on Images and Text
matching

In our dataset, all image URLs and extracted texts
were preserved and organized into the interleaved
image-text format, maintaining the same order as
in the original document layout, following the prac-
tices of the OBELICS dataset. However, we rec-
ognize that irrelevant images are often present in
web documents. To address this, we implemented
a two-step filtering process:

• URL-Based Filtering: As described in the
manuscript, we filtered out irrelevant im-
age URLs containing specific keywords (e.g.,
“logo”, “banner”, “avatar”, “icon”), URLs that
appeared in more than 10 documents, and doc-
uments with over 100 image URLs. This pro-
cess removed over 1 million unique irrelevant
or redundant images.

• Image-Text Similarity Filtering: After down-
loading images from the filtered URLs, we
identified and removed unrelated or mis-
matched images by calculating their similarity
to the corresponding document text using the
SigLIP-so400m model. For this step, docu-
ment texts were divided into 64-token chunks
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to fit the SigLIP text encoder, and images with
a similarity score below 0.01 for all chunks
were removed. This additional filtering step
eliminated 12% of the remaining unique im-
ages.

Finally, we analyzed the filtered dataset and
found that 52.4% of the remaining images had a
similarity score of at least 0.5 with one of the text
chunks from the same document, and 18.5% had
a similarity score of at least 0.99. These results
demonstrate the relevance of both our text and im-
age data.

G Perceiver as the Vision-Language
Connector

Due to the nature of interleaved image and text data,
directly concatenating image and text tokens results
in a significant computational cost during training.
For example, a training instance containing a piece
of text with four interleaved images—each consum-
ing 500+ tokens (the direct output of a ViT without
Resampler)—would exceed 2,000 tokens, quickly
exhausting the context length of a Transformer-
based model.

To address this, following the model architecture
used in Idefics2, we adopt the Perceiver Resampler,
which improves model performance while signifi-
cantly reducing the number of visual tokens. With
the Perceiver Resampler, the token count per image
is restricted to 64, mitigating the computational
burden. This strategy has been demonstrated to be
effective for multi-image VLM.

H Performance on Vision Only Tasks

Vision-only category removes all textual input, ren-
dering the textual content directly onto the diagram
while reducing the text prompt to a negligible level.

Since we utilize publicly available SFT data
with minimal modifications and have not integrated
high-resolution support into our model, we expect
the performance in the Vision-only category to be
comparable to other models.

However, when comparing models of similar
sizes, our model demonstrates competitive perfor-
mance against state-of-the-art approaches. For ex-
ample, our 7B model achieved a score of 15.8 in
the Vision-only category, outperforming LLaVA-
Next-8B (13.8) and MAVIS-7B (14.6).

Finally, the performance on vision-only tasks
can be further improved by using high-resolution

Vision Transformers (ViTs) as visual encoders,
which we leave for future work.
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