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Abstract

Large Language Models (LLMs) have demon-
strated remarkable proficiency in language
comprehension and generation; however, their
widespread adoption is constrained by substan-
tial bandwidth and computational demands.
While pruning and low-rank approximation
have each demonstrated promising perfor-
mance individually, their synergy for LLMs re-
mains underexplored. We introduce Synergistic
Sparse and Low-Rank Compression (SSLC)
methods for LLMs, which leverages the
strengths of both techniques: low-rank approxi-
mation compresses the model by retaining its
essential structure with minimal information
loss, whereas sparse optimization eliminates
non-essential weights, preserving those crucial
for generalization. Based on theoretical analy-
sis, we first formulate the low-rank approxima-
tion and sparse optimization as a unified prob-
lem and solve it by iterative optimization algo-
rithm. Experiments on LLaMA and Qwen2.5
models (7B-70B) show that SSLC, without any
additional training steps, consistently surpasses
standalone methods, achieving state-of-the-arts
results. Notably, SSLC compresses Qwen2.5
by 50% with no performance drop and achieves
at least 1.63× speedup, offering a practical so-
lution for efficient LLM deployment.

1 Introduction

In the research field of natural language process-
ing (NLP), large language models (LLMs) (Zhang
et al., 2022; Scao et al., 2022; Touvron et al.,
2023a), as an emerging technology, have achieved
remarkable success in handling complex linguis-
tic tasks and have significantly influenced the evo-
lutionary direction of NLP (Bubeck et al., 2023;
Wei et al., 2022; Achiam et al., 2023). How-
ever, their vast parameters require extensive com-
putational resources and substantial memory band-
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(a) The Salience of the raw weight W.
(b) The Salience of  the residual Δ after low-

rank approximation (where Δ = W - L).

Layer-3-q_proj

Figure 1: Weight salience (Huang et al., 2024) in
LLaMA2-7B before and after synergistic low-rank ap-
proximation. Compared to Figure (a), Figure (b) not
only shows a substantial reduction in extreme high val-
ues, but also reveals a decrease in prunable low values,
thus mitigating the performance degradation caused by
pruning.

width, thereby constraining their deployment in
practical applications.

To address the memory consumption issues of
LLMs, various post-training compression (PTC)
techniques that do not require retraining have
been explored. These include model quantiza-
tion (Dettmers et al., 2022; Xiao et al., 2023; Fran-
tar et al., 2023; Liu et al., 2025), pruning (Frantar
and Alistarh, 2023; Sun et al., 2023; Ma et al.,
2023) and low-rank approximation (Hsu et al.,
2022; Yuan et al., 2023; Wang et al., 2024). Prun-
ing simplifies the network by removing non-critical
weights or structures, while low-rank approxima-
tion methods reduces the model’s complexity by
decomposing the weight matrix into two orthogo-
nal low-dimensional matrices.

Recent studies (Frantar and Alistarh, 2023; Sun
et al., 2023; Zhang et al., 2024b; Dong et al., 2024;
Meng et al., 2024) have formulated LLM pruning
as a layer-wise reconstruction problem and pruned
redundant neurons using a metric derived from the
second Taylor approximation of reconstruction er-
ror (Hassibi et al., 1993). This metric, referred to
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as weight salience (Huang et al., 2024) and detailed
in the preliminaries section, evaluates the quadratic
error associated with changes in matrix elements,
which directly correlates with model performance:
higher salience indicate a greater impact on perfor-
mance. As illustrated in Figure 1(a), the original
weight salience, approximated from the calibration
dataset that is conventionally employed by prevail-
ing methodologies (Frantar and Alistarh, 2023; Sun
et al., 2023), exhibits a discrete distribution of out-
liers against a consistent pattern of moderate val-
ues. Unfortunately, existing pruning approaches
retain neurons with high salience from a discrete
perspective, failing to maximize the extraction of
the coherent part in salience space. In contrast,
low-rank approximation (LRA) methods, such as
Singular Value Decomposition (SVD) (Hsu et al.,
2022; Yuan et al., 2023; Wang et al., 2024), are
particularly suitable for compressing the coherent
components within the salience and extracting a set
of orthogonal bases that form a subspace, maximiz-
ing the preservation of the energy of the original
space. However, these methods for LLMs still lead
to severe performance degradation at a high com-
pression ratio (Yuan et al., 2023; Wang et al., 2024).
This degradation arises because low-rank approx-
imation effectively preserves the weight-sharing
common basis, but fails to retain the full-rank, non-
coherent parts that are crucial for maintaining the
model’s knowledge and performance.

Given these insights, there is an urgent need
to combine sparsification and low-rank approxi-
mation techniques. This integration can enhance
compression efficiency while ensuring that criti-
cal information is preserved. Figure 1 demon-
strates that the outliers in salience space are ef-
fectively extracted after low-rank approximation,
and this phenomenon is quantitatively analyzed in
Section 5.1. Consequently, with the same com-
pression rate, the synergistic method, by truncating
at a smaller salience threshold and increasing the
proportion of neurons with less salience, leads to
fewer reconstruction errors and thus less perfor-
mance degradation.

Inspired by these experimental observations, we
propose the Synergistic Sparse and Low-Rank
Compression (SSLC) method. SSLC decouples
the coherent and non-coherent parts of the neu-
ron, allowing the model to benefit from both sparse
and low-rank approximation. The low-rank ap-
proximation uses orthogonal bases to maximize
the extraction of energy from the salience space,

while the sparse part preserves key incoherent neu-
rons to maintain the network’s essential expres-
sive power. By synergizing these two techniques,
SSLC ensures a dense, expressive layer with the
low-rank part, mitigating the loss of expressive ca-
pacity caused by pure pruning/sparsification. Fur-
thermore, we model the joint compression problem
as a unified data-aware mathematical optimization
objective, considering the effect of low-rank and
sparse components on reconstruction loss. Then,
a synergistic optimization algorithm has been pro-
posed to solve the problem. Consequently, our
method possesses the orthogonality property of
low-rank approximation and the full-rank property
of sparsification mathematically, ensuring effec-
tive preservation of the model’s expressive capac-
ity while reducing redundant information. An-
other advantage, based on the assumption that
weight changes during model adaptation exhibit
a low “intrinsic rank” (Aghajanyan et al., 2020;
Hu et al., 2021), the low-rank component can ef-
fectively adapts to downstream tasks. Through
comprehensive experiments on the LLaMA (Tou-
vron et al., 2023a,b; Grattafiori et al., 2024) and
Qwen2.5 (Yang et al., 2025) models with 7B to
70B parameters, the results demonstrate that SSLC
achieves state-of-the-art performance.

The main contributions are summarized as fol-
lows:

• We propose SSLC, a novel joint compression
algorithm that integrates low-rank approxima-
tion with pruning techniques. Mathematically,
our method demonstrates the benefits of both
orthogonality from low-rank approximation
and full-rank preservation via sparse recon-
struction.

• Extensive experiments have shown that SSLC
without fine-tuning achieves state-of-the-art
performance on various models and datasets.
In addition, SSLC provides an optimized ini-
tialization for subsequent low-rank part fine-
tuning. Specifically, SSLC yields a 1.63×
speedup on Qwen2.5-7B (within about 3 GPU
hours of pruning and fine-tuning) without per-
formance drop across various zero-shot tasks.

2 Related Works

2.1 Large Language Models Pruning
SparseGPT (Frantar and Alistarh, 2023) pioneers
LLM pruning using a metric derived from the
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second-order term in the Taylor expansion of
the reconstruction error, employing classical Op-
timal Brain Surgeon (OBS) techniques (Hassibi
and Stork, 1992) to iteratively prune the network
and update residual weights. Wanda (Sun et al.,
2023) simplifies the Hessian matrix inversion pro-
cess, focusing on pruning the smallest magnitudes
multiplied by the corresponding input activation.
RIA (Zhang et al., 2024b) introduces the Rela-
tive Importance and Activation metric and chan-
nel swapping to maximize the retention of salience
under N:M sparsity constraints. DSNoT (Zhang
et al., 2024c) iteratively prunes and grows weights
to minimize reconstruction loss without the com-
putational expense of back-propagation or weight
updates. ALPS (Meng et al., 2024) utilizes an
ADMM-based optimization framework to alter-
nately optimize remaining weights through iter-
ative closed-form updates, minimizing layer-wise
reconstruction error while satisfying sparsity con-
straints. Pruner-Zero (Dong et al., 2024), automati-
cally generate symbolic pruning metrics, exploring
correlations with post-pruning performance. These
methods focus on model compression purely from a
pruning perspective. In contrast, our approach em-
phasizes the synergy between pruning and low-rank
approximation, effectively minimizing the impact
of pruning on reconstruction loss.

2.2 Sparse and Low-Rank Integration

Early joint decomposition research, includ-
ing Robust Principal Component Analysis
(RPCA) (Wright et al., 2009) and GoDec (Zhou
and Tao, 2011), effectively decoupled low-rank
structures and sparse noise from data matrices.
LoSparse (Li et al., 2023b) decomposes model
weights into low-rank and sparse components
via iterative pruning, yet remains impractical
for LLMs due to full-network training demands.
Techniques like LoRAshear (Chen et al., 2023) and
LoRAPrune (Zhang et al., 2024a) integrate pruning
with LoRA, performing parameter pruning based
on gradient information from LoRA, primarily
designed for structured pruning, but still face
challenges for severe performance degradation at a
high compression ratio. Meanwhile, LoSA (Huang
et al., 2025) further enhances compressed LLM
performance by unifying LoRA with sparsity
optimization. Additionally, LoRaP (Li et al., 2024)
applies separate low-rank estimation and pruning
to MHA and MLP layers independently; however,
it lacks joint optimization and requires additional

LoRA branch fine-tuning during knowledge
recovery, limiting its efficiency. In contrast to these
paradigms that conditionally adapt Low-rank either
for gradient approximation or fine-tuning, our
SSLC framework pioneers a unified matrix-level
decomposition where both low-rank and sparse
components are jointly optimized via second-
order reconstruction loss, enabling data-aware
compression and direct mining of latent low-rank
representations to drive efficient compression.

3 Preliminaries

Current post-training compression methods focus
on compressing pre-trained weights without retrain-
ing, ensuring model performance by minimizing
the output discrepancy between the compressed
and original models. Due to the computational in-
feasibility of global minimization, this task is typ-
ically framed as a layer-wise reconstruction prob-
lem for LLMs. Let W ∈ R(m,n) and W

′ ∈ R(m,n)

denote the original and compressed weights of a
given layer, where m and n represent the number of
output and input channels, respectively. The input
activation is represented as X ∈ R(n,N×L), where
N is the number of calibration samples and L is
the sequence length respectively. This problem can
be expressed as follows:

argmin
W ′

∥∥∥(W −W
′
)X

∥∥∥
F

(1)

where ∥·∥F is the Frobenius norm. To prune or
quantize weights with minimal impact on the opti-
mization objective, rigorous mathematical deriva-
tions from works such as Optimal Brain Surgeon
(OBS) (Hassibi and Stork, 1992) and Optimal Brain
Quantization (OBQ) (Frantar and Alistarh, 2022),
as well as applications like SparseGPT (Frantar and
Alistarh, 2023) and GPTQ (Frantar et al., 2023) on
LLMs, suggest that the change of the element at
(i, j) induces a quadratic error to the cost function
Eq. 1. Specifically, the error δi,j is approximated

by:
∆W 2

ij

[H−1]2j,j
. The Hessian matrix is approximated

as H ≈ XTX for a weight matrix. For instance, in
quantization, ∆wij = wij − quant(wij); in prun-
ing, ∆wij = wij − 0. Here, [H−1]2j,j denotes the
j-th diagonal entry of the inverse Hessian matrix.

4 Method

The section presents our proposed method, Syner-
gistic Sparse and Low-Rank Compression (SSLC)
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Figure 2: The pipeline of our proposed SSLC method involves the following steps: Initially, the SVD step performs
a low-rank approximation on the scaled matrix. Subsequently, the pruning step converts the dense matrix into a
sparse one. In essence, SSLC executes T -step SVD and pruning iterations on the scaled matrix, decomposing the
original weight matrix W into a sparse matrix St and low-dimensional matrices Vt and Ut. After the final iteration,
the method multiplies Vt and St by the scaling matrix ∥X∥−1

2 , to revert to the original matrix state before scaling.

for LLMs, as illustrated in Figure 2. The method
comprises three principal sections: the proposed
low-rank aware optimization objective, the syner-
gistic optimization algorithm, and the process of
low-rank fine-tuning recovery.

4.1 Joint Low-rank and Sparse Compression
Low-rank decomposition and pruning methods
based solely on weight magnitudes have been
shown empirically ineffective (Frantar and Alis-
tarh, 2023; Yuan et al., 2023). Unlike existing
methods (Li et al., 2023a) that directly decompose
a matrix W , our method employs a data-aware syn-
ergistic optimization strategy. We decompose the
original outputs into a low-rank part L ∈ R(m,n)

with rank r and a sparse part S ∈ R(m,n) with
sparsity k%, minimizing the following objective:

minL,S∥(W − L− S)X∥F
s.t. rank(L) = r, sparsity(S) = k%

(2)

The functions rank(·) and sparsity(·) are used to ob-
tain the rank and sparsity of a matrix, respectively.
This optimization objective jointly accounts for the
contributions of both low-rank and sparse compo-
nents to output reconstruction loss. In contrast,
prior approaches optimize only one aspect—either
designing better pruning metrics or singular val-
ues mapped to the objective—while ignoring the
synergistic benefits of combining both.

4.2 Synergistic Optimization Algorithm
Unlike RPCA (Wright et al., 2009) which decom-
poses data matrices into low-rank and sparse com-
ponents based on pure mathematical objectives,
SSLC introduces data-awareness through layer-
wise reconstruction error minimization, explicitly

aligning decomposition with LLM performance
preservation. Decomposing a low-rank matrix and
a sparse matrix simultaneously from Eq. 2 is a NP-
hard problem. To facilitate the synergistic opti-
mization, we break down the optimization problem
into two manageable sub-problems, enabling effi-
cient alternation between sparsification and singu-
lar value decomposition (SVD):





St = argmin
sparsity(S)=k%

∥(W − Lt − S)X∥F
Lt = argmin

rank(L)=r
∥(W − L− St−1)X∥F

(3)
Here, Lt and St denote the low-rank and sparse
matrices at the t-th iteration step, respectively.

4.2.1 Sparsification

When solving for the sparse matrix in Eq. 3 at the
t-th iteration, the low-rank matrix Lt is computed
in advance, allowing us to sparsify the residual
of the low-rank approximation (RL

t = W − Lt).
Nevertheless, directly solving for the binary mask
corresponding to the weight matrix of LLM using
a differentiable approach is impractical due to the
immense size of the solution space. Recently, Meth-
ods (Frantar and Alistarh, 2023; Sun et al., 2023;
Zhang et al., 2024c) following OBD (LeCun et al.,
1989) and OBS (Hassibi et al., 1993) has gained
traction in the field of LLM pruning, which use cal-
ibration data to select the most salient weights and
to minimize block reconstruction errors effectively.
The salience (δ) of residual weights for pruning is
approximated as follows:
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δij =
[∣∣RL

t

∣∣2 /diag
((

XTX
)−1

)]
ij

diagonal
=

approx.

(∣∣RL
t

∣∣ · ∥Xj∥2
)2
ij

(4)

Then, the residual matrix are pruning according to
θ, which is the k-th percentile of the sorted salience
in descending order.

[St]ij =

{
[RS

t ]ij if δij ≥ θ
0 otherwise

(5)

4.2.2 SVD
After obtaining the sparse matrix, the sparse
residual RS

t = W − St−1 can be calcu-
lated, the SVD sub-problem now be Lt =
argmin
rank(L)=r

∥∥(RS
t − L)X

∥∥
F

. Although the SVD sub-

problem can be directly solved by means of closed-
form solutions as presented in (Xiang et al., 2012;
Saha et al., 2024), the computational burden of
performing two full SVD for large-scale matri-
ces, such as those of dimensions 4096× 4096 and
4096× 11008, during the iterative process is pro-
hibitively high. Accordingly, by referring to Sec-
tion 3 and Eq. 4, the impact of weight changes on
the reconstruction loss following SVD compres-
sion can approximated efficiently. To minimize
this impact, we construct a matrix that multiplies
L′
t with rank r by the inverse of ||X||2 as part of

low-rank approximation. The optimization objec-
tive of this sub-problem can be approximated in
the following form:

L′
t = argmin

L′
t

∑(∣∣RS
t − L′

t · ||X||−1
2

∣∣ · ∥X∥2
)2

= argmin
L′
t

∑(∣∣RS
t · ∥X∥2 − L′

t

∣∣)2

(6)
Hence, to improve efficiency while maintain-

ing performance, a randomized SVD approach is
adopted (Zhou and Tao, 2011). After applying ran-
domized SVD for RS

t · ∥X∥2 , we obtain L′
t. L

′
t is

represented as:

L̃ = RS
t · ∥X∥2 ;

Y1 = L̃A1, Y2 = L̃TA2;

L′
t = Y1

(
AT

2 Y1
)−1

Y T
2

(7)

Obtaining Y1 and Y2 as the bilateral random pro-
jections (BRP) of matrix L̃ through the application
of random matrices A1 and A2, where A1 ∈ R(n,r)

Algorithm 1 SSLC Algorithm
Input: Pre-trained weight matrix W with the top
1% significant values preserved
Parameter: Target rank r, target sparsity (k−1)%,
sparse algorithm Sparse(·), alternating step T
Output: Sparse and low rank matrix St, Lt

1: Let S0 = 0.
2: for t = 1 to T do
3: Obtain Lt ← SVD(W − St−1, r) by Eq.7
4: Obtain St ← Sparse(W −Lt, (k−1)%) by

Eq.4
5: t = t+ 1
6: end for
7: return solution

and A2 ∈ R(r,m). Consequently, the two sub-
problem within Eq.3 can be resolved efficiently
as delineated below:





[St]ij =

{
[RS

t ]ij if δij ≥ θ
0 otherwise

Lt = L′
t · ∥X∥−1

2 = Y1
(
AT

2 Y1
)−1

Y T
2 · ∥X∥−1

2
(8)

4.2.3 Preserving Most Important Weights

Recognizing the importance of the top significant
weights (Dettmers et al., 2023; Yuan et al., 2024;
Huang et al., 2024), we preserve the top 1% of
weights with highest salience (Eq. 4) and exclude
them from the synergistic decomposition process.
To achieve an overall compression rate of p%, we
allocate (k − 1)% to the sparse part and r × m+n

m×n
to the low-rank part, ensuring the sum of these
proportions and the top 1% preserved parameters
equates p%.

Optimizing each matrix independently allows
for parallel execution, enhancing computational
efficiency. Throughout the iteration process, we
maintain the column norm ||X||2 of the input vec-
tors constant, while updating the residual matrices
RS

t and RL
t dynamically. The overall algorithmic

flow is depicted in Algorithm 1.

4.3 Low-rank Fine-tuning Recovery

Instead of directly inserting LoRA side, we use
the Ut and Vt matrices decomposed from Lt for
performance recovery. This approach maintains
the sparse matrix St frozen and updates only the
Ut and Vt matrices during fine-tuning, as shown in
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Task Methods Type
LLaMA Qwen2.5

1-7B 2-7B 3-8B 1-13B 2-13B 3-70B 7B 14B
Dense - 7.34 7.26 9.54 6.70 6.73 7.17 11.86 10.35

SparseGPT S 9.31 9.23 14.25 8.12 8.22 9.66 13.89 12.41
Wanda S 9.30 9.24 14.87 8.13 8.30 9.96 14.24 12.40
DSnoT S 9.13 9.11 14.58 8.06 8.13 9.92 14.19 12.23

SVD-LLM LRA 127.25 161.27 413.74 53.41 87.20 154.19 379.64 307.18

C4

Ours S+LRA 8.91 8.87 13.90 7.91 8.02 9.39 13.59 12.02
Dense - 5.68 5.47 6.24 5.09 4.88 2.86 6.85 5.29

SparseGPT S 7.22 6.99 9.29 6.21 6.02 5.77 8.43 7.28
Wanda S 7.24 6.92 9.65 6.15 5.97 5.82 8.62 7.32
DSnoT S 7.15 6.84 9.52 6.09 5.87 5.79 8.58 7.23

SVD-LLM LRA 24.52 27.82 42.63 13.71 15.76 12.65 38.64 26.13

Wiki2

Ours S+LRA 6.92 6.61 8.95 5.96 5.79 5.36 8.36 7.11
Dense - 66.31 66.96 71.41 68.91 69.95 76.91 70.83 73.93

SparseGPT S 63.12 63.71 65.44 65.98 67.22 74.19 67.81 71.19
Wanda S 62.77 64.13 65.51 66.58 68.01 74.39 66.70 71.15
DSnoT S 62.91 63.22 64.91 66.41 67.78 74.27 66.89 71.23

SVD-LLM LRA 39.07 38.13 36.65 43.12 39.32 44.86 36.11 40.77

Zero-
shot

Ours S+LRA 63.59 65.24 65.97 66.99 68.55 74.79 68.68 71.93

Table 1: Performance comparison of unstructured compression methods on LLaMA & Qwen2.5 (50% parameters
remaining) without finetuning across three task categories: (S means Sparsification; C4 & Wiki2 [WikiText-2]
evaluated by perplexity [PPL ↓]; Zero-shot tasks reported as accuracy [%] averaged over {HellaSwag, Winogrande,
BoolQ, PIQA, ARC-Easy, ARC-Challenge}), with detailed per-dataset results in Appendix D.
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Figure 3: Fine-tuning under different types of pruning.
(a) introduces an additional LoRA parameter. In con-
trast, the low-dimensional matrix (Dlow ≤ 128) from
SSLC framework can be directly used for fine-tuning.

Figure 3, which can be expressed as:

h = (UtV
T
t + St +∆W )X + b

= (Ut
′Vt

T ′ + St)X + b
(9)

where h and b represent the output and bias of
the layer, respectively. By integrating both low-
rank and sparse components, our method outper-
forms pruning-only approach, enhancing feature
extraction and achieving higher accuracy after fine-
tuning.

5 Evaluation

A comprehensive evaluation of the LLaMA and
Qwen2.5 model family has been conducted to as-

sess the effectiveness of SSLC. Detailed experi-
mental setups, pre-trained models, datasets, and
baselines are provided in Appendix B. Here, we
present the performance analysis of the compressed
models, focusing on perplexity and zero-shot ca-
pability. Additionally, we performed ablation stud-
ies to illustrate the impact of key hyperparameters
such as rank, iteration count and weight preserva-
tion strategy. Finally, we evaluated the acceleration
potential of our method using the simulated ViT-
COD (You et al., 2023) accelerator, as detailed in
Appendix C.

5.1 Compression Rate Efficiency Comparison

As quantified in Figure 4, when retaining 80% of
the original weight salience (as measured by Eq. 4),
our synergistic method requires only 38.6% pa-
rameter retention. This represents a 3.7% absolute
reduction compared to the pure pruning baseline
(42.3%). The efficiency gain originates from de-
coupling parameters into complementary compo-
nents: a 32.3% sparse matrix preserves the most
crucial full-rank components for knowledge reten-
tion, while an additional 6.25% from the low-rank
approximation encodes the essential structure.
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Model Method PIQA BoolQ HellaS Wino ARC-e ARC-c Ave ∆

Dense 78.07 77.71 57.14 68.90 76.35 43.60 66.96 -
SparseGPT* 76.09 76.94 55.63 68.35 73.32 41.04 65.22 -1.74

Wanda* 77.69 76.82 54.57 67.75 74.28 41.21 65.39 -1.57
LLaMA2-7B

Ours 78.18 77.03 57.09 67.72 75.17 43.26 66.41 -0.55
Dense 80.14 82.08 60.02 73.64 81.40 51.19 71.41 -

SparseGPT* 78.51 81.91 57.40 71.82 79.22 48.14 69.50 -1.91
Wanda* 78.18 78.75 56.95 72.22 79.01 48.82 68.99 -2.42

LLaMA3-8B

Ours 79.32 80.75 58.67 72.48 80.60 50.68 70.42 -0.99
Dense 78.51 84.52 72.77 60.01 80.56 48.63 70.83 -

SparseGPT* 79.03 84.54 71.69 57.13 80.44 51.21 70.67 -0.16
Wanda* 79.11 84.71 70.17 56.64 79.80 50.09 70.09 -0.74

Qwen2.5-7B

Ours 78.84 85.44 72.06 58.20 81.82 52.64 71.50 +0.67
Dense 81.12 85.54 75.37 63.39 82.37 55.80 73.93 -

SparseGPT* 80.45 87.63 73.52 60.78 82.42 55.03 73.31 -0.62
Wanda* 79.71 87.70 73.48 60.44 82.62 54.78 73.12 -0.81

Qwen2.5-14B

Ours 81.39 87.74 74.03 61.58 84.34 56.06 74.19 +0.26

Table 2: Zero-shot tasks accuracy (%) of LLaMA and Qwen2.5 models at 50% compression rate after fine-tuning
with different pruning methods. * indicates models with LoRA fine-tuning, which introduces an additional parameter.

Parameters of

sparse part

Parameters of

low-rank part

Parameters of

pruned  part

42.3%

57.7% 61.4%

32.3%

6.3%

(a) Prue pruning. (b) Pruning + Low-rank.

Figure 4: Retaining 80% of the total salience, the pure
pruning method necessitates keeping the top 42.3% of
parameters, which compresses 57.7% parameters. In
contrast, the synergistic method requires only the top
32.3% of parameters to form a sparse matrix, and with
the additional 6.25% from the low-rank matrix. The
overall reserved parameter ratio (38.6%) remains lower
than that of the pure pruning method (42.3%), which
shows the compression “rate spread” of 3.7%.

5.2 Language Modeling and Zero-shot Tasks

Table 1 shows the performance of sparse LLM mod-
els at a uniform sparsity rate of 50%. Our method,
SSLC, achieves state-of-the-art results across both
language modeling and zero-shot tasks, signif-
icantly outperforming baselines such as Wanda
and DSnoT on various datasets, including C4 and
WikiText-2. Moreover, our experiments demon-
strate that the compressed models such as Qwen2.5-
14B with SSLC (approximately 7B effective param-
eters) outperforms the native dense Qwen2.5-7B on
zero-shot tasks, achieving an average improvement
of 1.1% on benchmarks. These results highlighting
that sparsity-based compression not only reduces
parameter counts but better preserves the original

models’s capabilities compared to architecturally
constrained smaller models.

5.3 Fine-tuning Sparse LLMs

To bridge the remaining performance gap, we fur-
ther explore parameter-efficient fine-tuning strate-
gies. As shown in Figure 3, unlike other methods
such as Wanda and SparseGPT, which introduce ad-
ditional parameters during adaptation, SSLC lever-
ages its low-rank structure for parameter-efficient
fine-tuning. As detailed in Table 2, after fine-tuning
on alpaca datasets, SSLC not only surpasses Wanda
and SparseGPT with LoRA but also nearly recov-
ers the full accuracy of the original dense model,
particularly on LLaMA2-7B and Qwen 2.5 models.
This demonstrates that SSLC enables sparse LLMs
to retain high performance under tight parameter
budgets, making it especially suitable for practical
deployment scenarios where storage and efficiency
are critical.

5.4 Ablation Study

We conduct ablation studies to assess the contribu-
tion of key hyperparameters in our SSLC method.
As shown in Figure 5, the reconstruction error de-
creases rapidly across network layers when T in-
creases from 0 to 20, and notably stabilizes after
40 iterations, indicating robust convergence behav-
ior of our method. Our experiments on C4 and
WikiText-2 datasets (Table 3) further confirm that
the model achieves stable performance after 40 it-
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Figure 5: The current decomposition loss, denoted as
∥(W − Lt − St)X∥F , for the down projection matrices
of different layers in LLaMA2-7B varies as a percentage
of the initial loss with respect to the number of iterations.

erations, with optimal results appearing at T=60.
After balancing computational efficiency with per-
formance requirements, we ultimately selected 40
iterations as the experimental setting. This choice
maintains model effectiveness while significantly
reducing computational overhead (40 iterations
consume 33% less resources than 60 iterations).

Iteration Wikitext-2 C4 Average
0 7.35 9.75 8.55
10 6.84 9.16 8.00
20 6.74 8.99 7.87
30 6.67 8.91 7.79
40 6.61 8.87 7.74
50 6.59 8.85 7.72
60 6.58 8.83 7.71

Table 3: Perplexity for LLaMA2-7B with 50% parame-
ters remaining at different numbers of iterations.

To rigorously validate the effectiveness of our
SSLC framework, we performed systematic eval-
uations across various sparsity configurations. As
evidenced by the experimental results presented
in Figure 6, our method demonstrates consistent
superiority over baseline approaches under vary-
ing pruning intensities, ranging from 10% to 50%
sparsity levels. The performance gap becomes par-
ticularly pronounced at higher sparsity rates, high-
lighting the efficiency of our approach in preserv-
ing model capabilities even under aggressive com-
pression. Furthermore, by integrating our SSLC
framework with existing pruning techniques, the
enhanced approaches achieve significantly better
performance than their vanilla implementations.

For detailed ablation studies on the other three
key hyperparameters: (1) the number of retained
ranks, (2) the salience-based weight preservation
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Figure 6: Performance of LLaMA2-7B on the WikiText-
2 dataset under varying pruning ratios. Hollow markers
denote standalone pruning methods, while solid markers
represent our synergistic compression approach.

strategy, and (3) random seed initialization, along-
side a comparative analysis of pruning methods
under the SSLC framework, refer to Appendix E.

5.5 Acceleration Performance
To evaluate the acceleration of unstructured prun-
ing, we employ the ViTCoD accelerator simulator
to assess SSLC at a 50% compression ratio. As de-
tailed in Table 4, our method achieves speedups of
1.74× (MHA) and 1.84× (FFN) for LLaMA2-7B,
and 1.63× (MHA) and 1.85× (FFN) for Qwen2.5-
7B.

Model LLaMA2-7B Qwen2.5-7B
Module MHA FFN MHA FFN
Dense 16384 33024 7168 49728
Sparse 8364.2 16535.3 3705.7 24764.5

Low-rank 1024 1416 704 2112
Sum 9388.2 17951.3 4409.7 26876.5

Speedup 1.74× 1.84× 1.63× 1.85×

Table 4: Runtime (cycles) and speedup across mod-
ules in LLaMA2-7B and Qwen2.5-7B. "Cycles" denotes
computational cycles required by the ViTCoD accelera-
tor.

Model Dense 50% 60% 70%

LLaMA2-7B 53.79 72.12 77.87 89.87
LLaMA1-7B 54.07 73.02 79.14 91.25

Table 5: Real-world throughput (tokens/sec) at varying
sparsity levels

For real-world memory-bound inference, we
evaluate SSLC across sparsity levels from 50%
to 70% using nm-vLLM (NeuralMagic, 2024).
With 1024-token generation over 5 prompts, SSLC
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achieves throughput speedups of 1.34×–1.69× in
bandwidth bottleneck.

6 Conclusion

In this paper, we systematically analyze the
strengths and weaknesses of two previously inde-
pendent compression techniques for LLMs: prun-
ing and low-rank approximation. Based on the
theoretical analysis, SSLC (Synergistic Sparse and
Low-Rank Compression) is introduced for efficient
LLM deployment, which maximizes the energy in
the low-rank component using orthogonal bases,
while simultaneously achieving discrete full-rank
information in the sparse part. By modeling the
joint compression for LLMs as a unified optimiza-
tion problem, we apply an iterative optimization
algorithm that offers a novel theoretical perspec-
tive and achieves significant performance improve-
ments in practice. Experiments on language mod-
eling and zero-shot tasks show that our method
significantly outperforms previous compression ap-
proaches. Furthermore, comprehensive fine-tuning
experiments demonstrate SSLC’s effectiveness in
restoring model accuracy, validating its practicality
for real-world deployment.

Limitations

Our proposed synergistic sparse and low-rank com-
pression method is formulated as an iterative op-
timization problem. While this approach neces-
sitates additional computation during the pruning
phase, we have strategically optimized the algo-
rithm to minimize both time and memory consump-
tion. As a result, the pruning process completes
in approximately 30 minutes for 7B models and
about 1 hour for 14B models on standard hard-
ware configurations. Despite these efficiency gains,
our method currently applies uniform compression
ratios across all Transformer layers, which may
not fully exploit the varying sensitivities of differ-
ent layers. Future work will focus on exploring
theoretically grounded metrics for assessing layer
criticality—potentially through gradient-weighted
Hessian analysis—to enable dynamic, layer-wise
compression policies that achieves Pareto-efficient
trade-offs between accuracy and computational
cost.
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A Convergence Analysis

Building upon Optimal Brain Surgeon
(OBS) (Hassibi et al., 1993), with extensions
in SparseGPT (Frantar and Alistarh, 2023) and
GPTQ (Frantar et al., 2023), the element-wise
perturbation at (i, j) induces quadratic error:

δi,j =
∆W 2

ij

[H−1]2jj
≈ ∥∆W∥ · ∥Xj∥2 (10)

To jointly optimize the low-rank (L) and sparse
(S) matrices:

argmin ∥(W−L−S)X∥F ≈ ∥W−L−S∥·∥Xj∥2
(11)

We solve L and S iteratively (Eq. 5 and Eq. 7 in
main text), defining optimization losses:

E1
t ≈ ∥(W − Lt − St−1)∥ · ∥Xj∥2

E2
t ≈ ∥(W − Lt − St)∥ · ∥Xj∥2

Global optimality of St and Lt+1 ensures:

E1
t ≥ E2

t (12)

E2
t ≥ E1

t+1 (13)

Thus the quadratic error ∥(W −L−S)∥ ·∥Xj∥2
decreases monotonically:

E1
1 ≥ E2

1 ≥ E1
2 ≥ · · · ≥ E1

t ≥ E2
t ≥ E1

t+1 ≥ · · ·
(14)

Complementing this theoretical framework, Fig-
ure 5 (main text) shows monotonic error reduction
across layers, with >90% convergence within 40
iterations.
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B Detailed Experimental Settings

B.1 Setup.
It is worth noting that our synergistic optimiza-
tion method, is a simple and efficient way to
run on consumer-grade graphics cards, where the
largest computing resource is needed in fine-tuning
schemes. The calibration dataset used in the experi-
ments is the same as Wanda, sampled from the first
slice of the C4 (Raffel et al., 2020) training dataset,
containing 128 sequences with 2048 tokens each,
which reflects the reality of the baseline approach.
We use high quality instruction dataset Stanford
Alpaca (Taori et al., 2023) dataset for fine-tuning
the compressed models.

B.2 Models.
Our evaluation primarily focuses on leading open-
source LLM families, including the LLaMA se-
ries and Qwen2.5 models. Specifically, we val-
idate our method across multiple architectures
and scales: LLaMA-7B/13B, LLaMA2-7B/13B,
LLaMA3-8B/70B, and Qwen2.5-7B/14B. The
empirical results demonstrate that our approach
achieves consistent performance improvements re-
gardless of model size or architecture.

B.3 Evaluation.
Experiments evaluated on the WikiText-2 (Mer-
ity et al., 2016), C4 datasets for perplexity (PPL)
validation. To explore the model’s capabilities in
depth, we follow previous methods to perform zero-
shot task classification with the help of the lm-
eval (Gao et al., 2021) library on datasets including
BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020),
HellaSwag (Zellers et al., 2019), WinoGrande (Sak-
aguchi et al., 2019), ARC-easy (Clark et al., 2018),
and ARC-challenge (Clark et al., 2018). The li-
censes for the datasets and models used in this
paper are as follows:

• WikiText-2: Creative Commons Attribution-
ShareAlike.

• C4: Apache License 2.0.

• BoolQ: Creative Commons Attribution-
ShareAlike 3.0 (CC BY-SA 3.0).

• PIQA: MIT License.

• HellaSwag: MIT License.

• WinoGrande: Creative Commons Attribu-
tion 4.0 (CC BY 4.0).

• ARC-easy / ARC-challenge: Creative Com-
mons Attribution-ShareAlike 4.0 (CC BY-SA
4.0).

• LLaMA1: Non-commercial research license;

• LLaMA2: Meta Llama 2 Community Li-
cense;

• LLaMA3: Meta Llama 3 Community Li-
cense;

• Qwen2.5: Apache License 2.0;

All datasets and models were utilized in accor-
dance with their respective licenses.

B.4 Baselines.

We have meticulously reproduced several estab-
lished methodologies to serve as benchmarks: (1)
SparseGPT, which ingeniously reframes the task
of model pruning in LLMs as a sequential sparse
regression challenge, subsequently updating the
unpruned weights. (2) Wanda, a method that ap-
proximates the SparseGPT pruning metric using
the product of the magnitude of weights and L2 nor-
malization based on input activation, performing
only weight pruning. (3) DSNoT, a dynamic prun-
ing technique that expands upon the sparse method-
ologies like Wanda, engaging in iterative processes
of weight pruning and growth, which can be seen
as an iterative optimization algorithm of sparse
plus sparse. (4) SVD-LLM, a novel SVD-based
LLM compression method, addresses the limita-
tions of existing SVD approaches by incorporating
a truncation-aware data whitening strategy that di-
rectly maps singular values to compression loss,
thereby demonstrating superior performance com-
pared to previous SVD compression methods (Yuan
et al., 2023; Hsu et al., 2022).

C Detailed Simulated ViTCoD
Accelerator

ViTCoD (You et al., 2023) is an innovative frame-
work for algorithm and hardware co-design. It ef-
fectively reduces the demand for on-chip cache and
the frequency of input matrix loading by spatially
tiling sparse and dense matrices along specific di-
mensions and accumulating intermediate results.
During the computation, VITCoD divides the in-
put matrices into smaller blocks and transfers them
to memory buffers, then intelligently assigns com-
putation tasks to either the Denser Engine or the
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Sparser Engine based on the sparsity of the ma-
trix columns. The partial results computed by the
Denser Engine are then transferred to the Sparser
Engine for accumulation. This strategy not only en-
hances the reuse rate of input matrices and reduces
the need for on-chip buffers but also optimizes the
utilization of processing elements by reasonably
distributing computation tasks, thereby improving
overall computational performance.

D Detailed Zero-shot Task Performance

We evaluated a series of zero-shot learning tasks,
as shown in Tables 1. We present detailed task
performance metrics in Tables 10, providing a
comprehensive understanding of the zero-shot ca-
pabilities of the related models.

E Detailed Ablation Study

E.1 Different Ranks.

With a fixed compression ratio of 50%, an in-depth
analysis of the effects of sparse and low-rank pa-
rameter assignments on LLaMA2-7B model are
provided. As demonstrated in Table 6, the model
performance improves when the rank is increased
from 32 to 128; however, after 128, the perfor-
mance starts to decrease. Therefore, 128 is cho-
sen as the optimal compromise point for parameter
allocation to balance model performance, which
is significantly better than pure pruning methods
(rank=0) or pure low-rank methods (rank=1296).
The results of this study not only highlight the need
to balance pruning and low rank in model design,
but also provide valuable reference for the develop-
ment of algorithms to find the optimal combination.

Dataset r=0 r=64 r=128 r=256 r=1296

Wiki2 6.92 6.72 6.61 6.70 1.02e4
C4 9.24 8.97 8.87 9.03 1.85e4

Table 6: Perplexity results for LLaMA2-7B at 50% com-
pression with different number of rank. When r=1296,
this is a pure low-rank approximation with 0% sparsity;
in contrast, when r=0, this corresponds to a pure pruning
approach with 50% sparsity.

E.2 Preserving Most Important Weights.

We explore the effects of preserving the most im-
portant weights prior to synergistic optimization.
The findings are detailed in the Table 7. The re-
sults show that incorporating this retention ratio at

a 1% level leads to the best improvement in per-
formance, while at a 10% level, the performance
declines sharply. Additionally, it is important to
highlight that these 1% weights can be seamlessly
integrated into the sparse part, incurring no extra
structural cost.

Models Preserved
Ratio Wiki2 C4

LLaMA2-7B

0% 6.71 8.97
1% 6.61 8.87
3% 6.63 8.87

10% 6.70 8.99

LLaMA2-13B

0% 8.10 5.84
1% 8.02 5.79
3% 8.03 5.80

10% 8.06 5.82

Table 7: Perplexity results for LLaMA2-7B and
LLaMA2-13B at 50% compression with retaining dif-
ferent proportions of the most importance weights.

E.3 Random Seeds.
To address potential concerns regarding the re-
producibility of performance differences, we con-
ducted a comprehensive robustness analysis across
five distinct random seeds (0-4) under identical hy-
perparameter configurations. Our method demon-
strates exceptional stability and robustness, main-
taining consistent superiority over baseline ap-
proaches despite varying initialization conditions.
As evidenced in Table 8, SSLC achieves statisti-
cally significant improvements across all evalua-
tion tasks, with performance variances remaining
below 0.02 standard deviation for both our method
and competitors on stable benchmarks like C4 and
WikiText-2, while the average accuracy on zero-
shot tasks exhibit σ ≈ 0.1 across all compared
methods.

E.4 SSLC with Other LLM Pruning Methods.
Our framework establishes new capabilities for
model compression by simultaneously enhancing
both task performance and intrinsic language mod-
eling across diverse pruning methods. The results
in Table 9 demonstrate that, as a universal plu-
gin, it consistently improves accuracy on reasoning
benchmarks (+0.7-1.0% average) while reducing
perplexity across all baselines.

F Potential Risks

While our method effectively maintains model per-
formance at moderate sparsity (e.g., 50%), exces-
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Method PIQA Boolq HellaS Wino ARC-e ARC-c Ave Wiki2 C4

Wanda

Overall 76.24 76.14 52.72 67.97 72.14 39.00 64.04±0.10 6.92±0.01 9.23±0.01

Seed_0 76.71 76.60 52.56 68.43 72.18 38.31 64.13 6.92 9.24
Seed_1 76.16 75.66 52.62 68.03 72.47 39.51 64.08 6.91 9.25
Seed_2 76.06 76.42 52.75 67.88 71.72 39.51 64.06 6.91 9.23
Seed_3 76.11 76.02 52.70 68.19 72.26 38.99 64.05 6.93 9.23
Seed_4 76.17 75.99 52.99 67.32 72.05 38.66 63.86 6.94 9.22

DSnoT

Overall 75.94 74.04 54.89 64.09 64.91 44.86 63.12±0.09 6.85±0.02 9.12±0.01

Seed_0 76.28 73.58 52.01 66.93 71.68 38.82 63.22 6.83 9.13
Seed_1 75.95 74.77 51.84 67.32 71.21 37.71 63.13 6.85 9.11
Seed_2 75.90 74.46 51.91 66.77 71.25 38.05 63.06 6.86 9.11
Seed_3 75.73 73.58 51.84 67.01 71.67 38.22 63.01 6.87 9.12
Seed_4 75.84 73.82 51.94 67.32 71.59 38.65 63.19 6.84 9.11

Ours

Overall 77.15 76.93 53.89 68.40 73.94 41.19 65.25±0.10 6.62±0.02 8.87±0.00
Seed_0 76.55 77.68 53.81 67.32 74.41 40.96 65.12 6.61 8.87
Seed_1 77.47 76.33 53.89 68.82 73.93 41.88 65.39 6.61 8.87
Seed_2 77.21 77.73 53.99 68.35 73.19 40.70 65.20 6.64 8.87
Seed_3 77.42 77.83 53.87 69.46 73.15 40.10 65.31 6.59 8.87
Seed_4 77.09 75.08 53.89 68.03 75.04 42.32 65.24 6.64 8.87

Table 8: Accuracy on zero-shot tasks and language modeling performance (PPL ↓) for LLaMA2-7B at 50%
compression rate across different pruning methods (mean±std over 5 random seeds).

Method Conference PIQA BoolQ HellaS Wino ARC-e ARC-c Ave Wiki2 C4
RIA ICLR2024 76.11 75.57 52.21 67.48 71.51 38.39 63.55 6.81 9.11

RIA+ours 76.93 76.12 52.95 69.61 72.81 38.14 64.42 6.54 8.77
ALPS NIPS2024 76.22 75.37 53.12 68.21 72.61 41.21 64.46 6.87 9.01

ALPS+ours 76.44 76.64 53.87 69.22 73.19 41.32 65.11 6.60 8.73
Pruner-Zero ICML2024 75.90 74.13 51.16 67.01 71.17 37.28 62.78 6.61 9.23

Pruner-Zero+ours 76.17 73.88 51.41 69.16 72.73 39.59 63.82 6.45 8.88

Table 9: Accuracy on zero-shot tasks and language modeling performance (PPL) for LLaMA2-7B of 50%
compression rate across different pruning methods.

sive pruning introduces significant performance
degradation risks. This underscores a critical lim-
itation of post-training pruning: aggressive spar-
sification cannot be fully remedied by fine-tuning
alone, potentially compromising model reliability
in high-sparsity scenarios.
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Model Method Type PIQA BoolQ HellaS Wino ARC-e ARC-c Ave

LLaMA-7B

Dense - 78.67 75.08 56.94 70.01 75.25 41.89 66.31
SparseGPT S 76.39 72.97 51.41 69.38 71.30 37.29 63.12

Wanda S 76.04 71.62 52.48 68.74 70.75 37.03 62.77
DSnoT S 76.01 73.09 52.87 67.40 70.95 37.12 62.91
Ours S+LRA 76.33 74.95 52.97 68.82 71.68 36.77 63.59

LLaMA2-7B

Dense - 78.07 77.71 57.14 68.90 76.35 43.60 66.96
SparseGPT S 76.17 76.02 52.81 68.67 71.63 36.95 63.71

Wanda S 76.71 76.60 52.56 68.43 72.18 38.31 64.13
DSnoT S 76.28 73.58 52.01 66.93 71.68 38.82 63.22
Ours S+LRA 77.09 75.08 53.89 68.03 75.04 42.32 65.24

LLaMA3-8B

Dense - 80.14 82.08 60.02 73.64 81.40 51.19 71.41
SparseGPT S 76.22 78.13 53.65 71.43 72.43 41.21 65.51

Wanda S 75.90 79.54 51.41 70.96 73.23 41.64 65.44
DSnoT S 75.52 79.05 51.51 69.38 73.15 40.87 64.91
Ours S+LRA 76.39 78.57 53.18 70.64 74.71 42.32 65.97

LLaMA-13B

Dense - 79.16 77.89 59.93 72.69 77.36 46.42 68.91
SparseGPT S 78.35 76.85 54.88 71.35 72.47 41.98 65.98

Wanda S 77.42 76.67 55.82 72.06 74.07 43.43 66.58
DSnoT S 77.48 76.45 55.68 71.19 73.78 43.86 66.41
Ours S+LRA 78.29 75.59 56.48 70.96 75.21 45.39 66.99

LLaMA2-13B

Dense - 79.05 80.55 60.06 72.14 79.42 48.46 69.95
SparseGPT S 77.69 81.41 55.93 71.59 74.66 42.06 67.22

Wanda S 78.41 81.19 57.09 71.35 76.98 43.00 68.01
DSnoT S 77.91 80.70 57.02 71.72 76.64 42.58 67.78
Ours S+LRA 78.24 81.22 57.40 71.43 76.94 46.08 68.55

LLaMA3-70B

Dense - 82.32 85.26 66.38 80.51 86.86 60.15 76.91
SparseGPT S 81.77 84.95 62.81 76.80 83.25 55.55 74.19

Wanda S 81.07 85.32 62.52 79.42 82.95 55.03 74.39
DSnoT S 81.56 84.74 63.13 77.58 83.25 55.38 74.27
Ours S+LRA 82.26 85.17 63.16 78.37 83.79 55.97 74.79

Qwen2.5-7B

Dense - 78.51 84.52 72.77 60.01 80.56 48.63 70.83
SparseGPT S 77.42 83.09 71.11 54.63 76.60 44.03 67.81

Wanda S 77.15 83.03 70.24 53.07 75.59 41.12 66.70
DSnoT S 77.04 83.21 70.95 52.96 75.72 41.46 66.89
Ours S+LRA 77.81 83.30 71.35 54.44 79.00 46.16 68.68

Qwen2.5-14B

Dense - 81.12 85.54 75.37 63.39 82.37 55.80 73.93
SparseGPT S 79.00 85.69 73.24 57.25 80.85 51.11 71.19

Wanda S 78.78 85.69 73.32 57.25 80.93 50.94 71.15
DSnoT S 78.82 85.60 73.32 57.70 80.89 51.02 71.23
Ours S+LRA 79.76 84.74 73.72 58.12 81.94 53.32 71.93

Table 10: Accuracy for zero-shot tasks on LLaMA and Qwen2.5 models of 50% compression rate with different
pruning methods.
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