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Abstract

We introduce BiMediX2, a bilingual (Arabic-
English) Bio-Medical EXpert Large Multi-
modal Model that supports text-based and
image-based medical interactions. It enables
multi-turn conversation in Arabic and English
and supports diverse medical imaging modal-
ities, including radiology, CT, and histology.
To train BiMediX2, we curate BiMed-V, an
extensive Arabic-English bilingual healthcare
dataset consisting of 1.6M samples of diverse
medical interactions. This dataset supports
a range of medical Large Language Model
(LLM) and Large Multimodal Model (LMM)
tasks, including multi-turn medical conversa-
tions, report generation, and visual question
answering (VQA). We also introduce BiMed-
MBench, the first Arabic-English medical
LMM evaluation benchmark, verified by medi-
cal experts. BiMediX2 demonstrates excellent
performance across multiple medical LLM and
LMM benchmarks, achieving state-of-the-art
results compared to other open-sourced mod-
els. On BiMed-MBench, BiMediX2 outper-
forms existing methods by over 9% in En-
glish and more than 20% in Arabic evalua-
tions. Additionally, it surpasses GPT-4 by
approximately 9% in UPHILL factual accu-
racy evaluations and excels in various medi-
cal VQA, report generation, and report sum-
marization tasks. Our trained models, instruc-
tion set, and source code are available at —
https://github.com/mbzuai-oryx/BiMediX2

1 Introduction

Recently, medical Large Language Models (LLMs)
and medical Large Multimodal Models (LMMs)
have shown promising results as conversational
assistants for improving accessibility to quality
medical advice. However, most medical Vision-
Language Models (VLMs) referred to interchange-
ably as medical LMMs in this paper often com-
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Figure 1: Performance comparison on BiMed-
MBench. The comparison is conducted across different
tasks and modalities, including CT, MRI, CXR, Histol-
ogy, and Gross, along with their Arabic counterparts
(CT_ar, MRI_ar, CXR_ar, Histology_ar, and Gross_ar).
Each axis represents the performance score for a spe-
cific category, highlighting BiMediX?2’s superior per-
formance across diverse tasks and modalities in both
English and Arabic.

promise their text-based understanding (i.e., med-
ical LLM performance) when integrating multi-
modal capabilities, making it challenging to in-
teract seamlessly with users (see LLM+VLM
column in Tab. 1). This is particularly chal-
lenging when users initially ask general medi-
cal queries in text format and later follow up
with questions related to user-provided medical
images introduced mid-conversation to provide
additional supporting information.

In addition to supporting diverse LLM and LMM
tasks, such as multi-turn conversations and report
generation, it is also desirable to support various
medical image modalities, such as radiology and
pathology, in a unified model. However, as shown
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Model MTC RS RG Rad Oph Path Micro LLM+VLM Bil (Ar)
Meditron (Chen et al., 2023) X X X X X X X X X
Med42 (Christophe et al., 2024) v v X X X X X X X
OpenBioLLM (Ankit Pal, 2024) v/ v X X X X X X X
Llama3.1 (Meta, 2024) v v X X X X X X X
BiMediXv1 (Pieri et al., 2024) v v X X X X X X v/
Model MTC RS RG Rad Oph Path Micro UM LLM+VLM Bil (Ar)

LLaVA-pp (Rasheed et al., 2024)
MiniGPT-Med (Alkhaldi et al., 2024)
MAIRA-2 (Bannur et al., 2024)
BioMedGPT (Zhang et al., 2024)
LLaVA-Med (Li et al., 2023)
Dragonfly-Med (Chen et al., 2024)
BiMediX2 (ours)

N %X N X X X N
NSNS xS S
NSNS SNSNS x

NSNS SN N x%
NN SN N\ %X % %
NN N X X %
NN NN %X % %
ANENE N NN
WX X X X X X
N X X X X X X

Table 1: Comparison of tasks and modalities addressed by recent medical LLMs and VLMs. Abbreviations:
MTC (Multi-turn conversation), RS (Report Summarization), RG (Report Generation), Rad (Radiology), Oph
(Ophthalmology), Path (Pathology), Micro (Microscopic), UM (Unified Model: Single model checkpoint for all
downstream tasks), LLM+VLM (Unified LLM + VLM), Bil (Ar) (Bilingual Arabic capabilities).

in Tab. 1, state-of-the-art medical LMMs, such
as MiniGPT-Med (Alkhaldi et al., 2024), are ei-
ther restricted to a limited set of medical image
modalities, such as radiology, or require separately
fine-tuned models for each downstream task (e.g.,
BiomedGPT (Zhang et al., 2024)), posing signifi-
cant challenges for real-world deployment.

Moreover, advancements in medical LLMs and
LMMs remain predominantly English-centric, leav-
ing significant gaps for non-English-speaking pop-
ulations, particularly in languages like Arabic, spo-
ken by over 400 million people. Unlike most state-
of-the-art medical LLMs, BiMediX (Pieri et al.,
2024) (referred to as BiMediXvl1 in this paper for
clarity) supports Arabic-English bilingual interac-
tions and offers diverse text-based interaction ca-
pabilities, such as multi-turn conversations, report
summarization, and question-answering. However,
it is limited to text modality and lacks medical im-
age understanding capabilities.

To address the aforementioned limitations of
existing medical LMMs, we propose BiMediX2,
a Bio-Medical EXpert Large Multimodal Model
that supports diverse medical tasks and modalities
while also facilitating seamless user interactions
in both English and Arabic.

1.1 Contributions

We introduce BiMediX?2 an Arabic-English bilin-
gual medical LMM that supports broader spectrum
of text-based and multimodal medical tasks, in-
cluding Multi-Turn Conversations (MTC), Report
Summarization (RS), Report Generation (RG), Ra-

diology (Rad), Ophthalmology (Oph), Pathology
(Path), Microscopic Analysis (Micro), in a Uni-
fied Model (UM) with LLM and VLM capabilities
(LLM+VLM) as shown in Tab. 1. It supports a
wide range of imaging modalities, including Chest
X-rays, CT scans, MRIs, Histology slides, and
Gross pathology images (see Fig. 1). The key
contributions of our work can be summarized as:
(i) We curated a comprehensive Arabic-English
bilingual healthcare specialized instruction set
named BiMed-V comprising over 1.6M instruc-
tions including text-only and image-text instruc-
tions across diverse medical image modalities.

(ii) We introduce the first Arabic-English bilin-
gual medical LMM evaluation benchmark named
BiMed-MBench, consisting of 386 medical queries
in English and Arabic across various medical im-
age modalities, fully verified by medical experts.
(iii) We instruction-tune Llama3.1 LLM with our
BiMed-V to obtain the first Arabic-English bilin-
gual medical LMM achieving state-of-the-art re-
sults among open-sourced models on various VLM
evaluation benchmarks across diverse medical im-
age modalities while also excelling on medical
LLM evaluation benchmarks in both English and
Arabic. This is achieved through our multistage
training pipeline and carefully curated instruc-
tion set, which balances text-only and multimodal
medical instructions.

(iv) We perform comprehensive evaluation of
our model across 12 diverse evaluation bench-
marks. In addition to achieving promising re-
sults on our bilingual BiMed-MBench, BiMediX2
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Figure 2: BiMediX2: Overall Architecture Our model is designed for medical image analysis and bilingual
multi-turn conversations. Medical images are processed through a Vision Encoder and aligned with a Projector,
while the text inputs are tokenized using the default tokenizer. The resulting tokens are then passed into the language
model (Meta Llama 3.1) to generate responses in the prompted language. We only train the language model using
LoRA adapters, while the projector is finetuned for medical image-text alignment. BiMediX2 follows a two-stage
training pipeline. Stage-I aligns medical visual concepts using 467K image-caption pairs. Stage-2 performs
multimodal medical instruction tuning with our proposed BiMed-V 1.6M bilingual instructions comprising both

image-text and text-only medical instructions.

achieves excellent results for visual question an-
swering on Path-VQA, SLAKE and Rad-VQA
evaluation benchmarks, and report generation task
on MIMIC CXR and report summarization on
MIMIC-III benchmarks. Additionally, BiMediX2
achieves favorable results on diverse medical
LLM benchmarks, such Medical MMLU, MedM-
CQA, MedQA, USMLE, and PubMedQA datasets,
and it also shows robustness in discerning and
correcting misinformation in medical context on
the UPHILL OpenQA Evaluation.

Fig 1 illustrates the performance of SOTA
medical LMMs on our BiMed-MBench evalua-
tion. BiMediX?2 achieves SOTA results on BiMed-
MBench, with over a 9% improvement in English
evaluations and more than a 20% improvement
in Arabic evaluations. Furthermore, it excels in
medical Visual Question Answering, Report Gener-
ation, and Report Summarization tasks. Similarly,
BiMediX2 outperforms GPT-4 by more than 8%
on the USMLE benchmark and by more than 9%
in UPHILL factual accuracy evaluations.

2 BiMediX2

The architecture of BiMediX2 is designed to facili-
tate seamless integration of medical image analy-
sis and bilingual multi-turn conversations. At its
core, (see Fig 2) the model employs a Vision En-
coder (Radford et al., 2021) to process a diverse
array of medical imaging modalities, including

chest X-rays, CT scans, MRIs, histology slides,
and gross pathology images. This visual data is
aligned with textual inputs through a dedicated
Projector, ensuring accurate and contextually rich
medical image-text mapping following (Liu et al.,
2023). As shown in Fig 2 we use the ‘<image>’
token as a place holder to encode the visual fea-
tures for multimodal medical instructions. For text
based medical data the inputs are processed using
a standard tokenizer, transforming them into the
language embedding space of Llama 3.1 (Meta,
2024). This design enables BiMediX2 to generate
precise and context-aware responses in either En-
glish or Arabic, depending on the user prompt and
supports multimodal interactions while preserving
the medical LLM capabilities.

Key to BiMediX?2’s performance is its modular
and efficient training approach. LoRA adapters (Hu
et al., 2021) are utilized to fine-tune the language
model while maintaining computational efficiency
and minimizing resource demands. The projector
is simultaneously fine-tuned to optimize image-text
alignment in a medical context. Furthermore, the
system is supported by a robust data generation
framework, where a comprehensive English data
corpus is translated into Arabic using GPT-40. A
random subset of this translation is meticulously
verified by bilingual medical experts to ensure clini-
cal relevance and linguistic accuracy. This pipeline
enables BiMediX2 to excel in medical tasks, includ-
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MMLU

Model MedMCQA MedQA USMLE PubmedQA Average
Cli-KG C-Bio C-Med Med-Gen Pro-Med Ana
BioMedGPT-LM-7B 494 43.1 414 45.0 51.0 452 34.8 33.2 31.7 74.0 449
LLaVA-Med 59.6 59.7 50.9 59.0 51.5 51.9 44.5 35.7 36.9 74.0 524
Dragonfly-Med 65.6 69.4 56.6 69.0 58.4 57.0 49.9 42.8 46.1 75.4 59.0
Apollo-7B 64.2 73.6 59.5 70.0 70.6 61.5 54.4 50.2 523 39.0 59.5
GPT 3.5 69.8 72.2 61.3 70.0 70.2 56.3 50.1 50.8 49.1 71.6 62.1
Meditron 70B 68.3 77.8 63.6 75.0 74.6 56.3 48.4 53.1 554 76.2 64.9
BiMediXv1 78.9 86.1 68.2 85.0 80.5 74.1 62.7 62.8 66.8 80.2 74.5
Apollo-72B 82.3 90.3 71.5 85.0 86.0 70.4 66.7 65.3 742 78.8 77.6
GPT 4 86.0 95.1 76.9 91.0 93.0 80.0 69.5 78.9 83.8 75.2 82.9
Llama3-Med42-70B 84.2 93.1 79.8 91.0 90.1 80.7 72.5 73.8 84.3 80.6 83.0
OpenBioLLM-70B 92.5 93.8 85.6 93.0 93.4 83.7 74.1 68.9 72.0 78.0 83.5
Llama 3.1 70B 83.4 95.1 79.2 93.0 91.5 80.7 71.7 73.8 92.0 77.6 83.8
BiMediX2 4B 55.1 63.9 474 55.0 36.0 52.6 38.1 37.9 47.1 722 50.5
BiMediX2 8B 71.7 79.2 68.8 82.0 74.3 65.9 58.0 57.0 68.6 724 70.4
BiMediX2 70B 86.8 95.1 79.8 94.0 91.5 82.2 70.5 74.3 92.3 79.0 84.6

Table 2: Clinical LLM Evaluation Benchmark

ing report generation, radiology analysis, pathology
insights, and ophthalmological assessments, in a
unified, bilingual, and multimodal framework.

2.1 BiMed-V: Multimodal, Bilingual Dataset

The BiMed-V dataset is a comprehensive bilingual
and multimodal instruction set comprising of 1.6M
samples, developed to enhance medical image-text
alignment and multimodal understanding. It in-
corporates a diverse range of publicly available
datasets, such as PMC-OA (Lin et al., 2023), Rad-
VQA (Lau et al., 2018), Path-VQA (He et al., 2020)
and SLAKE (Liu et al., 2021) complemented by
custom-curated data. We also curated 163k VQA
samples by repurposing the LLaVA-Med (Li et al.,
2023) 60K-IM dataset. Furthermore, over 10k sam-
ples from the LLaVA-Med pretraining dataset were
reformatted into interactive conversations using
the Llama 3.1 70B model. A subset of the PMC-
OA dataset with short question-answer pairs and
multiple-choice questions were added to enhance
the dataset’s diversity. Training splits of Rad-VQA,
Path-VQA and SLAKE, which typically feature
concise answers, were restructured into more de-
tailed responses using the same Llama 3.1 70B
model, enhancing the dataset’s depth and usability
for complex tasks.

A unique feature of BiMed-V is its bilingual
support, facilitated by a multimodal open-ended
instruction set comprising 326k samples across var-
ious medical imaging modalities. This includes
163k Arabic-language samples generated via a com-
prehensive translation framework (see Fig. 5). En-
glish datasets were translated into Arabic using
GPT-40, with verification of a random subset by
bilingual medical experts to ensure clinical rele-

vance and linguistic precision. This hybrid ap-
proach balances automation and expert validation,
significantly reducing reliance on human medi-
cal domain experts while maintaining data qual-
ity (Please refer A.4 for more details on trans-
lation framework and expert validation). Addi-
tionally, the inclusion of text-based clinical data
from BiMediXv1 (Pieri et al., 2024) ensures the
dataset retains robust language understanding ca-
pabilities while expanding its multimodal medical
proficiency. This extensive dataset forms the foun-
dation for advanced medical image-text alignment
and conversational multimodal applications. For
dataset composition, see Section A.7.

2.2 Medical Instruction Tuning

To enable BiMediX2’s robust capabilities in both
bilingual and multimodal medical tasks, we em-
ploy a two-stage training process that ensures pre-
cise alignment of visual and textual representations
while adapting the language model for complex
medical instruction tasks (see Fig 2).

Stage 1: Medical Concept Alignment: In the first
stage, we finetune the Projector alone to align vi-
sual embeddings to the language embedding space.
The training utilizes a comprehensive dataset of
467k image-caption pairs sourced from the LLaVA-
Med (Li et al., 2023) pretraining dataset. These
pairs span diverse medical imaging modalities and
captions that describe clinically relevant features.
Stage 2: Multimodal Medical Instruction Align-
ment: The second stage finetunes the LoRA(Hu
et al., 2021) adapters within the language model,
enhancing its ability to process and generate mul-
timodal medical instructions. For this, we utilize
our BiMed-V 1.6M bilingual multimodal instruc-
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Model Conversation Description CXR MRI Histology Gross CT Overall
BiomedGPT 15.3 13.3 164 13.0 14.1 149 158 14.8
MAIRA-2 19.1 27.0 456 13.7 13.8 150 19.1 21.2
LLaVA-pp 343 36.6 4477 333 34.7 302 315 349
MiniGPT-Med 375 29.6 476 325 36.3 31.8  29.1 35.4
LLaVA-Med 55.6 433 59.5 434 544 539 510 524
Dragonfly-Med 59.2 342 67.0 512 53.7 426 483 52.7
BiMediX2 8B 64.9 54.5 71.7 56.8 62.5 614 589 622

Table 3: BiMed-MBench English Evaluation

Model Conversation Description CXR MRI Histology Gross CT Overall
BiomedGPT 11.1 11.2 114  10.8 11.5 11.3 111 11.2
MAIRA-2 14.0 12.5 25.6 10.6 12.8 11.6 127 14.6
MiniGPT-Med 21.6 12.6 237 127 32.0 158 149 20.2
LLaVA-Med 23.9 29.4 312 253 24.8 234 264 262
LLaVA-pp 29.0 27.8 332 250 33.0 258 258 287
Dragonfly-Med 32.8 19.9 319 257 33.0 240 317 295
BiMediX2 8B 54.3 36.2 614 44.6 51.5 435 508 505

Table 4: BiMed-MBench Arabic Evaluation

tion set, which comprises carefully crafted English
and Arabic prompts paired with corresponding vi-
sual and textual responses. This dataset enables
the model to learn nuanced instructions across a
wide array of medical domains, from radiology to
pathology, in a bilingual context.

Through these two stages, BiMediX2 achieves
seamless integration of bilingual and multimodal
capabilities, enabling it to deliver accurate and
context-aware medical insights in both English and
Arabic, tailored to a variety of clinical scenarios.
We have used LLaMA 3.1 (8B, 70B) and Phi-3.5
V (Abdin et al., 2024) as base models to obtain
BiMediX2 8B, BiMediX2 70B, and BiMediX2 4B
variants, respectively. For further details on model
and training configurations, see Section A.6.

3 Experiments

In the literature, evaluating medical language
models predominantly involves multiple-choice
question-answering tasks, with accuracy as the per-
formance metric. We employed the EleutherAl
(Gao et al., 2024) evaluation framework for evalu-
ating text-only medical tasks following (Pieri et al.,
2024). For our bilingual and multimodal evalua-
tions, we utilized several benchmarks and tools.
We leveraged our BiMed-MBench for assessing
the correctness, helpfulness, relevance and accu-
racy of the model in a bilingual medical multimodal
context. Additionally, we evaluated the model on
VQA using datasets such as Path-VQA, SLAKE,

and Rad-VQA. For report generation, we used the
MIMIC-CXR (Johnson et al., 2019) dataset, and
for report summarization, we used the MIMIC-III
(Johnson et al., 2016) dataset. These evaluations
were conducted using the MultiMedEval (Royer
et al., 2024) toolkit, ensuring a comprehensive as-
sessment of the model’s multimodal capabilities.

3.1 Medical LLM Benchmarks

We assess our models on text-based clinical bench-
marks using PubMedQA, MedMCQA, MedQA,
USMLE, Medical MMLU, and UPHILL OpenQA.
For further details, see Section A.3.

3.2 Medical VLM Benchmarks

BiMed-MBench: We introduced the first bilingual
GPT-40-based medical LMM benchmark, consist-
ing of 386 medical queries spanning various medi-
cal imaging modalities. The test dataset includes
conversational interactions and detailed descrip-
tions for modalities such as chest X-rays (CXR),
MR, histology, gross and CT scans derived from
LLaVA-Med (Li et al., 2023). GPT-40 evaluates
the correctness of model responses based on the
provided image context and caption. The refer-
ence prediction, serving as the upper-bound answer
for the teacher model, is generated using GPT-4
(Achiam et al., 2023). For Arabic evaluations, the
ground truth is derived from the upper-bound, trans-
lated by GPT-40, and all test samples are compre-
hensively verified by medical experts for quality
assurance. GPT-40 evaluates the responses by com-
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The scan is a sagittal CT image of the lumbar spine. A sagittal image is a vertical
slice of the body that shows the left and right sides. In this case, the image focuses
on the lumbar spine, which is the lower part of the spine, typically consisting of
five vertebrae (L1 to L5). The CT scan provides detailed information about the
bones, soft tissues, and any potential abnormalities in the lumbar spine region.

Can you describe this scan?

&) b0

What is the abnormality here ? @
fa
The abnormality in this image is the presence of a fracture in the L4 vertebra. Y
A fracture is a break or crack in the bone, which can be caused by various f
factors such as trauma, stress, or underlying medical conditions. In this case, '
the fracture is located in the L4 vertebra, which is part of the lumbar spine.
What is the organ shown in the image? G?
alie
The organ shown in the image is the ovary, which is ..
part of the female reproductive system. =
¢ vaxadll 13s £9i 92 Lo Q
s
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S diguall Ggo dadBl 8)guall 030 (9 393l 90 Lo Q
bl 8339210 dudpo duuS 3929 9o digall G9d dabBl byguall 638 9 39l '

Figure 3: Qualitative Examples of BiMediX2 for Medical Image Understanding in a Conversational Context.
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Figure 4: Performance comparison on UPHILL
OpenQA (Kaur et al., 2023), assessing the model’s
ability to address false medical claims at different
presupposition levels.

paring the candidate LMM against the upper-bound
for English queries and against the Arabic ground
truth for Arabic queries. The evaluation assesses
the helpfulness, relevance, accuracy, and level of
detail of the responses while maintaining the user
language. The scoring is conducted on a scale
of 1 to 10, with higher scores indicating better
performance. Additionally, GPT-40 provides de-
tailed explanations of the evaluation to offer deeper
insights into the models’ performance. Finally,
we compute and compare the relative scores of
the two candidates.

Visual Question Answering (VQA): To evaluate
a model’s performance in Visual Question Answer-
ing, three datasets are used: Path-VQA, SLAKE,
and Rad-VQA. These datasets include a mix of
open-ended and close-ended questions, designed to
test the model’s ability to interpret and respond to

queries based on medical images. The evaluation
employs accuracy, precision, recall, and F1 score
to measure the correctness and completeness of
the model’s answers, which are critical for clinical
reliability. Additionally, BLEU ensures the gen-
erated answers are naturally phrased and easy to
understand for clinical communication.

Report Generation: The MIMIC-CXR (Johnson
et al., 2019) dataset, which includes de-identified
radiology reports associated with chest X-rays,
is utilized to assess the model’s performance in
generating the findings section of medical reports.
For this task, the input consists of one or more
radiology images related to a case, followed by
a prompt such as, “<image> <image> Please
caption this scan with findings and impressions."
This setup evaluates the model’s ability to gener-
ate accurate and coherent medical reports based
on visual inputs.

Report Summarization: We conduct an evalua-
tion of report summarization using the MIMIC-III
(Johnson et al., 2016) dataset. The task involves
generating the impressions section of a radiology
report based on the findings section. To achieve
this, the model is provided with the free-text find-
ings along with a task prompt, “Summarize the find-
ings". This assessment focuses on the model’s abil-
ity to distill comprehensive medical information
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Dataset Metric RadFM LLaVA Med BioMedGPT MiniGPT-Med Phi-3.5V BiMediX24B BiMediX2 8B
BLEU-17 0.475 0.033 0.044 0.662 0.377 0.501 0.552
closed Q accuracyT  0.577 0.545 0.203 0.829 0.618 0.685 0.725
Rad-VOA open Q recallf 0.407 0.246 0.199 0.546 0.295 0.292 0.363
ad recall 0.438 0.372 0.199 0.703 0.475 0.511 0.565
open Q accuracyt 0.335 0.140 0.150 0.490 0.200 0.225 0.305
F171 0.442 0.069 0.064 0.675 0.391 0.516 0.569
BLEU-11 0.746 0.036 0.175 0.337 0.089 0.625 0.778
closed Q accuracyl  0.752 0.512 0.248 0.572 0.535 0.744 0.831
open Q recallt 0.758 0.429 0.293 0.308 0.377 0.624 0.763
Slake-VQA recall 0.695 0.443 0.260 0.396 0.404 0.664 0.786
open Q accuracy 0.725 0.362 0.259 0.278 0.329 0.567 0.729
FI 1 0.714 0.075 0.192 0.349 0.129 0.641 0.787
BLEU-11 0.257 0.021 0.145 0.296 0.283 0.469 0.587
closed Q accuracyT  0.505 0.512 0.260 0.581 0.553 0.708 0.872
Path-VQA open Q recallf 0.020 0.116 0.093 0.040 0.063 0.239 0.314
recallf 0.221 0.287 0.176 0.311 0.308 0.474 0.593
open Q accuracy 0.005 0.053 0.077 0.019 0.027 0.210 0.282
FI1 1 0.232 0.052 0.154 0.299 0.287 0.475 0.595
Average 0.461 0.239 0.177 0.427 0.319 0.509 0.611

Table 5: Medical VQA Benchmark MultiMedEval (Royer et al., 2024)

into a concise and precise summary, which is essen-
tial for clear and effective medical communication.

In both report generation and summarization
tasks, relying solely on lexical metrics such as
BLEU, ROUGE-L, and METEOR is insufficient, as
these do not guarantee clinical accuracy. Therefore,
we complement them with clinically-informed met-
rics such as F1-RadGraph, CheXbert similarity, and
RadCliQ. These metrics assess the preservation of
key medical entities, relations, and overall clinical
correctness, ensuring that the generated or summa-
rized content aligns not just in phrasing but also in
diagnostic intent and clinical relevance.

4 Results

LLM Medical Evaluation: The performance of
BiMediX?2 and other models on various language-
based medical benchmarks is presented in Fig 6 and
Tab 2. Our BiMediX2 70B achieved the highest
average score of 84.6%, outperforming other mod-
els such as GPT-4 (82.9%) and Llama-3-Med42-
70B (83.0%). BiMediX2 70B exhibited superior
average performance across multiple datasets, in-
cluding Medical MMLU, MedMCQA, MedQA,
USMLE, and PubMedQA, demonstrating its strong
understanding of medical contexts.

UPHILL OpenQA Evaluation: Fig 4 illus-
trates the performance comparison on the UPHILL
OpenQA benchmark. BiMediX2 70B achieved
the highest overall factual accuracy of 60.6%, and
the second highest being BiMediX2 8B (56.1%),
surpassing other models such as GPT-4 (51.5%),

Meditron 70B (49.6%), and Med42 (53.5%). This
highlights BiMediX?2’s effectiveness in discerning
and correcting misinformation in medical contexts.

BiMed-MBench Evaluation: Tables 3 and 4
present the evaluation results of BiMediX2
and other medical LMMs on the English and
Arabic BiMed-MBench benchmark, respectively.
BiMediX2 8B demonstrated superior performance
in both English (overall score of 62.2%) and Ara-
bic (overall score of 50.5%) evaluations, outper-
forming other models. Fig 1 compares the per-
formance of state-of-the-art medical LMMs on
our BiMed-MBench evaluation in a bilingual con-
text. This indicates BiMediX2’s strong bilin-
gual capabilities and its effectiveness in handling
medical conversations and descriptions across
different imaging modalities.

Medical VQA Benchmark: Tab 5 shows the per-
formance of BiMediX2 and other models on the
Medical VQA benchmark using the MultiMedEval
toolkit. Our BiMediX2 8B achieves the highest av-
erage score of 0.611, outperforming other models
across datasets such as Rad-VQA, Slake-VQA, and
Path-VQA. This demonstrates BiMediX2’s profi-
ciency in visual question answering, a critical task
in medical diagnostics.

Report Summarization: Tab 6 presents the re-
port summarization performance on the MIMIC-III
dataset. BiMediX?2 8B achieved the highest aver-
age score of 0.416, surpassing other models like
LLaVA-Med (0.398) and Dragonfly-Med (0.110).
This average score is derived as a unified metric by
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Dataset Metric LLaVA Med Dragonfly-Med BiMediX24B BiMediX28B Med-PaLM M
ROUGE-Lt 0.185 0.072 0.209 0.205 0.320
BLEU-17 0.192 0.062 0.153 0.178 0.154
BLEU-41* 0.520 0.000 0.410 0.449 -
MIMIC-III  F1-RadGraph? 0.232 0.000 0.222 0.230 0.347
RadCliQ1* 0.753 0.247 0.923 0.918 -
CheXbert vector! 0.600 0.326 0.633 0.593
METEORT 0.303 0.060 0.264 0.339
Average 0.398 0.110 0.402 0.416
Table 6: Report Summarization MultiMedEval (Royer et al., 2024)
Dataset Metric RadFM LLaVA Med BioMedGPT BiMediX24B BiMediX28B MAIRA-2f Med-PaLM M
F1-RadGraph?t 0.042 0.048 0.000 0.083 0.098 0.162 0.267
BLEU-11 0.006 0.163 0.003 0.046 0.155 0.148 0.323
MIMIC-CXR BLEU-41* 0.000 0.060 0.000 0.042 0.016 0.104 0.115
Report ROUGE-L? 0.065 0.125 0.012 0.131 0.153 0.164 0.275
Generation ~ RadCliQ1* 0.655 0.660 0.827 0.865 0.860 0.885 -
CheXbert vectort  0.197 0.150 0.153 0.205 0.189 0.333
METEORT 0.053 0.137 0.016 0.107 0.174 0.187
Average 0.145 0.192 0.145 0.211 0.235 0.283 -

Table 7: Report Generation MultiMedEval (Royer et al., 2024)

re-scaling BLUE-4* and RadCliQ* metrics. This
indicates BiMediX2’s effectiveness in generating
concise and accurate summaries of medical reports,
a vital task for efficient healthcare communication.
Report Generation: Tab 7 shows the report gen-
eration performance on MIMIC-CXR. BiMediX2
8B achieved an average score of 0.235, outper-
forming other models like LLaVA-Med (0.192) and
BioMedGPT (0.145). The average score is derived
as a unified metric by re-scaling BLUE-4* and
RadCliQ* metrics. This highlights BiMediX?2’s
capability in generating detailed and accurate med-
ical reports from radiology images, a crucial task
for diagnostic purposes. While MAIRA-2 § out-
performs BiMediX?2 on the Report Generation task,
its performance is substantially lower on our com-
prehensive BiMed-MBench benchmark using GPT-
40 (see Tab 3, Tab 4). This discrepancy is likely
due to MAIRA-2’s specialized fine-tuning for re-
port generation as indicated in Tab 1, whereas
BiMediX?2 maintains strong generalization across
diverse multimodal biomedical tasks. For Med-
PalLM M (562B), we report results directly from
(Tu et al., 2023), as the model is close-sourced and
is not publicly available for direct evaluation.

S Additional Experiments

Multi-stage Training Pipeline: To assess the im-
pact of each component in our training framework,
we evaluate our 8B model at three key stages. This
staged evaluation allows us to disentangle the indi-

vidual contributions of vision-language alignment
and multimodal fine-tuning.

(i) Baseline: VLM trained on non-medical Data.
(ii) Stage-1: Aligning Medical images to the LLM
input token space by learning an alignment layer
and freezing the Language model and the Vision
encoder using our pre-training dataset of 467k in-
structions. (iii) Stage-2: LoRA finetuning with our
BiMed-V1.6M dataset comprising a text and im-
age-+text dataset across medical image modalities.

Here the Baseline model is obtained by pretrain-
ing the projector on LCS-558K dataset following
the LLaVA-pp (Rasheed et al., 2024) repository.
The baseline model lacks understanding of medical
images which is introduced in our Stage-1 align-
ment training. Finally we LoRA finetune model to
obtain our medically instruction tuned model. As
observed in Tab 9, the text based medical evalua-
tion scores do not change with Stage 1 training as
we are only training the projector here and the lan-
guage model performance is therefore consistent.

Evaluation of English Model with Arabic Trans-
lation Pipeline: To further validate the necessity
of bilingual instruction tuning, we employed a
cascaded translation pipeline for evaluating our
English instruction-tuned model (BiMediX2-8B
ENG) on the BiMed-MBench Arabic benchmark
using popular translation services such as from
Google, Alibaba, and Bing.

While this method yielded slight improvements
over the base English model as shown in Tab 8, it
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Model BiMed-MBench (Ara) Evaluation Baseline Stage-1 Stage-2
BiMediX2-8B ENG 44.61 BiMed-MBench [3] 34.9 47.6 62.2
BiMediX2-8B ENG Clinical LLM Eval [2] 67.6 67.6 70.4

. 44.92
+ Translation (Google) . .. .

Table 9: Multi-stage Training Ablation

BiMediX2-8B ENG 4505
+ Translation (Bing) ’
BiMediX2-8B ENG guages, and the introduction of BiMed-MBench,
+ Translation (Alibaba) 45.33 the first bilingual GPT-40-based medical bench-
BiMediX2-8B BI 5047 mark, which showcases the model’s ability to excel

Table 8: Comparison of Translation frameworks

consistently fell short compared to our bilingual
model. These results demonstrate that translation
pipelines alone are inadequate for generating med-
ically accurate Arabic responses, highlighting the
importance of dedicated bilingual training and in-
struction tuning. Further experiments are detailed
in Section A.5.

6 Qualitative Examples

Medical Image Understanding in a Conversa-
tional Context: Fig 3 illustrates the capabilities
of the BiMediX?2 framework in analyzing medi-
cal images and providing detailed, context-aware
responses in both English and Arabic. The top sec-
tion highlights BiMediX2 analyzing a sagittal CT
scan of the lumbar spine, correctly identifying the
scan type and diagnosing an L4 vertebral fracture.
It explains potential causes like trauma or stress
and discusses clinical implications. In the bottom
section, BiMediX?2 accurately identifies a female
reproductive organ, explains the imaging technique,
and detects abnormalities, demonstrating bilingual
capabilities in English and Arabic. Additional qual-
itative examples are provided in Section A.1, while
Section A.2 presents its limitations.

7 Conclusion

BiMediX2 represents a leap forward in bilingual,
multimodal medical Al, addressing the global need
for accessible and inclusive healthcare solutions
in both English and Arabic. By integrating text
and visual modalities within a unified architec-
ture, it enables seamless multi-turn interactions
for diverse medical tasks, including medical image
analysis and complex medical conversations. Key
contributions include the comprehensive bilingual
dataset, BiMed-V, which provides diverse multi-
modal medical instructions tailored for both lan-

in a wide range of expert-verified medical scenar-
ios. BiMediX2 paves the way for inclusive, mul-
tilingual, and multimodal healthcare applications,
significantly enhancing the accessibility and quality
of medical assistance worldwide.

8 Limitations

Despite its overall improvement, BiMediX2, like
other generative language models, may experience
issues such as hallucinations, toxicity, and stereo-
types. These issues stem from both the inherited
limitations of the base models and the nature of
the pretraining data. While we have conducted au-
tomatic and qualitative evaluations with medical
professionals, we acknowledge that our model’s
medical diagnoses and recommendations may not
always be accurate. Extensive human evaluation is
more reliable but expensive and time-consuming.
The exploration of alternative solutions remains an
important focus for ongoing research.

Currently, our models lack explicit mechanisms
to curb undesirable behaviors. Future work will
focus on enhancing alignment and safety strategies
to reduce risks associated with clinical deployment.
On a brighter note, we believe that releasing our
model weights could contribute to investigating and
mitigating these risks through broader community
engagement. In addition, our current model does
not explicitly mitigate biases related to gender, eth-
nicity, or socioeconomic status in medical contexts.
We recognize the critical importance of fairness in
Al-driven healthcare solutions, and acknowledge
that such biases could perpetuate or exacerbate dis-
parities in medical decision-making. As part of fu-
ture work, we plan to conduct targeted bias assess-
ments and explore debiasing strategies. We also
believe that open-sourcing our model will facilitate
further research into bias detection and mitigation.

Another current limitation is that our model is
trained exclusively on Modern Standard Arabic
(MSA). This restricts its applicability in real-world
clinical settings where dialectal Arabic, such as
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Emirati, Saudi, Egyptian, or Moroccan is more
commonly used. In future iterations of this work,
we aim to expand our training corpus to include a
diverse range of Arabic dialects, thereby enhancing
the model’s utility and inclusivity across Arabic-
speaking populations.

9 Safety and Ethical Implications

We recognize the significant societal impact of
BiMediX2 and emphasize the importance of eth-
ical considerations and transparency. This work
is intended for research purposes only and is not
ready for clinical or commercial use. Ensuring the
model’s accuracy and reliability is crucial, as in-
correct medical advice could have serious health
consequences. Robust validation and quality con-
trol measures are essential to minimize errors.

Ethical considerations include protecting patient
privacy and ensuring the confidentiality of medi-
cal data. The model must comply with relevant
data protection regulations and ethical guidelines.
Addressing potential biases in the model’s out-
puts is also critical for ensuring fair and equitable
healthcare outcomes.

Collaboration with patients, medical profession-
als, and ethicists is essential for ethical oversight
and further research to ensure safety and accuracy
in clinical settings. By acknowledging and address-
ing these considerations, we can continue to refine
BiMediX2 for safe and effective use in healthcare.
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A Appendix

A.1 Additional Qualitative Examples

Medical Image Understanding in a Conversa-
tional Context: Fig § illustrates the capabilities
of the BiMediX?2 framework in analyzing medi-
cal images and providing detailed, context-aware
responses in both English and Arabic. The top sec-
tion showcases a conversation involving a 3D CT
scan of the chest. The model identifies the scan
type and explains that it uses X-ray technology to
create detailed cross-sectional images, which are
then reconstructed into 3D images. When asked
about abnormalities, the model accurately identifies
multiple rib fractures. It further clarifies that these
fractures are present on both the left and right sides
of the chest. And in the bottom section, BiMediX2
accurately identifies the organ, explains the imag-
ing technique, and detects abnormalities, providing
valuable insights that can aid in the diagnosis and
treatment of conditions related to the female re-
productive system. This particular example show-
cases BiMediX2’s capability to converse in both
English and Arabic simultaneously, depending on
the input query.

Medical Image Understanding in a Conversa-
tional and Bilingual (Arabic) Setting: Fig 10
illustrates BiMediX2’s ability to understand med-
ical imagery and converse in Arabic, showcasing
its bilingual capabilities. In the top section, our
model accurately identifies the organ and the type
of scan, providing clear and precise information
that can assist medical professionals in diagnosing
and treating liver-related conditions. The middle
section shows that our model identifies the body
part and the type of scan. And in the bottom section,
BiMediX2 accurately identifies the organ, explains
the imaging technique, and detects abnormalities,
providing valuable insights that can aid in the di-
agnosis and treatment of conditions related to the
female reproductive system. This particular exam-
ple showcases BiMediX2’s capability to converse
in both English and Arabic simultaneously.
Medical Image Understanding of our BiMediX2
in Multidomain: Fig 11 showcases BiMediX2’s
versatility and accuracy across various medical
imaging modalities. In the top section, it identi-
fies key structures in a scanning electron micro-
graph of a mosquito head. In subsequent sec-
tions, it correctly interprets an MRI of a parotid
tumor, a histology slide of adipose tissue (includ-
ing stain type), a chest X-ray with pneumotho-

rax, and a CT scan of the abdomen, pinpointing
adrenal abnormalities. These examples demon-
strate BiMediX2’s capability to analyze and diag-
nose diverse imaging types, making it a valuable
tool across medical specialties.

A.2 Model Failure Cases

We present a common failure case observed in
both English and Arabic settings. The example
is shown in Fig 7.

In the English-language evaluation, a common
source of error was the model’s difficulty in dis-
tinguishing between visually similar but clinically
distinct fracture types. As shown in Fig 7, while the
model response is fluent and medically coherent, it
contains a key factual error: the misclassification
of an avulsion fracture as a burst fracture. Notably,
this response was initially accepted by several med-
ical professionals due to the similarity in language
and presentation. However, a trained radiologist
later identified the subtle radiographic distinctions,
confirming the ground truth diagnosis as an avul-
sion fracture. This highlights the model’s challenge
in handling nuanced diagnostic distinctions that re-
quire expert-level domain knowledge.

In the Arabic benchmark, one of the most fre-
quent error modes involved incorrect localization
of the affected area as illustrated in Fig 7. The re-
sponse demonstrates a localization mismatch where
the model incorrectly identifies C2—C3 as the af-
fected vertebrae instead of the correct C6—C7 levels.
Such errors, especially in high-stakes medical ap-
plications, can have serious clinical implications,
reinforcing the importance of precise anatomical
grounding in medical Al systems.

A.3 Clinical LLM Benchmarks

PubMedQA (Jin et al., 2019) is a question-
answering dataset derived from biomedical re-
search papers on PubMed. The task involves an-
swering ’yes’, 'no’, or ‘maybe’ based on ques-
tion sourced from the title of a research paper
and a context from the abstract. Our analysis fo-
cuses on the PQA-L subset, which includes 500
manually annotated QA pairs requiring in-depth
biomedical reasoning.

MedMCQA (Pal et al., 2022) consists of 4,183
multiple-choice questions from Indian AIIMS
and NEET PG medical entrance exams, as-
sessing professional medical knowledge and
language comprehension.
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Figure 5: Data Translation Framework

MedQA (Jin et al., 2021) features multiple-choice
questions from medical board exams in the US,
Mainland China, and Taiwan. Our study focuses on
the USMLE portion (1,273 test samples), requiring
multi-step reasoning and evidence retrieval.
USMLE (Han et al., 2023) is a self-assessment test
from the United States Medical Licensing Exam-
ination (Step 1, Step 2, and Step 3). We use the
MedAlpaca version, which excludes image-based
questions and contains 325 test samples.

Medical MMLU (Hendrycks et al., 2020) is a col-
lection of six datasets covering 1,089 test ques-
tions across Clinical Knowledge, College Biology,
College Medicine, Medical Genetics, Professional
Medicine, and Anatomy.

UPHILL OpenQA (Kaur et al.,, 2023) evalu-
ates LLMs’ accuracy in handling health-related
queries with varying presuppositions. Our anal-
ysis focuses on zero-shot models’ ability to re-
fute false health claims, a critical factor in com-
bating misinformation. In this context, the ac-
curacy refers to the model’s effectiveness in ac-
curately refuting false health-related claims at
different presupposition levels.

Fig 6 compares state-of-the-art medical LLMs
and LMMs on clinical benchmarks. BiMediX?2
70B achieved the highest average score (84.6%),
surpassing GPT-4 (82.9%) and Llama-3-Med42-
70B (83.0%), demonstrating its superior per-
formance across diverse medical tasks. The
stacked bars illustrate performance across individ-
ual datasets, highlighting BiMediX2’s strong un-
derstanding of medical contexts.

A.4 Data Translation Framework

To construct a high-quality bilingual dataset, we
develop a robust data translation framework that
leverages GPT-4o for translating English medical
content into Arabic, followed by expert human ver-
ification to ensure contextual and terminological
accuracy. This approach supports effective training
and benchmarking in a bilingual context.

We first translate our English multimodal instruc-
tion set to Arabic using GPT-40. A random subset

of this translated data is passed to Bilingual medi-
cal doctors to verify the quality of the translation.
Doctors are asked to report the number of sam-
ples requiring minor (e.g rewording, formatting, or
stylistic edits) / major (e.g incorrect clinical terms
or misinterpretations) revision in the Arabic trans-
lation. They are required to look for the overall
consistency of the translated text and the accuracy
of medical terminologies.

For our BiMed-MBench bilingual benchmark
doctors were asked to manually correct these in-
accuracies in the translated text. On average 22%
of the samples required minor corrections and re-
formatting, while only 5% of the samples required
major corrections in medical terms.

The verification process involved 10 medical
experts from three different countries, ensuring
representation from both native Arabic and En-
glish speakers. These experts specialized in var-
ious medical domains, including radiology (MD
Radiology), endocrinology, neurosurgery, general
practice, histopathology (MS Pathology), and gen-
eral medicine. To ensure rigorous validation, a
multi-reviewer setup was adopted for a randomly
selected subset of the benchmark. Each sample was
independently reviewed by multiple doctors, which
surfaced occasional inconsistencies, particularly in
ambiguous or borderline cases.

To resolve such discrepancies, we introduced a
structured adjudication protocol. Conflicting eval-
uations were circulated among the experts, fol-
lowed by focused discussion sessions in which
reviewers examined each other’s rationale. This
collaborative refinement process significantly re-
duced inconsistencies and improved the reliability
of the benchmark.

A.5 Additional Experiments
A.5.1 Human Expert Evaluation

To assess the clinical quality of model outputs,
we conducted a human expert evaluation using a
blind review setup. For a randomly selected sub-
set of questions from the BiMed-MBench bench-
mark, responses were generated by three models:
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Model BiMed-MBench (Ara)
BiMediX2-8B ENG 44.6
BiMediX2-8B ARA 46.3
BiMediX2-8B BI 50.5

Table 10: Bilingual vs Monolingual model training

Hyperparameter Stage1 Stage 2
Number of Epochs 1 1
Train Batch Size (per device) 1 4
Gradient Accumulation Steps 1 4
Learning Rate 1.0x103  2.0x10*
Optimizer Adam Adam
Weight Decay 0 0
Warmup Ratio 0.03 0.03
Learning Rate Scheduler Cosine Cosine
Precision bfloatl6  bfloatl6
PEFT None LoRA
LoRA Rank - 8
LoRA Alpha - 16
Multi-Modal Projector LR - 2.0x107

Table 11: Model training Hyperparameters

BiMediX2, Dragonfly-Med, and LLaVA-Med. The
outputs were anonymized and labeled as Model A,
Model B, and Model C, with no identifiers provided
to the reviewers.

Medical experts were asked to evaluate the re-
sponses against the provided ground truth descrip-
tions for each question. The evaluation focused
on determining which model produced the most
accurate, clinically relevant, and clear explanation
of the medical image.

The results demonstrate a strong preference
for BiMediX2, which was selected as the best
response in 76.9% of the cases. In comparison,
Dragonfly-Med was preferred in 15.4% of the
cases, and LLaVA-Med in 7.7%.

Evaluation Protocol for Medical Experts:

Your task is to evaluate the responses provided by three Al
models based on a given medical image description (Ground
Truth). Follow these steps to make your selection:

1) Read the Ground Truth: Carefully review the provided
description of the medical image. This serves as the reference
for an accurate and detailed response.

2) Assess the Model Responses: Examine the three model-
generated responses (Model A, Model B, and Model C). Com-
pare their content with the Ground Truth, focusing on the
accuracy, completeness, and relevance of the description.

3) Select the Best Response: Choose the model response that
best aligns with the Ground Truth in terms of:

- Clinical Accuracy: Does the response correctly describe the
key findings in the image?

- Relevance: Does the response stay focused on the specific

Dataset No. of samples
PubMedQA 210169
MedMCQA 182712
MedQA 20691
Single Turn QA 119879
Multi-Turn Conversation 133134
PMC-MCQ 80000
LLaVA-Med-Subset-to-Conv 11616
Rad-VQA 1796
Slake-VQA 9835
PMC-VQA 80000
Path-VQA 19654
LLaVA-Med-to-QA 163463
MedQA (Ara) 11210
PubMedQA (Ara) 115773
MedMCQA (Ara) 97523
Single Turn QA (Ara) 156254
Multi-Turn Conversation (Ara) 64235
LLaVA-Med-to-QA (Ara) 163463
PMC-MCQ (Ara) 50000
Total 1691407

Table 12: BiMed-V-1.6M Dataset Composition

details highlighted in the Ground Truth?

- Clarity: Is the explanation well-structured and easy to
understand

4) Submit Your Choice: After evaluating the responses, select
the one that provides the most accurate and comprehensive
explanation.

A.5.2 Comparison of Bilingual vs
Monolingual Training

The results in Tab 10 highlight the impact of lan-
guage setting on model performance for Arabic
medical evaluation tasks. The bilingual model
(BiMediX2-8B BI), trained on both English and
Arabic instruction data, achieves the highest score
of 50.5, outperforming both the Arabic-only model
(46.3) and the English-only model (44.6) on the
Arabic subset of BiMed-MBench.

This demonstrates that bilingual instruction tun-
ing provides complementary knowledge transfer,
enabling the model to better generalize in Ara-
bic. The performance gain over the Arabic-only
model further emphasizes the value of incorporat-
ing English medical knowledge during training,
even when the target evaluation is in Arabic.

A.6 Model Configurations

All traning experiments were conducted with 8x
AMD Instinct MI200 GPUs (each with 64 GB of
VRAM). The training process is structured in two
stages: Stage 1 training requires approximately 20
hours, and Stage 2 training requires approximately
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32 hours on this setup. The complete set of training
hyperparameters are provided in Tab 11.

We also compare the trade-offs between our
model sizes along with their corresponding per-
formance and medical accuracy in Tab 13. We
compare the Token Throughput measured in (To-
kens/second), Mean Time to First Token (TTFT)
(ms), GPU VRAM consumed and Medical Accu-
racy based on our evaluation benchmarks. These
benchmarks are run using the vLLM benchmark-
ing suite (Kwon et al., 2023) on 4xXNVIDIA RTX
A6000 (48GB) GPUs.

A.7 BiMedV-1.6M Dataset

The BiMedV-1.6M dataset comprises 1,691,407
samples across English and Arabic, covering text
and image-text QA tasks, supporting multilingual
and multimodal medical research. The dataset com-
position is presented in Tab 12, Fig 9.
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Model

Token Throughput (tok/s) Mean TTFT (ms) GPU VRAM (GB) Medical Accuracy

BiMediX2-4B
BiMediX2-8B
BiMediX2-70B

263.05 180.5 42 50.5
187.14 241.9 44 70.4
67.61 863.6 170 84.6

BioMedGPT-LM-7B

BiMediX2 4B
LLaVA-Med
Dragonfly-Med
GPT3.5

Meditron 70B
BiMediX2 8B

GPT 4
Llama3-Med42-70B
OpenBioLLM-70B
Llama 3.170B
BiMediX2 70B

Table 13: Performance comparison of BiMediX2 variants

T 449
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Figure 6: State of the art comparison of models in Clinical LLM Benchmarks

Can you describe this scan in detail ? @
<>
o0
The sagittal CT scan of the cervical spine shows a fracture at the C7 vertebra. .

The C7 vertebra is the seventh and lowest cervical vertebra, located at the
base of the neck. The fracture appears to be a burst fracture, which is a type
of spinal injury where the vertebral body collapses and fragments, causing
damage to the surrounding structures such as the spinal cord, ligaments, and
other soft tissues. The image provides a detailed view of the fracture and its
extent, which can help healthcare professionals assess the severity of the
injury and plan appropriate treatment.

Soyitie wydall i =
(Which vertebrae are affected?) -

. (C3) AU d.aiall 8yaallg (C2) AWl dudisll 8ys4ll o 8euall u—" S)S‘Lzall Wlyaall '
(The affected vertebrae in the image are the second cervical vertebra o
(C2) and the third cervical vertebra (C3).)

Figure 7: Bilingual failure case: Model labels avulsion fracture as burst (English), and misidentifies C2—-C3 instead

of C6-C7 (Arabic).
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What kind of scan is this?

This is a 3D computed tomography (CT) scan of the chest. CT scans use
X-ray technology to create detailed cross-sectional images of the body,
which can be reconstructed into 3D images for better visualization and
understanding of the anatomy and any abnormalities present.

What is the abnormality here ?

(=}
<

The abnormality in this image is the presence of multiple rib fractures.

Are there fractures on both sides?

Yes, the image shows multiple rib fractures on both the left and
right sides of the chest.

@ o

£12/2006 s Can you tell me what type of scan is this ?
2:47:26 PM 7 s

@ e

This is a color Doppler ultrasound scan. Color Doppler ultrasound is
a non-invasive imaging technique that uses sound waves to create
o images of blood vessels and tissues. It can help visualize blood flow
VEL/5.0 MHz o and detect abnormalities in the vessels and surrounding tissues.

Flow Gen
4dB/P3/RS3
PRF391/F2

Can you name the organ shown here ? @
<
The organ scanned in this image is the left ovary. : '
TRV LT OV_ Ve o'
Is there any abnormality in this scan ? @
L
Yes, there appears to be an abnormality in this scan. The image shows a left ovarian cyst with a solid '

component. Ovarian cysts are fluid-filled sacs that can develop in or on the ovary. A solid component
within the cyst may indicate a more complex or potentially malignant lesion. Further evaluation and tests
would be needed to determine the exact nature of the cyst and the appropriate course of treatment.

Figure 8: Qualitative Examples of BiMediX2 for Medical Image Understanding in a Conversational Context.
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Figure 9: BiMed-V-1.6M Dataset Distribution. The sunburst chart illustrates the hierarchical composition of the
dataset, categorizing samples by language (English and Arabic), modality (text and image-text), and task type (QA
and VQA). The inner rings represent language and modality divisions, while the outer rings detail specific datasets

included in BiMedV-1.6M.
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What is the organ shown in the image? Q

e
The organ shown in the image is the ovary, which is part of the "

female reproductive system.
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Figure 10: Qualitative Examples of our BiMediX2 for Medical Image Understanding in a Conversational and
Bilingual (Arabic) Setting: The top section translates to; User: What is the organ shown in the image? BiMediX2:
The image shows the liver, which is a large and vital organ in the human body. User: What type of scan is this?
BiMediX2: This is a computed tomography (CT) scan of the abdomen. The middle section translates to; User:
What type of imaging technique is used in this image? BiMediX2: The imaging technique used in this image is
magnetic resonance imaging (MRI). User: What part of the body is shown in the image? BiMediX2: The image
shows the head and neck area, with a particular focus on the pituitary gland. And the bottom section translates to;
User: What is the organ shown in the image? BiMediX2: The organ shown in the image is the ovary, which is part
of the female reproductive system. User: What type of scan is this? BiMediX2: This is an ultrasound image, which
is a non-invasive imaging technique that uses high-frequency sound waves to create detailed images of the body’s
internal structures. User: What is the abnormality in this ultrasound image? BiMediX2: The abnormality in this
ultrasound image is the presence of a multilocular ovarian cyst.
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What is the image showing?

The image is a scanning electron micrograph of the head of a
female Anopheles gambiae mosquito. It shows the antennal
compound eye and the maxillary palp, which are structures
related to the mosquito's sensory organs.

e ¢o

What are the three types of appendages on the head?

(R &V

The three types of appendages on the head of the Anopheles
gambiae mosquito are antennae, maxillary palps, and proboscis.

What is the abnormality in this scan?

The abnormality in this scan is a left-sided parotid tumor. The |
parotid gland is a salivary gland located near the ear, and a A
tumor in this area could be benign or malignant. Further
evaluation and tests would be needed to determine the nature of

the tumor and the appropriate course of treatment.

What type of tissue is surrounding the lesion? @
-
The lesion is surrounded by mature adipose tissue, which is a type "Q:‘
of connective tissue that stores energy in the form of fat. R
What type of staining is used in the histologic sections? G_a
-

The histologic sections are stained with hematoxylin and eosin (H&E).
This is a common staining technique used in histology to visualize the
structure and morphology of tissues. Hematoxylin stains the cell nuclei
blue, while eosin stains the cytoplasm and extracellular matrix pink.

What is the abnormality in this scan?

The abnormality in this chest X-ray scan is the presence of a right- |
sided pneumothorax. A pneumothorax is a condition where air
accumulates in the pleural space, which is the area between the lung
and the chest wall. This can cause the lung to collapse, leading to
difficulty breathing and chest pain.

What is the organ shown in the image?

The image is a computed tomography (CT) scan of the abdomen,
focusing on the adrenal glands.

(R &

What do the black arrows indicate?

The black arrows in the image are pointing to bilateral adrenal
hyperplasia, which means that both adrenal glands are enlarged.

Figure 11: Qualitative Examples for Medical Image Understanding of our BiMediX2 in Multidomain: Capability of
BiMediX2 to understand and interpret various medical imaging modalities and provide accurate responses. The examples
include describing the anatomy of a mosquito’s head in a scanning electron micrograph, detecting a left-sided parotid tumor in
an MRI scan, recognizing mature adipose tissue in a histology slide, identifying a right-sided pneumothorax in a chest X-ray, and
identifying bilateral adrenal hyperplasia in a CT scan of the abdomen. These examples highlight BiMediX2’s versatility and
effectiveness in medical image analysis and diagnosis.
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