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Abstract

Zero-shot image captioning, which aims to gen-
erate image descriptions without relying on
annotated data, has recently attracted increas-
ing research interest. Pre-trained text-to-image
generation models enable the creation of syn-
thetic pairs solely from text data, while existing
methods fall short in mitigating the discrep-
ancy caused by the inability of synthetic im-
ages to fully capture the semantics of the tex-
tual input, resulting in unreliable cross-modal
correspondences. To address this, we propose
a retrieval-based framework that leverages only
existing synthetic image-text pairs as its search
corpus to systematically bridge the gap when
using synthetic data for captioning. For the
semantic gap between a synthetic image and
its input text, our framework retrieves supple-
mentary visual features from similar synthetic
examples and integrates them to refine the im-
age embedding. Then, it extracts image-related
textual descriptions to mitigate the modality
gap during decoding. Moreover, we introduce
a plug-and-play visual semantic module that
detects visual entities, further facilitating the
construction of semantic correspondences be-
tween images and text. Experimental results
on benchmark datasets demonstrate that our
method obtains state-of-the-art results.

1 Introduction

Supervised image captioning approaches rely on
large-scale labeled image-text pairs, which are of-
ten costly to acquire (Zhu et al., 2023). To address
this data dependency limitation, zero-shot image
captioning approaches have attracted growing re-
search interest. Previous methods (Li et al., 2023)
adopt text-only training and subsequently perform
inference using images. However, the mismatch
between training and inference leads to a modality
gap (Liang et al., 2022), which hinders the model’s
performance. Most existing works use pre-trained
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multi-modal models (Radford et al., 2021) to map
texts and images into the same space, which miti-
gates the modality gap (Fei et al., 2023; Lee et al.,
2024). Since using text as a proxy for visual infor-
mation cannot fully capture visual semantics, text-
only methods, which cannot utilize images during
training, still maintain a gap between modalities.

To address the above problem, many recent stud-
ies have utilized image generative models to con-
struct synthetic image-text pairs (Ma et al., 2024;
Liu et al., 2024), using synthetic visual semantics
for training. Although these pre-trained genera-
tive models could produce rich visual information,
they suffer from information loss during both the
text-to-vector (Kamath et al., 2023) encoding pro-
cess and the image generation stage (Ray et al.,
2023; Sariyildiz et al., 2023) due to inherent model
limitations. This results in a semantic mismatch
between the synthetic image and its correspond-
ing text, commonly referred to as the semantic
gap (Luo et al., 2024). Some straightforward strate-
gies (e.g., replacing images based on similarity)
could alleviate the semantic gap (Liu et al., 2024,
2025), but existing works heavily rely on the capa-
bilities of image generative models and directly
utilize synthetic image-text pairs with semantic
mismatches, as illustrated by Figure 1(a). As a
result, they fail to handle the discrepancies arising
from the inability of synthetic images to fully cap-
ture the semantics of textual inputs, resulting in
unreliable cross-modal correspondences.

This paper proposes a method, called ROSCap,
which mitigates both the semantic and modality
gaps in synthetic image-text pairs using existing
information and reduces reliance on image genera-
tive models. Since synthetic images are generated
based on text, the corresponding original text pre-
serves complete semantic information. We retrieve
embeddings of synthetic images using the original
text and construct a support domain to mitigate
gaps in image-text pairs, thereby improving the se-
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Figure 1: Comparison between our method and previous studies. (a) shows that previous work trains directly on
synthetic data while neglecting the gap between the synthetic image and text. (b) shows that our method utilizes
existing visual and textual information to mitigate this semantic gap. The reconstructed outputs on the right side
demonstrate that our method enables the model to learn image-text correspondence patterns more consistent with
the semantics of the conditional text.

mantic consistency within synthetic pairs, as shown
by Figure 1(b). Leveraging semantically enhanced
optimization for synthetic image embeddings not
only fully exploits the existing information, but also
supplements missing semantic content through re-
trieval, effectively addressing the semantic gap in
synthetic image-text pairs. Besides, considering the
issue of modality gap in images during decoding,
we utilize optimized synthetic image embeddings
to retrieve semantically similar text for modality
fusion. The cross-modal fusion of synthetic image
and text embeddings reduces the modality gap and
further bridges the semantic gap by leveraging se-
mantically aligned textual information. Accurate
visual prompts could effectively guide the model in
establishing associations between image and text.
To this end, we construct a visual semantic mod-
ule that jointly retrieves text and synthetic images,
applies a filtering mechanism, and extracts entity
information across multiple modalities, thereby en-
abling the construction of precise visual prompts.

In summary, our contributions are as follows:

• We propose ROSCap that optimizes synthetic
image embeddings and retrieves textual infor-
mation for fusion, aiming to bridge the seman-
tic gap and construct generalizable image-text
correspondences from synthetic data.

• A plug-and-play visual semantic module is de-
signed to extract accurate visual entities from
both modalities for prompt construction.

• Extensive experiments on several benchmarks

demonstrate that ROSCap achieves state-of-
the-art performance for zero-shot captioning.

2 Related work

2.1 Supervised Image Captioning
Supervised image captioning relies on training en-
coders and decoders using annotated image-text
pairs. Traditional research employed convolutional
neural networks as image encoders and recurrent
neural networks as decoders to implement caption-
ing (Donahue et al., 2015; Karpathy and Fei-Fei,
2015; Gu et al., 2017). The subsequent emergence
of transformer architectures and attention mecha-
nisms (Vaswani et al., 2017) has further advanced
the field, offering greater potential for improving
image captioning performance (Cornia et al., 2020;
Pan et al., 2020; Yang et al., 2021; Barraco et al.,
2022). Recent text retrieval-based approaches have
attracted increasing attention (Ramos et al., 2023;
Kim et al., 2025), with images serving as queries to
retrieve semantically relevant texts, thereby improv-
ing performance and narrowing the modality gap
between image and text during decoding. While
these methods exhibit competitive performance,
they are constrained by the dependence on manu-
ally annotated image-text pairs, whose collection
is both time-consuming and costly.

2.2 Zero-Shot Image Captioning
Zero-shot image captioning could be generally cate-
gorized into training-free approaches and text-only
ones. Training-free methods (Tewel et al., 2022;
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Figure 2: The overview of ROSCap. During training, text embeddings are first used to retrieve the most relevant
synthetic images, which are then employed to optimize the corresponding synthetic image embeddings. The
optimized embeddings are subsequently utilized to retrieve relevant texts, thereby contributing to bridging the
modality gap. During inference, the retrieved texts and synthetic images are processed by the visual semantic
module to extract salient entities and construct a hard prompt, which is finally fed into the decoder.

Zeng et al., 2024) rely on CLIP (Radford et al.,
2021) zero-shot classification capabilities, limiting
their ability to capture fine-grained visual details.
Recent text-only methods demonstrate potential for
zero-shot learning (Fei et al., 2023; Lee et al., 2024;
Yang et al., 2023, 2024), which map images and
texts into a shared space. However, utilizing textual
data for training while only visual inputs for infer-
ence would induce a modality gap. This originates
from the geometric constraints in the image-text
mapping network, where the embedding space in-
herently assumes a narrow conical structure. Thus,
a separation between modalities exists from the
outset (Liang et al., 2022).

Recent advances attempt to use synthetic images
instead of textual data to mitigate the modality gap.
SynTIC (Liu et al., 2024) explored training models
with synthetic images and used contrast learning
to reduce the feature distance between synthetic
and real images. Due to the limitations of image
generative models (Kamath et al., 2023; Sariyildiz
et al., 2023), there may exist semantic inconsis-
tencies between synthetic images and conditional
texts. PCM-Net (Luo et al., 2024) proposed en-
hancing semantic alignment by selectively fusing

key visual concepts from synthetic images with text
embeddings. SaCap (Liu et al., 2025) reconstructed
original texts and re-generated multiple synthetic
images for matching. However, these methods rely
on the capacity of image generation and directly uti-
lize synthetic pairs that exhibit the semantic gap. In
summary, the discrepancy between image and text
embeddings brings the modality gap, whereas the
semantic gap emerges when synthetic images fail to
faithfully capture the semantics of associated texts.
To address these, our paper introduces a retrieval-
based framework that reduces reliance on image
generative models and effectively exploits existing
data to bridge both the semantic and modality gaps.

3 Methodology

Our proposed zero-shot image captioning method,
ROSCap, is based on the retrieval of semantic in-
formation. The overall framework is illustrated in
Figure 2. During the training process, we leverage
only text and text-based synthetic images. First, in
the selective projection optimization method (Sec-
tion 3.1), a support domain is constructed by re-
trieving synthetic image embeddings. The original
synthetic image embeddings are then projected into
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this domain to achieve feature optimization. This
process not only preserves the original information
of the synthetic images but also introduces addi-
tional semantic information to help alleviate the se-
mantic gap between the synthetic image-text pairs.
These optimized synthetic image embeddings are
used to retrieve the most relevant text embeddings
from the text memory, which are then fed into the
cross-modal fusion module (Section 3.2) for fea-
ture fusion. It addresses the modality gap between
image-text pairs and further bridges the semantic
gap. During inference, to capture more accurate
entity information, we employ the visual semantic
module (Section 3.3) to retrieve data simultane-
ously from both the synthetic image memory and
the text memory, enabling the extraction of entity
information from multiple modalities.

3.1 Selective Projection Optimization
The textual semantics could be translated into a cor-
responding image using stable diffusion (Rombach
et al., 2022), thereby obtaining the synthetic image-
text pairs (I, T ). At the same time, the synthetic im-
ages and texts are encoded into embeddings using
an encoder, forming the synthetic image memory
Mimg and text memory Mtext. This process could
be represented as follows:

Mimg = encoderimg(I1, I2, . . . , IN ), (1)

Mtext = encodertext(T1, T2, . . . , TN ). (2)

Considering the semantic gap in image-text pairs,
we construct an approach that leverages the power-
ful cross-modal capabilities of CLIP. Specifically,
we calculate the cosine similarity between the orig-
inal text embedding Tt and all synthetic image em-
beddings in Mimg, and select the top-k synthetic im-
age embeddings with the highest similarity. These
synthetic image embeddings would constitute the
synthetic image support domain, denoted as sup-
port set (It1, It2, . . . , Itk) which is used to optimize
the embedding of the original synthetic image.

To prevent semantic redundancy and preserve
the fine-grained characteristics embedded in the
original synthetic images, we optimize only those
image–text pairs exhibiting a semantic gap, namely
when the text fails to retrieve its corresponding syn-
thetic image within the support set, an indication of
low consistency between the synthetic image and
the associated text. We need to ascertain whether
the synthetic image domain support set Su, con-
structed through the retrieval of Tt, includes the im-
age It. When the embedding of a synthetic image is

absent from the support domain retrieved using its
associated text embedding, we classify the image-
text pair as exhibiting a semantic gap. To mitigate
this discrepancy, we perform projection-based op-
timization by aligning the image embedding with
the support domain, thereby improving its seman-
tic consistency with the corresponding text. This
process could be expressed as follows:

Su = argtopk (cos (Tt,Mimg)) , (3)

I ′t =





(
exp((ItS⊤

u )/τ)
∑

j exp
(
(ItS⊤

uj
)/τ

)

)
Su if It /∈ Su,

It else.
(4)

By constructing an in-domain synthetic image set
through the retrieval of synthetic images most se-
mantically similar to the original text from existing
data, we could strengthen the alignment between
synthetic images and their corresponding captions,
thereby enhancing the model’s capacity to learn
accurate cross-modal mappings.

3.2 Cross-Modal Fusion Module
The use of synthetic image embeddings inevitably
introduces semantic information loss during the em-
bedding compression process. Also, the modality
gap and semantic gap occur during the decoding
of synthetic images into text. In order to allevi-
ate these issues, we propose a cross-modal fusion
module designed to bridge both the modality and
semantic gaps while enhancing the richness of in-
formation representation.

Specifically, we first use the optimized synthetic
image embedding to retrieve the l most similar text
embeddings from the constructed Mtext, based on
the cosine similarity. The retrieved text embed-
dings are fused with the optimized synthetic image
embedding to supplement semantic information
and further alleviate both the semantic and modal-
ity gaps. A cross-attention mechanism is then em-
ployed to obtain Tatt, where the optimized image
embedding serves as the query and the retrieved
text embeddings serve as the keys and values. The
overall process could be formulated as follows:

Textt = {Tt1, Tt2, . . . , TtL}
= argtopl

(
cos(I ′t,Mtext)

)
, (5)

Tatt = crossattn(I ′t,Textt). (6)

The fused representation is subsequently concate-
nated with the learnable vector θ and fed into a
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Figure 3: Our visual semantic module. This module facilitates the extraction of enriched semantic information
across multiple modalities, enabling more precise identification of visual objects. By incorporating hard prompts, it
establishes accurate and robust associations between images and their corresponding textual descriptions.

trainable 8-layer transformer to learn the image-
text mapping. Our cross-modal fusion module in-
tegrates a mapping network composed of a cross-
attention mechanism and a transformer:

promptsoft = transformer(concat(Tatt, θ)),
(7)

where promptsoft would combine optimized em-
beddings with textual information, bridging both
the modality and semantic gaps for decoding.

3.3 Visual Semantic Module
Previous studies have primarily focused on retriev-
ing text to extract visual entities, but reliance solely
on textual information can lead to incomplete or
potentially misleading retrieval results. To over-
come this limitation, we propose a visual semantic
module to capture more comprehensive and fine-
grained visual information, thereby improving the
image-to-text mapping.

Our visual semantic module facilitates the con-
struction of multi-view associations between im-
ages and text by integrating both visual and textual
information to extract representative entities. Im-
portantly, the module is applied exclusively during
inference, following a plug-and-play paradigm that
allows seamless integration into existing image cap-
tioning frameworks. As shown in Table 9, incorpo-
rating this module yields substantial performance
gains across multiple baseline models.

The module encodes a real image using the CLIP
image encoder. The resulting real image embed-
ding Irt is then used to retrieve the top-l text em-
beddings and synthetic image embeddings from the
pre-constructed sets Mtext and Mimg:

Textr = argtopl
(
cos(Irt,Mtext)

)

+ argtopl
(
cos(Irt,Mimg)

)
, (8)

where retrieved embeddings Textr consist of both
text and image embeddings, from which text labels

are extracted. Entities are subsequently extracted
from the retrieved text labels using a syntactic pars-
ing tool, and those with frequencies exceeding a
pre-defined threshold d are selected to construct
entity-based hard prompts, employed to guide the
caption generation:

prompthard = parsing(Textr). (9)

Figure 3 illustrates an example processed by our
visual semantic module. Relevant semantics are
retrieved from Mtext to identify entities such as
“people” and “motorcycles” while Mimg provides
additional visual cues, including contextual ele-
ments like “roads” and enhances the separation
between target entities and irrelevant information.
This multi-modal retrieval strategy facilitates the
extraction of richer semantic information, thereby
improving the accuracy of visual object recogni-
tion. By leveraging hard prompts, the model estab-
lishes precise image–text correspondences. Entities
are extracted from the retrieved texts and their fre-
quency statistics are computed using the syntactic
parser tool NLTK (Bird and Loper, 2004).

The constructed hard prompts are concatenated
with soft prompts and fed into the decoder to gen-
erate the final captions. The cross-modal fusion
module and the decoder are trained jointly under an
auto-regressive loss, formally defined as follows:

L = −
T∑

t=1

Mt log pθ(yt | prompt, y<t), (10)

where prompt denotes the concatenation of two
prompts (prompthard, promptsoft), and y denotes
the ground truth text.

4 Experiments

Datasets and Metrics. The experiments are con-
ducted on three benchmark datasets, consisting of
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Method Image Encoder Text Decoder MSCOCO Flickr
B@4 M C S B@4 M C S

CapDec (2022) RN50x4 GPT-2large 26.4 25.1 91.8 11.9 17.7 20.0 39.1 9.9
DeCap (2023) ViT-B/32 TransformerL=4, H=4 24.7 25.0 91.2 18.7 21.2 21.8 56.7 15.2
CLOSE (2022) ViT-L/14 T5base – – 95.3 – – – – –
ViECap (2023) ViT-B/32 GPT-2base 27.2 24.8 92.9 18.2 21.4 20.1 47.9 13.6

MeaCapInvLM (2024) ViT-B/32 GPT-2base 27.2 25.3 95.4 19.0 22.3 22.3 59.4 15.6
IFCap (2024) ViT-B/32 GPT-2base 30.8 26.7 108.0 20.3 23.5 23.0 64.4 17.0

SynTIC (2023) ViT-B/32 TransformerL=4, H=4 29.9 25.8 101.1 19.3 22.3 22.4 56.6 16.6
PCM-Net (2024) ViT-B/32 GPT-2base 31.5 25.9 103.8 19.7 26.9 23.0 61.3 16.8

SaCap (2025) ViT-B/32 GPT-2base 31.0 25.9 104.2 19.7 27.1 22.4 64.3 15.9
ROSCap (Ours) ViT-B/32 GPT-2base 31.3 26.9 112.0 20.9 23.4 23.1 65.6 17.6

Table 1: In-domain captioning results on the MSCOCO and Flickr test splits. All results of baselines are directly
cited from their original papers. The upper block of the table presents the performance of text-only approaches,
while the lower block reports the results using synthetic images. The best results are highlighted in bold.

Method
MSCOCO ⇒ Flickr Flickr ⇒ MSCOCO
B@4 M C S B@4 M C S

DeCap (2023) 16.3 17.9 35.7 11.1 12.1 18.0 44.4 10.9
ViECap (2023) 17.4 18.0 38.4 11.2 12.6 19.3 54.2 12.5
SynTIC (2023) 17.9 18.6 38.4 11.9 14.6 19.4 47.7 12.5

SynTIC-TT (2023) 19.4 20.2 43.2 13.9 20.6 21.3 64.4 14.3
IFCap (2024) 17.8 19.4 47.5 12.7 14.7 20.4 60.7 13.6

IFCap-TT (2024) 21.2 21.8 59.2 15.6 19.0 23.0 76.3 17.3
PCM-Net (2024) 20.8 19.2 45.5 12.9 17.1 19.6 54.9 12.8

SaCap (2025) 21.2 20.2 50.9 13.2 17.5 19.7 62.5 13.5

ROSCap 21.3 21.1 59.9 14.8 15.7 19.5 62.5 13.6
ROSCap-TT 20.7 21.8 61.4 16.0 23.5 23.7 88.6 18.7

Table 2: Cross-domain captioning results. X⇒Y means
source domain ⇒ target domain. TT denotes that the
model could access the target domain’s corpus during
inference. Since SaCap uses additional out-of-domain
data for cross-domain experiments, we conduct experi-
ments under the TT setting.

MSCOCO (Chen et al., 2015), Flickr (Young et al.,
2014), and NoCaps (Agrawal et al., 2019). We fol-
low Karpathy (Karpathy and Fei-Fei, 2015) to split
MSCOCO and Flickr into training, validation and
testing sets. We train the captioning model using
only text annotations from the training set and syn-
thetic images generated by image generative mod-
els. For evaluation, we adopt standard image cap-
tioning metrics, with CIDEr (C) (Vedantam et al.,
2015), SPICE (S) (Anderson et al., 2016) as the pri-
mary evaluation metrics, and BLEU-4 (B@4) (Pa-
pineni et al., 2002) and METEOR (M) (Banerjee
and Lavie, 2005) as supplementary metrics.

Implementation Details. We use stable diffusion
v1-5 (Rombach et al., 2022) as the text-to-image
model. We leverage the pre-trained multi-modal
model CLIP (ViT-B/32) (Radford et al., 2021) as
our encoder and GPT2base (Radford et al., 2019)

Method
In Near Out Entire

C S C S C S C S

ClipCap (2021) 79.7 12.2 67.6 11.2 49.3 9.7 65.7 11.1
SmallCap (2023) 88.3 – 77.1 – 65.0 – 75.8 –

DeCap (2023) 65.2 – 47.8 – 25.8 – 45.9 –
CapDec (2022) 60.1 10.2 50.2 9.3 28.7 6.0 45.9 8.3
ViECap (2023) 66.0 10.4 64.3 9.9 65.0 8.6 66.2 9.5

PCM-ViECap (2023) 61.1 10.7 72.7 10.6 75.7 9.7 74.7 10.3
IFCap (2024) 70.1 11.2 72.5 10.9 72.1 9.6 74.0 10.5

IFCap+VSM (Ours) 73.2 11.8 74.3 11.2 72.2 9.7 75.5 10.8
ROSCap (MSCOCO) 76.2 12.4 76.5 11.7 68.3 9.7 75.8 11.1

ROSCap (CC3M) 73.6 11.5 76.3 11.5 74.1 10.2 76.6 11.1

Table 3: NoCaps validation segmentation results. Clip-
Cap and SmallCap are supervised methods, while the
others are zero-shot methods. In, Near, Out, and Entire
represent the in-domain, near-domain, out-domain, and
overall experimental results, respectively.

as the decoder. During the training process, the
encoder is frozen and only the cross-modal fusion
module and the image decoder need to be trained.
We train the captioning model with a learning rate
of 2×10−5, using the linear schedule as our sched-
uler with 5000 warmup steps. Adam (Kingma and
Ba, 2014) is used as the optimizer, and the batch
size is set to 80. Our source code is available at
https://github.com/wkwinking/ROSCap.

Baselines. We compare the performance of our
ROSCap with state-of-the-art works for zero-shot
captioning, including text-only methods and the
synthetic image methods. The text-only ones con-
tain CapDec (Nukrai et al., 2022), DeCap (Li et al.,
2023), CLOSE (Gu et al., 2023), ViECap (Fei et al.,
2023), MeaCap (Zeng et al., 2024), and IFCap (Lee
et al., 2024). The methods using synthetic images
include SynTIC (Liu et al., 2024), PCM-Net (Luo
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Method B@4 M C S

Baseline 26.6 24.2 91.6 17.4
+selective projection optimization (SPO) 26.0 24.3 92.5 18.2

+visual semantic module (VSM) 28.5 25.7 102.1 19.2
+cross-modal fusion module (CMF) 28.4 25.3 104.5 19.5

+SPO & VSM w/o CMF 28.7 26.0 104.7 19.9
+CMF & VSM w/o SPO 29.3 26.2 108.2 20.5
+CMF & SPO w/o VSM 31.1 26.5 109.6 20.1

ROSCap 31.3 26.9 112.0 20.9

Table 4: Ablation study results on MSCOCO under the
in-domain captioning setting.

et al., 2024), and SaCap (Liu et al., 2025).

4.1 In-Domain Captioning Results

We first evaluate the proposed ROSCap on both
the MSCOCO and Flickr datasets under the in-
domain captioning setting. Table 1 illustrates the
performance comparison between our method and
other state-of-the-art image captioning models. Our
ROSCap consistently outperforms state-of-the-art
methods across most evaluation metrics on both
the MSCOCO and Flickr datasets. In particular,
it achieves a CIDEr score of 112.0, representing
an absolute improvement of 4.0 over IFCap on the
same benchmark, thereby demonstrating that train-
ing with synthetic images can effectively mitigate
the modality gap during both training and infer-
ence. Compared with PCM-Net, ROSCap further
improves the CIDEr score by 8.2, highlighting the
effectiveness of first optimizing synthetic images
to reduce their discrepancy with the corresponding
texts and subsequently employing a cross-modal
fusion module to narrow both the modality and
semantic gaps. Overall, our method achieves the
best performance on the primary image caption-
ing metrics, CIDEr and SPICE, underscoring its
effectiveness for in-domain captioning.

4.2 Cross-Domain Captioning Results

We further evaluate the generalization ability of
ROSCap under the cross-domain setting. Given
that ROSCap is a retrieval-based image captioning
method, we additionally consider an experimen-
tal setting in which the model has access to the
target domain. The experimental results, which
cover cross-domain evaluations between MSCOCO
and Flickr in Table 2 as well as evaluations on
the challenging NoCaps validation set in Table 3,
demonstrate that ROSCap consistently achieves
state-of-the-art results across the majority of evalu-

k B@4 M C S

3 30.2 26.6 109.7 20.6
5 31.3 26.9 112.0 20.9
7 30.4 26.6 110.3 20.6
9 30.2 26.6 109.9 20.6

Table 5: The performance of ROSCap with different
synthetic image numbers k to build the support set.

ation metrics, while maintaining second-best per-
formance on the remaining ones. Notably, in the
MSCOCO⇒Flickr experiment, ROSCap achieves
a CIDEr score of 59.9, which surpasses the pre-
vious state-of-the-art method with a score of 47.5
by 12.4 points. Moreover, it even outperforms the
in-domain SynTIC method, which obtains a score
of 56.6. For the experiments on NoCaps, ROSCap
achieves state-of-the-art results on most metrics,
and integrating our visual semantic module into
IFCap leads to consistent improvements across all
metrics. We also observe that performance varies
depending on the type and size of memory. Taking
CC3M (Sharma et al., 2018) as memory yields over-
all performance that even surpasses the retrieval-
based supervised method SmallCap, highlighting
the strong generalization capability of our method.

When encountering out-of-domain data in prac-
tical scenarios, retraining the model is unnecessary,
since only the in-domain memory needs to be up-
dated. Under this setting, ROSCap-TT achieves a
CIDEr score of 88.6, representing an improvement
of 12.3 points over the strongest result of baselines.
In the MSCOCO⇒Flickr experiment, updating the
memory with ROSCap-TT yields a CIDEr score of
61.4, surpassing the in-domain PCM-Net method.
Both configurations, utilizing only the training set
(i.e., ROSCap) and augmenting the memory with
external data (i.e., ROSCap-TT), demonstrate the
effectiveness and flexibility of our method.

4.3 Ablation Study

Effect of Components. An ablation study is per-
formed on MSCOCO under the in-domain setting,
with results in Table 4. We build a Baseline model
without our proposed selective projection optimiza-
tion (SPO), visual semantic module (VSM), and
cross-modal fusion module (CMF) to validate their
effectiveness. The modest improvement could be
achieved by adding SPO alone, as it helps address
the modality gap during the decoding process. To
further narrow the modality gap and mitigate the
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l B@4 M C S

3 30.5 26.7 110.3 20.6
5 31.3 26.9 111.8 20.8
7 31.0 26.7 111.4 20.7
9 31.3 26.9 112.0 20.9
11 31.3 26.9 111.4 20.8

Table 6: Performance of ROSCap with different text
embedding numbers l for cross-modal fusion.

semantic gap, we integrate text and image embed-
dings using CMF, which leads to a performance
boost. Additionally, our VSM enhances the extrac-
tion of visual entities from multiple perspectives,
thereby improving results and supporting the estab-
lishment of a more robust mapping between images
and captions. In the setting (+CMF & VSM w/o
SPO), SPO is disabled and synthetic images lack-
ing semantic information are still used to retrieve
texts. This approach does not resolve the semantic
gap. Mismatched semantic information may exac-
erbate it, highlighting the necessity of embedding
optimization. The model could handle both gaps
by first optimizing synthetic image embeddings to
reduce the semantic gap with their corresponding
captions and then using the optimized embeddings
to retrieve additional textual information as seman-
tic supplements. The performance under the setting
(+CMF & SPO w/o VSM) also demonstrates the
ability to mitigate the modality and semantic gaps.

Effect of Hyperparameters. We evaluate the ef-
fect of hyperparameters on MSCOCO under the
in-domain setting. For SPO, as shown in Table 5,
the synthetic image support set is constructed with
k ranging from 3 to 9, achieving optimal perfor-
mance when five synthetic images are retrieved
as the support domain. For CMF, as presented in
Table 6, the parameter l is varied from 3 to 11 to
determine the optimal setting. For VSM, as shown
in Table 7, the number of retrieved sentences fol-
lowed the CMF configuration, with the parsing and
filtering threshold d ranging from 3 to 7. ROSCap
achieves the best performance when integrating all
three components, which demonstrates the effec-
tiveness of the overall configuration.

4.4 Visualization Analysis

To further assess the effectiveness of the SPO strat-
egy, we conduct t-SNE visualization on 1,000 ran-
domly sampled instances from MSCOCO. In Fig-
ure 4, red points represent real image embeddings,

d B@4 M C S

3 23.0 27.0 84.9 21.7
4 28.0 27.3 103.8 21.7
5 30.1 27.1 109.8 21.1
6 31.3 26.9 112.0 20.9
7 31.3 26.6 111.0 20.2

Table 7: Performance of ROSCap with different thresh-
olds d from our visual semantic module.

Figure 4: Projection-optimized image embeddings vs.
original synthetic image embeddings.

blue points denote the original synthetic image em-
beddings, green points correspond to the optimized
synthetic image embeddings, and purple points in-
dicate the synthetic image support domain. Using
the real image embeddings as a reference, the orig-
inal synthetic embeddings are projected into the
support domain. The resulting projected embed-
dings are closer to the real image embeddings than
the original synthetic ones, demonstrating that SPO
effectively reduces the semantic gap between syn-
thetic images and their corresponding text.

4.5 Quantitative Analysis
According to CLIPScore (Hessel et al., 2021) and
PCM-Net (Luo et al., 2024), higher CLIP similar-
ity reflects stronger alignment between images and
their corresponding texts. We conduct a quantita-
tive analysis on two synthetic datasets of differing
quality. In the MSCOCO dataset, approximately
75% of the training synthetic images are optimized,
whereas in the Flickr dataset, about 46% of the
synthetic images are optimized. This indicates that
a larger proportion of high-quality samples can be
retrieved from the MSCOCO dataset. As shown
in Table 8, despite differences in data quality, our
method consistently enhances semantic alignment
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Training Data MSCOCO Flickr

Original Synthetic Pairs 0.3092 0.3043
Projected Synthetic Pairs 0.3413 0.3181

Table 8: Similarity comparison of original and projected
synthetic image-text pairs.

Method B@4 M C S

ViECap (2023) 27.2 24.8 92.9 18.2
ViECap+Mea (2024) 27.2(0) 25.3(0.5 ↑) 95.4(2.8 ↑) 19.0(0.8 ↑)
ViECap+ViP (2025) 27.3(0.1 ↑) 25.1(0.3 ↑) 93.6(0.7 ↑) 18.4(0.2 ↑)

ViECap+VSM (Ours) 29.2(2.0 ↑) 26.0 (1.2 ↑) 103.3 (10.4 ↑) 19.8(1.6 ↑)
SynTIC (2024) 29.9 25.8 101.0 19.3

SynTIC+VSM (Ours) 29.7(0.2 ↓) 26.4(0.6 ↑) 104.0 (3.0 ↑) 20.0(0.7 ↑)
IFCap (2024) 30.8 26.7 108.0 20.1

IFCap+VSM (Ours) 30.4(0.4 ↓) 26.9(0.2 ↑) 109.2(1.2 ↑) 21.0(0.9 ↑)

Table 9: Performance of various baselines integrated
with our VSM. +Mea indicates the adoption of the strat-
egy from MeaCap, while +ViP denotes the use of the
strategy from ViPCap.

between images and texts, achieving state-of-the-
art performance on both datasets.

4.6 Extensibility
To evaluate the extensibility of our proposed VSM,
we integrate it into various baseline methods, con-
sisting of ViECap, IFCap, and SynTIC. To further
validate its effectiveness, we perform comparative
analyses with other representative plug-and-play
approaches, such as the zero-shot strategy from
MeaCap and the supervised one from ViPCap (Kim
et al., 2025). Notably, the visual semantic module
operates exclusively during the inference phase
and can be seamlessly integrated into any method
that maps images to text via entities. As shown
in Table 9, incorporating our module consistently
improves performance across nearly all metrics,
with CIDEr exhibiting a notable increase of 10.4
points over the ViECap method. These results high-
light the broad applicability of our visual semantic
module, which effectively constructs entity-based
hard prompts from multi-modal visual content and
guides the model to generate captions that are se-
mantically consistent with the images.

5 Conclusion

We propose ROSCap, a retrieval-based zero-shot
image captioning framework designed to bridge
both the semantic and modality gaps between syn-
thetic images and their corresponding texts while
reducing reliance on image generative models.
ROSCap employs a post-processing strategy that

optimizes synthetic image embeddings and lever-
ages cross-modal fusion to enhance image-text
alignment. Additionally, the visual semantic mod-
ule enables the extraction of representative entities
from multiple modalities, improving the generation
of semantically consistent captions. Extensive ex-
periments on benchmark datasets demonstrate that
ROSCap achieves state-of-the-art performance and
exhibits a strong generalization capability.

Limitations

Although ROSCap outperforms other zero-shot im-
age captioning models trained solely on text, it re-
lies on retrieval and requires a memory containing
sufficient information to reduce the semantic gap,
making its performance dependent on the avail-
ability of relevant semantics. Recent studies have
explored reconstructing data to generate semanti-
cally similar content. In future work, we plan to
investigate the use of reconstructed data as a mem-
ory to supplement missing semantic information.
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Hyperparameters MSCOCO Flickr NoCaps

Training epoch 5 30 6
Batch size 80 80 80
Optimizer Adam Adam Adam

Learning rate 2e-5 1e-5 2e-5
Temperature τ 1/100 1/100 1/100

Table 10: Hyperparameters.

Method Image
Retrieval

Text
Retrieval

Image
Decoding Total

SaCap – 0.44ms 282.80ms 283.24ms
IFCap – 0.62ms 140.52ms 141.14ms

ROSCap 0.51ms 0.51ms 139.94ms 140.96ms

Table 11: Comparison of inference overhead.

A Hyperparameter Settings

Our detailed hyperparameter settings, except for
k, l, and d, to train our captioning model on three
datasets are listed in Table 10. All experiments are
conducted on NVIDIA GeForce RTX 4090 GPUs.

B Computational Overhead

We compare the overhead of our proposed ROSCap
with that of baselines on MSCOCO. For training,
both ROSCap and IFCap take about 2 hours us-
ing one NVIDIA GeForce RTX 4090 GPU, while
SaCap takes about 4 hours due to the use of addi-
tional transformer layers for feature reconstruction.
For inference, we list the per-image inference over-
head in Table 11, indicating that our method does
not introduce additional overhead compared to the
baselines using synthetic data, since they also em-
ploy some auxiliary strategies like feature recon-
struction and object detection. This indicates that
the additional retrieval does not increase inference
time, demonstrating the efficiency of our method.

C Theoretical Analysis

We provide a simple theoretical derivation show-
ing that our SPO leads to better image-text align-
ment of embeddings. Prior work indicates that
higher CLIP similarity correlates with stronger cor-
respondence between images and their associated
texts (Hessel et al., 2021; Luo et al., 2024), and our
embedding optimization could improve this simi-
larity. Specifically, the cosine similarity between
the synthetic image I and its corresponding text
T is defined as s0 = cos(f(I), f(T )), where f(·)

Method Training data B@4 M C S

ROSCap Synthetic pairs 31.3 26.9 112.0 20.9
ROSCap Real pairs 32.7 27.3 115.1 20.8

Table 12: In-domain captioning results on MSCOCO.

represents the CLIP encoding function. If f(I) is
optimized, each image Ij in the support set Su ex-
hibits higher similarity with the text T compared
to I as follows:

sj = cos(f(Ij), f(T )) ≥ s0.

The optimized image embedding Project(f(I)) is
obtained via a weighted combination of the support
set. The similarity between the optimized embed-
ding and the text T is calculated by:

s = cos
(
Project(f(I)), f(T )

)

=

k∑

j=1

ajsj ≥
k∑

j=1

ajs0 = s0,

where aj denotes the weight for sj , and a1 + a2 +
· · · + ak = 1. Thus, the above derivation shows
that the similarity between the optimized image-
text pairs is no less than that of the original pairs.

D Synthetic vs. Real Images for Training

We compare the results of training the model with
synthetic data vs. real data. As shown in Table 12,
ROSCap achieves strong performance by applying
semantic supplementation to bridge the semantic
gap in synthetic image-text pairs using existing
information. Notably, several metrics approach or
even exceed those based on real image-text pairs,
highlighting the effectiveness of our method.

E More Details for Memory

We provide additional details on the memory con-
struction for our selective projection optimization.
Both the text memory and image memory are con-
structed from the training data. Specifically, we em-
ploy Stable Diffusion v1-5 (Rombach et al., 2022)
to generate a synthetic image for each training text.
Following the Karpathy split, the MSCOCO train-
ing set contains 566,747 text annotations, which
are used to build the MSCOCO text memory, while
an equal number of synthetic images are gener-
ated to form the corresponding image memory. For
Flickr, the Karpathy split provides 145,000 train-
ing texts, which are included in the text memory
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Text to Image Generation Retrieve from Synthetic Image Memory

A small kid playing frisbee

on some grass. 

As a bus and motorcycles 

carry passengers, an elephant 

is also seated to carry a man.

A woman in a dark blue and 

white sweater, walks with her 

son, down a street. 

(a)

(b)

(c)

Original Training Text

Figure 5: Examples for retrieving synthetic images to supplement semantics. The training texts and their corre-
sponding synthetic images are shown on the left side, while synthetic images from memory are shown on the right.

alongside 145,000 synthetic images in the image
memory. For CC3M, we generate synthetic images
for 3,318,333 training texts. In brief, Mtext stores
the encoded features of the training texts, and Mimg

stores the encoded features of their corresponding
synthetic images.

F Qualitative Evaluation

Semantic Supplementation via Memory. As ex-
hibited in Figure 5, we illustrate how ROSCap op-
timizes features through three representative cases.
In (a), even for relatively simple sentences, the im-
age generative model fails to capture fine-grained
semantics such as “frisbee”. By performing re-
trieval from the image memory, we successfully
supplement the missing semantics, thereby produc-
ing a caption of “children playing with a frisbee”.
In (b), the model omits multiple key elements in
this more complex description. By retaining the
synthetic image and retrieving semantically adja-
cent images, we enhanced its expressiveness, restor-
ing missing semantics such as “people riding ele-
phants”. In (c), although fine-grained attributes like
“dark blue and white sweater” are preserved, the
main entity “woman’s son” is missing. This gap
is filled by retrieving information from a synthetic
image that is semantically close to the text.

Generated Captions. We compare the captions
generated by ROSCap with those from IFCap un-
der the in-domain setting on the MSCOCO dataset,
as shown in Figure 6. The detected objects are
listed, with those supplementing semantics and

overlooked by IFCap highlighted in blue. By incor-
porating semantic supplementation and our visual
semantic module, ROSCap produces captions that
are more accurate and contextually appropriate.

In (a), our method correctly identifies a “duck”,
thereby rectifying IFCap’s misclassification of
birds. Similarly, in (b) and (c), ROSCap accurately
recognizes “golden hair” and avoids confusing ob-
jects such as a hair dryer or sink with a toothbrush,
demonstrating strong fine-grained attribute recog-
nition. In (d), our method extracts diverse objects
(e.g., toilet), contributing to more complete image
descriptions. In (e), IFCap misinterprets the rela-
tionship between a man and a horse. In (f), the
absence of a detected basketball in the hard prompt
leads IFCap to erroneously generate “tennis”. In
(g), our method accurately identifies the spatial
relationships between objects, whereas IFCap mis-
interprets the scene as a woman next to a dog; our
approach correctly recognizes the presence of a
man. In (h), ROSCap demonstrates strong percep-
tual reasoning, successfully inferring a dusk envi-
ronment and the presence of a sunset even when the
hard prompt does not explicitly specify the object.
Finally, in (i), although IFCap recognizes a woman
sitting, it misidentifies the context by associating
her with a bench, whereas our method leverages vi-
sual semantics to generate a more accurate caption.
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GT: A large white dog is sitting on a 

bench beside an elderly man.

IFCap:A woman sitting on a bench 

with a dog.

ROSCap:A man sitting on a bench 

next to a white dog.

Object : [dog, bench]

(g)

GT: A woman is sitting with a suitcase 

on some train tracks.

IFCap: A woman that is sitting on a 

bench.

ROSCap: A woman sitting on top of a 

suitcase.

Object : [woman]

(i)

GT: A sun setting over a large city 

and buildings.

IFCap: A view of a city street with 

tall buildings in the background.

ROSCap: Sunset on a city street with 

buildings in the background.

Object : [street, city, building]

(h)

GT: Two ducks floating together on a 

body of water.

IFCap: Two birds swimming in a body 

of water.

ROSCap: Two ducks swimming in a 

body of water.

Object : [water, duck]

(a)

GT: A little girl holding a blow dryer 

next to her head.

IFCap: A young girl is brushing her 

hair with a toothbrush.

ROSCap: A little girl with blonde hair 

holding a hair dryer.

Object : [hair, dryer, girl]

(b)

GT: A young baby sits on top of a 

briefcase.

IFCap: A baby sitting in a sink holding a 

toothbrush.

ROSCap: A baby sitting in a kitchen 

next to a sink.

Object : [baby]

(c)

GT: Bathroom with a shower, sink, and 

toilet in it.

IFCap:A bathroom with a brown tiled 

floor and a white tiled shower.

ROSCap: A bathroom with a toilet and a 

shower.

Object : [bathroom, shower, toilet]

(d)

GT: A man riding a brown horse 

down a city street.

IFCap: A man standing next to a 

horse on a street.

ROSCap: A man is riding a horse 

down the street.

Object : [horse, man, street]

(e)

GT: A young man in a green jersey is 

holding a ball.

IFCap: A young man holding a tennis 

racquet in front of him.

ROSCap: A young man holding a 

basketball in his right hand and a ball in 

his left hand.

Object : [man, basketball, ball]

(f)

Figure 6: Visualization of the captioning results from our method and IFCap on the MSCOCO dataset. We show a
comparison with the ground truth (GT).
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