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Abstract

In specialized domains such as space science
and utilization, question answering (QA) sys-
tems are required to perform complex multi-
fact reasoning over sparse knowledge graphs
(KGs). Existing KG-based retrieval-augmented
generation (RAG) frameworks often face chal-
lenges such as inefficient subgraph retrieval,
limited reasoning capabilities, and high com-
putational costs. These issues limit their effec-
tiveness in specialized domains. In this paper,
we propose SKRAG, a novel Skeleton-guided
RAG framework for knowledge graph ques-
tion answering (KGQA). SKRAG leverages a
lightweight language model enhanced with the
Finite State Machine (FSM) constraint to pro-
duce structurally grounded reasoning skeletons,
which guide accurate subgraph retrieval. The
retrieved subgraph is then used to prompt a
general large language model (LLM) for an-
swer generation. We also introduce SSUQA, a
KGQA dataset in the space science and utiliza-
tion domain. Experiments show that SKRAG
outperforms strong baselines on SSUQA and
two general-domain benchmarks, demonstrat-
ing its adaptability and practical effectiveness.

1 Introduction

In some specialized domains such as space science
and utilization, relevant questions often involve
interdisciplinary knowledge, multi-fact reasoning,
and complex relational structures. As a result, tradi-
tional keyword-based retrieval methods struggle to
meet the demand for accurate and efficient knowl-
edge acquisition, highlighting the need for intelli-
gent question answering (QA) systems. Recently,
Large Language Models (LLMs) have shown im-
pressive capabilities in language understanding and
generation tasks (Brown et al., 2020; Kojima et al.,
2022; Ouyang et al., 2022; Huang and Chang, 2023;
Achiam et al., 2023), offering new potential for QA.
However, without external knowledge grounding,
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LLMs are prone to hallucinations and outdated in-
formation (Kasai et al., 2023; Huang et al., 2025),
limiting their reliability in critical domains. To
address these issues, Retrieval-Augmented Gener-
ation (RAG) framework has emerged as a promis-
ing solution. By integrating external knowledge
sources into the generation process, RAG enhances
the factual accuracy and interpretability of LLMs
outputs (Shuster et al., 2021; Borgeaud et al., 2022;
Gao et al., 2023; Liang et al., 2024).

Currently, Knowledge Graph-based RAG (KG-
based RAG) methods have gained increasing at-
tention. Knowledge graphs (KGs), which store
structured, domain-specific knowledge as triples,
are valuable external sources for RAG (Peng et al.,
2024a; Sanmartin, 2024; Hu et al., 2024; Xu et al.,
2025). Compared to unstructured text, KGs en-
hance the ability of LLMs to perform reasoning
across entities and relations, improve retrieval ac-
curacy, and reduce hallucinations (Pan et al., 2024).
The quality of the subgraph retrieved from the KG
as input to the final QA LLMs is crucial for both
reasoning efficiency and answer accuracy of KG-
based RAG. Mainstream methods typically rely on
either direct or indirect interaction between LLMs
and the KG to identify answer paths (Jiang et al.,
2023; Sun et al., 2023; Luo et al., 2023), or use
graph neural networks (GNNSs) to propagate em-
beddings within the graph (He et al., 2024; Mavro-
matis and Karypis, 2024).

Although existing KG-based RAG frameworks
have shown promising results in knowledge graph
question answering (KGQA) tasks, they still face
several critical challenges when applied to domains
such as space science and utilization, where the
problems are complex, reasoning paths are diverse,
and the KGs are relatively sparse. Firstly, when
dealing with semantically complex questions and
multi-fact reasoning requirements, many step-by-
step search methods over KGs-from an entity to its
neighbors-often suffer from significant redundancy
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and lack of explicit question modeling. This results
in the omission of crucial information and ineffi-
ciency in reasoning. Secondly, GNNs operate by
iteratively aggregating information from neighbor-
ing nodes to update node representations. However,
in domain-specific KGs that are relatively sparse,
many nodes have very few neighbors, leading to
limited aggregation and suboptimal performance.
Thirdly, in order to enable LLMs to effectively
learn from KGs, some high-accuracy methods (Luo
et al., 2023, 2024; Wang et al., 2024) rely on fine-
tuning large-scale (with > 7B parameters) pre-
trained language models. However, these strategies
often consume substantial local computational re-
sources and require prolonged training time, which
limits the efficiency and practicality of QA systems.

To tackle these challenges, we propose SKRAG,
a Skeleton-guided RAG framework for KGQA. In
particular, SKRAG fine-tunes a lightweight lan-
guage model to generate explicit reasoning skele-
tons that capture core reasoning chains, especially
in questions involving multiple question entities,
thereby enabling accurate and efficient subgraph
retrieval. To ensure these skeletons are executable
and structurally aligned with the KG, we introduce
the Finite State Machine (FSM) constraint mecha-
nism, which guides generation by enforcing path-
structure constraints. The subgraph retrieved under
the guidance of the reasoning skeleton is then used
to prompt a general LLM for final answer genera-
tion. By leveraging reasoning skeletons, SKRAG
bridges complex reasoning, LLM generation, and
KG structure, achieving strong performance with
improved adaptability and efficiency.

Our contributions can be summarized as follows:

o We propose SKRAG, a novel and efficient
framework that integrates a lightweight LLM
with the FSM constraint to generate struc-
turally reasoning skeletons, enabling precise
subgraph retrieval and aligning semantic rea-
soning with KG structure.

o To better evaluate SKRAG’s performance and
promote the application of KGQA in the do-
main of space science and utilization, we de-
velop a dedicated benchmark dataset named
SSUQA through an efficient and automated
construction process.

e Our proposed framework SKRAG achieves
superior performance compared to popular
baselines on SSUQA as well as two challeng-
ing general-domain KGQA benchmarks.

2 Related Work

Traditional KGQA. Traditional KGQA methods
mainly fall into two categories: embedding-based
and GNN-based methods. Early embedding meth-
ods (Miller et al., 2016; Saxena et al., 2020) map
entities and relations into low-dimensional vectors
using static KG embeddings. TransferNet (Shi
et al., 2021) enhances this by introducing dynamic
embeddings and explicit path propagation, along
with a differentiable relation activation mechanism.
GNN-based methods (He et al., 2021; Mavroma-
tis and Karypis, 2022; Zhang et al., 2022) leverage
message passing to capture deep entity associations
for multi-hop reasoning. UniKGQA (Jiang et al.,
2022) further improves this by dynamically adjust-
ing propagation weights and adopting multi-step
optimization to better handle complex semantic
reasoning.

KG-based RAG. With the rise of LLMs, KG-
based RAG methods have shown significant advan-
tages in semantic understanding, reasoning, and
interpretability by combining the generative power
of LLMs with the structured knowledge of KGs.
Wu et al. (2023) proposed the Retrieve-Rewrite-
Answer framework, which transforms subgraphs
into question-relevant textual descriptions to en-
hance the reasoning capabilities of LLMs. KD-CoT
(Wang et al., 2023) and Chain-of-Question (Peng
et al., 2024b) incorporate external KGs to enhance
the chain-of-thought (CoT) reasoning ability of
LLM:s, using structured triples to guide intermedi-
ate reasoning steps and improve interpretability and
accuracy. GNN-RAG (Mavromatis and Karypis,
2024) and G-Retriever (He et al., 2024) leverage
GNNss to retrieve semantically relevant subgraphs
from large-scale KGs, which are then passed to
LLMs as contextual input. StructGPT (Jiang et al.,
2023) and ToG (Sun et al., 2023) treat LLMs as
autonomous agents that iteratively interact with
KGs to explore reasoning paths. RoG (Luo et al.,
2023) proposes a Plan-Retrieve-Generate frame-
work, where a planning module guides the LLM to
perform retrieval and faithful reasoning.

3 Methodology

In this section, we present the proposed framework,
SKRAG. This framework generates question rea-
soning skeletons that are faithful to the structure of
the KG and make them act as navigational guides
to accurately direct the retrieval of subgraphs perti-
nent to the input question. As illustrated in Figure
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Figure 1: The overall framework of SKRAG, which consists of three core modules: (1) Reasoning Skeleton
Generator: Generates reasoning skeletons using a fine-tuned lightweight LLM; (2) FSM Constrainer: Applies
FSM constraints to regulate the generation of reasoning skeletons; (3) Skeleton-Guided Reasoner: Leverages the
generated skeletons to guide subgraph retrieval and infer the final answer.

1, SKRAG consists of three key components: Rea-
soning Skeleton Generator, FSM Constrainer, and
Skeleton-Guided Reasoner. The following subsec-
tions provide a detailed explanation of each mod-
ule.

3.1 Preliminaries

Knowledge Graphs (KGs) organize rich in-
formation in a structured form and can be
represented by a set of tripless G =
{(en,ret) | en,er € E, r € R}, where £ and R
represent the set of entities and relations, respec-
tively. Each triple (ep,r,e;) represents a fact
by connecting a head entity h and a tail entity ¢
through a directed relation r.

Reasoning Skeletons represent the starting
point and the inferential process of a question,
which consist of a topic entity and the relation
chain within the path originating from this entity:
s = (eg:r1 —reg— -+ — 1), where ¢y € &
denotes the starting entity, ; € R denotes the -
th relation in the relation chain and ! denotes the
length of the relation chain.

Reasoning Paths are the instances of a reason-
ing skeleton s in KGs: ps = eg ey .0
e}, where eg € &€ denotes the starting entity, e; € £
denotes the ¢-th entity and r; € R denotes the ¢-th

relation in the relation chain.

Knowledge Graph Question Answering
(KGQA) aims to answer questions by integrating
and reasoning over knowledge derived from KGs.
Given a natural language question ¢ and a KG G,
the task of KGQA is to reason a set of answers
a; € Ay which correspond to the entities in G and
can correctly answer q.

3.2 Reasoning Skeleton Generator

We propose the reasoning skeleton that explic-
itly decouples multi-entity reasoning flows, ensur-
ing both retrieval precision and completeness.The
skeleton enables a concise representation of the rea-
soning process, substantially reducing redundancy
and facilitating more efficient constraint decoding.

LLMs show great potential in generating reason-
ing skeletons due to their strong language under-
standing and generation abilities. However, their
limited awareness of KG structure and the seman-
tics of entities and relations hampers effectiveness.
To address this, we fine-tune a lightweight LLM
to better capture these semantics, enabling faithful
skeleton generation with low computational cost.
To ensure that the reasoning skeletons generated by
LLMs closely approximate the ground-truth skele-
tons, we aim to minimize the discrepancy between
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the reasoning skeletons generated by the LLMs and
the ground-truth reasoning skeletons.

Construction of Supervised Data. Given
a question g of the training set, its ques-
tion entity set Q and its answer set 4, we
could find the shortest reasoning path set P* =
{p:eqr—1>el T—2>...r—l>ea]eq€Q, eaeA},
from which we could extract the shortest reasoning
skeleton set S} Ue,ea{s|s is a shortest
skeleton from e, to eq} for each question entity
e, € Q. Since there may exist multiple shortest
skeletons from each question entity to the answer
entity, we generate candidate combinations of
the shortest reasoning skeletons by applying the
Cartesian product to the shortest skeletons of all
question entities: C* = Sf X & x --- x &),
where m denotes the number of question entities
in the question. Therefore, each supervision
instance corresponds to a pairing of the question ¢
and a skeleton combination c;: Supervised Data
= {(q, cx) | cx, € C*}. To facilitate the understand-
ing of LLMs, we format the skeleton combinations
into sentence strings with the following structure:
< SK >< ENTITY > ¢; < /ENTITY >:
rf = r3... < SEP >< ENTITY > e <
JENTITY >: 7?2 — r3... < SEP > ... <
/SK >. Due to the instruction-following capability
of LLMs (Wei et al., 2021), we design a simple
instruction template to prompt the LLM to generate
reasoning skeletons, as illustrated in Figure 4.

Reasoning Skeleton Generation Optimization.
We approximate candidate combinations of all rea-
soning skeletons that connect the question entities
to the answer entities C by using candidate combi-
nations of the shortest reasoning skeletons C* C C
(Zhang et al., 2022), so the posterior distribution
Q (¢) can be formally approximated as:

A ifcecCr,
Q<c>~Q(c|q,g>~{c' ree (1)

0, otherwise,

where we assume a uniform distribution over C*.
Therefore, the KL divergence can be calculated as
(Luo et al., 2023):

L = Dxr, (Q(c)||Py(c | q))
~ DKL (Q(C | q,g)HPG(C | Q))
~ _|Cl*| S log P(c | q). 2
ceC*

Our optimization objective is to minimize the above
KL divergence by maximizing the probability of

LLMs generating faithful reasoning skeleton com-
binations. Therefore, the optimization of £ can be
achieved as:

1
arg max —— Z log Py(c | q) =
0 |C |c€C*
1 m
% Z logHPg (silq), 3

ceC* i=1

where FPy(c | q) denotes the prior distribution of
generating faithful reasoning skeleton combination
¢, and Py (s; | q) denotes the probability of each
skeleton in c generated by LLMs.

3.3 FSM Constrainer

Although fine-tuning enhances the LLM’s ability to
generate KG-based reasoning skeletons, its linguis-
tic flexibility may still lead to semantically plau-
sible but structurally invalid outputs (Valmeekam
et al., 2023). To address this, we introduce the
FSM constrainer that enforces structural validity
by restricting generation to follow actual KG con-
nectivity patterns.

FSM is a mathematical structure used to model
system state transitions (Russell and Norvig, 2016).
It consists of a set of states, transition rules, an
initial state, and accepting states, enabling orderly
switching between states based on input symbols.
In natural language processing tasks, the FSM is
often employed to impose structural constraints on
the generation process, ensuring that the output
adheres to predefined valid structures and thereby
enhancing the accuracy and controllability of the
generated content (Cabrera et al., 2024). In our
method, we encode valid reasoning skeletons from
the KG into the FSM to constrain the generation
process of LLMs.

Retrieval of Valid Skeletons. In practical QA
scenarios, given a question ¢ of the test set and its
question entity set Q, we retrieve neighborhood
reasoning paths within an h-hop range from each
question entity. If h < 4, we adopt the Depth-First
Search (DFS) algorithm to extract the neighbor-
hood paths. However, when h > 4, the increased
number of hops may lead to excessive path redun-
dancy; therefore, we adopt the Dijkstra algorithm
to reduce redundant paths. The process can be
formulated as:

7?1:{ DFS (e},G,h), h < 4,

Dijkstra (ef],g, h) , h>4, “)
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where efl € Q denotes the <¢-th ques-
tion entity. Then we could extract
the valid reasoning skeleton set S; =
{(ef]:r%k) —H"ék) — ---—>rl(k)> |k€K}
from P;.

Pruning of Valid Skeletons. To reduce storage
and improve the quality of reasoning skeletons en-
coded in the FSM, we apply a pruning strategy that
combines semantic similarity and prior knowledge.
For each question entity efl, we compute a fused
score for each skeleton s € S; as:

Score(s) = A - cos(S-BERT(¢), S-BERT(s))
+ (1 = A) - Prior(s), 3)

where S-BERT denotes the Sentence-BERT model,
Prior(s) € {0,1} represents a prior score indi-
cating whether skeleton s appears in the training
set, and A € [0,1] is a tunable weight balancing
semantic relevance and prior knowledge. After
computing the scores, we select the top-k highest-
scoring skeletons to form a pruned skeleton set
SP. Since multiple skeletons may exist when start-
ing from each question entity, we finally obtain
candidate combinations of reasoning skeletons to
be stored in the FSM by applying the Cartesian
product over the pruned skeletons of all question
entities: C? = S x 8§ x - -+ x Sh,. Each combina-
tion ¢ € CP is formatted as a string z =< SK ><
ENTITY > ¢; < /ENTITY >:r{ = rj... <
SEP >< ENTITY > €2 < /ENTITY >: 7} —
r3...<SEP>...< /SK >.

Constrained Generation with FSM. Given a
set of valid skeleton strings Z = {z1,29,...,2n},
where each skeleton z; is a tokenized sequence
of token IDs z; = [t1, o, ..., k], we construct the
FSM to enforce generation constraints. The FSM is
formalized as a prefix-to-next-token transition map-
ping: {(t1,...,ti-1) —t;}, Vi € {1,...,k}.
This mapping defines, for each prefix, the set of
permissible next tokens. Once the full sequence is
matched, the corresponding terminal state transi-
tions to an empty set, signaling the end of a valid
skeleton. During decoding, this FSM is used to re-
strict the token generation space at each time step.
Let the current decoding prefix be x1.;—1, and let
1, € RVl denote the vocabulary logits predicted
by the model. The FSM determines the valid con-
tinuation set as V)44 = FSM(z1.4_1). We then
apply a masking operation over the logits to filter

out invalid tokens:

L] :{ Li[v],

if v e YyAid,
otherwise.

(6)

_007

This masked logit vector 1 is passed to the next step
of decoding, ensuring that only FSM-consistent
tokens are considered. In doing so, the model’s
generation is strictly constrained to the space of
syntactically valid reasoning skeletons, thereby im-
proving structural correctness and reducing the risk
of generating semantically invalid or unexecutable
skeletons.

3.4 Skeleton-Guided Reasoner

Skeleton-Guided Retrieval. We leverage the
constraint-generated reasoning skeletons to effi-
ciently guide the retrieval of relevant subgraphs
from the KG. Given a question ¢ and a reason-
ing skeleton s = (e, : 71 — ro — -+ — 17), We
retrieve the reasoning paths p from KG G. The
retrieval process can be conducted by searching
for paths in G guided by the reasoning skele-
ton, based on the question entity and its relation
chain in the skeleton. These paths start from the
question entity e, and follow the relation chain
r1 — r9 — - -+ — 17, which can be formalized as:

P = {p(eq,e*) ‘ plegex) = ¢q = €1 e

Tl

—> €qx, D(€g, €x) € g}. @)

Answer Reasoning. The answers to complex
questions often depend on integrated reasoning
over multiple reasoning paths. To address this,
our module fully exploits the powerful inference
capabilities of general LLMs by incorporating a set
of retrieved reasoning paths P = {p1,p2,...,pn}
into the input prompt. By providing P as formatted
context, the LLM is guided to perform interpretable
and constraint-aware reasoning, which helps mit-
igate hallucinations and enhances the accuracy of
the final answer A generated in response to g. The
detailed prompt can be found in Figure 5.

4 Domain-specific Dataset: SSUQA

To support comprehensive evaluation and advance
research in KGQA within the domain of space sci-
ence and utilization, we build a valuable dataset
named SSUQA based on the domain-specific KG
(Liu et al., 2023). The dataset is constructed
through an efficient automated method leveraging
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T Path Multi-enti A i
e ulti-entit regation
P 1-hop 2-hop 3-hop Y garee

3,500 5,000 5,000

Count 4,000 500

Table 1: Distribution of SSUQA.

Chain-of-Thought (CoT) (Wei et al., 2022) prompt-
ing with LLMs. Compared with labor-intensive
manual annotation, our method enables scalable
and high-quality data generation. The construction
process consists of two main stages: Triple Rea-
soning Paths Generation and CoT-based Prompt
Construction.

Triple Reasoning Paths Generation. This
stage aims to automatically mine logically valid
reasoning paths from the KG to support question
generation. We start from each entity and use DFS
to extract all 1-hop to 3-hop paths. Based on these,
we define three types of constraints:

e Path Constraints: Limit hop counts and in-
clude both single-answer paths and merged
paths sharing the same head and relation to
support multi-answer questions.

e Multi-entity Constraints: Combine paths
from different heads that lead to overlapping
tail entities to introduce multi-entity reason-
ing.

e Aggregation Constraints: Use paths with
multiple tail entities, with the answer being
the count of these entities.

To reduce cost and ensure semantic diversity, we
encode each path using Sentence-BERT (Reimers
and Gurevych, 2019) and apply K-means clustering
(Hartigan and Wong, 1979) for representative path
selection.

CoT-based Prompt Construction. In this stage,
we guide LLMs to iteratively transform complex
reasoning paths into natural language questions
using CoT prompting. The detailed prompt can be
found in Figure 6. The process includes:

o Entity Type Identification. Identify entity

roles and semantics to help LLMs understand
KG structure and support later generation.

o Triple-to-Text Conversion. Convert reason-
ing paths into natural language to enhance
semantic understanding.

o Iterative Sub-question Generation. Extract
key segments to form sub-questions, which
are progressively merged into a complete and
fluent question.

In total, we construct a dataset of 18,000 QA

pairs in SSUQA. The detailed question distribution

SSUQA

Methods

Hits@1 Fl1
NSM 56.4 -
TransferNet 63.5 -
Qwen-Plus 72.6 -
DeepSeek-V3 80.3 -
StructGPT 62.9 -
RoG(Qwen2.5-1.5B-Instruct 93.0 84.3
+ DeepSeek-V3)
GNN-RAG(DeepSeek-V3) 87.8 79.9
GCR(Qwen2.5-1.5B-Instruct 81.0  70.6
+ DeepSeek-V3)
SubgraphRAG(DeepSeek- 91.7 88.3
V3)
SKRAG(Ours, 97.3 87.8

Qwen2.5-1.5B-Instruct +
DeepSeek-V3)

Table 2: Performance comparison of different methods
on the SSUQA dataset. Bold represents the best result.

is shown in Table 1.

S Experiment

5.1 Experimental Settings

Datasets and Evaluation Metrics. To evaluate
the effectiveness of SKRAG, we conduct experi-
ments on SSUQA and two widely-used general-
domain KGQA benchmarks: WebQuestionsSP
(WebQSP) (Yih et al., 2016) and ComplexWe-
bQuestions (CWQ) (Talmor and Berant, 2018).
Both WebQSP and CWQ use Freebase (Bollacker
et al., 2008) as the underlying KG. The details of
three datasets are described in Appendix A. Fol-
lowing prior work, we use Hits@1 and F1 as eval-
uation metrics. Hits@1 reflects the proportion of
questions with a correct top-ranked answer, while
F1 balances precision and recall to assess both ac-
curacy and coverage.

Baselines. We compare SKRAG with four ma-
jor categories of baseline methods: (1) Embedding-
based methods, including EmbedKGQA (Saxena
et al., 2020) and TransferNet (Shi et al., 2021); (2)
GNN-based methods, including NSM (He et al.,
2021), SR+NSM (Zhang et al., 2022), ReaRev
(Mavromatis and Karypis, 2022), and UniKGQA
(Jiang et al., 2022); (3) LLM-based methods,
including ChatGPT, ChatGPT+CoT, Qwen-Plus
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WebQSP CWwWQ
Type Methods
Hits@1 Fl1 Hits@1 Fl1
EmbedKGQA 66.6 - 45.9 -
Embedding
TransferNet 71.4 - 48.6 -
NSM 68.7 62.8 47.6 42.4
SR+NSM 68.9 64.1 50.2 47.1
GNN
ReaRev 76.4 70.9 52.9 47.8
UniKGQA 77.2 72.2 51.2 49.0
ChatGPT 66.8 - 399 -
LLM
ChatGPT+CoT 75.6 - 48.9 -
StructGPT 72.6 - - -
ToG (ChatGPT) 76.2 - 58.9 -
KG-based RAG RoG(LLaMA2-Chat-7B) 85.7 70.8 62.6 56.2
GNN-RAG 85.7 71.3 66.8 594
SKRAG (Ours) 90.1 75.3 67.2 54.6

Table 3: Performance comparison of different methods on WebQSP and CWQ datasets. Bold represents the best

result.

(Yang et al., 2024), and DeepSeek-V3 (Liu et al.,
2024); and (4) KG-based RAG methods, includ-
ing StructGPT (Jiang et al., 2023), ToG (Sun et al.,
2023), RoG (Luo et al., 2023), GNN-RAG (Mavro-
matis and Karypis, 2024), GCR (Luo et al., 2024)
and SubgraphRAG (Li et al., 2024).
Implementation Details. For SKRAG, we
adopt the lightweight Qwen2.5-1.5B-Instruct' as
the backbone for reasoning skeleton generation.
The model is instruction fine-tuned for 3 epochs
on WebQSP and CWQ, generating the top-10 rea-
soning skeletons. Given the relative sparsity of the
domain-specific KG, we fine-tune the model for
2 epochs on SSUQA, generating the top-5 reason-
ing skeletons. For the answer generation phase,
we employ DeepSeek-V3 as the general LLM. Ad-
ditionally, we utilize the paraphrase-multilingual-
MiniLM-L12-v2? as our Sentence-BERT model to
measure semantic similarity. More detailed settings
are provided in the Appendix B.
5.2 Results

Main Results. Tables 2 and 3 present the perfor-
mance of our model SKRAG and various base-
lines on the SSUQA, WebQSP and CWQ datasets.
The results demonstrate that SKRAG consistently

"https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
Zhttps://huggingface.co/sentence-
transformers/paraphrase-multilingual-MiniLM-L12-v2

achieves the best performance across most evalua-
tion metrics on all three datasets. Among the KG-
based RAG methods, SKRAG significantly out-
performs prior methods, particularly on SSUQA
and WebQSP. On SSUQA, when employing the
same LLLM combination, our method achieves su-
perior results compared to RoG and GCR. This indi-
cates that the QA performance of these approaches
heavily relies on the parameter scale of the KG-
specialized LLM, whereas our method attains su-
perior performance even with smaller models. Sim-
ilarly, our approach outperforms SubgraphRAG by
5.6% in Hits @1, further demonstrating its advan-
tage on relatively sparse, domain-specific knowl-
edge graphs. On WebQSP, it surpasses strong base-
lines like RoG and GNN-RAG by 5% in Hits@1
and 4% in F1, while being more resource-efficient.
For CWQ, which relies on a denser and more struc-
turally complex KG, the GNN mechanism tends to
exhibit greater advantages; nevertheless, SKRAG
still achieves comparable performance. In sum-
mary, SKRAG demonstrates strong performance
across both specialized domain QA datasets with
sparse KGs and general domain QA datasets with
dense KGs, showcasing its versatility and effective-
ness in diverse KGQA scenarios.

In contrast, traditional KGQA methods and gen-
eral LLMs perform worse, due to limited reasoning
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SSUQA WebQSP CWwWQ
Method
Hits@1 Recall Hits@1 Recall Hits@1 Recall
SKRAG 97.3 97.2 90.1 84.2 67.2 64.9
SKRAG w/o fine-tuned LLM 81.7 81.4 53.9 45.7 42.7 40.2
SKRAG w/o FSM constraint 94.4 94.3 78.4 74.7 53.9 51.3
SKRAG w/o reasoning 94.6 94.2 49.2 36.5 40.7 37.3

Table 4: Ablation studies of SKRAG.
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Figure 2: Skeleton Hit Rate under Different .

capabilities and insufficient structural understand-
ing. This underscores the challenges LL.Ms face in
complex KG reasoning and the need for enhanced
integration with structured knowledge.

Ablation Study. We conduct ablation studies
on three datasets to assess the contributions of
SKRAG’s core modules. We compare three vari-
ants: (1) w/o fine-tuned LLM, which uses an unfine-
tuned LLM to generate reasoning skeletons; (2) w/o
FSM constraint, which removes the FSM constraint
mechanism; and (3) w/o reasoning, which replaces
LLM reasoning with majority voting over top-5
frequent tail entities. The experimental results are
presented in Table 4. From the results, it is ev-
ident that all three core modules of SKRAG are
essential. Without fine-tuning the reasoning skele-
ton generator, the LLM lacks the understanding
of the KG, which makes it difficult to accurately
identify the relevant reasoning skeletons for the
question. When the FSM constraint is removed,
the LLLM loses structural guidance, often generat-
ing reasoning skeletons that cannot be executed
on the KG, resulting in subgraph retrieval failures.
Finally, removing LLLM reasoning reduces answer
selection to tail entity frequency, ignoring semantic
relevance and often misidentifying high-frequency
entities while overlooking correct low-frequency
ones.

Effect of Balancing Semantic Similarity and
Structural Priors. To assess the effect of semantic
similarity and structural priors in pruning reasoning
skeletons, we analyze the parameter \ in Equation
5, which represents the proportion of their influ-
ence. Figure 2 presents the correct hit rate of rea-
soning skeletons generated under FSM constraints
for WebQSP at different values of A. Results show
that at A = 0 (using only prior skeleton scoring),
the hit rate is 87.11%, indicating that structural pri-
ors alone cannot fully capture semantic relevance.
The highest hit rate of 92.97% occurs at A = 0.9.
When A = 1 (only semantic similarity), perfor-
mance drops to 88.72%, suggesting ignoring struc-
tural priors harms coherence with the KG. Thus,
semantic similarity and structural priors comple-
ment each other, and their combination effectively
filters high-quality reasoning skeletons, allowing
FSM to better constrain generation.

Effect of FSM Search Space Size. We ana-
lyze the impact of FSM search space size (top-k
valid reasoning skeletons) on generation accuracy
across three datasets, shown in Figure 3. For We-
bQSP, the hit rate peaks at 92.97% at k = 50 but
declines beyond that, indicating that too many can-
didates in dense KGs introduce noise and reduce
quality. CWQ shows an earlier drop, from 78.7% at
k = 2510 77.89% at k = 50, likely due to its com-
plex structure and many potential skeletons. Con-
versely, SSUQA, with a sparse domain-specific KG,
reaches its highest hit rate of 97.72% at k = 75,
as increasing candidates doesn’t add much noise
and can boost performance. These results suggest
tuning the number of candidate skeletons based on
KG density and complexity to balance accuracy
and search space.

6 Conclusion

In this paper, we propose SKRAG, a novel KG-
based RAG framework tailored for KGQA in sce-

13990



100
—— WebQsP
SSUQA 97.56 97.72 97.65

—&— CWQ

95 193097
92,97

92,14
9117
90 89.94

85 1

Hit Rate (%)

80 1
t\\—a

7870
77.89

75

25 50 75 100
Top-k of FSM Candidate Skeletons

Figure 3: Effect of Top-k Skeleton Candidates on Hit
Rate.

narios involving complex multi-fact questions over
relatively sparse KGs, exemplified by but not lim-
ited to the domain of space science and utiliza-
tion. SKRAG integrates a fine-tuned lightweight
LLM with the FSM constraint to generate reason-
ing skeletons for efficient subgraph retrieval. We
also introduce SSUQA, a benchmark dataset for
the domain of space science and utilization. Exper-
imental results demonstrate that SKRAG outper-
forms strong baselines on SSUQA and two general
KGQA datasets, validating its adaptability and ef-
fectiveness across diverse KGQA scenarios.

Limitations

Despite the promising results, our current work still
has several limitations:

e The proposed method has only been evalu-
ated using a combination of Qwen2.5-1.5B-
Instruct and DeepSeek-V3 as the underlying
LLMs. To enhance the persuasiveness and
generalizability of our method, future work
will explore incorporating a broader range of
LLMs for further validation.

e Aside from the newly constructed SSUQA
dataset, our experiments have so far focused
on only two general-domain datasets for
KGQA. In the future, we plan to extend
our evaluation to a wider variety of domain-
specific KGQA datasets, to comprehensively
assess the applicability and robustness of our
method across diverse real-world scenarios.
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A Datasets

WebQSP and CWQ are both based on the Freebase
KG, which contains approximately 164.6 million
facts and 24.9 million entities, making it a highly
dense graph. Questions in WebQSP typically re-
quire up to 2-hop reasoning. Furthermore, CWQ
is an extension of WebQSP, where questions are
made more complex by expanding the question en-
tities or adding additional constraints, involving
more complex queries with up to 4-hop reason-
ing. In comparison, the domain-specific KG used
in SSUQA consists of 30,338 triples, making it
relatively sparse. Detailed dataset statistics are pro-
vided in Table 5.

To reduce the scale of the KG for computational
efficiency, we follow previous work (He et al.,
2021) and construct a subgraph for each question
in the datasets by extracting all triples within the
maximum reasoning hops from the question enti-
ties.

Datasets Train Dev  Test Max hop

SSUQA 11,600 3,200 3,200 3

WebQSP 2,826 - 1,628 2
CWQ 27,639 3,519 3,531 4

Table 5: Statistics of datasets.

B Implementation Details

During the fine-tuning of the skeleton generator,
the batch size is set to 2 and the learning rate is set
to 2e-5. The training is conducted on four NVIDIA
RTX 3090 GPUs, each with 24 GB of memory.

When comparing with LLM-based methods, we
adopt zero-shot ChatGPT and ChatGPT+CoT for
WebQSP and CWQ. For SSUQA, we directly in-
put the constructed subgraphs into Qwen-Plus and
DeepSeek-V3 for answer generation without prior
retrieval. For a fair comparison on the SSUQA
dataset, we reproduced RoG and GCR using the
same LLM combination (Qwen2.5-1.5B-Instruct +
DeepSeek-V3) as used in our method.

During the construction of SSUQA, we man-
ually design 2-3 CoT demonstrations and utilize
DeepSeek-V3 to generate the corresponding nat-
ural language questions, guiding the LLM more
effectively.

C Prompt Templates

Figures 4, 5, and 6 respectively show the prompt
templates for skeleton generation, question answer-
ing, and question generation.

Prompt Template for Skeleton Generation

The reasoning skeleton should consist of the question entities and their
respective relation chains that are relevant to deriving the answer.
Starting from the question entities, generate an appropriate reasoning
skeleton in the knowledge graph to answer the question:

<Question>

Figure 4: The prompt template for skeleton generation.

Prompt Template for Question Answering

Based on the reasoning paths retrieved from the knowledge graph,
please answer the question. Please return formatted answers as a list,
each prefixed with “ans:”.

Reasoning Paths:
<Reasoning Paths>

Question:

\<Question> /

Figure 5: The prompt template for question answering.

Prompt Template for Question Generation

Please generate relevant questions based on the given set of triples.
First, identify the entity types in each triple. Then, convert each triple
into a complete natural language statement based on the identified
entity types. Next, incrementally generate question phrases from the
statement, and finally formulate the final question by querying the tail
entity of the triple. Please follow the provided example and complete
the question generation task in the same format.

Demonstration:

Input:

(Fluid mechanics panoramic camera image, Experimental payload,
Fluid physics science experiment cabinet), (Fluid physics science
experiment cabinet, Space science and utilization research field,
Microgravity physical science)

Output:

Entity type: Fluid mechanics panoramic camera image - Experimental
data, Fluid physics science experiment cabinet - Experimental payload,
Microgravity physical science - Space science and utilization research
field.

Triple to text: The experimental payload related to the fluid mechanics
panoramic camera image is the fluid physics science experiment
cabinet. The space science and utilization research field to which the
fluid physics science experiment cabinet belongs is microgravity
physical science.

Sub-question phrase 1: The experimental payload related to the fluid
mechanics panoramic camera image

Sub-question phrase 2: The space science and utilization research field
to which the experimental payload related to the fluid mechanics
panoramic camera image belongs

Question: Which space science and utilization research field does the
experimental payload related to the fluid mechanics panoramic camera
image belong to?

Answer: Microgravity physical science

Input:
<A set of triples>

(S /

Figure 6: The prompt template for question generation.
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