A Survey on LLMs for Story Generation

Maria Teleki, Vedangi Bengali, Xiangjue Dong, Sai Tejas Janjur, Haoran Liu, Tian Liu, Cong Wang, Ting Liu, Yin Zhang, Frank Shipman, James Caverlee


Abstract
Methods for story generation with Large Language Models (LLMs) have come into the spotlight recently. We create a novel taxonomy of LLMs for story generation consisting of two major paradigms: (i) independent story generation by an LLM, and (ii) author-assistance for story generation – a collaborative approach with LLMs supporting human authors. We compare existing works based on their methodology, datasets, generated story types, evaluation methods, and LLM usage. With a comprehensive survey, we identify potential directions for future work
Anthology ID:
2025.findings-emnlp.750
Volume:
Findings of the Association for Computational Linguistics: EMNLP 2025
Month:
November
Year:
2025
Address:
Suzhou, China
Editors:
Christos Christodoulopoulos, Tanmoy Chakraborty, Carolyn Rose, Violet Peng
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
13954–13966
Language:
URL:
https://preview.aclanthology.org/author-page-yu-wang-polytechnic/2025.findings-emnlp.750/
DOI:
10.18653/v1/2025.findings-emnlp.750
Bibkey:
Cite (ACL):
Maria Teleki, Vedangi Bengali, Xiangjue Dong, Sai Tejas Janjur, Haoran Liu, Tian Liu, Cong Wang, Ting Liu, Yin Zhang, Frank Shipman, and James Caverlee. 2025. A Survey on LLMs for Story Generation. In Findings of the Association for Computational Linguistics: EMNLP 2025, pages 13954–13966, Suzhou, China. Association for Computational Linguistics.
Cite (Informal):
A Survey on LLMs for Story Generation (Teleki et al., Findings 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/author-page-yu-wang-polytechnic/2025.findings-emnlp.750.pdf
Checklist:
 2025.findings-emnlp.750.checklist.pdf