A Survey on LLMs for Story Generation
Maria Teleki, Vedangi Bengali, Xiangjue Dong, Sai Tejas Janjur, Haoran Liu, Tian Liu, Cong Wang, Ting Liu, Yin Zhang, Frank Shipman, James Caverlee
Abstract
Methods for story generation with Large Language Models (LLMs) have come into the spotlight recently. We create a novel taxonomy of LLMs for story generation consisting of two major paradigms: (i) independent story generation by an LLM, and (ii) author-assistance for story generation – a collaborative approach with LLMs supporting human authors. We compare existing works based on their methodology, datasets, generated story types, evaluation methods, and LLM usage. With a comprehensive survey, we identify potential directions for future work- Anthology ID:
- 2025.findings-emnlp.750
- Volume:
- Findings of the Association for Computational Linguistics: EMNLP 2025
- Month:
- November
- Year:
- 2025
- Address:
- Suzhou, China
- Editors:
- Christos Christodoulopoulos, Tanmoy Chakraborty, Carolyn Rose, Violet Peng
- Venue:
- Findings
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 13954–13966
- Language:
- URL:
- https://preview.aclanthology.org/author-page-yu-wang-polytechnic/2025.findings-emnlp.750/
- DOI:
- 10.18653/v1/2025.findings-emnlp.750
- Cite (ACL):
- Maria Teleki, Vedangi Bengali, Xiangjue Dong, Sai Tejas Janjur, Haoran Liu, Tian Liu, Cong Wang, Ting Liu, Yin Zhang, Frank Shipman, and James Caverlee. 2025. A Survey on LLMs for Story Generation. In Findings of the Association for Computational Linguistics: EMNLP 2025, pages 13954–13966, Suzhou, China. Association for Computational Linguistics.
- Cite (Informal):
- A Survey on LLMs for Story Generation (Teleki et al., Findings 2025)
- PDF:
- https://preview.aclanthology.org/author-page-yu-wang-polytechnic/2025.findings-emnlp.750.pdf