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Abstract

Large Vision-Language Models (LVLMs) suf-
fer from serious hallucination problems, where
the model-generated responses are inconsistent
with the visual inputs. Existing hallucination
mitigation methods are mainly based on pref-
erence alignment and require external human
annotations or auxiliary models for preference
data collection, which increase costs and limit
sustainable improvement. To tackle these chal-
lenges, we propose Autonomous Preference
Alignment via Self-Injection (APASI), a novel
and generalizable method that mitigates halluci-
nations without external dependencies. APASI
leverages the target LVLM to self-inject hallu-
cinations into a generated response, creating a
pair of responses with varying preference lev-
els. During the self-injection process, the dis-
preferred response is generated based on three
key observations of hallucinations, ensuring it
simulates real hallucination patterns. This fi-
delity offers an accurate learning signal for hal-
lucination mitigation. Moreover, APASI incor-
porates an iterative alignment training strategy
combined with curriculum learning to period-
ically update the preference data with increas-
ing challenge, enabling stable and continuous
enhancement of the LVLM. Extensive experi-
ments across six benchmarks show that APASI
not only effectively mitigates hallucinations
for three baseline models but also achieves
comparable or even superior performance to
alignment-based methods with external depen-
dency, thereby demonstrating its effectiveness
and generalization capability. The code is avail-
able at https://github.com/davidluciolu/APASI.

1 Introduction

The study of Large Vision-Language Models
(LVLMs) (Li et al., 2023a; Liu et al., 2024b,c;
Wang et al., 2024a) has made remarkable progress
in recent years. LVLMs substantially enhance
cross-modal understanding in vision-language
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Figure 1: Comparison of different alignment-based hal-
lucination mitigation methods. While all methods em-
ploy the framework of preference alignment to optimize
models using preference data, they vary in their ap-
proaches of collecting the data. Best viewed in color.

tasks and achieve notable performance across var-
ious applications. Despite their demonstrated ef-
ficacy, LVLMs frequently encounter hallucination
problems which refer to the inconsistency between
the factual content of visual input and the corre-
sponding generated textual response (Liu et al.,
2024a; Yan et al., 2024). This problem undermines
the reliability of LVLMs, making the mitigation of
hallucinations a critical area of research.

Various methods have been proposed to mitigate
hallucinations in LVLMs through preference align-
ment techniques, such as Reinforcement Learning
from Human Feedback (RLHF) (Sun et al., 2023;
Yu et al., 2024a) and Reinforcement Learning from
AI Feedback (RLAIF) (Zhao et al., 2023; Yu et al.,
2024b). As shown in Fig.1(a), the target LVLM is
trained using ranking or corrective preference data
to align with the preference for no hallucinations
or reduced hallucinations. Notably, RLAIF-based
methods alleviate the cost and subjectivity issues in
RLHF preference data collection (Li et al., 2023b)
by replacing human annotators with auxiliary feed-
back models such as GPT-4 (Achiam et al., 2023).
Methods (Zhou et al., 2024c; Ouali et al., 2025)
further promote these improvements by replacing
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proprietary models with open-source models. How-
ever, as alignment progresses, the capabilities of the
target LVLM become comparable to the fixed and
finite capabilities of the feedback models (Yu et al.,
2024b), particularly in handling hallucinations. At
this point, the feedback models may struggle to de-
tect minor hallucinations in the LVLM’s responses
or provide effective corrections. Therefore, meth-
ods that rely on external models face limitations
in achieving sustainable improvement of the target
LVLM.

To overcome these limitations, we propose
Autonomous Preference Alignment via Self-
Injection (APASI), a novel hallucination mitigation
method that constructs preference data using the
target model itself. Though following the com-
mon framework of using the Direct Preference
Optimization (DPO) (Rafailov et al., 2024) algo-
rithm to iteratively align the target LVLM with the
preference for reduced hallucinations, APASI dis-
tinctively utilizes self-generated data, as shown in
Fig.1(b). Instead of collecting ranking or corrective
feedback as typically done in RLHF/RLAIF meth-
ods, APASI generates its data by injecting halluci-
nations into model-generated responses, creating
effective dis-preferred responses that simulate real
hallucination patterns. With the original model-
generated responses as the preferred, this process
forms valid preference pairs for DPO. Meanwhile,
the straightforward injection of hallucinations is
autonomously executed independently of external
auxiliary models, facilitating sustainable model im-
provement. Moreover, APASI is easily scalable as
it requires no annotations.

However, directly injecting hallucinations into
responses through bad prompts or visual corrup-
tion, as done in (Zhou et al., 2024a; Deng et al.,
2024), fails to accurately simulate real hallucina-
tion patterns. The self-injection process in APASI
is based on three key observations of hallucinations:
1) LVLMs are prone to hallucinate objects that fre-
quently co-occur with the existent objects in the
image (Li et al., 2023c); 2) LVLMs are prone to
generate hallucinated content with an over-reliance
on language priors (Favero et al., 2024); 3) Hallu-
cinations in LVLMs typically cluster towards the
latter part of the response (Zhou et al., 2024b). Ac-
cordingly, the target LVLM is guided to fabricate
sentences about non-existent co-occurring objects
with language-only inputs and then integrates this
hallucinated content into the latter parts of the
preferred response, forming the dis-preferred re-

sponse. In this way, the preference pair facilitates
an accurate learning signal for the mitigation of
real hallucination patterns. Moreover, as learning
progresses, APASI incorporates a curriculum (Ben-
gio et al., 2009) to gradually reduce the injection
of hallucinations, making it more challenging to
distinguish subtler differences in the preference
pairs, thereby helping to refine the LVLM’s ability
to identify hallucinations smoothly over iterations.

Our contributions are summarized as follows:

• We propose APASI, a novel hallucination
mitigation method for LVLMs. APASI de-
signs a scalable and effective pipeline to au-
tonomously collect preference data by self-
injecting hallucinations into model-generated
responses, thereby minimizing reliance on ex-
ternal data sources and enabling sustainable
improvement.

• APASI leverages key insights into hallucina-
tion patterns to accurately construct prefer-
ence pairs, providing a precise learning signal
for hallucination mitigation. APASI further in-
corporates an iterative alignment strategy with
curriculum learning for stable improvement.

• Extensive experiments on various benchmarks
validate that APASI effectively mitigates the
hallucination problem and enhances perfor-
mance for baselines including LLaVA-v1.5,
LLaVA-v1.6, and Qwen2-VL, showcasing its
efficacy and generalization capability.

2 Related Works

2.1 Hallucination in LVLMs
Despite the success, current LVLMs suffer from
hallucination problems, where the generated re-
sponse is inconsistent with the visual inputs.
Specifically, this inconsistency is multi-facet, in-
cluding errors in object, attribute, and relationship
(Liu et al., 2024a). Recent research finds key ob-
servations of hallucinations including: Object co-
occurrence (Li et al., 2023c; Zhou et al., 2024b;
Leng et al., 2024), Language prior (Leng et al.,
2024; Favero et al., 2024), and Positional factor
(Zhou et al., 2024b; Favero et al., 2024). Our pro-
posed APASI is designed to focus on these key
observations to construct valid preference pairs.

2.2 Hallucination Mitigation via Alignment
Preference alignment (Ji et al., 2023) has become
a prominent strategy for mitigating hallucinations
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in models, aiming to align model behavior with
the human preference for no hallucinations or re-
duced hallucinations (Zhao et al., 2023; Yu et al.,
2024a). Early methods (Yu et al., 2024a) use RLHF
to collect preference data from human annotators
and utilize optimization algorithms such as Prox-
imal Policy Optimization (Schulman et al., 2017)
and Direct Preference Optimization (Rafailov et al.,
2024) to fine-tune the model. The preference data
are typically gathered either by direct collection of
rankings for sampled responses (Sun et al., 2023)
or by correcting hallucinations in model-generated
responses to establish a preferred version (Gunjal
et al., 2024). Some studies (Li et al., 2023b; Zhao
et al., 2023; Zhou et al., 2024a) use RLAIF to re-
place human annotators with powerful proprietary
models such as GPT-4 (Achiam et al., 2023), reduc-
ing costs and enhancing annotation quality. Meth-
ods (Zhou et al., 2024c; Yu et al., 2024b; Ouali
et al., 2025) further reduce the cost by using open-
source models such as CLIP (Radford et al., 2021)
and LLaVA-v1.6 (Liu et al., 2024c).

Recent studies have explored self-improvement
mechanisms (Huang et al., 2023; Chen et al., 2024),
where preference data are derived from the opti-
mized model itself. SIMA (Wang et al., 2024b)
uses critic prompts to self-rank sampled responses,
but relies on ground-truth references, limiting scal-
ability. STIC (Deng et al., 2024) generates dis-
preferred responses through misleading questions
or corrupted images, eliminating the need for
ground truth. In contrast, APASI directly injects
hallucinations based on key hallucination patterns,
requiring no external models, annotations, or com-
plex prompt design.

3 Methodology

We first provide preliminaries of the DPO algo-
rithm in Section3.1. Then in Section3.2, we dive
into the preference data construction process based
on pertinent self-injection of hallucination to pro-
vide an accurate learning signal for DPO training.
Finally, we introduce the training scheme for the
APASI framework using iterative alignment strat-
egy with curriculum learning to achieve continuous
and stable optimization in Section3.3.

3.1 Direct Preference Optimization

The LVLM with parameters θ denoted as Mθ, de-
fines a conditional distribution pθ(y|v, x), where
y denotes the output response for the input image

v and the text prompt x. The proposed APASI
leverages DPO (Rafailov et al., 2024) to tune
the parameters θ and align the LVLM toward the
preference of reduced hallucinations. DPO di-
rectly learns from the preference data defined as
D = {(vi, xi, y+i , y−i )}Ni=1, where the preference
pair (y+i , y

−
i ) consists of a preferred and a dis-

preferred response for the input vi and xi. The
optimization target is defined as:

max
θ

E
(vi,xi,y

+
i ,y−

i )∼D
[
log σ

(
β
(
log

pθ(y
+
i |vi, xi)

pref (y
+
i |vi, xi)

− log
pθ(y

−
i |vi, xi)

pref (y
−
i |vi, xi)

))]
,

(1)

where pref is defined by a reference model (usually
fixed at the initial training checkpoint of Mθ) and β
is a hyper-parameter to control the KL-divergence
between Mθ and the reference model.

3.2 Hallucination Self-Injection

The proposed APASI designs an autonomous pref-
erence data construction pipeline that uses only
the target LVLM, without any need for additional
annotation or auxiliary model. The data construc-
tion pipeline is predicated on the concept that a
response y+i which may already contain some hal-
lucinations, and a response y−i explicitly corrupted
with additional hallucinations relative to y+i , form
valid preference pair with varying preference levels.
Given an unannotated dataset Dun = {(vi, xi)}Ni=1

without ground-truth responses, APASI constructs
preference pairs as:

• The preferred y+i : an original response gen-
erated by the target model Mθ0 with initial
parameters θ0, i.e., y+i ∼ pθ0(·|vi, xi).

• The dis-preferred y−i : a response that is cre-
ated by deliberately injecting additional hallu-
cinations into y+i .

Specifically, to better simulate the real hallu-
cination patterns in the dis-preferred response,
APASI injects hallucination targeted to key obser-
vations of hallucinations including: 1) Object co-
occurrence, 2) Language prior, and 3) Positional
factor. We provide empirical evidence to support
the importance of these observations in Appendix
B.1. Accordingly, APASI guides the target model
Mθ0 to generate sentences about non-existent co-
occurring objects with language-only input and
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Preferred Response
The image features a wooden desk with a laptop 

computer sitting on top of it. The laptop is 

positioned towards the center of the desk, and a 

keyboard is placed in front of it. A mouse can be 

seen on the right side of the desk. In addition to  

the laptop and keyboard, there are books… 

𝒚+ [Sent. 1] The image features a wooden desk 
with a laptop computer sitting on top of it. 
[Sent. 2] The laptop is positioned towards the 
center of the desk, and a keyboard is placed in 
front of it.
[Sent. 3] A mouse can be seen on the right 
side of the desk. 

[Sent. 4] In addition to the laptop… 

Dis-Preferred Response
The image features a wooden desk with a laptop 

computer sitting on top of it. The laptop is 

positioned towards the center of the desk, and a 

keyboard is placed in front of it. A chair appears 

to be placed for someone to sit. In addition to  

the laptop and keyboard, there are books… 

𝒚− 

Blind

LVLM

Blind

LVLM

Blind

LVLM

Blind

LVLM

[Sent. 3'] A chair appears to be placed for 

someone to sit.
Objects
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Remaining Objects
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(computer_equipment), book, cup
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Chair

Get a Hallucinatory 
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Figure 2: Illustration of the self-injection pipeline: APASI first preprocesses the preferred responses to construct a
graph documenting the co-occurrence relationships among objects. APASI then selects sentences to be replaced
through weighted sampling, and employs the “blind" target LVLM to make a hallucination completion for replace-
ment with language-only input and hallucinatory guidance. The completed hallucinated sentence is injected into the
preferred response to get the dis-preferred one. Best viewed in color.

replaces the latter part of y+i with these halluci-
nated sentences to obtain y−i . The detailed process
is shown in Fig.2 and is described below.

3.2.1 Co-Occurrence Graph Construction

To simulate co-occurring hallucination, it is nec-
essary to uncover the biased co-occurrence rela-
tionships among objects inherent in the Mθ0 that
exhibits such hallucinations. APASI prepossesses
the whole corpus of model-generated preferred
responses {y+i }Ni=1 to construct a co-occurrence
graph G documenting these relationships. Each
preferred response y+i is first parsed into a set ob-
ject tags oi, using the WordNet (Miller, 1995) tool-
box and synonym sets S. This process consolidates
various synonyms into a single category tag for
each object to simplify the analysis. APASI then
uses these tags {oi}Ni=1 to build the co-occurrence
graph G, where each node represents an object tag
and the edge weight reflects the frequency of co-
occurrence between the connected objects. Given
an querying object, it’s easy to get its co-occurring
objects by traversing the nodes connected to the
corresponding node.

3.2.2 Weighted Sampling for Injection

APASI injects hallucinations into y+i by replacing
a proportion ρ (injection rate) of the L original
sentences with hallucinated counterparts. The in-
dices of the replaced sentences are sampled from
a multinomial distribution defined by parameters

w1:L. Recognizing that hallucinations commonly
occur in the latter part of the responses, we empiri-
cally set the last sentence twice as likely to be sam-
pled as the first one. The weight of k-th sentence is
defined as wk = 1 + k−1

L by linear interpolation.

3.2.3 Hallucination Completion and Injection
Suppose APASI samples the k-th sentence in y+i
to be replaced with a hallucinated sentence y−i,k,
resulting in the dis-preferred response:

y−i = (y+i,1, . . . , y
+
i,k−1, y

−
i,k, y

+
i,k+1, . . . , y

+
i,L).

(2)

Considering the hallucination patterns of co-
occurrence and language prior, the hallucinated
y−i,k is generated by a language-only “blind”
LVLM under the guidance of a hallucinated co-
occurring object ohali,k , forming a description of ohali,k .
Specifically, ohali,k is obtained by querying the co-
occurrence graph G for an object that frequently
co-occurs with objects in the remaining sentences,
while ensuring ohali,k not in oi. ohali,k is then put into
a pre-defined guiding template, e.g., “A (ohali,k ) ap-
pears”, which serves as hallucinatory guidance for
the “blind” Mθ0 to make a hallucination comple-
tion ỹi,k as:

ỹi,k ∼ pθ0
(
· |xi, y+i,<k, temp(ohali,k )

)
, (3)

where the text-only input includes the original
prompt xi, the previous context y+i,<k of k-th sen-
tence, and the filled template temp(ohali,k ). Note
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that if sentences after the k-th one are sampled
to be replaced, the previous context includes y−i,k
instead of y+i,k. y−i,k is finally obtained by com-
posing the template and the completion as y−i,k =

(temp(ohali,k ), ỹi,k).

3.3 Iterative Alignment with Curriculum
Learning

To alleviate the distribution shift problem in prefer-
ence alignment (Gao et al., 2023; Yu et al., 2024b),
APASI employs an iterative alignment strategy. At
iteration t, the latest optimized model Mθt−1 is
used for preference data construction including pre-
ferred responses generation and hallucination in-
jection. Mθt−1 is then optimized with DPO target
in Equation (1) and preference data to get Mθt for
data construction in the next iteration.

Furthermore, APASI incorporates a curriculum
that progressively increases the difficulty of the
alignment task, thereby facilitating a smoother and
more effective learning trajectory over iterations
(Bengio et al., 2009). The curriculum specifically
reduces the injection rate ρ with each iteration t, ac-
cording to a monotonically decreasing curriculum
function fc(t). As ρ decreases, the gap between
the preferred response y+ and the dis-preferred re-
sponse y− narrows, intensifying the challenge of
distinguishing subtle differences within the pref-
erence pairs (Xu et al., 2023). This progressive
increase in task difficulty is crucial for refining the
LVLM’s ability to accurately detect and reduce hal-
lucinations. The detailed algorithm for Iterative
Alignment with Curriculum Learning outlined in
Appendix A.3.

4 Experiments

4.1 Experimental Setups
Preference Data. The construction of preference
data in APASI leverages self-injection based on the
detailed description task, which requires LVLMs to
accurately perceive and describe visual elements,
thus directly reflecting hallucination issues. We
construct the SI-23k dataset derived from images
and descriptive responses in the detail-23k subset
of the LLaVA’s instruction tuning dataset, exclud-
ing ground-truth responses. We further construct
the scaled-up SI-130k by adding unannotated im-
ages from the VisualGenome (VG) dataset (Krishna
et al., 2017). The descriptive prompts in SI-130k
are from SI-23k. For object parsing, we employ
LVIS object synonym sets (Gupta et al., 2019),

which are based on WordNet. The default injection
rate ρ is set to 0.2.

Implementation Details. In this study, we
choose the supervised fine-tuned LLaVA-v1.5-7B
(Liu et al., 2024b), a widely used baseline, as the
target model for hallucination mitigation. Unless
specified otherwise, all experiments are conducted
with LLaVA-v1.5-7B and SI-23k. We use SI-23k
and SI-130k to train the target LVLM in a sin-
gle iteration to obtain APASI-Base and APASI-
Scaled, respectively. For iterative alignment with
curriculum learning (IACL), we train the LVLM
for T = 3 iterations with a curriculum function
fc(t) = 0.8 − 0.2t and get APASI-IACL. A sin-
gle iteration takes about 520 minutes running with
8 V100 GPUs and data construction accounts for
about 31.2% of time.

Evaluation. For quantitative analysis, we con-
duct evaluation on both hallucination benchmarks
(Object-Hal (Rohrbach et al., 2018), AMBER
(Wang et al., 2023b), and POPE (Li et al., 2023c))
and comprehensive benchmarks (MMBench (Liu
et al., 2025), MMVet (Yu et al., 2023), and
LLaVABench (Liu et al., 2024d)). Object-Hal pro-
vides CHAIR-i (C-i) and CHAIR-s (C-s) metrics
measuring the ratio of hallucinated objects and re-
sponses respectively in generative tasks. POPE
uses F1 scores in discriminative tasks. AMBER
reports both C-i and F1. We report overall scores
for the comprehensive benchmarks.

4.2 Main Results

4.2.1 Performance Comparison with the
Baseline Model

Results show that APASI effectively mitigates the
hallucination problem in the LLaVA-v1.5-7B base-
line model, as shown in Tab.1. Specifically, APASI-
Base reduces the ratio of hallucinated objects by
4.5/1.8 in generative tasks on Object-Hal and AM-
BER, respectively, and reduces the ratio of hallu-
cinated responses by 12.9 on Object-Hal. APASI-
Base also improves the performance on all three
comprehensive benchmarks for the baseline. Fur-
ther incorporating IACL makes improvement on
most of the benchmarks, suggesting the effective-
ness of IACL. Notably, both APASI-Base and
APASI-IACL are trained with SI-23k, where the
images and the textual prompts are already used
in the supervised fine-tuning of the baseline. The
enhancement brought about by seen data indicates
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Model
Hallucination Benchmarks Comprehensive Benchmarks

Object-Hal AMBER POPE MMBench
TEST-v1.1

MMVet LLaVA
BENCHCHAIR-s ↓ CHAIR-i ↓ CHAIR-i ↓ F1 F1

LLaVA-v1.5-7B 51.0 13.7 7.8 74.7 85.9 (86.9) 62.3 30.5 63.4

+ POVID † 33.6 9.0 5.2 86.5 86.9 64.9 31.8 68.7
+ HA-DPO † - - 3.7 82.9 84.3 - - 67.2

+ RLAIF-V ‡ 20.8 6.0 2.8 84.5 78.9 63.6 30.1 64.9
+ CLIP-DPO ‡ - - 7.2 80.5 85.8 - - -
+ CSR ‡ 28.0 7.5 4.4 86.5 87.0 65.4 33.9 71.1

+ STIC ¶ - - - - - 65.3 32.6 68.9
+ SIMA ¶ 41.6 13.0 6.6 86.9 85.8 64.9 31.6 66.1

+ OPERA § 47.8 14.6 - - 85.4 64.4 - 60.3
+ VCD § 48.6 14.9 - 74.9 84.5 - - 65.8
+ Less is more § 36.8 11.3 - 75.8 86.0 - - 60.9

+ APASI-Base 38.1 9.2 6.0 86.1 85.6 (87.0) 66.7 33.5 67.3
+ APASI-IACL 31.7 7.2 5.7 85.7 85.0 (87.0) 65.6 34.4 71.2
+ APASI-Scaled 23.2 5.1 3.5 86.7 85.0 (87.4) 67.2 32.2 70.1

Table 1: Performance of APASI with the LLaVA-v1.5-7B baseline compared with other hallucination mitigation
methods across various benchmarks. †, ‡, ¶, and § respectively indicate RLAIF methods with proprietary models,
RLAIF methods with open-source models, self-improvement methods, and non-alignment-based methods.

the effectiveness of the preference-alignment train-
ing paradigm in deepening the LVLM’s utilization
of existing data. Scaling up preference data also
takes effect, especially in reducing hallucinations.
APASI-Scaled with SI-130k further reduces hallu-
cination ratios of the baseline by 27.8/8.6/4.3 on
Object-Hal and AMBER.

In contrast to generative performance, APASI
shows inconsistent discriminative results, particu-
larly under-performing the baseline on POPE. This
discrepancy stems from APASI’s alignment goal,
which does not directly optimize discriminative ca-
pabilities. To better ground discriminative ability to
the hallucination-reduced descriptions, we prompt
the LVLMs with Describe the image and answer
the question. during POPE testing. The modified
F1 scores, displayed next to the original scores
in Table 1, show improvements: the baseline in-
creases by 1.16%, while APASI-Base/IACL/Scaled
improve by 1.64%/2.35%/2.82%, These results
indicates that the LVLMs with better generative
performance exhibit greater improvement.

4.2.2 Performance Comparison with the
SOTA Methods

We also compare APASI with the SOTA hallucina-
tion mitigation methods in Tab.1. The methods are
categorized as follows: 1) RLAIF methods with
proprietary models: POVID (Zhou et al., 2024a)
and HA-DPO (Zhao et al., 2023); 2) RLAIF meth-
ods with open-source models: RLAIF-V (Yu et al.,

2024b), CLIP-DPO (Ouali et al., 2025), and CSR
(Zhou et al., 2024c); 3) self-improvement methods:
STIC (Deng et al., 2024) and SIMA (Wang et al.,
2024b); 4) methods without preference alignment:
OPERA (Huang et al., 2024), VCD (Leng et al.,
2024) and Less is more (Yue et al., 2024). Methods
in categories 1) and 2) rely on external resources,
whereas those in 3) and 4) do not.

Without the need for any external support,
APASI achieves comparable or even better perfor-
mance across all three hallucination benchmarks
compared to methods dependent on external re-
sources. APASI also outperforms all methods with-
out external dependencies on four out of five hal-
lucination metrics. For comprehensive abilities,
APASI performs the best across all three bench-
marks, highlighting its effectiveness in both halluci-
nation mitigation and overall ability enhancement.

4.3 Ablation Studies and Analysis

4.3.1 Ablation Studies on Injection Settings

As shown in Tab.2, we design ablative experiments
to verify the effectiveness of the settings in getting
the dis-preferred responses trough self-injection.
We specifically compare APASI-Base with five
variants when injecting hallucinations. Qualitative
analyses are in Appendix C.1.

Results show that it will bring performance drop
if using random non-existent objects instead of co-
occurring ones for hallucinatory guidance. Fur-
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Setting Object-Hal AMBER

C-s ↓ C-i ↓ C-i ↓
LLaVA-v1.5-7B 51.0 13.7 7.8
APASI-Base 38.1 9.2 6.0

random guide 44.4 12.2 7.0
w/o guide 66.7 21.0 11.3
replace object 49.6 13.5 8.1
w/o w.s. 39.7 9.7 6.0

GT as preferred 38.1 9.7 5.9

Table 2: Ablation studies on injection settings.

ther removing the guiding template for completion
even causes the model to underperform the baseline.
This is because the language-only model may not
reliably generate hallucinated sentences only based
on textual prompt and the previous context, making
the preference pairs invalid. These results verify
the effectiveness of the hallucinatory guidance with
co-occurring objects.

It will also bring performance drop if injecting
hallucinations by replacing with the co-occurring
object word, instead of a sentence describing the
object. Only replacing words may result in the
injected target words being markedly inconsistent
with the context. Such dis-preferred responses with
ridiculous mistakes fail to provide effective learn-
ing signal, verifying the importance of employing
the language-only model for injection to maintain
reasonableness in the dis-preferred responses.

The decline observed from removing weighted
sampling when deciding sentences to be replaced
shows the necessity of considering positional fac-
tor in self-injection. Using the ground-truth re-
sponses instead of the model-generated ones as the
preferred responses to be injected does not result
in performance changes. However, this will limit
APASI to scale up to unannotated data.

4.3.2 Analysis on IACL and Sustainability of
Improvement.

We first select 1000 samples from SI-23k to plot
the histograms of the preferred and dis-preferred
log probabilities with different injection rates in
Fig.3. Results show that as the injection rate de-
creases, the dis-preferred responses are more likely
to be generated and less easily distinguishable by
the target LVLM, thus making the alignment task
more challenging. This observation supports our
strategy of employing a curriculum with decreasing
injection rate.

To evaluate the effectiveness of iterative align-
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Figure 3: Comparative histograms of preferred vs dis-
preferred log probabilities with different injection rates.
Best viewed in color.
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Figure 4: MMVet scores of: (a) APASI at each itera-
tions with different curriculums for injection rate; (b)
different models at each iterations. Best viewed in color.

ment with curriculum learning, we plot perfor-
mance on MMVet across iterations in Fig.4(a). Be-
sides APASI-IACL with a decreasing injection rate
ρ (0.6 to 0.2), we evaluate three variants: 1) a re-
verse curriculum where ρ increases from 0.2 to
0.6; 2) ρ fixed at 0.6; 3) ρ fixed at 0.2. In single-
round alignment, lower ρ yields better performance,
suggesting harder preference pairs promote learn-
ing. Detailed results for different ρ are in the Ap-
pendix B.5. Over iterations, APASI with fixed ρ
and the reverse curriculum show fluctuating im-
provements, while APASI-IACL with decreasing
ρ demonstrates a smooth trajectory and achieves
the best performance at iter3 with a 3.6% gain on
MMVet compared to iter1. These results verify that
a well-designed curriculum fosters smooth learning
to benefit sustainable improvement over iterations.

We further compare APASI-IACL with SOTA
methods in 4(b). Most methods only perform a
single-round alignment and are outperformed by
APASI-IACL. CSR (Zhou et al., 2024c) supports
iterative alignment. However, CSR’s reliance on an
external model for preference data collection limits
its effectiveness, thus it yields inferior results to
the autonomous APASI-IACL. These results vali-
date APASI’s advantage in facilitating sustainable
model improvement.

4.3.3 Analysis on generalization capability
To assess APASI’s applicability across different
LVLMs, we apply APASI to two additional base-
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LLaVA-v1.5-7B: The image features a black cat walking across a green couch in a 
living room. The couch is positioned in the center of the room, and the cat is 
moving across it, possibly jumping onto a chair. In the background, there is a 
dining table with a few books scattered on it. Additionally, there are two potted 
plants in the room, one located near the left side of the couch and the other on 
the right side. A chair can be seen in the background, close to the couch.

APASI: The image features a living room with a green couch positioned in front of a window. A black cat is 
walking or jumping across the couch, creating a silhouette as it moves. The couch takes up a significant portion 
of the room, and the window allows natural light to enter. In addition to the couch, there are also several pillows 
on the couch, adding to the cozy atmosphere of the living space. The room appears to be well-lit and inviting.

Wordcloud of objects 

co-occuring with couch

Figure 5: Left: Comparison of baseline and APASI responses. Correct and incorrect objects are underlined in red
and green respectively. Other hallucinated contents are in red. Right: The wordcloud of objects co-occurring with
couch obtained from baseline’s generations.

Model Object-Hal
MMVet LLaVA

BENCHC-s ↓ C-i ↓
LLaVA-v1.6-7B 38.1 8.8 42.5 75.6
+ APASI-Base 28.8 7.2 44.2 80.4

Qwen2-VL-7B 44.4 9.5 62.0 92.3
+ APASI-Base 23.8 6.2 63.7 93.5

Table 3: Performance of APASI with LLaVA-v1.6-7B
and Qwen2-VL-7B baselines.
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Figure 6: Averaged PDM-H for responses generated by
the baseline and APASI. Best viewed in color.

line models: LLaVA-v1.6-7B(vicuna) (Liu et al.,
2024c), an improved version of LLaVA-v1.5-7B,
and Qwen2-VL-7B (Wang et al., 2024a), which
has an different architecture from the LLaVA se-
ries and is among the most advanced open-source
LVLMs. Note that LLaVA-v1.6-7B and Qwen2-
VL-7B autonomously generate their versions of the
SI-23k dataset for preference alignment. Results in
Tab.3 show that even these advanced LVLMs are
not entirely unaffected by hallucinations. APASI ef-
fectively mitigates this problem and improves over-
all performance on comprehensive benchmarks for
both LLaVA-v1.6-7B and Qwen2-VL-7B. These
results demonstrate the APASI’s robust generaliza-
tion capabilities, particularly its compatibility with
difference model architectures.

4.3.4 Analysis on Reliance of Language Priors
To assess the reliance on language priors, a key
hallucination pattern, we calculate the Prompt De-

pendency Measure based on Hellinger distance
(PDM-H) (Favero et al., 2024). PDM-H quanti-
fies the divergence in the LVLM’s probability dis-
tribution when generating a token under image-
language input versus language-only input. A
lower PDM-H indicates greater reliance on the tex-
tual input. We randomly sample 1000 images from
COCO-test2017 (Lin et al., 2014) and generate de-
tailed descriptions using the LLaVA-v1.5-7B base-
line and APASI respectively. The averaged PDM-H
curves, depicted in Fig.6, show that APASI exhibits
higher PDM-H than the baseline. This result indi-
cates APASI’s effectiveness in mitigating the over-
reliance on language priors. More details about
PDM-H are given in A.5.

4.4 Qualitative Analysis

To intuitively show the effectiveness of APASI in
mitigating hallucinations, we compare responses
from LLaVA-v1.5-7B baseline and APASI in Fig.5.
Both models are given with the same image from
COCO-test2017 with a detailed description prompt.
The response of the baseline exhibited significant
hallucinations with non-existent objects in the lat-
ter part. Notably, incorrect objects like dining
table, chair, and book. usually appears in indoor
scenes together with couch. This pattern of co-
occurrence is further verified by the wordcloud
of co-occurring objects in Fig.5, which derived
from statistical analysis of the baseline’s outputs.
Remarkably, APASI effectively eliminates the co-
occurring hallucination, while capturing all major
objects in the image.

5 Conclusions

We propose APASI, a novel method for mitigating
hallucinations in LVLMs via preference alignment
without external dependencies. This self-injecting
process, based on key observations, has provided
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an accurate learning signal for effective preference
alignment. APASI has further employed iterative
alignment with curriculum learning for improv-
ing the training process. Extensive experiments
have demonstrated our effectiveness and superior-
ity across three baselines and various benchmarks.

Limitations

Our experiments were conducted under computa-
tional resource constraints, which restricted the ap-
plication of APASI to relatively small-scale models
(e.g., 7B parameters). In contrast, real-world de-
ployments increasingly rely on larger models, and
assessing APASI’s effectiveness in such settings re-
mains an important direction for future work. Ad-
ditionally, similar to many prior studies, APASI
primarily addresses inconsistencies between vi-
sual inputs and generated textual responses, i.e.,
fidelity-related hallucinations. While our results
suggest that APASI also yields improvements on
knowledge-intensive tasks, hallucinations stem-
ming from factual inaccuracies about real-world
knowledge are not explicitly modeled in the current
framework. Addressing this limitation will be the
focus of future research.
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A Details about the Method and
Implementation

A.1 Details of Hallucination Self-Injection
For a preferred response with L sentences and an
injection rate of ρ, the number of the sentence to
be replaced is rounded ρL. If the number is zero,

• “A <hal-object>appears”

• “There is a <hal-object>”

• “There are <hal-object>”

• “<hal-object>can also be seen”

• “<hal-object>can be seen”

• “You can see a <hal-object>”

• “There are multiple <hal-object>”

• “Several <hal-object>can be observed”

• “Some <hal-object>are present”

• “Among the items, there is a <hal-object>”

• “In the image, there is a <hal-object>”

• “On the right, there is a <hal-object>”

• “On the left, a <hal-object>is present”

• “In the center, you see a <hal-object>”

• “At the top, there is a <hal-object>”

• “At the bottom, a <hal-object>is visible”

• “In the background, a <hal-object>can be
seen”

• “In the foreground, there is a <hal-object>”

• “To the side, a <hal-object>is located”

• “Near the edge, a <hal-object>appears”

• “Close to the center, a <hal-object>is seen”

Table 4: The list of hallucinatory guiding templates.

the sample will be discarded. Note that the first
sentence in the preferred response is excluded from
weighted sampling, to avoid insufficient previous
text for hallucination completion.

The average sentence number is 5.5 for re-
sponses generated by LLaVA-v1.5-7B on the
source dataset of LLaVA-detail-23k (Liu et al.,
2024d). The corresponding SI-23k dataset with
ρ set to 0.2 contains 23,196 samples after discard-
ing invalid samples.

A.2 Hallucinatory Guiding Templates

APASI employs guiding templates to guide the
target LVLM to fabricate content about non-
existent co-occurring objects for hallucination self-
injection. We pre-define the templates according to
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Algorithm 1 APASI incorporating iterative alignment with curriculum learning
Input: Unannotated dataset: Dun = {(vi, xi)}Ni=1. Initial target LVLM: Mθ0 . Synonym sets for objects:
S. Curriculum function for injection rate: fc(·). Number of iterations: T .
Output: MθT with reduced hallucination

1: for t = 1, . . . , T do
2: {y+i }Ni=1 ← Generation(Mθt−1 ,Dun)
3: {oi}Ni=1, G← Preprocessing({y+i }Ni=1, S)
4: ρ = fc(t)
5: {y−i }Ni=1 ← HalInjection(Mθt−1 , {y+i }Ni=1, {oi}Ni=1, G, ρ)
6: D ← {(vi, xi, y+i , y−i ) | i = 1 to N}
7: Mθt ← DPOTraining(Mθt−1 ,D)
8: end for
9: return MθT

the usual structure of descriptive sentence, as listed
in Tab.4. During every self-injection, one of the
templates is randomly sampled and instantiated by
filling in the co-occurring object <hal-object>. The
target LVLM then follows the template to make a
hallucinatory completion.

A.3 Details of Iterative Alignment with
Curriculum Learning

As outlined in Algorithm 1, at each iteration, the
preferred responses {y+i }Ni=1 are generated using
the latest model Mθt−1 and are preprocessed to get
the object tags {oi}Ni=1 and the co-occurrence graph
G. Following this, Mθt−1 inject hallucinations
into {y+i }Ni=1 to get the dis-preferred responses
{y−i }Ni=1, with a injection rate ρ = fc(t) deter-
mined by the curriculum. Subsequently, Mθt−1

is trained with DPO optimization target with the
preference dataset D, resulting in the optimized
Mθt for data construction in the next iteration. In
this way, APASI operates smoothly in an iterative
manner, ensuring sustainable improvement.

A.4 Descriptive Prompts
In the experiments, we scale-up the preference data
to images from the VisualGenome (VG) (Krishna
et al., 2017), where the textual prompts are pro-
vided for the images. For each image in VG, we
simply pair it with a random descriptive prompt in
SI-23k, which is sourced from the detail-23k sub-
set of the LLaVA’s instruction tuning dataset (Liu
et al., 2024d). The prompts are listed in Tab.5

A.5 Prompt Dependency Measure
We calculate the Prompt Dependency Measure
based on Hellinger distance (PDM-H) (Favero
et al., 2024) measuring the difference of LVLM’s

• “What is this photo about?"

• “Explain the visual content of the image in
great detail."

• “Describe the following image."

• “What do you see happening in this image?"

• “Analyze the image in a comprehensive and
detailed manner."

• “Write a detailed description of the given
image."

• “What’s happening in the scene?"

• “What do you think is going on in this snap-
shot?"

• “Can you elaborate on the elements of the
picture provided?"

• “What are the key elements in this picture?"

• “Can you describe the main features of this
image for me?"

Table 5: The list of descriptive prompts used in pref-
erence data construction.

generative probability distribution when given
image-language input and language-only input. It
is calculated at the j-th step as follows:

PDM-H(j) = H
(
p(·|v, x, y<j), p(·|x, y<j)

)
,
(4)

The Hellinger distance is defined as:

H(p, q) =
1√
2

√√√√
d∑

i=1

(
√
pi −

√
qi)2, (5)
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Baseline
Model

LLaVA-v1.5-7B LLaVA-v1.6-7B Qwen2-VL-7B

β 0.1 0.1 0.1
#epoch 3 1 1

learning rate 4e-7 1e-6 1e-6
batchsize 64 64 64

lora_r 128 64 64
lora_alpha 256 128 128

Table 6: Training configurations for different baseline
models.

Removed Sentence None 1st 2nd 3rd 4th 5th

Object-Hal C-s ↓ 51.0 49.8 49.6 47.0 39.4 37.0

Table 7: Sentence-level hallucination rate of the re-
sponse after removing sentences at difference positions.

where p = (p1, p2, . . . , pd) and Q =
(q1, q2, . . . , qd) are two d-dimension discrete prob-
ability distributions.

A.6 Implementation Details of Training

During the alignment training, we employ LoRA
(Hu et al., 2021) for efficient tuning. Visual en-
coders of all three models are frozen. The hyperpa-
rameters for different baseline models are listed in
Tab.6. All experiments are conducted on 8 V100
32GB GPUs. It takes about 6/8/8 hours for training
LLaVA-v1.5-7B, LLaVA-v1.6-7B, and Qwen2-VL-
7B respectively.

B Quantitative Results

B.1 Empirical Evidence on Hallucination
Observations

The hallucination self-injection process in APASI
is based on three key observations: object co-
occurrence, language prior and positional factor.
These observations are not only consistent with
prior studies but are also substantiated by our em-
pirical analyses. For object co-occurrence, Object-
Hal evaluations of LLaVA-v1.5-7B’s responses re-
veal that 98% of hallucinated objects co-occur with
correct ones, with 25.9% appearing as the top-1
co-occurring object and 67.9% within the top 5.
For language prior, Fig.6 shows that models with
fewer hallucinations yield higher PDM-H scores,
indicating reduced reliance on language priors. For
positional factor, as shown in Tab.7, the hallucina-
tion rate decreases progressively as later sentences
(from 1st to 5th) are removed from the response,
indicating that hallucinations are more likely to

Model Object-Hal C-s↓ MMVet

LLaVA-1.5-7B 51.0 30.5
LLaVA-1.5-13B 49.2 33.5
LLaVA-1.5-7B+APASI-Base 38.1 33.5
LLaVA-1.6-7B 38.1 42.5
LLaVA-1.6-13B 30.2 43.9
LLaVA-1.6-7B+APASI-Base 28.8 44.2

Table 8: Performance comparison with larger models.
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Figure 7: Detailed Results on MMBench (Left) and
MMVet (Right). Best viewed in color.

appear in later parts of the response. Together,
these findings confirm the soundness of our design
principles in capturing the key factors underlying
hallucination generation.

B.2 Performance Comparison with Larger
Models

To evaluate the practical competitiveness of APASI,
we conduct comparisons against larger-scale mod-
els, specifically LLaVA-1.5-13B and LLaVA-1.6-
13B. As shown in Tab.8, despite the substantial
parameter gap, our 7B models trained with APASI
attain performance that is comparable to, or even
surpasses that of the corresponding 13B models in
the same series. These results further underscore
the effectiveness and efficiency of our approach.

B.3 Detailed Results on Comprehensive
Benchmarks

We evaluate comprehensive abilities of LVLMs on
MMBench (Liu et al., 2025), MMVet (Yu et al.,
2023), and LLaVABench (Liu et al., 2024d). MM-
Bench evaluates the reasoning and perception ca-
pabilities and subdivides them into six Level-2
capability dimensions including: logic reasoning
(LR), attribute reasoning (AR), relation reasoning
(RR), fine-grained perception-single instance (FP-
S), fine-grained perception-cross instance (FP-C),
and coarse perception (CP). MMVet evaluates six
core capabilities of the LVLMs including recogni-
tion (rec), knowledge (know), OCR, Spatial aware-
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Model complex conv detail overall

LLaVA-v1.5-7B 79.5 51.8 56.6 65.5
APASI-Base 80.5 53.1 60.7 67.3

∆ 1.26% 2.51% 7.24% 2.74%

Table 9: Detailed Results on LLaVA-BENCH.

Synonym Sets
Object-Hal AMBER

C-s ↓ C-i ↓ C-i ↓
WordNet(LVIS) 38.1 9.2 33.5

V3Det 31.7 8.7 33.8

Table 10: Ablation studies on injection rates.

ness (Spat), Language generation (gen), and math.
LLaVA-BENCH evaluates the model’s on three
tasks including conversation (conv), detailed de-
scription (detail), and complex reasoning (com-
plex).

Fig.7 shows detailed results on MMBench and
MMVet. APASI-Base outperforms the baseline on
all capabilities except math and OCR. This can
be explained by the alignment target of hallucina-
tion mitigation. APASI focuses on improving the
ability of perception for objects, but fails to cover
perception for characters or mathematical symbols.
Tab.9 shows detailed results on LLaVA-BENCH.
APASI-Base outperforms the baseline on all three
tasks. The improvement on the detailed descrip-
tion task is the highest among all. Notably, APASI
achieves improvement on the reasoning capabili-
ties on all three benchmarks, though the preference
alignment in APASI doesn’t optimize these capabil-
ities directly. This suggests that reasoning abilities
can benefit from the improvement of perception
abilities.

B.4 Analysis on Synonym Sets

The synonym set is applied during preprocessing
to group object mentions when constructing the
co-occurrence graph. This step offers lightweight,
plug-and-play lexical normalization (e.g., merging
“bicycle” and “bike”) to enhance the coverage of
object relationships. To assess their impact, we re-
place the originally used WordNet (LVIS) (Miller,
1995; Gupta et al., 2019) with V3Det (Wang et al.,
2023a), a more modern synonym set featuring
broader and finer-grained categories. As shown
in Tab.10, this substitution yields improvements

ρ
Object-Hal AMBER

C-s ↓ C-i ↓ C-i ↓
0.1 49.2 15.3 8.7
0.2 38.1 9.2 6.0
0.3 38.1 10.5 6.1
0.4 42.4 11.2 6.2
0.5 41.3 10.9 6.2
0.6 46.4 12.3 6.4

Table 11: Ablation studies on injection rates.

Method Data Source Size

POVID LLaVA-Instruct 17k
HA-DPO VG 6k
RLAIF-V COCO, MovieNet,... (7 total) 83k
CLIP-DPO COCO, SAM,... (12 total) 750k
CSR LLaVA-Instruct 13k
STIC COCO, LLaVA-Instruct 11k
SIMA LLaVA-Instruct 17k

Ours SI-23k LLaVA-Instruct 23k
Ours SI-130k LLaVA-Instruct, VG 130k

Table 12: Comparison of preference data sources and
sizes.

of +6.4/+0.5/+0.3 on ObjectHal-C-s/ObjectHal-C-
i/MMVet, respectively. These results highlight the
flexibility and extensibility of our pipeline with
respect to synonym sources.

B.5 Ablation Studies on Injection Rate

We design ablative experiments on the injection
rate ρ. As shown in Tab.11, APASI achieves the
best performance when setting ρ to 0.2. When ρ
is greater than 0.2, APASI performs poorer as ρ
increases. This is consistent with the observation
that larger gap within the preference pair makes the
alignment task more easy, which is less effective
for model improvement. Setting ρ to 0.1 results
in worse performance than 0.2. An injection of
0.1 leads to a situation where number of replaced
sentences is zero in about half of the preferred sen-
tences, thus making the corresponding pair invalid.

B.6 Analysis on Data Source

To enable a fair comparison with existing methods,
in Tab. 12 we provide a detailed analysis of data
sources and dataset sizes across all methods com-
pared. Our SI-23k and SI-130k datasets are con-
structed from the simplest sources, relying solely
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Preference Data
Object-Hal

MMVet
C-s ↓ C-i ↓

LLaVA-v1.5-7B 51.0 13.7 30.5
SI-23k (APASI-Base) 38.1 9.2 33.5

SI-6k 46.0 12.9 31.7
SI-23k + POVID-17k 34.9 8.3 34.1

Table 13: Performance of APASI trained on different
preference data.

on the supervised fine-tuning (SFT) dataset of the
baseline model (LLaVA-v1.5). Notably, APASI-
Base and APASI-IACL, trained on the moderate-
scale SI-23k dataset, already achieve competitive
performance.

To further evaluate performance under limited
data conditions, we trained an APASI variant using
only 6k samples randomly drawn from SI-23k. As
shown in Tab. 13, APASI with 6k data still outper-
forms the baseline by +5.0/+0.8/+1.2 on ObjectHal-
C-s/ObjectHal-C-s/MMVet, respectively. The per-
formance gap between the 6k and 23k settings un-
derscores the critical role of data scale in enhancing
model effectiveness.

We also extend the data sources by incorporating
GPT-4V-labeled preference pairs, combining SI-
23k with POVID-17k (Zhou et al., 2024a). Tab. 13
reports the results of APASI trained on SI-23k
alone versus the combined dataset. Incorporating
the external dataset yields modest improvements
of +3.2/+0.9/+0.6 on ObjectHal-C-s/ObjectHal-C-
i/MMVet, respectively. Although APASI is de-
signed to function without reliance on external re-
sources, these results indicate that it can also be
effectively scaled when such resources are avail-
able.

B.7 Computational Cost of APASI

We analyze the computational cost of APASI using
the SI-23k dataset and LLaVA-v1.5-7B as the target
LVLM.

Preference data construction includes the follow-
ing stages: 1) Preferred generation. The target
LVLM generates preferred responses with input
images and textual questions taking about 80 mins
on 8 V100 32GB GPUs. 2) Co-occurrence graph
construction. Objects in preferred responses are
parsed via WordNet toolbox and synonym sets. We
traverse these objects to build the co-occurrence
graph stored as a dictionary, where each key-value

pair represents an object and its co-occurring ob-
jects with frequencies, requiring about 6MB stor-
age. This takes about 3 mins with one Intel E5-
2698 CPU process. 3) Hallucination injection.
The visually disabled target LVLM generates hallu-
cinated sentences guided by co-occurring objects,
replacing the sampled sentences in the preferred
responses. This takes about 80 mins on 8 V100
32GB GPUs, with the resulting dataset occupying
about 8MB.

As training takes about 360 mins, data construc-
tion accounts for only about 31.2% ( 80+3+80

80+3+80+360 )
in a full iteration’s time. Storage and hardware
demands also remain acceptable, making the data
construction practically feasible.

C Qualitative Results

C.1 Analysis on Injection Settings
We compare dis-preferred responses under differ-
ent hallucination injection settings, as shown in
Fig.8. For hallucination injection in APASI, the
target model is guided to generate sentences about
non-existent table to obtain the dis-preferred re-
sponses. In this way, the injected sentence is en-
sured is guaranteed to contain hallucinations, and
the injected hallucination remains linguistically
reasonable. If removing the guidance of the co-
occurring object, the model generates an actually
correct sentence describing the kite for injection.
The dis-preferred response without hallucinations
makes the preference pair invalid. If injecting hal-
lucinations only by replacing with the word car and
chair, the dis-preferred response includes absurd
mistakes in the like “man holding cars”. These
absurd mistakes are inconsistent with typical hallu-
cinations with linguistic reasonability, thereby the
preference pair less effective.

C.2 Examples of Model Response
Fig.9 and Fig.10 show more comparative exam-
ples of APASI and the LLaVA-v1.5-7B baseline.
Both models are given with descriptive prompts
and images from COCO-test2017 (Lin et al., 2014)
or MMHal (Sun et al., 2023). Results show that
APASI effectively mitigates the hallucination prob-
lem for LLaVA-v1.5-7B while capturing all major
objects in the image.
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Image

Preferred Response
The image features a man standing in a 

courtyard, holding a kite with long streamers.

He appears to be enjoying his time outdoors, 

possibly preparing to fly the kite.

There are several other people in the scene, 

some of whom are walking around or standing 

near the man with the kite …… 

Dis-Preferred Guided Gen.
The image features a man standing in a 

courtyard, holding a kite with long streamers.

There is a table nearby, possibly for holding 

the kite or other items.

There are several other people in the scene, 

some of whom are walking around or standing 

near the man with the kite …… 

Dis-Preferred No Guidance
The image features a man standing in a 

courtyard, holding a kite with long streamers.

The kite is flying high in the sky, capturing 

the attention of those around him.

There are several other people in the scene, 

some of whom are walking around or standing 

near the man with the kite …… 

Dis-Preferred Object Rep.
The image features a man standing in a 

courtyard, holding a car with long streamers.

He appears to be enjoying his time outdoors, 

possibly preparing to fly the kite.

There are several other chair in the scene, 

some of whom are walking around or standing 

near the man with the kite …… 

Figure 8: Comparison of the dis-preferred responses under different hallucination injection settings. The preferred
response is in the light green box. The dis-preferred response obtained by guided model generation, which is actual
used in APASI, is in the light red box. The two ineffective dis-preferred responses are in the gray boxes. The
injected hallucination parts are underlined. Best viewed in color.

LLaVA-v1.5-7B: The image features a cozy bedroom with two bunk beds, each with a yellow pillow. 

The beds are positioned close to each other, creating a sense of warmth and comfort. The beds are 

adorned with colorful pillows, adding a vibrant touch to the room. In addition to the beds, there are 

two chairs in the room, one located near the left side of the beds and the other near the right side. 

A potted plant can be seen in the room, adding a touch of greenery to the space. The overall 

atmosphere of the room is inviting and welcoming.

APASI: The image features a cozy bedroom with two bunk beds, each with a colorful comforter. The 

beds are positioned next to each other, creating a comfortable sleeping arrangement. There are several 

pillows on the beds, with some placed on the top bunk and others on the bottom bunk. The pillows 

come in various sizes and colors, adding a vibrant touch to the room. The overall atmosphere of the 

bedroom is inviting and warm, making it an ideal space for rest and relaxation.

LLaVA-v1.5-7B: The image features a zoo setting with a giraffe standing next to a woman who is feeding it. 

The giraffe is positioned close to the woman, and they are both standing near a fence. Another person is 

visible in the scene, standing further back and observing the interaction between the woman and the giraffe.

In the background, there are a few more people, likely visitors to the zoo. A bottle can be seen on the 

ground, possibly belonging to one of the visitors. The scene captures a moment of interaction between the 

woman and the giraffe, showcasing the unique experience of being up close with these majestic animals.

APASI: The image features two women standing next to a giraffe at a zoo. The giraffe is inside an enclosure, 

and the women are on the other side of a fence, observing the animal. The women appear to be enjoying their 

time at the zoo and interacting with the giraffe. The scene also includes a few trees in the background, adding 

to the zoo setting. The women and the giraffe are the main focus of the image, creating a memorable moment 

for them.

LLaVA-v1.5-7B: The image depicts a rainy day in a city, with a wet street reflecting the surrounding 

environment. The street is lined with trees, creating a serene atmosphere despite the rain. There are several 

cars parked along the street, and a bus is visible in the background. A few people can be seen walking on the 

sidewalk, with one person closer to the left side of the image and another person further to the right. A traffic 

light is also present in the scene, indicating the presence of an intersection. The overall scene captures the 

essence of a typical rainy day in a city, with people going about their daily routines despite the wet weather.

APASI: The image depicts a rainy day in a city, with a wet city street reflecting the surrounding environment. 

The street is lined with trees, creating a scenic atmosphere. There are several cars parked along the street, and 

some are driving through the rain. Numerous people can be seen walking on the sidewalk, with some of them 

carrying umbrellas to shield themselves from the rain. The pedestrians are scattered throughout the scene, 

with some closer to the foreground and others further back. The overall atmosphere of the image is that of a 

typical rainy day in a city, with people going about their daily routines despite the wet weather.

Figure 9: Comparison of the responses of the baseline and APASI. Correct and wrong objects are underlined in red
and green respectively. Other hallucinated contents are in red. Best viewed in color.
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LLaVA-v1.5-7B: The image depicts a spacious living room with a large couch and a chair placed in the center 

of the room. The couch is positioned against the wall, while the chair is located closer to the center. A coffee 

table is situated in the middle of the room, surrounded by the seating area. The living room is connected to a 

kitchen, which features a sink and a refrigerator. A dining table is also present in the room, with chairs 

placed around it. A person can be seen in the background, possibly enjoying the space or preparing to use 

the kitchen. Additionally, there are two cups placed on surfaces in the room, one near the couch and the 

other closer to the dining table.

APASI: The image showcases a spacious and clean living room with a modern design. The living room is 

furnished with two black leather couches, a glass coffee table, and several chairs. The room also features a 

kitchen area with a counter and a bar stool. The living room is well-lit and has a large window, allowing 

natural light to fill the space. The furniture is arranged in a way that creates a comfortable and inviting 

atmosphere. The overall appearance of the living room is modern and stylish.

LLaVA-v1.5-7B: The image depicts a group of three people sitting around a dining table in a living room, 

enjoying each other's company. They are engaged in conversation and drinking wine, with several wine glasses 

placed on the table. There are also cups and a bottle visible on the table. The living room is furnished with a 

couch and a chair, providing comfortable seating for the group. A laptop is placed on the table, and a potted 

plant can be seen in the background, adding a touch of greenery to the room. A vase is also present, adding to 

the room's decor. In the background, a clock is mounted on the wall, and a book can be spotted on a 

surface, indicating that the room is used for various activities.

APASI: The image features a group of three people, two men and a woman, sitting together in a living room. 

They are gathered around a coffee table, which is filled with various items such as books, a laptop, and a 

bunch of presents. The group appears to be enjoying each other's company and having a good time. The living 

room is furnished with chairs and a couch, and there are also several cups, wine glasses, and a potted plant 

present in the room. The atmosphere seems relaxed and social as the friends engage in conversation and share 

the presents.

LLaVA-v1.5-7B: The image depicts a cozy bedroom with a large bed situated in the center of the room. The 

bed is covered with a red blanket, and there are two pillows on it. The room also features a dresser and a 

chair, both placed near the bed. In addition to the bedroom furniture, there are several books scattered 

around the room, indicating that the occupant enjoys reading. A TV is mounted on the wall, providing 

entertainment options for the room's occupant. A clock is also visible on the wall, allowing the person to 

keep track of time.

APASI: The image features a cozy bedroom with a large bed situated in the center of the room. The bed has a 

red comforter and is positioned against a wall. The bedroom also contains a dresser and a closet. There are 

several pictures hanging on the wall above the bed, and the room has a clean and organized appearance. The 

bedroom appears to be a part of a small apartment, with the bed being the main focal point of the space.

Figure 10: Comparison of the responses of the baseline and APASI. Correct and wrong objects are underlined in red
and green respectively. Other hallucinated contents are in red. Best viewed in color.
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