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Abstract

Existing pretraining data mixing methods for
large language models (LLMs) typically follow
a domain-wise methodology, a top-down pro-
cess that first determines domain weights and
then performs uniform data sampling across
each domain. However, these approaches
neglect significant inter-domain overlaps and
commonalities, failing to control the global
diversity of the constructed training dataset.
Further, uniform sampling within domains ig-
nores fine-grained sample-specific features, po-
tentially leading to suboptimal data distribu-
tion. To address these shortcomings, we pro-
pose a novel sample-wise data mixture ap-
proach based on a bottom-up paradigm. This
method performs global cross-domain sam-
pling by systematically evaluating the quality
and diversity of each sample, thereby dynami-
cally determining the optimal domain distribu-
tion. Comprehensive experiments across mul-
tiple downstream tasks and perplexity assess-
ments demonstrate that SampleMix surpasses
existing domain-based methods. Meanwhile,
SampleMix requires 1.4x to 2.1x fewer train-
ing steps to achieve the baselines’ performance,
highlighting the substantial potential of Sam-
pleMix to optimize pre-training data.

1 Introduction

The mixture proportions of pretraining data, which
greatly affect the language model performance,
have received increasing attention from researchers
and practitioners. In the early years, heuristic-
based methods were widely employed to assign do-
main weights using manually devised rules, such as
upsampling high-quality datasets (e.g., Wikipedia)
multiple times (Gao et al., 2020; Laurençon et al.,
2022). Afterwards, models like GLaM (Du et al.,
2022) and PaLM (Chowdhery et al., 2023) estab-
lished mixture weights based on the performance
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Figure 1: We conduct data clustering analysis using the
SlimPajama dataset. For each domain (row), each cell
shows the percentage of its clusters that also include
samples from other domains (column). E.g., 76.60% of
ArXiv’s clusters include Wikipedia samples (1st row,
6th column). The results reveal substantial overlap be-
tween domains.

metrics of trained smaller models. More recently,
learning-based methods have been proposed, in-
volving the training of small proxy models across
domains to generate optimal domain weights (Fan
et al., 2023; Xie et al., 2024). These existing
methods follow a domain-wise methodology, a top-
down process that first determines the proportion of
each domain and then samples uniformly from the
selected domain. Despite achieving advancements,
These approaches present two key issues:

(1) Ignoring Inter-domain Overlaps and Com-
monalities. In current pretraining datasets, “do-
main” is primarily categorized based on data
sources rather than intrinsic textual or semantic
properties. An implicit assumption of the domain-
wise approaches is that samples are distinct and
unrelated across domain boundaries. However, in
practice, samples across different domains exhibit
significant shared characteristics, both in terms of
raw text and high-level semantics. To examine this
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assumption, we analyzed the SlimPajama dataset
(Soboleva et al., 2023), a quality-filtered and dedu-
plicated dataset, focusing on relationships between
samples and clusters across its six text domains (ex-
cluding GitHub). For each domain, we computed
the percentage of its clusters that also included
samples from other domains, as Figure 1 shows.
Our findings reveal substantial overlap between do-
mains—nearly all clusters contain samples from
both CommonCrawl and C4. Furthermore, manual
inspection of the clustered samples confirms that
data from different domains frequently share simi-
lar topics and characteristics. For instance, Figure
6 illustrates that samples from multiple domains
discuss Einstein and the Theory of Relativity. By
disregarding inter-domain commonalities, domain-
wise mixture methods fail to control the global
diversity of training data effectively.

(2) Suboptimal Sample Distribution within
Domains. A second limitation arises from the uni-
form sampling within each domain, which can lead
to a suboptimal distribution of training samples
(Xie et al., 2024; Fan et al., 2023; Ye et al., 2025).
Intuitively, samples with higher quality and greater
diversity should have a higher probability of being
selected (Xie et al., 2023; Abbas et al., 2023). At
the same time, lower-quality samples should not be
entirely discarded, as they contribute to the model’s
generalization ability (Sachdeva et al., 2024). De-
termining an effective sampling strategy within
each domain is nontrivial, yet current approaches
lack fine-grained control over sample selection.

To address these limitations, we propose a novel
sample-wise data mixture approach with a bottom-
up paradigm. Instead of defining domain propor-
tions upfront, we first perform global sampling
across the dataset based on sample quality and di-
versity, dynamically determining domain distribu-
tions. This allows for more precise control over
the overall quality and diversity of the dataset. To
implement this, we individually assess the quality
and diversity of each sample and assign correspond-
ing sampling weights based on these evaluations.
Given a target token budget, we then sample each
example according to its weight to construct the
optimal training dataset. Also, our approach offers
the additional advantage of dynamically adapting
to varying token budgets, enabling the determina-
tion of optimal data proportions for each specific
budget. In contrast, the vast majority of existing
works rely on static data proportions, which do not
adjust to different token budget constraints. The

contributions of this paper are:

1. We study the problem of sample-wise pre-
training data mixing, which can alleviate the
limitations of overlooking inter-domain over-
lap and suboptimal sample distribution within
domains by existing domain-wise methods.

2. We propose a sample-wise pre-training data
mixing strategy that coordinates data quality
and diversity on a per-sample basis, effectively
capturing commonalities among domains and
optimal sample distribution.

3. Extensive experiments on downstream tasks
and perplexity evaluations demonstrate the ad-
vantages of our method. Notably, it achieves
averaged baseline accuracy with 1.9x fewer
training steps, highlighting its efficiency.

2 Method

2.1 Problem Formulation

Consider a source dataset Dsrc composed of k dis-
tinct domains (e.g., CommonCrawl, Wikipedia,
BookCorpus, etc.). For each domain i, let Di

denote the collection of documents within that
domain. The entire source dataset is defined as
Dsrc ≜ {D1, . . . , Dk}, with Tsrc representing the
total number of tokens. Our objective is to con-
struct a target training set Dtgt for pre-training that
adheres to a specific token budget Ttgt (e.g., 100B
tokens). As illustrated in Figure 2, traditional ap-
proaches determine domain weights without explic-
itly considering the overall token budget, and build
Dtgt by uniform sampling from each domain based
on these weights. In contrast, our proposed method,
SampleMix, enhances this process by evaluating
both the quality (§ 2.2) and diversity (§ 2.3) of each
document. Utilizing these dual criteria, SampleMix
assigns unique sampling weights to each document.
To ensure compliance with the token budget Ttgt,
we then construct an optimal training dataset by
sampling documents according to their assigned
weights (§ 2.4).

2.2 Data Quality Evaluation

The quality of training data is crucial for large lan-
guage models. However, most existing studies typ-
ically rely on simple heuristics (Xie et al., 2023;
Li et al., 2023; Sachdeva et al., 2024). Wettig et al.
(2024) introduces four metrics and uses pairwise
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Figure 2: (a) Traditional methods determine domain weights and construct the training dataset by uniformly
sampling from each domain. (b) SampleMix employs a sample-wise mixing strategy by: evaluating sample quality
and diversity, assigning appropriate weights, and constructing an optimal dataset based on these weights. Dots of
the same color represent data from the same domain.

comparisons to train an evaluator model. How-
ever, these metrics are applied separately in data
selection, and pairwise training may neglect the
objective factors that determine sample quality.

2.2.1 Quality Criteria

To comprehensively capture both the fundamental
linguistic attributes and the deeper informational
and analytical qualities of the text, we assert that
high-quality data should adhere to the following
principles: linguistic precision and clarity, struc-
tural coherence and completeness, content reliabil-
ity and appropriateness, informational and educa-
tional value, as well as significance and originality.
To evaluate these aspects effectively, we propose 7
quality dimensions accompanied by corresponding
scores based on the aforementioned principles, as
outlined in Table 1. Notably, for Knowledge Rich-
ness and Logicality and Analytical Depth, we uti-
lize a larger scoring span to address the wider range
and greater complexity inherent in these features.
By aggregating all dimension scores, we obtain an
overall quality evaluation for each sample, ranging
from 0 to 10.

2.2.2 Quality Evaluator

To develop an effective and efficient quality eval-
uator, we utilize GPT-4o to assess training data
based on predefined quality criteria (prompt shown
in Fig 8). Specifically, we uniformly sample 420k
documents from the SlimPajama dataset, allocat-

Dimension Score
Clarity of Expression and Accuracy {0,1}

Completeness and Coherence {0,1}
Structure and Style {0,1}

Content Accuracy and Credibility {0,1}
Significance {0,1}

Knowledge Richness {0,1,2}
Logicality and Analytical Depth {0,1,2,3}

Table 1: Quality dimensions and scores.

ing 410k and 10k documents for train and test set
respectively *. We train the quality evaluator with
gte-en-mlm-base model (Zhang et al., 2024) as
the backbone. Instead of text classification tasks,
we employ ordinal regression to leverage the in-
herent ordering of quality scores. Following Niu
et al. (2016), we transform ordinal regression into
a series of binary classification problems, each in-
dicating whether the input data exceeds a specific
quality threshold. The overall quality score is then
derived by subtracting the sequence of binary out-
puts (code shown in Appendix E).

We evaluate the trained quality evaluator on the
test set, as shown in Table 2. Instead of rely-
ing solely on Accuracy (ACC), we consider Mean
Squared Error (MSE) and Mean Absolute Error

*The GPT-4o cost is $1873 (see Appendix D for details),
aligns with standards seen in related studies (Wettig et al.,
2024; Gunasekar et al., 2023) and does not substantially im-
pact the overall cost.
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Model Text Classification Ordinal Regression
ACC 56.14 55.94
MAE 0.77 0.72
MSE 1.95 1.57

CACC 82.24 83.37

Table 2: Performance comparison between text classifi-
cation and ordinal regression models on the test set.

(MAE), which more accurately reflect the degree
of deviation between the true quality scores and
the predicted results. While both the text classifi-
cation and ordinal regression approaches achieve
similar accuracy, the ordinal regression method
demonstrates superior performance in terms of
MSE and MAE. We noticed that the accuracy is
lower than anticipated; detailed analysis shows that
most false predictions fall within ±1 of the true
quality score. To address this, we introduce Close
Accuracy (CACC), a relaxed metric where a pre-
diction is considered correct if it is within ±1 of
the true quality score. The CACC results indicate
that our model possesses satisfactory discrimina-
tory ability for samples of different qualities.

StackExchange

CommonCrawl

ArXiv

Book

C4

Wiki

(a) Quality Distribution (b) Diversity Distribution

Figure 3: Analysis of SlimPajama dataset. Mean values
are marked with a dashed line.

2.2.3 Analysis of Quality Distribution
Using the trained quality evaluator, we annotate
the SlimPajama dataset and perform extensive case
studies, which show that the evaluator can effec-
tively distinguish between high-quality samples
(scientific literature, knowledge reports, etc.) and
low-quality samples (advertisements, incomplete
web pages, etc.), as exampled by Figure 9. The

quality distribution is presented in Figure 3a, from
which we can find: (1) Arxiv and Book sources ex-
hibit higher quality, as anticipated. (2) Wikipedia
is generally considered a high-quality source; how-
ever, a substantial portion is of lower quality. Our
manual inspection indicates that these low-quality
samples typically consist of brief, parsing errors, in-
complete content, and other issues. (3) Overall, the
CommonCrawl dataset outperforms C4 in terms of
quality (average quality score: 5.65 v.s. 4.20).

2.3 Data Diversity Evaluation
Inspired by Shao et al. (2024a) and Abbas et al.
(2024), we employ data clustering to capture
the text distribution within our training dataset.
Through a detailed analysis of the clustered sam-
ples, we observe patterns consistent with Abbas
et al. (2024)’s work on image data, specifically:
(1) Denser clusters exhibit higher similarity among
their constituent samples; (2) Clusters that are prox-
imal to others are more likely to contain samples
resembling those in neighboring clusters. To quan-
tify data diversity, we estimate a diversity measure
for each sample using the Diversity Evaluator.

2.3.1 Diversity Evaluator
Data Clustering We begin by generating embed-
dings for each sample, which are subsequently or-
ganized into clusters via K-Means, effectively struc-
turing the data based on textual similarity. The de-
tails of data clustering can be found in Appendix G.
Cluster Compactness We assess the density of a
cluster by calculating the average distance of its
members from the centroid, referred to as Cluster
Compactness. A smaller average distance signifies
a more compact cluster, indicating higher similarity
among its constituent samples. This metric effec-
tively reveals the dense property of the cluster.
Cluster Separation We evaluate the distinctive-
ness of each cluster by measuring the distance
between its centroid and those of other clusters,
termed Cluster Separation. Larger distances im-
ply greater separation, indicating that the cluster
is more distinct from others and highlighting its
uniqueness on a global scale.
Data Diversity Calculation Finally, the diversity
of each sample xi is estimated by integrating its
cluster’s separation and compactness as follows:

d(xi) = dcompactness,j × dseparation,j (1)

where xi belongs to the j-th cluster, dcompactness,j
and dseparation,j represents the cluster compactness

13739



and cluster separation for the j-th cluster respec-
tively. This composite diversity measure effectively
encapsulates both the homogeneity within clusters
and the distinctiveness between clusters, providing
a comprehensive assessment of data diversity. We
discuss the key distinctions of our technical designs
from previous works in Appendix H.

2.3.2 Analysis of Diversity Distribution
Extensive case studies demonstrate that our diver-
sity evaluator reliably assigns higher scores to dis-
tinctive content, such as academic reports, in-depth
analyses, and rare knowledge—examples of which
are shown in Figure 10. Conversely, it consistently
gives lower scores to content that is overly com-
mon or widely circulated online, such as adver-
tisements, duplicate product manuals, and routine
sports score updates. To further assess our evalua-
tor, we analyze the diversity distribution within the
SlimPajama dataset, as illustrated in Figure 3b. We
find that: (1) Within individual domains, samples’
diversity can vary significantly. For instance, the
diversity distribution of C4 approximates a normal
distribution, indicating consistent variability within
this domain. (2) Diversity differs markedly across
domains in the SlimPajama dataset. Specifically,
the C4, CommonCrawl, and Book domains exhibit
the highest levels of diversity, as anticipated. In
contrast, the StackExchange domain demonstrates
the lowest diversity among the examined domains.

2.4 Data Sampling

2.4.1 Sampling Weight Calculation
Given the quality and diversity evaluation for each
document, we first min-max normalize the dual
measures to ensure they lie within the interval [0, 1]
and compute the sampling weight as follows:

p(xi) = αd(xi) + (1− α) q(xi) (2)

where q(xi) and d(xi) denote quality and diversity
measure of the document xi, and α ∈ [0, 1] is the
weighting factor that balances the contribution of
diversity relative to quality.

2.4.2 Determining Sampling Frequency
Given the source dataset Dsrc containing |Dsrc|
documents with Tsrc tokens, we first estimate the
target number of documents for Dtgt as follows:

|Dtgt| =
Ttgt

Tsrc
|Dsrc| (3)

Then we compute each document’s sampling fre-
quency c(xi) using a softmax-based distribution to
translate the sampling weights into probabilities:

c(xi) = |Dtgt| ×
exp (p(xi)/τ)∑

j∈Dsrc
exp (p(xi)/τ)

(4)

where τ is the temperature parameter that modu-
lates the softmax distribution, controlling the con-
centration of the sampling probabilities.

2.4.3 Constructing the Training Dataset
Since c(xi) typically yields non-integer values,
we convert these frequencies into integer counts
through the following two-step process:

• Integer Part: Always sample the document
⌊c(xi)⌋ times. For example, if c(xi) = 2.3,
the document is sampled 2 times.

• Fractional Part: The remaining fractional part
(c(xi)− ⌊c(xi)⌋) is used to determine an ad-
ditional sample probabilistically. Continuing
the example, with c(xi) = 2.3, there is a 30%
chance that xi will be sampled a third time,
determined by comparing the fractional part
to a randomly generated number.

By aggregating the sampled counts for each doc-
ument xi, we assemble the final training dataset
Dtgt, which closely matches the target token bud-
get Ttgt. Our method offers key benefits: (1) Priori-
tization of Quality and Diversity: By incorporating
both quality and diversity metrics into the sampling
weights, SampleMix ensures that high-quality and
diverse documents are preferentially selected, en-
hancing the overall effectiveness of the training
dataset. (2) Adaptive to Training Budget: The sam-
pling mechanism dynamically adjusts to different
token budgets Ttgt, maintaining an optimal balance
between quality and diversity without the need for
manual tuning. (3) Flexible Domain Representa-
tion: By allowing different sampling rates within
the same domain, the method supports a more nu-
anced representation of various domains.

3 Experimental Setup

3.1 Dataset And Baselines
Following Xie et al. (2024); Ge et al. (2024), we
experiment with the SlimPajama dataset (Soboleva
et al., 2023), which consists of 7 domains. We
compare with the following baselines: (1) Vanilla,
which denotes the inherent proportions of datasets,
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Benchmark Vanilla DoReMi CE BiMIX-OPT DoGE DML SampleMix
Downstream Tasks Evaluation (Accuracy)

OpenBookQA 31.40 31.60 31.80 29.80 29.00 30.80 32.60
LAMBADA 38.27 40.95 42.23 38.02 37.07 35.40 40.69
PiQA 70.40 70.13 69.37 69.64 70.62 65.02 70.95
ARC-Easy 47.44 46.65 46.73 45.57 45.74 47.49 48.73
ARC-Challenge 28.58 27.30 28.33 28.33 27.65 27.73 29.86
WinoGrande 52.33 54.38 51.07 52.80 51.14 51.46 53.83
WiC 50.47 48.59 48.28 48.90 50.00 52.98 51.72
RTE 50.18 51.62 51.62 47.65 51.26 51.62 53.79
Average 46.13 46.40 46.18 45.09 45.31 45.31 47.77

Perplexity Evaluation (Perplexity)
Pile 26.93 26.45 26.20 27.47 29.49 29.76 25.63
xP3 47.38 47.08 47.62 48.74 48.38 54.00 46.38

Table 3: Comparison of data mixture methods across various downstream tasks and perplexity evaluations. The best
performing method for each metric is highlighted in bold, while the second-best is underlined.

mirroring the natural distribution patterns (Sobol-
eva et al., 2023). (2) DoReMi, which exploits a
learning-based solution for multi-round mixture op-
timization (Xie et al., 2024). (3) CE, which uses
the Conditional Entropy proxy for data mixture
optimization (Ge et al., 2024). (4) BiMIX-OPT,
which derives the optimized data mixture by the
bivariate scaling law (Ge et al., 2024). (5) DoGE,
which determines the domain weight based on con-
tribution to final generalization objective (Fan et al.,
2023). (6) DML, which derives the optimized data
mixture by the data mixing law (Ye et al., 2025).
Note that we focus primarily on text data mixing.
Following Liu et al. (2025), we exclude the GitHub
domain and apply re-normalization to the baseline
weights (the weights are shown in Figure 13). The
rationality for re-normalization is detailed in Ap-
pendix K. Investigating code data mixing remains
an avenue for future research.

3.2 Training Setup
We train 1B-parameters LLaMA models (Dubey
et al., 2024) from scratch with 100B tokens. Given
that the source dataset (SlimPajama) comprises
503M documents totaling approximately 500B
tokens, SampleMix generated the final training
dataset consisting of 100M documents, with α and
τ set to 0.8 and 0.2 respectively. Detailed hyper-
parameters, including model architecture, learning
rate, etc, are provided in Table 9.

3.3 Evaluation
Downstream Task Accuracy Following Chen et al.
(2025), we select 8 extensive downstream tasks,

covering commonsense reasoning, language under-
standing, logical inference and general QA: Open-
BookQA (Mihaylov et al., 2018), LAMBADA (Pa-
perno et al., 2016), PiQA (Bisk et al., 2020), ARC-
Easy, ARC-Challenge (Clark et al., 2018), Wino-
Grande (Sakaguchi et al., 2021), and tasks from the
SuperGLUE benchmark (Wang et al., 2019).

Validation Set Perplexity Following Ye et al.
(2025), we compute perplexity on validation sets
from The Pile (Gao et al., 2020) to simulate sepa-
rate collection of training and validation data. This
metric measures the model’s ability to predict text
sequences accurately across various domains, re-
flecting its general language modeling proficiency.

Instruction Tuning Perplexity Following Tiru-
mala et al. (2023), we evaluate perplexity on the
instruction tuning dataset xP3 (Muennighoff et al.,
2022) to address the high variance in downstream
tasks. This evaluation gauges the model’s effective-
ness in understanding and following instructions.

4 Results and Analysis

4.1 Main Results

Table 3 presents the performance comparison be-
tween the baseline methods and our proposed Sam-
pleMix across downstream tasks and perplexity
evaluations. We draw the following key observa-
tions: (1) SampleMix achieves the highest average
accuracy (47.77%) across the eight downstream
tasks, outperforming all baseline methods. Specif-
ically, it leads in 5 out of 8 tasks, demonstrating
its efficacy in enhancing performance. (2) In per-
plexity evaluations, SampleMix records the lowest
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1.9x faster

Figure 4: Training efficiency comparison. SampleMix
reaches the averaged baseline at 100k training steps.

perplexity scores on both the Pile (25.63) and xP3
(46.38) datasets, underscoring the advantage in lan-
guage modeling tasks.

Training Efficiency We compare the conver-
gence speed of SampleMix with baselines. Sam-
pleMix achieves the baselines’ accuracy using 1.4x
to 2.1x fewer training steps. As illustrated in Figure
4, it attains the average baseline accuracy within
100k steps—1.9x faster, demonstrating the effi-
ciency gains provided by our approach. The full
comparison is shown in Figure 12.

Generalization to larger models Furthermore,
to assess the effectiveness on larger models, we
trained 8B models using the top 3 performing base-
lines and SampleMix (training setup detailed in Ta-
ble 10). As Table 4 shows, SampleMix significantly
outperforms the baselines, maintaining consistent
advantages observed with 1B models.

Model Average Performance
Vanilla 53.17

DoReMi 53.58
CE 53.15

SampleMix 54.86

Table 4: Performance comparison with 8B models.

Generalization to other datasets. We also com-
pare SampleMix with the strong Vanilla baseline
by training with the Chinese Wanjuan dataset (He
et al., 2023). The results, detailed in Table 11,
demonstrate consistent improvements across popu-
lar Chinese benchmarks (50.67 v.s. 43.32), under-
scoring the robust generalization of SampleMix.

4.2 Effectiveness of Quality and Diversity

To further explore the effectiveness of our qual-
ity and diversity evaluation, we conducted a com-
prehensive analysis by systematically varying the
weighting factor α from 0.0 to 1.0. The correspond-
ing model performances on downstream tasks are
shown in Figure 5. From the results, we can ob-
serve the following two findings: (1) Importance
of Diversity Setting α to 0.0 directly excludes the
diversity measure, relying solely on quality. This
configuration yields the lowest accuracy of 45.53%.
As α increases from 0.0 to 0.8, there is a steady
improvement in accuracy, peaking at 47.77%. This
trend highlights the crucial role of diversity in
achieving balanced data mixing and comprehen-
sive data coverage. (2) Necessity of Quality When
α is set to 1.0, diversity is fully weighted, and
quality is excluded, leading to a slight decrease
in accuracy to 47.58%. This minor drop indicates
that while diversity is essential, incorporating the
quality measure can further enhance performance.
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Figure 5: Average performance of downstream tasks
with different weighting factor α.

It is important to note that the lowest perfor-
mance at α = 0.0, together with the optimal result
at α = 0.8 (favoring diversity), might suggest that
the quality evaluation metric is less effective. We
offer two explanations for this phenomenon: (1)
The lowest performance at α = 0.0 is primarily
due to sampling bias towards certain data types
(e.g., ArXiv and Books, as shown in Figure 3),
thereby compromising the diversity and coverage
of the training set. To directly assess the impact
of quality, we conducted an additional experiment:
training samples with quality scores below 4 were
removed, while preserving the original mixture
composition to maintain coverage. As Table 5
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shows, this modification led to improved perfor-
mance compared to the vanilla setting, directly af-
firming the value of the quality measure. (2) The
SlimPajama dataset has already undergone rigor-
ous quality filtering based on RedPajama standards,
reducing the necessity for heavy quality weighting
within the SampleMix framework. Notably, experi-
ments on datasets with lower inherent quality (e.g.,
the Chinese WanJuan dataset (He et al., 2023)) re-
veal that prioritizing quality (e.g., α = 0.2) leads
to significantly better performance. This further
validates both the adaptability of our framework
and the importance of quality metrics.

Model Average Performance
Vanilla 46.13
-w/o low-quality samples 47.27

Table 5: Performance comparison of removing low-
quality samples.

User Recommendation The optimal value of α
can vary based on characteristics of a dataset. Gen-
erally, for datasets of lower inherent quality, priori-
tizing quality by selecting a smaller α often leads
to improved performance. We recommend users
determine the optimal α for their particular dataset
by following these steps: (1) assess the overall qual-
ity of your dataset; (2) select an appropriate range
of hyperparameters based on this assessment; and
(3) conduct grid search experiments using smaller
models to efficiently identify the optimal value.

4.3 Adaptation to Varying Token Budget
Model development typically involves multiple
training stages—such as pretraining, annealing,
and continual pretraining—each requiring differ-
ent token budgets. However, most existing meth-
ods present fixed data proportions, which limits
their ability to accommodate varying token bud-
get constraints effectively. To evaluate the ben-
efits of dynamically adapting to different token
budgets, we scale the SlimPajama dataset to 1

5
of its original size, resulting in a smaller source
dataset (≈ 100B tokens). With the reduced source
dataset, we adjusted the token budget proportion
from Ttgt = 1

5Tsrc to Ttgt = Tsrc (while main-
taining Ttgt = 100B). We then conduct experi-
ments under this adjusted token budget using the
same setup. As Table 6 shows, we can observe
that: (1) Baseline methods exhibit inconsistent per-
formance when the token budget changes. For
instance, DoReMi, the best-performing baseline

in previous experiments, underperforms Vanilla
and CE. This inconsistency indicates that base-
line methods struggle to adapt effectively to dif-
ferent token budgets. (2) SampleMix achieves the
highest average accuracy (47.46%), demonstrating
SampleMix’s ability to effectively adapt to varying
token budgets. Detailed analysis in Appendix P
shows that SampleMix can effectively utilize the
sampling space and construct optimal training data.

Model Average Performance
Vanilla 46.65

DoReMi 46.25
CE 46.40

BiMiX-OPT 45.54
DoGE 45.01
DML 44.96

SampleMix 47.46

Table 6: Performance comparison of different data mix-
ture methods with 100B data as candidate pool.

4.4 Analysis of Computational Cost

We conducted a thorough examination of the cost
breakdown for SampleMix and its baselines, as
detailed in Appendix R. SampleMix incurs compu-
tational costs from three main components: quality
evaluation, diversity evaluation, and hyperparam-
eter tuning. These contribute to a total computa-
tional cost of 1.29× 1020 FLOPs. SampleMix
proves to be more efficient than most existing
data mixing methods, accounting for only 2.68%
of the cost required to train an 8B-parameter model
on 100B tokens. Additionally, we introduce two
cost optimization strategies for quality and di-
versity evaluation that we found beneficial in our
practice, as described in Appendix S.

5 Related Work

We have covered research on data mixture in § 1,
related work related to our technical designs is
mainly introduced in the following.

Data Quality Heuristic rules, such as thresholds
on word repetitions and perplexity, are commonly
used to filter out low-quality data (Yuan et al., 2021;
Dodge et al., 2021; Laurençon et al., 2022) . Ear-
lier model-based methods employ binary classifiers
to distinguish high-quality from low-quality data
(Brown et al., 2020). Recent approaches incor-
porated more sophisticated models. Wettig et al.
(2024) investigated four qualities-writing style, re-
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quired expertise, facts & trivia, and educational
value respectively. However, most methods rely on
relatively coarse criteria and do not fully leverage
the multi-dimensional property of data quality.

Diversity Traditional deduplication methods
struggle to capture more complex semantic sim-
ilarities (Wenzek et al., 2020; Soldaini et al., 2024).
To better handle semantic redundancy, Abbas et al.
(2023) applies K-Means clustering in the embed-
ding space to identify and remove redundant data.
Tirumala et al. (2023) builds on this approach by
using SemDeDup as a preprocessing step before
applying SSL Prototypes (Sorscher et al., 2022).
Shao et al. (2024b) balances common and rare sam-
ples and ensures diversity by data clustering.

6 Conclusion

We have presented SampleMix, a sample-wise
pre-training data mixing strategy by coordinating
data quality and diversity. Extensive experiments
demonstrate that SampleMix outperforms existing
domain-wise methods, achieving comparable accu-
racy with 1.9x fewer training steps. In the future,
we are interested in incorporating automatic evalu-
ation metrics derived from the model’s perspective
to complement the current manually designed mea-
sures, and exploring code data mixing.

7 Limitations

In this study, we conducted experiments mainly us-
ing the SlimPajama dataset and identified the opti-
mal hyperparameters specific to this dataset. While
SampleMix is designed as a universal method ap-
plicable to various datasets, we acknowledge that
optimal hyperparameters may vary across different
datasets, which is consistent with existing works
that require dataset-specific parameter tuning (Fan
et al., 2023; Xie et al., 2024; Liu et al., 2025).
Users aiming to apply our methodology to their
own datasets will need to perform hyperparameter
tuning to achieve optimal performance. We pro-
vide clear usage recommendations of three steps for
hyperparameter tuning in § 4.2 (see User Recom-
mendation). Specifically, we suggest assigning a
smaller α to prioritize data quality in lower-quality
datasets, thereby minimizing the influence of sub-
par data. Conversely, for higher-quality datasets, a
larger α is recommended to ensure comprehensive
data coverage through increased diversity.
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A Domain Overlaps

We manually check the samples within the same
cluster but from different domains. Such samples
are usually topic-relevant and similar in terms of
structure, semantics, and context. As Figure 6
shows, the samples all discuss topics about Ein-
stein and the Theory of Relativity.

B Samples from Slimpajama
CommonCarwl

We manually check the low-quality and high-
quality samples from Slimpajama CommonCarwl.
As Figure 7 shows, the data quality of Common-
Crawl varies significantly. The low-quality sample
is characterized by fragmented and disorganized
information, primarily consisting of sporadic head-
lines and links related to sports news. On the other
hand, the high-quality sample provides a coher-
ent and informative excerpt about astrophysical
research, demonstrating a clear and structured nar-
rative.

C Quality Evaluation Prompt

The prompt for GPT-4o to assess training data qual-
ity is given in Figure 8.

D Cost of GPT-4o

Our usage of GPT-4o aligns with standards seen in
related studies (Wettig et al., 2024). For instance,
the average input length is 2214 tokens, account-
ing for a cost calculation of 2214 tokens × 420k
documents × 1.25/M = $1162. The average out-
put length is 339 tokens and the cost for output
is 339 * 420 * 5/1M=$711. The aggregate cost
sums to $1873, notably less than the $2820 re-
ported by QuRating (Wettig et al., 2024). Using
AWS p4d as a reference, the cost of training an
8-billion-parameter model with 500 billion tokens
is approximately 250k dollars to 300k dollars, tak-
ing into account GPU, storage, and other expenses.
Thus, the expenses associated with GPT-4o are min-
imal in comparison to the costs of training large
language models and do not substantially impact
the overall cost of SampleMix. Furthermore, to
support ongoing research efforts, we will make
both the GPT-4o-generated training data and the
annotated SlimPajama dataset publicly available.

E Code of Quality Evaluator

Table 7 shows the Python code for implementing
the ordinal regression model aimed at quality scor-
ing tasks, including model definition, loss function
computation, and inference process. The full code
can be found in the supplementary materials.

The OrdinalRegressionModel class initializes
the pre-trained base model and a series of ordinal
layers. Each ordinal layer outputs the probabil-
ity that the quality score is greater than a specific
threshold. For instance, the first ordinal layer (in-
dex 0) computes the probability that the quality
score is greater than 0, i.e., the probability that the
score is at least 1. Similarly, the second ordinal
layer (index 1) calculates the probability that the
quality score is greater than 1, meaning the proba-
bility that the score is at least 2, and so on. The last
ordinal layer (index 9) computes the probability
that the score is greater than 9, which is equiva-
lent to the probability that the score is exactly 10.
Therefore, the model has 10 ordinal layers in total,
each corresponding to one of these thresholds.

The loss function calculates the ordinal loss by
summing the binary cross-entropy loss between
the predicted probabilities and the target values.
For each ordinal layer, a binary target is created,
indicating whether the true score is greater than
the threshold corresponding to that layer. Specifi-
cally, the larger the deviation between the predicted
score and the true score, the higher the loss, which
helps the model focus on reducing these deviations
during training.

The predict function implements inference us-
ing the trained ordinal regression model. It first
computes the predicted probabilities for each class,
and then calculates the final predicted score by se-
lecting the class with the maximum probability.
The function also calculates the probability distri-
bution across all possible scores, which provides a
measure of confidence for the predicted score.

F Cases of High/Low Quality

Figure 9 shows cases of high/low quality. Our qual-
ity evaluator can effectively distinguish between
high-quality samples (scientific literature, knowl-
edge reports, etc.) and low-quality samples (adver-
tisements, incomplete web pages, etc.)
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Samples from Different Data Sources with Similar Topics

Arxiv C4
General relativity suffers from a number of problems regard-
ing its local conservation laws for energy and momentum.
This was the subject of a crucial discussion between Hilbert,
Klein, Noether, and Einstein between 1915 and 1918....

The term mc2 had already made an appearance in his paper
of 26 September, which introduced special relativity. The
paper of 21 November showed that E = mc2 applies to
bodies at rest. [Physics Today]...

CommonCrawl StackExchange
The General Theory of Relativity (GRT) was born among
other things from the demand to be able to use arbitrary
coordinate systems for the description of the laws of nature.
According to the covariance principle, the form of the laws
of nature should not depend decisively on the choice of the
special coordinate system...

No one but Einstein can be sure of exactly how he arrived
at GR. From reading various histories of the time it seems
to me that once Einstein had come up with the equivalence
principle he started looking around for theories that embod-
ied it...

Wikipedia
The Meaning of Relativity: Four Lectures Delivered at Princeton University, May 1921 is a book published by Princeton
University Press in 1922 that compiled the 1921 Stafford Little Lectures at Princeton University, given by Albert
Einstein...

Figure 6: Samples from different domains, all describing information related to Einstein and Theory of Relativity.

G K-means Clustering Details

For the data clustering in § 2.3, we generate 768-
dimensional embeddings for each sample †. Fur-
ther, we normalize the embeddings to have L2-
norm of 1.0, and use faiss (Johnson et al., 2019) to
perform K-means clustering. Following Tirumala
et al. (2023); Abbas et al. (2024), we set the num-
ber of clusters to be the square root of the number
of total points being clustered. The core code of
data clustering is presented in Table 8. The full
code can be found in the supplementary materials.

H Key Distinctions of Diversity
Evaluation

Technical designs of the diversity evaluator are in-
spired by (Abbas et al., 2024; Shao et al., 2024a).
However, we point out the key distinctions as fol-
lows:

• Shao et al. (2024a) employs data clustering
but selects data uniformly from clusters, over-
looking distinct cluster characteristics. We
also perform clusters but mainly to extract
diversity features for further sampling.

• Abbas et al. (2024) focuses on data prun-
ing, proposing a three-stage pipeline that in-
cludes deduplication, CLIP-score filtering,
and density-based pruning, and is validated

†https://huggingface.co/princeton-nlp/unsup-simcse-bert-
base-uncased

on a dataset without domain boundaries. Con-
versely, we address the challenges associated
with pretraining data mixtures across multi-
ple domains, incorporating diversity as one
feature within our framework. Further, our
analysis reveals that the average diversity of
text data is typically lower than that of image
data, as illustrated in Figure 3 (b). To effec-
tively model diversity within text data, we use
a smaller number of clusters, specifically

√
N ,

where N is the number of documents, along
with a higher number of nearest neighbors
(1% of cluster numbers).

I Cases of High/Low Diversity

As Figure 10 shows, our diversity evaluation as-
signs greater weight to distinctive content, such
as academic reports, in-depth analyses, and rare
knowledge. In contrast, it gives lower weight to
content that is overly common or widely circulated
online, including advertisements, duplicate product
manuals, and routine sports score updates. This
approach ensures that unique and valuable informa-
tion is prioritized, while redundant or ubiquitous
content is given less emphasis.

J Statistics of Diversity Evaluation

We present the distribution of cluster size (Figure
11a), dcompactness (Figure 11b), dseparation (Figure
11c).
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Low-Quality and High-Quality Samples

Low-Quality Sample
New posts Featured Search forums
Sports Briefing (New York Times)
Thread starter articlebot
Cycling News Headlines
articlebot
auto racing.
http://us.rd.yahoo.com/dailynews/rss/search/cycling+racing/SIG=120pnaegk/*http
Cycling News Headlines Jul 31, 2007
Cycling News Headlines Jun 2, 2007
Cycling News Headlines May 11, 2007
Cycling News Headlines Mar 17, 2007
Cycling News Headlines Dec 20, 2006
Sports Briefing: Basketball, Cycling, Auto Racing, Hockey, Golf, Football and Soccer (New York
Times
Cycling News Headlines Nov 26, 2006
Cycling News Headlines Oct 17, 2006
Cycling News Headlines Sep 21, 2006
Sports Briefing: Track and Field, Marathon, Auto Racing, College Football and Cycling (New York
Time
Cycling News Headlines Aug 28, 2006
Sports Briefing: Baseball, Golf, Horse Racing and Cycling (New York Times)
Cycling News Headlines Jun 26, 2006

High-Quality Sample
Decades of studies show that most massive galaxies harbor a supermassive black hole at their center,
with the mass of the black hole being one tenth of the total mass of the surrounding spheroid of stars.
Two astrophysicists from the Center for Astrophysics | Harvard and the Smithsonian have proposed a
method to observe what could be the second-closest supermassive black hole to Earth.

Figure 7: Quality of CommonCrawl Samples may vary significantly.

K Rationality For Re-Normalization

Our re-normalization approach follows the method-
ology established by RegMix (Liu et al., 2025),
which similarly rescaled weights from other meth-
ods when applied to the Pile dataset. The rational-
ity for this re-normalization stems from two key
observations:

• The GitHub domain exhibits fundamentally
different characteristics from textual domains,
showing minimal mutual influence in terms of
both content and structure (Ye et al., 2025).

• This aligns with established practices in the
field, where code is typically treated as a dis-
tinct language modality (Dubey et al., 2024;
Zhu et al., 2024; Hui et al., 2024)

Given these considerations, we (1) directly adopted
the baseline weights from the original papers;
(2) applied re-normalization to account for the
GitHub domain exclusion. This approach main-
tains methodological consistency while appropri-
ately addressing the unique nature of code as a data
domain.

L Hyper-Parameters of Training Models

The experiments for both 1B and 8B parameter
models follow standard transformer architecture
with carefully optimized hyper-parameters. Table
9 and Table 10 introduce the architectural configu-
rations and training specifications for both model
scales respectively.
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M Coverage Speed of All Methods

Figure 12 shows the full comparison of SampleMix
and all baselines. SampleMix achieves the base-
lines’ accuracy using 1.4x to 2.1x fewer training
steps.

N Domain Weights of Different Methods

Figure 13 shows the domain weights of different
methods.

O Generalization to other datasets

To evaluate the generalization ability of Sam-
pleMix, we conducted an additional experiment us-
ing the Chinese Wanjuan dataset (He et al., 2023).
We compared SampleMix to the vanilla mixture
method. The results, detailed in Table 11, demon-
strate consistent improvements across popular Chi-
nese benchmarks (50.67 v.s. 43.32), underscoring
the robust generalization capability of SampleMix.

P Analysis of Varying Token Budgets

To further investigate how SampleMix adapts to
varying token budgets, we analyze the sampling
counts under different scenarios. Figure 14a illus-
trates the proportion of various sampling counts,
while Figure 14b presents the average sampling
weights p(x) associated with these counts. We can
observe that: For Ttgt =

1
5Tsrc, the source dataset

is sufficiently large, allowing top-tier data to meet
the token budget. SampleMix precisely selects
high-weight samples to fulfill the budget require-
ments, minimizing the need for extensive upsam-
pling (i.e., sampling count > 1 is rare) and ensuring
that all valuable data is included. For Ttgt = Tsrc,
the source dataset is relatively smaller, and high-
weight samples alone are insufficient to meet the
token budget. To satisfy the budget, SampleMix
incorporates lower-weight samples. Despite this
inclusion, the method effectively identifies and dis-
cards the least valuable data, which accounts for
18.245% of the dataset due to their low sampling
weights (average weight = 0.166). Data with higher
sampling weights are upsampled more frequently,
thereby enhancing their representation within the
constrained budget. Additionally, for Ttgt =

1
5Tsrc,

the average sampling weight is larger (0.312 v.s.
0.289 when Ttgt = Tsrc), further verifying Sam-
pleMix’s ability to effectively utilize the sampling
space and adapt to varying token budgets.

Q Analysis of Sampling Count
Distribution

Figure 15a presents the distribution of sampling
counts for each domain. Although our target train-
ing budget Ttgt is approximately equal to the size
of the candidate pool Tsrc, our method strategi-
cally discards documents with the lowest quality
and diversity by assigning them a sampling count
of zero. This approach contrasts with traditional
methods that utilize uniform sampling across all
documents. In Figure 15b, we display the sam-
pling weights corresponding to the sampling counts.
The results demonstrate that our method allocates
higher sampling counts to samplers with larger sam-
pling weights, aligning with our expectations. Ad-
ditionally, the distribution of sampling counts ex-
hibits significant variation across different domains.
This variability underscores our method’s effective-
ness in capturing both fine-grained variations and
commonalities among diverse domains, ensuring a
more nuanced and efficient sampling process.

R Analysis of Computatioanl Cost

R.1 Cost Breakdown of SampleMix
Our method incurs computational costs from 3
main components:
(1) Quality Evaluation Our approach involves
training a model with 137 million parameters on
410,000 data points and annotating a training set
of 100 billion with the trained quality evaluator.
The computational costs are detailed as follows:
(1) Training evaluator: The cost is calculated as
6× 137M × 410k × 1024 = 3.45× 1017 FLOPs;
(2) Dataset annotation: Annotating the dataset re-
quires 2× 137M × 100B = 2.74× 1019 FLOPs.
(3) Subtotal for quality evaluation: The total cost
amounts to 2.77× 1019 FLOPs.
(2) Diversity Evaluation For diversity evaluation,
we extract embeddings from 108 documents using
a model with 108M parameters and an input length
of 512. This process incurs a computational cost of
2× 108M × 108 × 512 = 1.12× 1019 FLOPs.
(3) Hyperparameter Tuning We provide clear us-
age recommendations in 4.2 to guide users through
an efficient hyperparameter tuning process:

• Dataset Quality Evaluation: Assess the quality
of your dataset before tuning.

• Hyperparameter Range Selection: Choose ap-
propriate hyperparameter ranges based on the
quality evaluation.
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• Grid Search with Small Models: Perform ini-
tial tuning experiments using smaller models.

While our original experiments involved six grid
searches across the full range [0,1], we recom-
mend three targeted grid searches within a refined
range (determined by quality evaluation). Follow-
ing the common practice of using data experiments
from smaller models as a foundation for larger
models (Goyal et al., 2024; Chung et al., 2024;
Bi et al., 2024), we recommend a practical sce-
nario widely used in our practice (100M-parameter
models trained on 50B tokens with 3 tuning ex-
periments), the cost is: 6 × 100M × 50B × 3 =
9× 1019 FLOPs.

Summing up all components, the total computa-
tional cost of SampleMix is 1.29× 1020 FLOPs.

R.2 Cost Comparison with Baselines
We compare the cost with the baselines as follows:

• DoreMi, trains 280M proxy and reference
model with 104B tokens, resulting in 6 ×
280M × 104B × 2 = 3.49× 1020 FLOPS.

• Doge, trains 82M proxy model with 104B,
resulting in 6× 82M × 104B = 5.12× 1019

FLOPS.

• Bimix, trains 280M proxy-model with 100B,
the computational cost is 6×280M×100B =
1.68× 1020FLOPS

• DML, trains a series of 70M, 160M, 305M
and 410M proxy models on 30B tokens, result-
ing in 6×(70M+160M+305M+410M)×
30B = 1.7× 1020 FLOPS

SampleMix is more efficient than most of the exist-
ing data mixing methods and only represents 2.68%
of the cost to train an 8B-parameter model on 100B
tokens (4.8× 1021 FLOPs). Even if this additional
compute were allocated to extended training, Sam-
pleMix still achieves superior performance.

S Cost Optimization Strategies

In our application of SampleMix to training LLMs
(over 1T parameters models and 15T tokens), we
explored methods to reduce computational over-
head in quality evaluation and data clustering. Two
key optimizations include:

• Diversity evaluation. Compute centroids us-
ing a document subset, then assign remaining
documents to these centroids.

• Quality evaluation. Employ lightweight eval-
uators (e.g., smaller encoder models or Fast-
Text) for efficiency.

By integrating SampleMix with these strategies,
our approach achieves high scalability for real-
world applications, effectively balancing computa-
tional cost with model performance.
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Quality Evaluation Template

Annotator Task: Text Data Quality Evaluation
Role: You are a Language Model Training Data Annotator. Your job is to evaluate the quality of text documents.
Objective: Assess each document using the seven evaluation dimensions below. For each dimension, assign a score based
on the provided criteria to determine the document’s quality.
Evaluation Dimensions:
1. Clarity of Expression and Accuracy (0-1 points)
- Evaluate: How clearly ideas are expressed and the correctness of language (grammar, syntax, punctuation).
- Score:
- 0: Numerous grammatical, spelling, or punctuation errors that significantly hinder comprehension.
- 1: Few grammatical or punctuation errors that do not impede understanding; ideas are clearly and smoothly expressed.

2. Completeness and Coherence (0-1 points)
- Evaluate: Whether paragraphs are fully developed, relevant to the main theme, and logically connected.
- Score:
- 0: Underdeveloped or off-topic paragraphs; lack of logical flow causing confusion.
- 1: Well-developed, relevant paragraphs that are logically connected and contribute to a unified theme.

3. Structure and Style (0-1 points)
- Evaluate: The overall logical flow of the document and the clarity of the author’s presentation.
- Score:
- 0: Unclear structure and inconsistent or unengaging style.
- 1: Clear and logical structure with a consistent and appropriate style that facilitates understanding.

4. Content Accuracy and Credibility (0-1 points)
- Evaluate: Appropriateness of content (free from pornography, drugs, violence) and the accuracy and reliability of facts and
sources.
- Score:
- 0: Inappropriate material or contains factual inaccuracies and unreliable sources.
- 1: Appropriate content, free from prohibited material, with accurate and credible information.

5. Significance (0-1 points)
- Evaluate: The importance, originality, and broader impact of the document compared to others in the field. Verify that the
document is not machine-generated.
- Score:
- 0: Lacks importance and originality. It does not provide unique insights or contribute meaningfully beyond its immediate
purpose. It is not recognized as historically significant or exhibits characteristics of being machine-generated.
- 1: Demonstrates originality and important or impactful. It demonstrates originality and offers unique insights or

contributions. It may also hold historical significance or be recognized as influential.
6. Knowledge Richness (0-2 points)
- Evaluate: The depth and breadth of information, including comprehensive insights and detailed explanations that enhance
the reader’s understanding. Ensure that any concepts or jargon used are well-explained.
- Score:
- 0: Minimal information with little to no depth or insights.
- 1: Adequate information with some insightful explanations; concepts or jargon introduced but not thoroughly explained.
- 2: Comprehensive and detailed information with deep insights; all concepts and jargon are clearly explained and accessible,
offering strong educational value.
7. Logicality and Analytical Depth (0-3 points)
- Evaluate: The text’s ability to present profound insights or viewpoints, supported by in-depth analysis and reasoning.
- Score:
- 0: Contains only simple statements and basic facts without deeper exploration.
- 1: Describes or analyzes straightforward issues or processes with limited depth.
- 2: Offers detailed analysis or solutions, addressing complex professional issues with substantial depth.
- 3: Building on the 2-point criteria, if the text involves STEM fields (Science, Technology, Engineering, Mathematics),

such as astronomy, medicine, mathematics, physics, chemistry, biology, etc., an additional point is awarded for a total of 3
points, acknowledging the specialized complexity and depth required in these areas.
Requirements: Based on the above dimensions, score the text content, first stating the evaluation reasons, then providing the
quality assessment score. The final score is the sum of all dimensions, ranging from 0-10 points. Output format is JSON:
{"Evaluation Reasons": "Clarity of Expression": "...", "Completeness and Coherence": "...", "Structure and Style": "...",
"Appropriate Content and Credibility": "...", "Significance": "...", "Knowledge Richness": "...", "Logicality and Analytical
Depth": "...", "Clarity of Expression": X, "Completeness and Coherence": X, "Structure and Style": X, "Appropriate Content
and Credibility": X, "Significance": X, "Knowledge Richness and Educational Value": X, "Logicality and Analytical
Depth": X, "Final Score": X}
Evaluate all the text as a whole:
«<Document»>

Figure 8: Prompt for GPT-4o to assess training data quality.
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# Define the ordinal regression model class
class OrdinalRegressionModel(torch.nn.Module):

def __init__(self , pretrained_path , num_classes =10):
super(OrdinalRegressionModel , self).__init__ ()
self.base_model = AutoModel.from_pretrained(pretrained_path)
self.ordinal_layers = torch.nn.ModuleList ([torch.nn.Linear(

self.base_model.config.hidden_size , 1)
for _ in range(num_classes)])

def forward(self , input_ids , attention_mask=None , token_type_ids=None):
outputs = self.base_model(input_ids=input_ids ,

attention_mask=attention_mask ,
token_type_ids=token_type_ids)

last_hidden_state = outputs.last_hidden_state
cls_representation = last_hidden_state [:, 0, :]

# Compute the output for each ordinal layer
ordinal_outputs = [torch.sigmoid(layer(cls_representation))

for layer in self.ordinal_layers]
ordinal_outputs = torch.cat(ordinal_outputs , dim=1)
return ordinal_outputs

# Calculate the ordinal loss
def loss(outputs , targets):

loss = 0.0
for i in range(outputs.size (1)):

binary_targets = (targets > i).float()
loss += nn.functional.binary_cross_entropy(outputs[:, i], binary_targets)

return loss

# Inference function
def predict(text):

with torch.no_grad ():
inputs = tokenizer(

text ,
truncation=True ,
padding=True ,
max_length =4096,
return_tensors="pt"

)
# Get model outputs
outputs = model(input_ids=inputs['input_ids '],

attention_mask=inputs['attention_mask '])

# Initialize probability array
probabilities = torch.zeros(outputs.size (0), outputs.size (1) + 1)
# Calculate probability for the first class
probabilities [:, 0] = 1 - outputs[:, 0]
if outputs.size (1) > 1:

# Calculate probabilities for the middle classes
probabilities [:, 1:-1] = outputs[:, :-1] - outputs[:, 1:]

# Calculate probability for the last class
probabilities [:, -1] = outputs[:, -1]

# Calculate scores by finding the index of the maximum probability
scores = torch.argmax(probabilities , dim =1)

return scores , probabilities

Table 7: Python Code for implementing the ordinal regression model.
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High-Quality and Low-Quality Samples

High-Quality Sample (quality score q(x) = 10)
In floricultural crops, flower morphology, such as large petals and double flower formation, and
flower longevity are important factors that influence their quality. Petunia has been proved to be an
excellent model plant for the study of flower development and senescence. However, even in petunia,
there are a lot of genes whose function in flower development and senescence have not yet been
characterized. Recently, techniques using virus induced gene silencing (VIGS) have been developed
as efficient reverse genetics tools to test gene function. In this study, VIGS system that visualizes
silencing induced-flower was established in petunia. Using this system, functional characterization
of petunia candidate genes involved in flower morphogenesis and senescence was conducted. In
parallel, identification and expression analysis of flower development related-genes that had not yet
been identified in petunia was performed. Disadvantage of VIGS is that silencing is induced in a
chimeric manner and it is sometimes difficult to identify flowers on which silencing is induced.

Low-Diversity Sample (quality score q(x) = 1)
Tonight off Witney show Register Login Contact Us Billings Montana married women looking for
men I Search Cock I Searching Sexual Encounters Waiting flr this asap. Do you love the feel of a
tongue on your nips, if you like them caressed, played with, licked and sucked, i am waiting for your
email. No games or pornography. Have best dayAmerican, asianmiddle Eastern, Persian. I was the
boy with a shaved head and glboobieses; if you’re ever feeling adventurous, hit this ad up with what
auto part you were replacing in the subject

Figure 9: Cases of high/low quality.

# Calculate the number of clusters
n_centroids = int(math.sqrt(all_embeddings.shape [0]))
# define the parameters
kmeans = faiss.Kmeans(

d = 768,
k = n_centroids ,
niter=50, # 50 iterations
gpu = True ,
seed = 1024,
spherical = True ,
min_points_per_centroid =1,
max_points_per_centroid=all_embeddings.shape [0]

)
# perform data clustering
kmeans.train(all_embeddings)

Table 8: Python Code for implementing K-Means clustering.
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High-Diversity and Low-Diversity Samples

High-Diversity Sample (diversity score d(x) = 0.7302)
Spartan boys began their military training at age 7, and men served in the army until age 60. Loki’s
father was Fárbauti and his mother was Laufey. On the other hand, the goal of education in Athens, a
democratic city-state, was to produce citizens trained in the arts of both peace and war. In Athens,
boys received a well-rounded education, but girls were only taught household chores. In Sparta, both
boys and girls received physical training to stay fit. Spartan boys received a military education and
training for many years. The ultimate goal of the agoge, or the Spartan education system, was to raise
male soldiers who would be effective in the Spartan army. Training began at the age of seven and all
male citizens, except the firstborn male of the household, was required to attend this training. IT’S
FUNNING: Best answer: What dangerous animals lived in ancient Greece? They learned basic things
like reading, writing and math.

Low-Diversity Sample (diversity score d(x) = 0.0685)
External component identification Finding your hardware and software information Locating hard-
ware Locating software Buttons and speakers Illustrated parts catalog Computer major components
Display assembly subcomponents Mass storage devices Sequential part number listing Removal and
replacement procedures preliminary requirements Service considerations Drive handling Ground-
ing guidelines Electrostatic discharge damage Packaging and transporting guidelines Workstation
guidelines Removal and replacement procedures for Customer Self-Repair parts Component replace-
ment procedures Removal and replacement procedures for Authorized Service Provider parts Base
enclosure WLAN module TouchPad button board Battery Board (select models only)

Figure 10: Cases of high/low diversity.
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Figure 11: Statistics of Diversity Evaluation.
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Figure 12: Coverage speed of all baselines and SampleMix. SampleMix achieves the best training efficiency.
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Figure 13: Domain weights of different methods.
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Hyper-parameter Value
layer num 28

attention head num 13
attention head dim 128

model dim 1664
ffn intermediate dim 4480

global batch size 1280
sequence length 4096

learning rate 2e−4

learning rate scheduler cosine scheduler
learning rate warmup tokens 525M

Table 9: Hyper-parameters of 1B models used in the
experiment.

Hyper-parameter Value
layer num 32

attention head num 32
attention head dim 128

model dim 4096
ffn intermediate dim 14336

global batch size 1280
sequence length 4096

learning rate 2e−4

learning rate scheduler cosine scheduler
learning rate warmup tokens 525M

Table 10: Hyper-parameters of 8B models used in the
experiment.

Dataset Vanilla SampleMix
CMMLU 35.35 41.89
CEval 35.35 41.93
CSL 31.50 47.50
DRCD 62.83 72.86
Classical_Chinese_Translate 52.08 52.89
Idiom_Antonym 60.63 63.13
Logiqa_MRC 25.50 34.50
Average 43.32 50.67

Table 11: Performance comparison with Chinese Wan-
juan dataset.

0 1 2 3 4 5
Sampling Count

Ttgt = 1
5Tsrc

Ttgt = Tsrc

79.655% 20.201% 0.118% 0.020% 0.005% 0.001%

18.245% 64.799% 13.710% 2.148% 0.675% 0.423% 0.25

0.50

0.75

(a) Proportion of different sampling counts.

0 1 2 3 4 5
Sampling Count

Ttgt = 1
5Tsrc

Ttgt = Tsrc

0.25 0.308 0.692 0.814 0.863 0.92

0.166 0.242 0.356 0.471 0.535 0.619
0.25

0.50

0.75

(b) Sampling weight (i.e., p(x)) of different sampling counts.

Figure 14: Analysis of different sampling counts.
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Sampling Count

StackExchange
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Book
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Figure 15: Analysis of sampling counts.
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