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Abstract

Retrieval-augmented generation (RAG) sys-
tems have advanced large language mod-
els (LLMs) in complex deep search scenar-
ios requiring multi-step reasoning and iterative
information retrieval. However, existing ap-
proaches face critical limitations that lack high-
quality training trajectories or suffer from the
distributional mismatches in simulated environ-
ments and prohibitive computational costs for
real-world deployment. This paper introduces
SimpleDeepSearcher, a lightweight yet effec-
tive framework that bridges this gap through
strategic data engineering rather than complex
training paradigms. Our approach synthesizes
high-quality training data by simulating realis-
tic user interactions in live web search environ-
ments, coupled with a multi-criteria curation
strategy that optimizes the diversity and quality
of input and output side. Experiments on five
benchmarks across diverse domains demon-
strate that SFT on only 871 curated samples
yields significant improvements over RL-based
baselines. Our work establishes SFT as a viable
pathway by systematically addressing the data-
scarce bottleneck, offering practical insights for
efficient deep search systems. Our code and
data are available at https://github.com/
RUCAIBox/SimpleDeepSearcher.

1 Introduction

In recent years, retrieval-augmented genera-
tion (RAG) methods have significantly enhanced
LLMs by incorporating external knowledge re-
trieval mechanisms (Lewis et al., 2020; Zhao et al.,
2024; Gao et al., 2024). Recent advancements
have extended these capabilities to complex deep
search scenarios that demand multi-step reason-
ing with iterative information retrieval and syn-
thesis (Alzubi et al., 2025). Traditional RAG sys-
tems typically treat retrieval as an external auxiliary

* Equal contributions.
† Corresponding authors.

module, following a fixed pipeline of “retrieval–re-
ranking–reading” (Qi et al., 2020). In contrast,
deep search scenarios require the model to inter-
nalize the abilities of “when to retrieve, how to
retrieve, and how to reason based on retrieved con-
tent,” in order to address more flexible and complex
tasks.

To address the complex reasoning demands in
deep search scenarios, early research explored
prompt-based strategies that guide models to de-
compose questions, generate queries, and retrieve
information iteratively (Jiang et al., 2024; Teng
et al., 2025; Li et al., 2025a). Other studies have
attempted to improve model performance through
supervised fine-tuning (SFT) (Wang et al., 2025);
however, there is currently a lack of high-quality
trajectory data of reasoning and search interactions
for training (Jin et al., 2025). To further enhance
the model’s autonomous search capabilities, Rein-
forcement Learning (RL) (Sutton et al., 1999) is
considered as a promising solution to train mod-
els through real-time interaction with the environ-
ment (Nakano et al., 2021; Song et al., 2025; Jin
et al., 2025; Zheng et al., 2025). However, most
RL-based approaches operate within artificial envi-
ronments using static document corpora, creating
a distributional mismatch with real-world web dy-
namics. Moreover, the inherent computational in-
tensity of RL training escalates exponentially when
interfacing with live search APIs (Sun et al., 2025).

Given the overhead and complexity of RL-based
training, we hypothesize that SFT remains a vi-
able pathway for building efficient deep search
systems. While SFT offers a streamlined training
process, it faces the critical challenge of lacking
high-quality training data in deep search scenar-
ios. On the one hand, existing QA datasets often
lack the diversity and complexity of questions and
search-oriented purposes on the Web, which are
essential for deep search training. On the other
hand, traditional answer annotations omit the crit-
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ical reasoning traces (search operations, evidence
synthesis, and efficient decision paths) required for
teaching search-integrated reasoning strategies.

In this paper, we propose SimpleDeepSearcher,
an efficient search-with-think framework that uti-
lizes strategic data engineering rather than com-
plex training paradigms. Our core methodology
centers on a three-fold process for constructing
high-quality training data. First, we develop a data
synthesis framework grounded in real web search
environments, simulating realistic user search be-
haviors to generate multi-turn reasoning trajecto-
ries. Second, we propose a diversity-aware query
sampling strategy to optimize domain coverage,
semantic complexity, and knowledge unit density.
Moreover, we adopt a four-dimensional response
curation that enforces format standardization, rea-
soning efficiency, question difficulty, and search
effectiveness. By systematically addressing both
query and response-side quality through automated
pipelines, SimpleDeepSearcher can obtain high-
quality supervised signals based on real web search
for complex reasoning to facilitate the SFT process.

Experimental results show that our SFT method
significantly boosts model performance on five rep-
resentative benchmarks with only 871 high-quality
training samples. Compared to prompt-based meth-
ods, SimpleDeepSearcher achieves a 48.3% im-
provement, and compared to RL-based RAG meth-
ods achieves a 24.9% improvement. This demon-
strates that our framework effectively balances per-
formance and efficiency, providing a simple yet
powerful approach to enhancing deep search ca-
pabilities. Furthermore, our framework is highly
extensible that can be combined with other types
of training data, the framework is also applicable
to RL-based training.

Our main contributions are as follows:
• We propose a real web-based data synthesis

framework that simulates realistic user search be-
haviors, generating multi-turn reasoning and search
trajectories.
• We design a multi-criteria data curation strat-

egy that jointly optimizes both input question selec-
tion and output response filtering through orthogo-
nal filtering dimensions.
• Experimental results demonstrate that SFT on

only 871 samples enables SimpleDeepSearcher to
outperform strong baselines (especially RL-based
baselines) on both in-domain and out-of-domain
benchmarks.

2 Method

In this section, we propose SimpleDeepSearcher
for complex deep search tasks by leveraging multi-
stage data construction strategies.

2.1 Overview

To address the resource-intensive limitations
of deep search systems, we propose Sim-
pleDeepSearcher, a framework that achieves in-
telligence search through efficient supervised fine-
tuning (SFT) with minimal training data. For con-
structing high-quality SFT data, we establish a sys-
tematically designed data synthesis and curation
pipeline, as illustrated in Figure 1.

First, we replace static document re-
trieval (Karpukhin et al., 2020) with real-time
network interactions, simulating human search
behavior through an iterative cycle of "reasoning-
searching-summarizing-generating." By directly
processing raw HTML content via commercial
search APIs, we capture diverse web information
features—ranging from structured data snippets to
unstructured narrative discourse. Based on this, we
first filter input queries using domain heterogeneity,
keyword diversity, and knowledge unit complexity
to construct a maximally informative training foun-
dation while ensuring selected queries align with
real-world web search scenarios. Additionally, we
apply a filtering mechanism to LLM-synthesized
responses, implementing a four-dimensional
quality filter that simultaneously optimizes format
standardization, reasoning path control, question
difficulty, and search effectiveness to guarantee
response quality.

The framework’s modular design offers three
distinctive advantages: First, it exposes the model
to authentic search artifacts and noise patterns
through real web interactions. Second, our multidi-
mensional filtering strategy enables state-of-the-art
performance with remarkably small SFT datasets,
eliminating dependency on resource-heavy RL
training. Third, the decoupled architecture between
data synthesis and model constraints provides ex-
ceptional flexibility that our curated datasets can
enhance any LLMs while maintaining compatibil-
ity with emerging reasoning architectures and alter-
native training paradigms including RL. Since the
searched content is not generated by the LLM, we
mask out these tokens during the SFT process.

Our methodology achieves unprecedented effi-
ciency in search-oriented model training, reducing
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Figure 1: Overall framework of our proposed SimpleDeepSearcher approach. r denotes the reasoning content, q
represents the search query, and d refers to the retrieved document after summarization. ts and te are special tokens
indicating the beginning and end of the search query, and a denotes the final answer.

computational demands while maintaining com-
petitive performance through strategic data quality
optimization rather than brute-force data quantity.

2.2 Data Synthesis in Real Web Environment

Typically, traditional retrieval-augmented gen-
eration (RAG) systems rely on closed and static
knowledge corpora (e.g., a Wikipedia snapshot).
Such knowledge corpora exhibit two primary limi-
tations: firstly, the content they contain often con-
sists of refined and condensed segments (Chen
et al., 2024); secondly, the information within these
knowledge corpora lacks timeliness. Consequently,
RAG systems are limited in their ability to simulate
authentic user search behaviors, as users typically
search within open, dynamic, and complex web
environments where the information is not only
diverse in format and varied in quality but is also
frequently accompanied by redundancy and noise.
In light of this, our data synthesis approach does
not rely on curated document collections but is in-
stead grounded in the real, open web environment.
This authentic web environment also places greater
demands on the model’s capabilities for informa-
tion extraction, synthesis, and reasoning.

Building upon the widely adopted iterative deep
search process (Li et al., 2025a) of reason-search-
summarize-generate, we develop an automated
pipeline for large-scale training data synthesis. For

each query, our framework at each iteration (1)
initiates web searches via commercial APIs, (2) ex-
tracts and processes raw HTML content, (3) applies
an LLM to reason over multi-source evidence, and
(4) continues for the next iteration or stop iteration.
By sampling multiple reasoning paths per query,
we capture nuanced decision-making processes in-
herent to real-world information synthesis.

Our data synthesis strategy is firmly rooted in
real web scenarios, which substantially enriches
the diversity and authenticity of training samples.
Building on this, this strategy enables scaling of
high-quality trajectory data of reasoning and search
interactions.

2.3 Diversity-aware Query Sampling

To engineer a deep search architecture with ad-
vanced query comprehension and reasoning capa-
bilities, we implement a strategic repurposing of
open-domain question answering (QA) resources.
These curated datasets offer natural language ques-
tions that inherently require multi-hop informa-
tion retrieval operations, thereby exhibiting strong
task alignment with the cognitive demands of deep
search systems (Zheng et al., 2025). Our selec-
tion protocol combines single-hop and multi-hop
QA benchmarks through principled composition,
ensuring coverage of both atomic and composite
reasoning paradigms.
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However, empirical evidence suggests that
naive dataset scaling yields diminishing returns
in SFT (Zhou et al., 2023). The efficacy of such
approaches fundamentally depends on the intrinsic
diversity and informational entropy of training in-
stances. While existing open-domain QA corpora
provide substantial volume, systematic analysis re-
veals three critical limitations: (1) domain-specific
overrepresentation creating skewed knowledge dis-
tributions, (2) repetitive syntactic patterns reducing
linguistic variability (Parmar et al., 2022), and (3)
semantic simplicity thresholds below real-world
query complexity. These factors collectively induce
model brittleness and constrain cross-domain gen-
eralization potential (see Appendix B for details).
To address these critical limitations, we introduce
a diversity-aware query sampling strategy to im-
plement systematic data filtering through tripartite
orthogonal criteria:

Domain Heterogeneity encompasses the system-
atic classification of query semantics across distinct
knowledge domains (e.g., history, science, politics).
This dimension ensures a balanced distribution of
questions across different domains, thereby reduc-
ing domain-specific biases and enhancing general-
ization capabilities.

Keyword Diversity focuses on the distributional
diversity of core semantic constituents (definition
provided in Appendix B). we ensure non-redundant
exposure to low-frequency conceptual entities,
multi-order relational dependencies, and contex-
tually ambiguous referential expressions. Such sys-
tematic variation compels the model to transcend
superficial lexical pattern matching, instead devel-
oping reasoning architectures essential for inter-
preting complex entity interactions (Linzen, 2020).

Complexity of knowledge units captures the fre-
quency of interrogative terms used in questions
(e.g., what, when), which serve as indicators of
syntactic and semantic complexity. Questions with
greater inquiry potential are given priority, ensur-
ing comprehensive modeling of implicit reasoning
chains triggered by diverse question formulations.

We developed a systematic query selection
framework incorporating three complementary di-
mensions: domain heterogeneity, keyword diver-
sity, and complexity of knowledge units. First, we
partition the dataset into domain-specific clusters
using the LLM-generated semantic classifications.
Within each domain cluster, queries are ranked by

Algorithm 1 Diversity-aware Query Sampling
Input: Annotated dataset D with domains d1, d2, . . . , dm,

target number of queries N
1: Nd ← N/m
2: S ← ∅ ▷ Initialize the target set
3: for i = 1 to n do
4: Ddi ← {x ∈ D | domain(x) = di}
5: Sort Ddi by descending interrogative
6: words
7: while |Sdi | < Nd and Ddi ̸= ∅ do
8: K ← ∅ ▷ Initialize the keyword set
9: for each sample x in Ddi do

10: if |Sdi | ≥ Nd then
11: break
12: end if
13: kw ← keywords(x)
14: if x /∈ S and kw ∩K = ∅ then
15: S ← S ∪ {x}
16: K ← K ∪ keywords(x)
17: Ddi ← Ddi \ {x}
18: end if
19: end for
20: end while
21: end for
22: return S

knowledge unit complexity scores derived from
conceptual density analysis. Subsequently, we per-
form iterative selection using a greedy algorithm
that maximizes keyword diversity while maintain-
ing inter-domain balance. The detailed procedure
for query sampling is presented in Algorithm 1.

2.4 Multi-Dimention Response Curation

Building upon the aforementioned data synthe-
sis and query sampling strategies, we have success-
fully generated high-quality training data derived
from real-world web environments. However, due
to the inherent unpredictability of LLM reasoning,
the quality of synthesized data exhibits consider-
able variability despite meticulous control over in-
put and generation processes. Three primary issues
are observed: (i) Formatting irregularities, such
as inconsistent reasoning languages, non-standard
formats for search and reasoning steps, and hetero-
geneous answer formats; (ii) reasoning redundancy,
including hypothesis overgeneration, fabricated re-
trieval content, and excessive validation loops; (iii)
inefficient search strategies, including redundant
search exploration, contextual myopia and failure
to retrieve relevant information.

The presence of low-quality reasoning outputs
in language models not only compromises perfor-
mance and transparency but also introduces noise
into training signals, leading to inefficient compu-
tational resource utilization. To address these chal-
lenges, we developed a systematic filtering proto-
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col that selects optimal solutions through rigorous
evaluation of multiple responses per query.

To mitigate these issues, we impose strict con-
straints on both the format and content of sam-
pled responses, retaining only those that satisfy all
predefined criteria. Our filtering strategy, struc-
tured around four pillars, ensures retention of high-
quality reasoning data while promoting efficient
search integration.

Format Standardization. Filter out responses
with mixed reasoning languages or incorrect rea-
soning and search formats, and correct answers
with formatting errors to ensure consistency and
standardization across all responses. Responses
exhibiting mixed languages, irregular reasoning
structures, or formatting inconsistencies were ex-
cluded. Automated correction aligned remaining
answers with standardized templates.

Reasoning Path Control. Strictly limit the use of
reflection expressions (e.g., alternatively, wait, etc.)
and control the length of reasoning to avoid unnec-
essary and redundant reasoning steps. Reasoning
models tend to hypothesize, infer, and reflect based
on internal knowledge, often resulting in delayed
use of search tools and inefficient reasoning. By
regulating the reasoning path, the model can learn
to seamlessly integrate search into its inference pro-
cess and adopt more efficient reasoning strategies.

Question Difficulty. Filter out questions with con-
sistently high accuracy across multiple reasoning
attempts and prioritize those with lower accuracy.
Accuracy obtained from multiple samples can serve
as a proxy for question difficulty. Selecting more
challenging questions helps enhance the model’s
ability to handle complex queries.

Search Effectiveness. Among multiple candidate
responses, prioritize those with fewer search steps
and more diverse search content. This encourages
the model to not only invoke search capabilities
but also to learn how to formulate effective sub-
queries based on the original question for efficient
information retrieval.

Based on the above dimensions, we first collect
metadata for each response, such as the number of
search steps, reasoning length, and accuracy. Sub-
sequently, responses are filtered sequentially based
on format standardization and reasoning path con-
trol. Then, based on question difficulty, questions
with high accuracy are removed. For each remain-

ing question, we retain multiple high-quality re-
sponses that meet all constraints and sort them by
search steps. According to search effectiveness, the
response with the fewest search steps is selected
as the final answer. Through this process, we ulti-
mately obtained 871 high-quality question-answer
pairs. This multi-criteria approach not only en-
hances model training efficiency but also provides
insights into optimal human-AI reasoning patterns.

3 Experiments

3.1 Experimental Setup

Datasets. We sample training data from single-
hop and multi-hop knowledge-intensive QA
datasets to cover a wide range of domains and ques-
tion difficulty. For single-hop questions, we use
Natural Questions (Kwiatkowski et al., 2019) and
SimpleQA (Wei et al., 2024). For multi-hop ques-
tions, we use HotpotQA (Yang et al., 2018), 2Wiki-
MultiHopQA (Ho et al., 2020), MuSiQue (Tang
and Yang, 2024), and MultiHopRAG (Tang and
Yang, 2024). To test the model’s performance on
out-of-domain data, we select Bamboogle (Press
et al., 2022), FRAMES (Krishna et al., 2024),
and GAIA (Mialon et al., 2023) benchmarks. In
addition, we further conduct evaluations on the
more challenging benchmarks including xbench-
DeepSearch, BrowseComp-ZH (Zhou et al., 2025),
and BrowseComp-EN (Wei et al., 2025). These
datasets are not used during training and help eval-
uate how well the model works on new domains.
We evaluate on 500 randomly sampled instances
from the validation sets of HotpotQA, 2WikiMul-
tiHopQA, and MuSiQue. For GAIA, we use 103
examples from the text-only validation subset (Li
et al., 2025b), while for BrowseComp-EN we ran-
domly sample 300 instances. For the remaining
benchmarks, we use their full test sets.

Metrics. We report results using two metrics: F1
score and LLM-as-Judge (LasJ). The F1 score cap-
tures the word-level similarity between the pre-
dicted and golden answers, while LasJ leverages
GPT-4o-mini to evaluate the correctness of the pre-
dicted response.

Baselines. We consider following type of base-
lines: Naive Generation: Direct generation of
answers without retrieval. Standard RAG(Zhao
et al., 2024): Directly retrieve relevant docu-
ments by querying the original question. Search-
o1 (Li et al., 2025a): Encourages the model
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Models Methods 2Wiki† MuSiQue† Bamboogle‡ Frames‡ GAIA‡

F1 LasJ F1 LasJ F1 LasJ F1 LasJ F1 LasJ

Qwen-7B

Directly Gen 27.7 26.8 9.6 6.2 18.2 17.6 12.6 10.1 13.6 6.8
Standard RAG 34.8 34.8 17.2 14.6 31.5 31.2 13.9 13.5 - -
Search-o1 48.0 51.2 21.5 20.6 57.9 59.2 30.9 35.0 24.3 21.4
R1-Searcher 63.4 66.4 29.0 26.8 68.2 68.8 34.4 40.3 24.1 20.4
DeepResearcher 59.7∗ 66.6∗ 27.1∗ 29.3∗ 71.0∗ 72.8∗ - - - -
SimpleDeepSearcher 70.6 79.8 28.2 29.4 74.5 76.8 44.9 55.3 39.3 36.9

Qwen-32B

Directly Gen 31.7 31.2 13.3 12.4 25.7 25.6 15.6 14.2 18.6 13.9
Standard RAG 43.7 45.0 19.5 16.8 40.8 40.8 19.4 19.4 - -
Search-o1 64.9 74.8 29.1 30.6 74.4 78.4 47.2 56.8 36.5 34.0
SimpleDeepSearcher 71.9 81.2 30.6 33.0 78.1 80.0 50.1 60.8 42.1 40.8

DDQ-32B

Directly Gen 36.9 36.2 19.6 16.0 32.6 32.8 27.8 29.2 14.8 9.7
Standard RAG 48.1 50.0 24.0 21.6 42.6 46.4 26.5 28.9 - -
Search-o1 49.6 55.2 25.4 23.8 65.7 68.0 32.2 38.7 23.2 24.3
SimpleDeepSearcher 69.0 77.4 32.9 33.6 80.5 83.2 52.2 63.8 42.0 41.7

QwQ-32B

Directly Gen 39.6 39.8 18.9 17.4 29.6 29.6 28.1 31.3 16.8 11.7
Standard RAG 48.4 50.6 21.8 19.4 42.5 46.4 27.4 31.6 - -
Search-o1 69.4 78.0 34.3 36.4 78.7 78.4 51.6 64.4 38.3 37.9
SimpleDeepSearcher 75.6 84.4 34.8 37.4 83.4 88.0 56.8 68.8 48.9 50.5

Table 1: Performance comparisons between SimpleDeepSearcher and the baselines on QA benchmarks. The best
results are in bold and the second-best are underlined. †/‡ represents in-domain/out-domain datasets. Results
marked with * are cited from their official paper or report. Qwen-7B, Qwen-32B, DDQ-32B are the abbreviations of
Qwen-2.5-7B-Instruct, Qwen-2.5-32B-Instruct, and Deepseek-Distilled-Qwen-2.5-32B, respectively.

Model Xbench-DeepSearch BrowseComp-ZH BrowseComp-EN

Webthink-RL 24.0∗ 7.3∗ 2.8∗

WebDancer-32B 38.7∗ 14.1∗ 2.5∗

SimpleDeepSearcher 30.0 14.5 4.3

Table 2: Results on the more challenging Xbench-
DeepSearch, BrowserComp-ZH, and BrowseComp-EN
benchmarks. The results are evaluated with LLM-as-
Judge. Results marked with * are cited from other pa-
pers or reports. The best results are in bold.

to perform self-initiated retrieval using prompts.
RAG-RL: R1-Searcher (Song et al., 2025), Deep-
Researcher (Zheng et al., 2025), WebThinker-
RL (Li et al., 2025b), and WebDancer (Wu et al.,
2025), the open-source models trained with re-
inforcement learning to enable self-initiated re-
trieval. We conduct experiments using the follow-
ing model backbones with an online search engine,
including Qwen-2.5-7B-Instruct, Qwen-2.5-32B-
Instruct, Deepseek-Distilled-Qwen-2.5-32B, and
QwQ-32B.

Implementation Details. Our experimental
setup consists of three main components: SFT,
generation, and query sampling. In the SFT phase,
we use a total batch size of 64 and train for 6
epochs with a learning rate of 1e-5, warmup
ratio of 0.03, and a sequence length of 30,000
tokens. During fine-tuning, external retrieval
documents are masked to avoid learning from
noisy or spurious information. For generation, all

Category Method
Bamboogle GAIA

F1 LasJ F1 LasJ

Ours 74.5 76.8 39.3 36.9

Query Sampling
w/o DD 69.7 70.4 35.6 35.8
w/o KD 73.2 76.0 32.9 31.1

w/o CIW 71.7 74.4 32.1 29.1

Environment w/o Online 74.0 74.4 30.4 28.2

Response Curation

w/o FS 72.8 75.2 38.0 36.9
w/o RPC 71.7 74.4 31.6 30.1
w/o QD 67.1 70.4 32.9 32.0
w/o SE 72.6 73.6 37.7 35.0

Table 3: Results of variants of SimpleDeepSearcher on
Bamboogle and GAIA.

models are configured with a maximum sequence
length of 20,480 tokens, temperature of 0.6, top-p
of 0.95, and top-k of 40. During query sampling,
we used QwQ-32B to annotate each query with
its corresponding domain and keywords. For
data synthesis, we employed QwQ-32B as the
reasoning model and Google Search API as the
search engine, with a maximum of 10 search
calls and 15 reasoning turns per query. For each
query, we sampled 10 candidate responses. All
prompts used in the experiments are provided in
Appendix F.

3.2 Main Results
Table 1 presents the main results of the proposed

SimpleDeepSearcher and baselines across five rep-
resentative datasets.
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Firstly, SimpleDeepSearcher consistently out-
performs all existing baseline methods across five
benchmark datasets. Specifically, it achieves the
best performance not only on in-domain datasets
(i.e., 2Wiki, MuSiQue) but also shows substan-
tial improvements on out-of-domain datasets (i.e.,
Bamboogle, FRAMES, GAIA), demonstrating its
strong generalization ability.

Besides, SimpleDeepSearcher consistently out-
performs reinforcement learning-based methods
such as R1-Searcher and DeepResearcher across
most evaluation metrics. These approaches are
trained on large-scale datasets using complex re-
inforcement learning algorithms. In contrast, our
method relies on supervised fine-tuning with only
871 training examples. This demonstrates that
our framework achieves strong performance while
maintaining high data efficiency, offering a simple
yet effective alternative for improving deep search
capabilities.

Thirdly, SimpleDeepSearcher achieves stable
and substantial performance improvements across
models with diverse backbones and parameter
scales, ranging from 7B to 32B. For instance, com-
pared to Search-o1, it achieves relative improve-
ments of 48.3%, 42.6%, and 11.5% on Qwen2.5-
7B-Instruct, DeepSeek-R1-Distill-Qwen-2.5-32B,
and QwQ-32B, respectively. This demonstrates the
strong generalization ability of our distillation and
self-distillation strategies, with the selected data
consistently leading to performance gains across
heterogeneous model architectures.

In addition, table 2 presents the experimental re-
sults on more complex QA datasets. These datasets
are specifically designed for AI agents, requiring
models to possess end-to-end planning, search, rea-
soning, and summarization capabilities. Notably,
our model still demonstrates strong performance
compared to models trained with reinforcement
learning. This result further underscores the robust
generalization ability of our model.

4 Further Analysis

4.1 Ablation Study

To validate the effectiveness of the proposed
SimpleDeepSearcher, we conduct a comprehen-
sive ablation analysis using Qwen2.5-7B-Instruct
on the Bamboogle and GAIA datasets. We con-
duct detailed ablation studies on three main aspects:
(1) Query Sampling: w/o DD removes domain di-
versity filter, w/o KD removes keyword diversity

Method
Bamboogle GAIA

F1 LasJ F1 LasJ

Distilled (Ours) 74.5 76.8 39.3 36.9

w. DPO 75.0 79.2 39.0 37.9
w. Reinforce++ 73.8 75.8 29.4 24.3

Table 4: Evaluation Results of RL-based Methods.

Model #Alternatively #Search Output Length

QwQ-32B 7.933 2.390 867.148
QwQ-32B-SFT 4.051 2.329 581.731

Table 5: Statistical analysis of model outputs.

filter, w/o CIW removes coverage of interrogative
words filter; (2) Environment: w/o Online uses lo-
cal dense dense retrieval to synthesize training data;
(3) Response Curation: w/o FR removes format reg-
ularization filter, w/o RPC removes reasoning path
control filter, w/o QD removes question difficulty
filter, w/o SC search count filter. As observed, all
ablated variants exhibit a decline in performance
compared to our full method, underscoring the in-
tegral contribution of each component. Among
them, w/o QD leads to the most significant per-
formance drop, suggesting that question difficulty
plays a crucial role in training. More challenging
questions are more likely to stimulate the model’s
autonomous retrieval capabilities during reasoning.

4.2 Effect of Post-SFT RL

Recent studies have investigated the integration
of RL and RAG (Song et al., 2025; Jin et al., 2025;
Zheng et al., 2025). We further examine the advan-
tages and limitations of applying RL after SFT.

We apply DPO and REINFORCE++ to conduct
offline and online reinforcement learning, respec-
tively. As shown in Table 4, the model trained
with DPO achieves further improvements over the
SFT baseline, demonstrating the effectiveness of
offline preference optimization (see Appendix C
for details). In contrast, the model trained with
REINFORCE++ produces significantly shorter re-
sponses (see Appendix D for details) and shows
notable performance degradation on both the Bam-
boogle and GAIA benchmarks. This suggests that
online RL mainly triggers retrieval behavior, but
brings little benefit to models that are already good
at retrieval. We hypothesize that the success of
offline DPO stems from its ability to leverage high-
quality trajectories generated by a strong LLM.
These trajectories provide informative preference
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Model Plan. Search Summ.

Qwen-7B 0.416 0.455 0.363
Qwen-7B-SFT 0.590 0.677 0.584

QwQ-32B 0.623 0.680 0.594
QwQ-32B-SFT 0.629 0.713 0.624

Table 6: Proportion of instances containing the correct
answer at each stage of the inference process (Planning,
Search, and Summarization), before and after SFT.

signals and stable supervision, allowing the model
to refine its reasoning and search strategies.

4.3 Effect of SFT on Redundancy

In this part, we analyze how SFT impacts redun-
dant reasoning and search behavior. Specifically,
we focus on three indicators: (1) the frequency of
the reflective word “alternatively”, which signals
hesitation or divergent reasoning; (2) the average
length of reasoning chains, measured by output
length; and (3) the number of search calls made dur-
ing inference. Our analysis is based on the QwQ-
32B model, evaluated on the 2Wiki, MuSiQue, and
Bamboogle datasets. As shown in Table 5, the
average use of “alternatively” and the overall out-
put length are both significantly reduced after SFT.
Moreover, the model issues fewer search queries.
These results indicate that our self-distillation ap-
proach improves both the reasoning clarity and
search efficiency of the model. This improvement
can be attributed to the high-quality training data
selected through our proposed method.

4.4 Effect of SFT on Stage-wise Performance

In this part, we analyze how training improves
the performance of each sub-task in our approach,
including iterative search, planning, and summa-
rization. We evaluate the proportion of cases in
which the final answer appears during each sub-
process to quantify the efficiency of that stage.
To eliminate interference from the summarization
stage, all summarization models are kept identical
during inference, with detailed settings provided
in Appendix E. The results are shown in Table 6.
We can observe substantial improvements across
all components, with the search component show-
ing the most significant gain. This suggests that
training effectively enhances the model’s ability
to generate more coherent reasoning and search
trajectories, leading to more accurate information
retrieval and improved overall model performance.

Models Summarization Model Bamboogle GAIA

F1 LasJ F1 LasJ

Qwen-7B-SFT

before training 70.8 71.2 28.0 26.2
after training 67.5 68.8 23.9 21.4

QwQ-32B 74.5 76.8 39.3 36.9
GPT-4o-mini 70.9 76.8 33.7 32.0

QwQ-32B-SFT
before training 83.5 88.0 48.9 50.5
after training 83.9 86.4 43.2 47.6
GPT-4o-mini 80.0 80.8 40.5 44.7

Table 7: Performance comparison across all benchmarks
using different summarization models.

Training Data
Bamboogle GAIA AIME

F1 LasJ F1 LasJ F1 LasJ

- Reasoning 74.5 76.8 39.3 36.9 13.3 13.3
+ Reasoning 76.9 80.8 37.2 37.9 20.0 20.0

Table 8: Results of the SimpleDeepSearcher trained w/
and w/o reasoning data across three benchmarks.

4.5 Effect of Summarization Model

This part investigates the impact of the summa-
rization model on overall performance. We fix the
reasoning model and conduct a comparative analy-
sis of overall performance using different summa-
rization models. As shown in Table 7, QwQ-32B
demonstrates the strongest summarization capa-
bility and is therefore selected as the summariza-
tion model for all reasoning models. Furthermore,
using fine-tuned models for summarization leads
to performance degradation on downstream tasks
compared to their pre-trained counterparts. This
might be attributed to the reduced long-text summa-
rization ability of the fine-tuned models, due to the
distributional shifts on a limited task and domain of
the training data. This decline is more pronounced
for models with fewer parameters.

4.6 Effect of Additional Reasoning Data

We further investigate the impact of incorpo-
rating complex mathematical reasoning data on
Qwen2.5-7B-Instruct. As shown in Table 8, this
leads to consistent performance gains across all
benchmarks. Furthermore, Figure 2 and Table 9
reveals significant alterations in the model’s behav-
ioral patterns on two kinds of tasks: for tasks em-
phasizing complex reasoning (e.g., AIME, GAIA),
the model generates longer and more in-depth rea-
soning outputs; for search tasks (e.g., Bamboogle),
the model performs more searches and explores
more thoroughly. These findings suggest that incor-
porating complex reasoning data helps the model
learn to adapt its reasoning and search strategies to
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Figure 2: Average reasoning length across different
benchmarks w/ and w/o reasoning data for training.

Training Data
Search Count

Bamboogle GAIA AIME

- Reasoning 1.552 1.757 0
+ Reasoning 1.672 1.845 0

Table 9: Average search count across different bench-
marks of the model trained w/ and w/o reasoning data.

the specific demands of a task. This adaptability is
critical for addressing complex and diverse queries.

5 Conclusion

In this work, we present SimpleDeepSearcher, a
lightweight yet effective framework for deepsearch
tasks, addressing the limitations of existing RAG
methods that rely heavily on complex training
paradigms or suffer from distributional mismatches.
By leveraging realistic web search simulations and
a multi-criteria data curation strategy, we construct
high-quality training trajectories that enable effi-
cient supervised fine-tuning. Despite using only
871 curated samples, our method achieves substan-
tial gains over RL-based baselines across diverse
in-domain and out-of-domain benchmarks. Our
results highlight the potential of strategic data engi-
neering to empower deep search reasoning.

Limitation

Despite our substantial efforts, this work is sub-
ject to two limitations stemming. Due to limitations
in training resources and hardware, we conducted
distillation training on 7B and 32B models. In fu-
ture work, we plan to train and evaluate our frame-
work on larger-scale models (i.e., 72B) to further
verify its generalization capability and robustness.
Additionally, because of the inherent difficulty in
synthesizing multi-hop data, the original data used
for distillation primarily consisted of relatively sim-

ple multi-hop questions. If more realistic and chal-
lenging multi-hop queries can be synthesized in the
future, applying our framework for filtering and
training may yield even better performance.

Ethics Statement
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with research ethics throughout the entire develop-
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A Related Work

Retrieval-Augmented LLMs. To improve the fac-
tual precision of LLM-generated texts (Zhao et al.,
2024), researchers enhance LLMs with retrieval-
augmented generation (RAG) (Guu et al., 2020).
Various approaches have been proposed, such
as branching-based methods (Kim et al., 2024),
summarization-based methods (Li et al., 2023), and
adaptive retrieval techniques (Jeong et al., 2024).
With the increase in model parameters, LLMs have
demonstrated chain-of-thought reasoning capabil-
ities (Wei et al., 2022), and many researchers to
integrated such reasoning with RAG via prompt
engineering (Shao et al., 2023; Trivedi et al., 2023).
Other studies have attempted to distill retrieval
abilities into smaller models through supervised
fine-tuning (Asai et al., 2024). However, these ap-
proaches limit the model’s capacity with a fixed
reasoning path.

Enhancing LLMs with Search. Recently, sev-
eral deep search frameworks are proposed (Alzubi
et al., 2025). They integrate large language models
with search engines in a more flexible and dynamic
manner. Search-o1 (Li et al., 2025a) simulates deep
search in LLMs through prompt engineering, allow-
ing them to retrieve information independently dur-
ing multi-step reasoning. R1-Searcher (Song et al.,
2025) and Search-R1 (Jin et al., 2025) equip large
language models with retrieval tools and train them
end-to-end using reinforcement learning. This ap-
proach effectively enhances the model’s ability to
interleave reasoning with retrieval during inference.
However, due to the inherent complexity of RL and
its high computational demands, conducting large-
scale experiments on full-sized LLMs remains chal-
lenging. SimpleDeepSearcher synthesizes high-
quality training data via broad query sampling and
precise filtering, enabling strong deep search per-
formance with minimal training cost.

B Details of Diversity-Aware Query
Sampling

In analyzing open-source data, we identified
three critical limitations:

(1) Domain-specific overrepresentation creating
skewed knowledge distributions. As shown in the
Figure 3, we present the domain distribution of the
pre-filtered data. It can be observed that certain
domains (such as film and geography) account for
a considerable proportion. This imbalance risks

Film 23.2%

Other

22.8% Geography

11.2%

History9.7%

Music

9.0%

Sports

5.9%

Technology

5.9%

Politics

4.4%

Television

3.7%

Education

2.1%

Business

2.1%

Domain Distribution

Figure 3: Domain distribution of the data before filter-
ing.

inducing uneven knowledge distributions in the
training data.

(2) Repetitive syntactic patterns reducing linguis-
tic variability. Due to the construction methods of
open-source datasets, we observe substantial redun-
dancy in syntactic structures. A typical example
is the prevalence of “A and B” style comparative
queries (e.g., “Do both directors of films Paper
Bullets and Karakolda Ayna Var share the same
nationality?” vs. “Do both directors of films Jatt
Juliet and Sciopèn share the same nationality?”).
Similarly, numerous queries repetitively compare
identical attributes such as age.

(3) Semantic simplicity thresholds below real-
world query complexity. Many queries in open-
source datasets are overly simplistic, such as “What
nationality is John Harbaugh’s father?”. Such ques-
tions impose only minimal demands on deep search
or reasoning, as they can often be answered through
a single lookup. Consequently, their utility in fos-
tering more advanced model capabilities is limited.

We define “core semantic constituents” as fol-
lows:
• Key entities (e.g., films, people, locations)
• Critical attributes (e.g., age, duration, popula-

tion)
• Core relationships (e.g., comparison, causality)
• Measurement dimensions (e.g., time, quantity)
For example, in the query “Which film whose

director is younger, Charge It To Me or Danger:
Diabolik?”, the extracted keywords based on the
above schema are “film” and “age”.
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Figure 4: Changes in Sequence Length and Reward
During REINFORCE++ Training.

C DPO Detailed Settings

Our objective was to identify answer trajecto-
ries that were both correct and demonstrated effi-
cient reasoning and search paths. To this end, we
construct preference pairs (Rw, Rl), where Rw de-
notes the preferred trajectory and Rl the rejected
one. We repurposed our previously established
pipeline for query sampling and data synthesis.
During the data synthesis stage, we generate re-
sponses using the strongest SFT-trained model,
SDS-QwQ-32B-SFT, and the target model to be
optimized, SDS-Qwen-7B-SFT. Responses gener-
ated by SDS-QwQ-32B-SFT that pass both the
formatting and reasoning path control checks are
treated as positive examples, while those generated
by SDS-Qwen-7B-SFT that fail these checks are
treated as negative examples. Ultimately, we con-
struct a dataset consisting of approximately 875
training pairs.

For Direct Preference Optimization (DPO) train-
ing, we utilize a learning rate of 5× 10−7, a β of
0.1, training for 5 epochs with a batch size of 256,
a warm-up ratio of 0.1, and a maximum sequence
length of 10000.

D REINFORCE++ Detailed Settings

To construct the reinforcement learning (RL)
dataset, we utilized the model that had been trained
though SimpleDeepSearcher to perform rollout
sampling on the training sets of 2Wiki and Hot-
potQA. For each question, eight candidate re-
sponses were generated. From this pool, we se-
lected 2480 samples corresponding to questions
with one to six correct answers, ensuring diversity
in the RL training data.

The reward function employed in REIN-
FORCE++ consists of two components: an answer
reward and a format penalty. The answer reward
is calculated as the F1 score between the predicted

answer and the reference answer, providing a di-
rect measure of response accuracy. In addition, a
discrete format penalty of −2 is applied if any of
the following undesirable behaviors are detected:
• Self-Retrieved Content: The model fabricates

content that is not retrieved from external sources.
• Contains Gibberish: The generated output con-

tains nonsensical, irrelevant, or corrupted text seg-
ments.
• Excessive Analytical Markers: The response

contains more than 5 occurrences of phrases such
as Alternatively, Wait, or Hmm, which are treated
as signals of incoherent reasoning.
• Lack of Boxed Answers or Excessive Reason-

ing Length: The model either executes more than 8
retrieval steps or the token length of the analytical
content between any two retrievals exceeds 8,096
tokens.

If none of these conditions are met, no penalty
is applied. To maintain on-policy training through-
out the RL process, we adjusted the batch size to
ensure that learning was based on the most recent
policy rollouts. Figure 4 shows the variations in
response length and reward values observed during
the training process.

E Model Performance Enhancement
Analysis Settings

We conduct a comparative analysis of Qwe2.5-
7B-Instruct and QwQ-32B before and after training
across the 2Wiki, Bamboogle, and MuSiQue bench-
marks. During inference, we fix the summarization
model to QwQ-32B across all comparisons to elim-
inate potential interference from the summarization
component (the impact of the summarization model
will be further discussed in Section 4.5).

F Instruction Templates
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Instruction for Annotation

You are an advanced semantic analyzer. For the given question, perform the following tasks step by step:

1. **Domain Identification**:

- Determine the broad subject category (domain) this question belongs to.

- Examples: film, history, biology, geography, politics, technology, etc (or any other suitable domain)

2. **Key Point Extraction**:

- Identify 2-4 core semantic components that are crucial for answering

- Include:

• Key entities (e.g., films, people, locations)

• Critical attributes (e.g., age, duration, population)

• Core relationships (e.g., comparison, causality)

• Measurement dimensions (e.g., time, quantity)

- Exclude filler words and non-essential descriptors\n

**Output Requirements**:

- Use JSON format: {{"domain": "...", "key_points": [...]}}

- Keep key_points concise (1-2 words each)

- Use lowercase for all outputs

- Separate multiple key_points with commas\n

**Examples**:

Question: "Which film whose director is younger, Charge It To Me or Danger: Diabolik?"

Output: {{"domain": "film", "key_points": ["director", "age"]}}\n

**Now process this question:**

{{Question}}

Instruction for LLM as Judge

Given a Question and its Golden Answer, verify whether the Predicted Answer is correct. The prediction is correct if it 

fully aligns with the meaning and key information of the Golden Answer. Respond with True if the prediction is correct 

and False otherwise.

Golden Answer may have multiple options, and matching any one of them is considered correct.\n

Question: {question}

Golden Answer: {reference}

Predicted Answer: {prediction}
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Instruction for Reasoning Model

You are a reasoning assistant with the ability to perform web searches to help you answer the user's question accurately. 

You have special tools:\n\n

- To perform a search: write <|begin_search_query|> your query here <|end_search_query|>.\n

Then, the system will search and analyze relevant web pages, then provide you with helpful information in the format 

<|begin_search_result|> ...search results... <|end_search_result|>.\n\n

Whenever you encounter a topic, fact, or piece of information you are uncertain about or need further details on, please 

perform a search to gather more accurate, up-to-date, or specific information. You can repeat the search process multiple 

times if necessary. The maximum number of search attempts is limited to {MAX_SEARCH_LIMIT}.\n\n

Once you have all the information you need, continue your reasoning.\n\n

Remember:\n

- Use <|begin_search_query|> to request a web search and end with <|end_search_query|>.\n

- When done searching, continue your reasoning.\n

- Do not generate <|begin_search_result|> and <|end_search_result|> tags yourself.\n\n

Please answer the following question. You should think step by step to solve it.\n\n

Provide your final answer in the format \\boxed{YOUR_ANSWER}.\n\n

Question:\n{question}\n\n
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Instruction for Summarization Model

**Task Instruction:**\n\n

You are tasked with reading and analyzing web pages based on the following inputs: **Previous Reasoning Steps**, 

**Current Search Query**, and **Searched Web Pages**. Your objective is to extract relevant and helpful information for 

**Current Search Query** from the **Searched Web Pages** and seamlessly integrate this information into the 

**Previous Reasoning Steps** to continue reasoning for the original question.\n

**Guidelines:**\n

1. **Analyze the Searched Web Pages:**

- Carefully review the content of each searched web page.

- Identify factual information that is relevant to the **Current Search Query** and can aid in the reasoning process for 

the original question.\n

2. **Extract Relevant Information:**

- Select the information from the Searched Web Pages that directly contributes to advancing the **Previous Reasoning 

Steps**

- Ensure that the extracted information is accurate and relevant.\n

3. **Output Format:**

- Present the helpful information for current search query: beginning with `**Final Information**` as shown below.

**Final Information**\n

[Helpful information]\n

**Inputs:**

- **Previous Reasoning Steps:**  

{prev_reasoning}\n

- **Current Search Query:**  

{search_query}\n

- **Searched Web Pages:**  

{document}\n

Now you should analyze each web page and find helpful information based on the current search query "{search_query}" 

and previous reasoning steps.
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