LAVa: Layer-wise KV Cache Eviction with Dynamic Budget Allocation

Yiqun Shen!? Song Yuan®

Daxin Jiang®

Zhengze Zhang'?
Cam-Tu Nguyen'?*

Xiaoliang Wang!

IState Key Laboratory for Novel Software Technology, Nanjing University

2School of Artificial Intelligence, Nanjing University

3Stepfun

yiqunshen@smail.nju.edu.cn
ncamtu@nju.edu.cn

Abstract

KV Cache is commonly used to accelerate
LLM inference with long contexts, yet its high
memory demand drives the need for cache com-
pression. Existing compression methods, how-
ever, are largely heuristic and lack dynamic
budget allocation. To address this limitation,
we introduce a unified framework for cache
compression by minimizing information loss
in Transformer residual streams. Building on
it, we analyze the layer attention output loss
and derive a new metric to compare cache en-
tries across heads, enabling layer-wise com-
pression with dynamic head budgets. Addition-
ally, by contrasting cross-layer information, we
also achieve dynamic layer budgets. LAVa is
the first unified strategy for cache eviction and
dynamic budget allocation that, unlike prior
methods, does not rely on training or the com-
bination of multiple strategies. Experiments
with benchmarks (LongBench, Needle-In-A-
Haystack, Ruler, and InfiniteBench) demon-
strate its superiority. Moreover, our experi-
ments reveal a new insight: dynamic layer bud-
gets are crucial for generation tasks (e.g., code
completion), while dynamic head budgets play
a key role in extraction tasks (e.g., extractive
QA). As a fully dynamic compression method,
LAVa consistently maintains top performance
across task types. Our code is available at
https://github.com/MGDDestiny/Lava.

1 Introduction

Large language models (LLMs) have shown re-
markable capability in handling long-text scenarios,
enabling advancements in tasks such as question
answering (Kamalloo et al., 2023), code genera-
tion (Guo et al., 2023), and multi-turn dialogues
(Chiang et al., 2023). To further enhance external
knowledge integration, state-of-the-art models like
Claude 3.5 (Anthropic and et al.), GPT-4 (OpenAl
and et al., 2024), and Qwen2.5 Max (Qwen and

*Corresponding author

et al., 2025) have extended their context lengths
beyond 128K tokens. However, supporting such
long contexts comes with increased computational
challenges. One common approach to accelerating
LLM inference is caching Key and Value vectors
(KV Cache), but its high memory demand necessi-
tates efficient cache compression techniques.
While existing compression methods have
shown promise, they are largely heuristic, relying
on statistical measures such as accumulated atten-
tion scores (Zhang et al., 2023; Li et al., 2024).
These metrics are derived from empirical observa-
tions rather than a theoretical foundation. Addi-
tionally, although dynamic head allocation (Feng
et al., 2024) and dynamic layer allocation (Qin
et al., 2025) have been explored, no method, to our
knowledge, fully adapts head and layer budgets.
To address this gap, we propose a unified frame-
work for cache compression, which is formulated
through the lens of minimizing information loss
in Transformer residual streams (see Figure 1, and
Sec. 3). Many existing methods can be formulated
within our framework. Specifically, context com-
pression methods (Qin et al., 2024a,b) aim to mini-
mize global information loss at the logits layer. KV
Cache compression methods (Zhang et al., 2023;
Cai et al., 2024; Qin et al., 2025) primarily focus
on local information loss at the head or layer levels.
Our framework provides a principled approach
to designing new algorithms. This paper introduces
a novel method based on Layer Attention Output
Loss, which measures the impact of compression
on the information retained in each layer after
multi-head attention. The layer-wise loss function
provides a balanced perspective on both local infor-
mation within layers and global information flow
across layers. Within each layer, the loss function
guides the design of a scoring mechanism to assess
token importance across heads, allowing for simul-
taneous head budget allocation and cache eviction.
Across layers, it enables dynamic layer budget al-

13672

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 13672-13692
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/MGDDestiny/Lava.

Next Token D:ED

A

Unembedding ¥

Layer

Layer L

Layer 2

Layer 1

Current Step
(the N-th Residual Stream) (Last Residual Stream)

T
._._A_._. Logit Loss

Loss

Layer Attention

Output Loss

Head Attention

Head Attention
Loss

Expected Last Step

Figure 1: Information flow in decoder-only LLMs. The decoding process can be seen as operating on the current
residual stream. Each residual stream (red lines) corresponds to one token, and is considered as a communication
channel. Attention heads copy information from past residual streams to the current one (green lines) .

location by comparing information between layers.
Our method is theoretically grounded, and signifi-
cantly simpler than CAKE, the only training-free
method with dynamic layer budgets.

Extensive experiments were conducted using var-
ious LLM series on the LongBench and Needle in
a Haystack benchmarks. The results consistently
demonstrate LAVa’s strong ability to preserve the
model’s long-text comprehension under various
memory constraints. Additionally, compared to
a full cache implementation of FlashAttention-2,
LAVa significantly reduces memory consumption
while simultaneously reducing latency (9x faster
decoding for 128K-token sequences). Our empiri-
cal findings highlight that dynamic layer budgets
are essential for generation tasks, while dynamic
head budgets are crucial for text extraction tasks.
Achieving dynamic budget allocation at both the
head and layer levels is key to optimizing perfor-
mance across different tasks.

Our Contributions: 1) We introduce a principled
framework for KV Cache eviction by analyzing
the information flow through Transformer residual
streams, accounting for information loss at var-
ious points during decoding. 2) Building on this
framework and the notion of information loss at the
layer-wise attention output, we propose LAVa—a
unified method that simultaneously performs KV
cache eviction and dynamic budget allocation. To
the best of our knowledge, LAVa is the first training-

free method to achieve dynamic budget allocation
without relying on multiple combined metrics, mak-
ing it simple for practical purposes. 3) Evaluations
on LongBench, Needle in a Haystack, Ruler and
InfiniteBench demonstrate that our simple method
outperforms strong baselines. 4) Experiments
reveal new insights into the role of dynamic budget
allocation across different tasks, offering guidance
for the adaptive selection of strategies.

2 The Information Flow of LLM
Decoding Process with KV Cache

KV Cache is initialized at prefilling stage, which
basically computes the Key and Value for tokens
in the initial prompts in the standard way (Vaswani,
2017). In the following, we assume that there ex-
ists a KV Cache of (N — 1) previous tokens and
demonstrate how decoding is performed at step-/V.

Notations The LLM has L layers, each has H
heads. The model and head dimensions are d and
dn, = d/H; K,V are the KV Cache for the [-th
layer up to the current time step (the /N-th token),
which are of [H, (N — 1), dj] sizes. The full nota-
tion Table 3 is in Appendix A.

Decoding Process According to (Ferrando and
Voita, 2024), LLM decoding can be viewed as op-
erating on the current (N-th) residual stream, as
illustrated in Figure 1. Specifically, suppose that
:U{V is the current input for layer [, we first calculate

13673

the corresponding Q{V , K ZN , VlN as follows:
Q = af Wi K = o Wi VY = o w

where QV, KN, V;™ are of size (H x 1 x dp,), con-
taining H head-wise caches. The layer-wise KV
Cache is then updated as follows:

K, = Cat[K;, KN, Vi = Cat[V}, ;"]

where K, V; are tensors of size (H x N x dp), and
Clat indicates the concatenation operation.We then
calculate the attention scores of step-N for layer-I:

AlN == CathE[H] (Al]?[h)

QY (K n)T

Softmax(im).
AN, [i] indicates how much the token at step-N
attends to the token-i (i < N). Layer-/ attention

output is calculated as follows:

yl' = Catye (AN Vip) WP € R4

where AlNh = Here,

The layer output xfil is calculated as ml]il =
le +FFN (le), which is then passed as the input
the next layer [+ 1. In the last layer, we exploit
an un-embedding layer (W™ € R%*IVI) to get the
probability vector p¥ for next token sampling.

3 A Principled Framework for KV Cache
Eviction based on Information Loss

Given the KV Cache, compression can be seen
as masking entries in the K'V tensors so that the
attention heads cannot copy masked information to
the later residual streams. Formally, one can define
the attention mask 7, ;, for layer-/ and head-h:

i 1 if K [é] and V; 5, [¢] are retained
7 =
L 0 evict K p[i] and V] [4]

The goal is to find a KV Cache eviction policy so
that to minimize the information loss for the logits
at the last layer (p'V) for all subsequent residual
streams (from N to N,; see Figure 1). Let P denote
this logit loss, and B be the memory constraint. The
unified problem for budget allocation and cache
eviction can be defined as follows:

: 1..N
wip P(x},Z, B (1)
st. Z Il h[Z] = Bl,ha
1€[N]
Z By = By; ZBZ =B
he[H]| le[L]

Typ[k] = 1,1, h; and Vk € [N — w, N]

Here, B; j, represents the budget for layer-/ and
head-h, B; denotes the total budget for layer-/. The
final constraint ensures that the most recent tokens
within a window of size w are retained for all heads,
aligning with the common practice in the literature.

As computing the loss over future, unseen tokens
is impractical. To address this, we approximate the
loss by considering only residual streams up to the
current step N. Considering the current step-/V,
one can define P as the cross-entropy loss between
p™¥ and p", which is the logit obtained with the at-
tention mask (Qin et al., 2024a). Additionaly, since
the search space for the mask matrix is combina-
torial, we instead search for a scoring function s,
where s; 5, [i] assigns an importance score to token %
at layer [and head h. This scoring function allows
us to greedily choose the least important entries to
be masked Z = Select(s, B). All in all, we have
the following (surrogate) optimization problem:

. 1...N
B 2
Brgg;P(Xl ,5,B) (2)

where F denotes the space of all scoring functions.
The scoring function can be parameterized by a
network ¢, which is then found through offline
training. This is the common approach employed in
context compression methods (Qin et al., 2024a,b).

The aforementioned approach to minimizing
Global Logit Loss can be impractical for online
inference when the scoring function is computa-
tionally expensive. A more feasible alternative is
to focus on local information and apply localized
KV Cache eviction. For instance, Head Attention
Loss can be used for head-wise eviction, a strategy
adopted by most existing methods (Zhang et al.,
2023; Li et al., 2024; Qin et al., 2025). In this case,
the scoring functions are lightweight, relying on
simple statistical features, like head-wise attention
weights. Table 1 summarizes how existing meth-
ods can be formalized within our framework, with
further details provided in Appendix B.

4 LAVa: Layer-wise Cache Eviction with
Dynamic Budget Allocation

4.1 Layer Attention Output Loss and the
Scoring Function

The aforementioned framework provides a prin-
cipled approach to designing new algorithms for
KV Cache eviction. This section demonstrates the
design of our novel algorithm based on Layer At-
tention Output Loss (see Figure 1). Specifically, we

13674

Methods | Budgets ‘

‘ Loss

Scoring Function
| B | B |

SnapKV (Li et al., 2024) B/H B/L Recent attention scores

SZh[Z]f*Z] Now AL Vi < N —w ,
CAKE (Qin et al., 2025) Bi/H | Dynamic | Recent attention scores + attention shifts Head Attention

51 h[l] = YVARIL v ([4] ,[i]))

+2 Z] No wA{h[z] V’L<N w
AdaKYV (Feng et al., 2024) | Dynamic Fixed Recent attention scores (like SnapKV) Laver Attention
LAVa (Ours) Dynamic | Dynamic | Recent attention scores X value norm o Y

q _ mazp|Vi [kl <~N ATl utput
suall] = == 20 N ALl

Table 1: Summary of representative methods for KV Cache compression. LAVa is the only method to support
dynamic head (B;,5,) and layer (53;) budgets. For the full table and more comparison, please refer to Appendix B.

show how our scoring function is designed based
on analyzing the upper bound of the loss and how
we can exploit the scoring function for layer-wise
cache eviction with dynamic budget allocation.

Lemma 1. Based on the L, norm, the layer at-
tention output loss due to the attention mask L is
measured for layer-1 at the current (N-th) residual
stream as follows:

Pl Z,B) =yl =4Il 3)
AN, oI,
Catp, | [AN, — — L — "2)y | WP
(L,h — HA QIIhHI , l)

where © indicates element-wise multiplication and
QlN indicates the layer attention output obtained by
masking the KV Cache with T (equivalently, after
KV Cache eviction).

We then develop a new upper bound for the L
norm and provide the result in Theorem 1. The
proof of these are both provided in Appendix C.

Theorem 1. The Ly norm of the layer attention
output loss can be bounded by:

Hle—@lNﬂl
4
<20 3 3 ANiVin (1 -Tiali) @
he[H] i€[N]
where C = ||VVZOTH1 is a constant indepen-

dent of any head or token within layer-1; Vl,h =
mazyen||Vinlk]|l1 is a head-dependent value.

Given a fixed budget B;, we consider a greedy
algorithm that iteratively evicts one cache entry at a
time until the cache budget is met. We evict the en-
tries with the smallest scores, given by the scoring
function s; 4 [i] = A{Yh [i]V].;, to minimize the upper

bound. Notably, this function incorporates a head-
dependent value Vl h» Which should not be ignored
when comparing KV Cache entries across different
heads. This is different from AdaKV (Feng et al.,
2024), which considers the layer attention output
loss yet does not take into account the values. This
also provides a theoretical justification for the intro-
duction of values into the scoring, which has been
exploited heuristically in VATP (Guo et al., 2024).
41t is noted that we derive our metric through a de-
tailed reasoning process, independently from VATP.
The process is key to understanding the approxima-
tions we introduce, which enable future improve-
ments. Moreover, recognizing that the metric is
inherently grounded in a layer-wise perspective
enables the design of dynamic budget allocation
strategies, as demonstrated below. Empirical com-
parison to VATP is given in Table 5.

The scoring function s;,[i] = AN, [i]V, de-
scribed earlier is based solely on analyiing the cur-
rent residual stream (the /NV-th decoding step). To
improve the performance for KV Cache eviction,
we can incorporate information from all past resid-
ual streams similarly to H20 (Zhang et al., 2023).
However, doing so introduces more computational
overhead. Inspired by SnapKV (Li et al., 2024),
we instead incorporate information from recent w
residual streams, yielding a new scoring function.

Definition 1. Layer-wise Attention and Value
(LAVa) score for the token-i at layer-l, head-h is
defined as follows:

] &

o mazge IVialkllh &
slyh[z]— Z A

w
j=N—-w

Based on this scoring function, we develop the
layer-wise KV Cache eviction as outlined in Al-
gorithm 1. Notably, we only evict entries outside

13675

Algorithm 1 LayerEvict: Layer-wise KV Cache
Eviction based on LAVa Score

Algorithm 2 LAVa: Dynamic Budget Allocation
and Cache Eviction based on LAVa Score

1: Input: Budget B;, KV Cache K;,V,

2: Output: Compressed KV Cache K, Is Vi

3. 51 = H

4: for h =1to H do

5 Calculate s;5,[i],Vi ¢ [N — w, N| based
on Eq. 5

6: sj.extend(s;p,)

7: end for

8: function EvVICT(B;, s;, K, V)

9: S; < B; largest entries based on s;

10: Il,h[k] = O,V(h, k) ¢ S;

11: for h =1to H do

12: Kip =K, © T
13: Vih=Vin© Ly
14: end for

15: Return Kl, V}
16: end function
17: Return EvICT(By, s;, K, V)

the recent window [N — w, N], effectively retain-
ing the most recent tokens as specified by the final
constraint in the optimization problem (Eq. 1).

Dynamic Head Budget. Our eviction method op-
erates across attention heads within layer-/. Specif-
ically, we flatten the LAVa scores from all heads
in the layer into a one-dimensional array s; (Algo-
rithm 1, lines 3-6). We then compare and rank B;
cache entries across all heads for layer-wise evic-
tion, effectively obtaining dynamic head budget
while performing eviction.

4.2 Layer Budget Allocation

Recently, CAKE (Qin et al., 2025) and PyramidKV
(Cai et al., 2024) have demonstrated the potential
of allocating different budgets across layers. Pyra-
midKYV, however, is suboptimal as it assigns a fixed
allocation pattern regardless of the input. In con-
trast, CAKE is prompt-dependent allocation (dy-
namic) but combines different scores for cache evic-
tion and budget allocation, which requires tuning
three hyperparameters, hindering its practical ap-
plication. Below, we describe our hyperparameter-
free algorithm based on the LaVa score.

Our key idea is that layers with greater uncer-
tainty in determining which cache entry to evict
should be allocated a larger budget. Specifically,
based on the LAVa score, the probability of evict-
ing token-k at layer-l and head-h is obtained by

1: Input: Total Budget B, KV Cache K,V Num-
ber of Layers L

2: Output: Compressed KV Cache K,V
3 s=[le=[], K=K, V=V
4: for! =1to L do
5: Calculate s; based on Eq. 5
6: Calculate e; based on Eq. 6, 7
7: s.append(s;)
8: e.append(e;)
9: for | = 1toldo
o
10: By = leezB
1 K;, Vs = BvicT(By, s;, K7, V5)
12: end for
13: end for

14: Return K, 1%

normalizing the LAVa scoring values:

.o sunld]
ol = sl ©

The uncertainty for layer-/ is then measured by the
normalized entropy as follows:

_ > n.i(8unli] log 81,[i])

HxN @

€

With such a measure, we can first initialize all
KV Cache through prefilling, followed by cache
compression. Unfortunately, this approach results
in a high memory peak after prefilling (and before
compression). To address this, the common prac-
tice is that we perform prefilling and cache eviction
layer by layer. For dynamic layer budget allocation,
we draw inspiration from CAKE: after prefilling
layer-l, the lower layers (< [) are recompressed.
As a result, a lower layer is compressed multiple
times using the same LLAVa scores, but the budget is
adjusted, becoming smaller over time as the mem-
ory is shared with more layers being prefilled. The
complete algorithm is outlined in Algorithm 2.

4.3 LLMs with GQA

Group Query Attention (GQA) (Ainslie et al.,
2023) is the technique most modern LL.Ms adopt
due to its balance between performance loss and
memory efficiency. In GQA, the KV Cache is
compressed by sharing a single KV Cache among
all heads within a group. When applying LAVa
scores to GQA, we take a conservative approach:

13676

the group-wise score for a token is determined as
the maximum of its head-wise scores within the
corresponding group. In other words, we tend to
retain the entry as long as it is important for at least
one head within the group.

5 Experiments

5.1 Experimental Settings

Backbone LLMs. We evaluate three series of
LLMs: Mistral-7B-Instruct-v0.2 (Jiang et al.,
2023), Qwen2.5-7/14/32B-Instruct (Qwen and
et al., 2025), all with a context length of 32k and
Llama3-8B-Instruct with 8k context length. These
models are widely adopted for their moderate pa-
rameter sizes and strong performance all utilizing
GQA (Ainslie et al., 2023).

Evaluation Benchmarks. To validate the effec-
tiveness of our algorithm, we perform evaluation
LongBench (Bai et al., 2024), a bilingual, multi-
task benchmark for long-context understanding. It
comprises 21 datasets across six task categories
in both English and Chinese, with an average
length of 6,711 words (English) and 13,386 char-
acters (Chinese). LongBench covers key long-
text application areas, including single-document
QA, multi-document QA, summarization, few-shot
learning, synthetic tasks, and code completion.
We also conduct experiments on Needle In A
Haystack (Cai et al., 2024; Liu et al., 2024; Fu
et al., 2024), Ruler (Hsieh et al., 2024) and In-
finiteBench (Zhang et al., 2024), of which the re-
sults are given in Appendix D.

Baseline Methods. We compare our meth-
ods against several baselines: PyramidKYV,
SnapKV, Ada-SnapKV, Ada-PyramidKV, and
CAKE. Among these, PyramidKV and CAKE al-
low different layer budgets. AdaKV is derived
from the layer attention output loss but relies solely
on attention for its scoring function and does not
incorporate dynamic layer budget allocation. Ada-
SnapKV employs the same scoring function and
uniform layer allocation as SnapKV but allows dy-
namic head budgets. Ada-PyramidKV follows the
same approach but assigns fixed, varying budgets
across layers like PyramidKV.

Pooling operators, such as max pooling or aver-
age pooling, can be applied to token score vectors
to smooth score variations across adjacent tokens
(Li et al., 2024; Cai et al., 2024; Qin et al., 2025).
This strategy is also employed in the implemen-

tation of LAVa and all the baselines. For pooling
operation, for all methods, we adopt maxpool func-
tion and set kernel size as 7. More information
is given in Appendix B, and for implementation
details, please refer to Appendix D.

5.2 Main Results

Table 2 presents the results of Mistral-7B with dif-
ferent eviction policies on LongBench, revealing
several key observations. First, LAVa outperforms
all baselines across different budgets, with a more
pronounced advantage at smaller budgets. Sec-
ond, among methods requiring no hyperparameter
tuning (SnapKYV, Ada-SnapKV, and LAVa), LAVa
achieves the best performance, significantly sur-
passing others. For instance, at B = 128HL, LAVa
achieves an average score of 36.74, compared
to Ada-SnapKV’s 35.82. And finally, LAVa and
CAKE excel in code-related tasks. On RepoBench-
P with a 128HL budget, LAVa (48.92) and CAKE
(48.53) outperform Ada-SnapKV (46.85) by a sig-
nificant margin. This is interesting given that
Ada-SnapKV surpasses CAKE on average over
20 datasets. Similar trends are observed with the
Qwen series and presented in Appendix D.

To further investigate the last observation, we cat-
egorize the 20 LongBench datasets into two types:
extraction tasks, which require extracting answers
from the context (e.g., QA tasks evaluated with F1
or Accuracy), and generation tasks (e.g., summa-
rization and code completion). For each category,
we then compute the average scores obtained with
Qwen and Mistral under varying cache budgets and
eviction policies. Figure 2 highlights several key
findings: 1) Extraction tasks are generally less af-
fected by compression, as LLM performance with
a compressed cache remains closer to that with
a full cache; 2) The performance gap among dif-
ferent eviction policies is greater on generation
tasks.; 3) CAKE and LAVa outperform Ada-SnapKV
and methods with fixed-layer budgets on genera-
tion tasks, though CAKE performs significantly
worse than Ada-SnapKV on extraction tasks with
Mistral-7B. This suggests the importance of (dy-
namic) layer budget allocation for generation tasks.
LAVa, however, consistently achieves top perfor-
mance across both task types and language models.

5.3 Evaluation of Latency and Memory Peak

We evaluate LAVa’s efficiency during LLLM infer-
ence by analyzing peak memory usage and de-
coding latency on Mistral-7B-Instruct-v0.2, imple-

13677

Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code
2, < 2, 0,
2 T A S A T T T T T T G 3
k4 e - % % R %
“
Full Cache 2677 3234 49.63 4842 4343 2789 1861 3085 3292 2454 1504 2720 7100 8623 4341 39.00 281 8656 8975 5529 5255 |45.07
B = 128HL
PyramidKV 2001 1923 4381 3237 3562 2234 1438 1753 1895 2191 1107 2087 47.00 8534 4021 1925 286 6560 5949 4952 4567 | 3451
SnapKV 2099 19.65 4504 3202 3648 2219 1404 17.68 1883 2136 1091 2029 4500 84.10 40.01 1975 3.06 6448 60.50 49.84 4527 | 3442
Ada-PyramidKV 2021 20.80 43.82 33.65 37.21 2299 1493 1806 1941 2202 11.16 2097 5200 8393 3997 20.00 281 7273 72.89 5100 4662 | 36.22
Ada-SnapKV 2061 2056 44.03 3403 3639 2366 1615 1782 1921 2173 1125 2035 5000 8432 39.82 1975 387 69.11 7052 5021 4685 |35.82
CAKE 2101 20.16 4408 32.52 3616 2389 1532 1767 1882 2262 1093 21.03 4700 85.14 3990 2125 3.02 63.65 6596 5181 4853 | 3506
LAVa (Ours) 1957 2L11 4429 3391 3829 2359 1532 1856 1933 2232 1142 2107 5350 8520 40.16 2175 288 69.87 7475 5194 4892 | 36.74
B = 256HL
PyramidKV 2079 2274 4590 3572 3863 2402 1597 1899 2161 2234 1102 2224 5800 84.06 40.52 2275 296 7470 83.83 51.85 4886 |38.23
SnapKV 2139 2215 4650 3477 3968 2501 1486 19.11 2161 23.04 1146 2267 57.00 8504 40.81 2325 318 7649 83.60 5199 49.42 | 38.49
Ada-PyramidKV 2261 23.84 47.65 36.56 3933 2486 17.22 1965 2122 2254 1182 2229 6400 8493 4036 2450 340 7739 85.83 5248 4943 | 3943
Ada-SnapKV 2163 2355 4751 3742 3889 2365 1606 1934 2198 2321 1149 2239 64.00 8633 40.54 2525 223 7744 8542 5231 49.62 | 39.40
CAKE 2137 2340 46.84 3502 3810 2450 1481 1940 2159 2277 1132 2268 5500 8546 4192 2475 296 7566 8646 5429 5138 |38.84
LAVa (Ours) 2270 24.67 4862 37.81 39.68 2596 1677 2026 21.92 2248 1188 2291 6500 8524 4128 2675 288 7676 8575 54.17 5177 | 40.12
B = 512HL
PyramidKV 2357 24.84 4874 39.54 3890 2522 1740 2042 23.04 2324 1191 2419 6650 8607 41.06 2800 329 8729 8883 5377 5042 |4L15
SnapKV 23.67 28.08 49.40 4025 40.14 2558 1697 2049 2375 23.69 1203 2431 6500 8629 4198 2850 322 8579 88.67 5399 5102 | 4148
Ada-PyramidKV 2437 2730 4801 4088 3975 2596 1858 2090 2359 2333 1207 2404 67.50 8644 4258 3150 3.38 8588 89.67 5415 5130 | 41.89
Ada-SnapKV 24.63 2748 4890 4128 39.84 2633 1826 2091 23.59 2351 1227 2432 6750 8638 4234 3250 298 87.65 89.17 5439 51.03 |42.11
CAKE 2276 27.54 4947 4127 38.17 2585 1726 2060 2372 23.65 1195 2450 66.00 8601 4256 2950 345 8679 88.75 5640 5237 | 4176
LAVa (Ours) 2501 27.84 4897 4214 4095 2688 1833 2112 2359 2359 1228 2451 6850 8634 4248 3350 290 8723 89.83 5583 5285 | 4259
B = 1024HL
PyramidKV 25.62 2896 4835 42.18 40.89 2665 19.69 2196 2510 2357 1258 2542 6850 8630 4192 3550 298 8677 89.50 5526 51.03 |42.79
SnapKV 2480 30.17 49.13 4323 4116 2692 1789 2258 2575 23.64 12.88 2585 67.50 8625 42.56 36.00 2.88 88.10 8892 5523 5138 |43.00
Ada-PyramidKV 2498 2992 4797 4143 4083 2698 1942 2245 2546 2358 1294 2561 6850 8630 4284 3550 289 88.18 89.25 5451 5132 | 4290
Ada-SnapKV 24.84 2999 4921 4255 4100 2739 1923 2323 2580 2418 1313 2585 69.00 8623 4284 3625 290 $9.02 8975 5538 5193 |43.34
CAKE 2515 3034 49.00 43.08 40.86 2670 1993 23.07 2582 2372 13.16 2605 6800 8625 4270 3600 291 8860 8875 5675 53.26 |43.36
LAVa (Ours) 2559 3121 4827 4343 4192 2738 1948 2348 2606 2386 1338 2600 70.00 8622 4243 3800 273 8701 8875 57.31 5328 |43.65

Table 2: Final comparison based on Mistral-7B-Instruct-v0.2 among 21 datasets of LongBench. (Note: The best
result is highlighted in bold, and the second is in underline. Due to the negligible numerical values obtained from
the passage count dataset, its results were excluded from the computation of the average scores.)

Mistral-Generation

Mistral-Extraction

—a— Ada-PyramidKV
- Ada-SnapkV
v~ CAKE

|~e= LAVa (Ours)

128 256

5 1024
Cache Budget

16k 32k 64k

128k

Qwen-Generation

51
Cache Budget

Qwen-Extraction

Context Length

256k

16k

32k

Decoding Latency Peak Memory
80
0.301 (=7 Snapkv
[Ada-SnapKV ~70
0.25 CAKE B 0
- LAVa (Ours) rY
o °
7020 Full Cache 250
g Full Cac] g
2ois Full Cache (OOM) 3 a0
2 z
S 30 -
~0.10 £
s
S20{
0.05 10 ’ ’7
o.00 LTI AITTIL AT T I o

64k

128k 256k

Context Length

Score

SN
A\

7~ CAKE
|~e= LAVa (Ours)

128 256 1024

512
Cache Budget

Figure 2: Results of generation and extraction tasks.

mented with FlashAttention-2 (Dao, 2023). Our
comparison includes Full Cache, SnapKV, Ada-
SnapKV and CAKE, all using allocation budget
1024HL. We set input at varying lengths while
keeping the output length fixed at 128.

Decoding Latency. By analyzing the decoding
latency in Figure 3, we observe that our scor-
ing function and dynamic budget allocation intro-
duce negligible decoding cost, achieving over a 9x
speedup compared to Full Cache at a 128K context
length. Notably, our method is easier to deploy
than PyramidKV, Ada-PyramidKV, and CAKE, as
these baselines require parameter tuning.

Figure 3: Peak memory usage and decoding latency in
A800 80GB based on Mistral-7B-Instruct-v0.2.

Peak Memory Usage. The peak memory usage
of all methods generally increases with context
length due to prefilling. Our method effectively
maintains peak memory at a reasonable level, par-
ticularly compared to Full Cache, which encoun-
ters OOM issues at higher context lengths. CAKE
and LAVa, both employing dynamic layer budgets,
generally have slightly higher peak memory usage.
Compared to CAKE, LAVa requires additional stor-
age for the norms of head-wise value vectors, but
this extra memory overhead remains minimal.

Theoretical Analysis. We provide the theoretical
analysis of time complexity and memory usage in
Appendix D. The time complexity and peak mem-
ory usage of SnapKV is O(HN(Ndy + wdy, +
logBlyh)) and O(HNdh + LHBlyhdh), while that
of LAVa is O(HN (Ndj, + wdy, + dy, + logBy)
and O(HNdh + LHBLhdh + LHBLhdh). Setting

13678

Mistral-7B-Generation

Mistral-7B-Extraction

128 256

128 256

512 512
Cache Budget Cache Budget

Figure 4: Ablation study on LongBench.

context length IV as 10,000, head budget B, ;, as
1024, the extra computation of LAVa compared to
SnapKYV is 0.01% and the extra memory usage is
0.6%, which is consistent with Figure 3.

5.4 Further Analysis

Dynamic Budget Allocation To examine the im-
pact of dynamic budget allocation, we introduce
two modifications: LAVa (-layer dynamic), which
enforces a uniform layer budget of B/ L, and LAVa
(-head dynamic), which fixes the head budget at
B;/H after dynamically determining the layer bud-
get B3;, performing head-wise cache eviction with-
out cross-head comparisons. Results in Figure 4
demonstrate that dynamic budget allocation at both
the head and layer levels is essential for perfor-
mance. Furthermore, it reinforces the finding that
dynamic layer budgets are essential for generation
tasks, whereas dynamic head budgets play a crucial
role in text extraction tasks. Detailed results are
provided in Appendix D, where we also analyze the
influence of different layer allocation approaches.

Analysis of LAVa Score. To validate the effec-
tiveness of LAVa score, we replace our dynamic
layer budgets with fixed ones with PyramidKV
or Uniform allocation. For different total bud-
gets, we then compare LAVa-Pyramid with Ada-
PyramidKV and LAVa-Uniform with AdaKV on
LongBench. For each comparison, we count the
number of tasks in LongBench where one method
outperforms the other. Figure 5 presents the final
winning rates. The results show that our scoring
function yields a significantly higher number of
wins in most cases, validating its effectiveness.

6 Related Work

Recently, various KV Cache compression methods
have been proposed, leveraging different policies
such as recency (Xiao et al., 2024), accumulated
attention scores (Zhang et al., 2023), last-token
attention scores (Oren et al., 2024), and recent at-
tention scores (Li et al., 2024; Dai et al., 2024).

LAVa-Pyramid vs Ada-PyramidKV LAVa-Uniform vs Ada-SnapKV

80% 0% 0% 80% 5% 15
0% e 5%

10% 10%

. 65%
50% 50% 45% 50%

128 256 512 1024 128 256 512 1024
Cache Budget Cache Budget
Base LLM = Mistral 7B LAVa Win Tie Ada Win

Figure 5: LaVa score vs AdaKV score on LongBench.

While most approaches assume a uniform budget,
recent efforts have been made for dynamic bud-
get allocation across layers (Qin et al., 2025) and
heads (Feng et al., 2024). Some methods aim at
layer-dependent budgets but fix the patterns across
all samples (Cai et al., 2024; Yang et al., 2024). In
general, KV Cache eviction and budget allocation
are typically treated as separate problems, requir-
ing a combination of independent strategies. In
contrast, we develop a principled framework based
on information loss in the residual stream and pro-
pose a unified method for both cache compression
and dynamic budget allocation.

Closely related to LAVa is (Feng et al., 2025,
2024), which aims at minimizing the layer output
perturbation. However, this study only applies the
derived metric locally for head budget allocation.
In contrast, we propose a metric for layer-wise
cache eviction with dynamic layer budgets.

7 Conclusion

This paper provided a comprehensive of current
KV Cache compression into a unified framework,
grounded in the principle of minimizing informa-
tion loss in Transformer residual streams. By
analyzing the Layer Attention Output Loss, we
proposed LAVa, a novel layer-wise compression
method that enables fully dynamic head and layer
budget allocation. Our experiments demonstrate
that dynamic layer budgets are crucial for gener-
ation tasks, whereas dynamic head budgets are
important for extraction tasks. As a fully dynamic
compression method, LAVa consistently maintains
top performance across task types and LLM archi-
tectures, while achieving the same speedup of 9 x
with 128K context length compared to full cache.
Future directions include exploring new com-
pression algorithms based on our framework, as
well as extending our framework for model com-
pression. By advancing efficient methods for
LLMs, our work contributes to making LLM more
accessible and scalable for diverse applications.

13679

Limitations

There are several limitations to our work. While
we propose a unified framework with multiple opti-
mization opportunities, our theoretical analysis and
experiments focus on only one direction. Although
LAVa’s simplicity is a key advantage, other ap-
proaches should be explored to further close the per-
formance gap with a full-cache setup, particularly
for generation tasks. Additionally, further research
is needed to better understand why dynamic layer
budget is crucial for generation tasks. Lastly, apart
from FlashAttention-2 (Dao, 2023), our method
has not yet been integrated into other widely used
inference frameworks, such as vVLLM (Kwon et al.,
2023). We believe that such integration is essential
for broader adoption and real-world deployment of
our algorithm.

Acknowledgment

This work was partially supported by NSFC
62172204.

References

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury
Zemlyanskiy, Federico Lebron, and Sumit Sanghai.
2023. GQA: Training generalized multi-query trans-
former models from multi-head checkpoints. In The
2023 Conference on Empirical Methods in Natural
Language Processing.

Anthropic and et al. The claude 3 model family: Opus,
sonnet, haiku.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2024. LongBench: A bilingual, multi-
task benchmark for long context understanding. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 3119-3137, Bangkok, Thailand.
Association for Computational Linguistics.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu
Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao
Chang, Junjie Hu, et al. 2024. Pyramidkv: Dynamic
kv cache compression based on pyramidal informa-
tion funneling. arXiv preprint arXiv:2406.02069.

Guanzheng Chen, Xin Li, Michael Shieh, and Lidong
Bing. 2025. LongPO: Long context self-evolution of
large language models through short-to-long prefer-
ence optimization. In The Thirteenth International
Conference on Learning Representations.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan

Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, lon
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Jincheng Dai, Zhuowei Huang, Haiyun Jiang, Chen
Chen, Deng Cai, Wei Bi, and Shuming Shi. 2024.
Corm: Cache optimization with recent message
for large language model inference. Preprint,
arXiv:2404.15949.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and
S Kevin Zhou. 2024. Ada-kv: Optimizing kv cache
eviction by adaptive budget allocation for efficient
IIm inference. arXiv preprint arXiv:2407.11550.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and
S Kevin Zhou. 2025. Identify critical kv cache in
IIm inference from an output perturbation perspec-
tive. Preprint, arXiv:2502.03805.

Javier Ferrando and Elena Voita. 2024. Information flow
routes: Automatically interpreting language models
at scale. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 1743217445, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Han-
naneh Hajishirzi, Yoon Kim, and Hao Peng. 2024.
Data engineering for scaling language models to
128k context. In Proceedings of the 41st Interna-
tional Conference on Machine Learning, ICML’ 24.
JMLR.org.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Ju-
lian McAuley. 2023. Longcoder: A long-range pre-
trained language model for code completion. In In-
ternational Conference on Machine Learning.

Zhiyu Guo, Hidetaka Kamigaito, and Taro Watanabe.
2024. Attention score is not all you need for token im-
portance indicator in KV cache reduction: Value also
matters. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 21158-21166, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Roger A Horn and Charles R Johnson. 2012. Matrix
analysis. Cambridge university press.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-
tanu Acharya, Dima Rekesh, Fei Jia, and Boris Gins-
burg. 2024. RULER: What’s the real context size of
your long-context language models? In First Confer-
ence on Language Modeling.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

13680

https://openreview.net/forum?id=hmOwOZWzYE
https://openreview.net/forum?id=hmOwOZWzYE
https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://openreview.net/forum?id=qTrEq31Shm
https://openreview.net/forum?id=qTrEq31Shm
https://openreview.net/forum?id=qTrEq31Shm
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2404.15949
https://arxiv.org/abs/2404.15949
https://arxiv.org/abs/2502.03805
https://arxiv.org/abs/2502.03805
https://arxiv.org/abs/2502.03805
https://doi.org/10.18653/v1/2024.emnlp-main.965
https://doi.org/10.18653/v1/2024.emnlp-main.965
https://doi.org/10.18653/v1/2024.emnlp-main.965
https://api.semanticscholar.org/CorpusID:259262301
https://api.semanticscholar.org/CorpusID:259262301
https://doi.org/10.18653/v1/2024.emnlp-main.1178
https://doi.org/10.18653/v1/2024.emnlp-main.1178
https://doi.org/10.18653/v1/2024.emnlp-main.1178
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=kIoBbc76Sy

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Ehsan Kamalloo, Nouha Dziri, Charles Clarke, and
Davood Rafiei. 2023. Evaluating open-domain ques-
tion answering in the era of large language models.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 5591-5606, Toronto, Canada.
Association for Computational Linguistics.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP
’23, page 611-626, New York, NY, USA. Association
for Computing Machinery.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. 2024. SnapKV:
LLM knows what you are looking for before gener-
ation. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics, 12:157-173.

OpenAl and et al. 2024. Gpt-4 technical report.
Preprint, arXiv:2303.08774.

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi,
and Roy Schwartz. 2024. Transformers are multi-
state rnns. arXiv preprint arXiv:2401.06104.

Guanghui Qin, Corby Rosset, Ethan Chau, Nikhil Rao,
and Benjamin Van Durme. 2024a. Dodo: Dynamic
contextual compression for decoder-only Ims. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:

Long Papers), pages 9961-9975.

Guanghui Qin, Corby Rosset, Ethan C. Chau, Nikhil
Rao, and Benjamin Van Durme. 2024b. Nugget 2d:
Dynamic contextual compression for scaling decoder-
only language models.

Ziran Qin, Yuchen Cao, Mingbao Lin, Wen Hu, Shixuan
Fan, Ke Cheng, Weiyao Lin, and Jianguo Li. 2025.
CAKE: Cascading and adaptive KV cache eviction
with layer preferences. In The Thirteenth Interna-
tional Conference on Learning Representations.

Qwen and et al. 2025. Qwen2.5 technical report.
Preprint, arXiv:2412.15115.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao
Peng, and Yao Fu. 2025. Retrieval head mechanis-
tically explains long-context factuality. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, junxian
guo, Shang Yang, Haotian Tang, Yao Fu, and Song
Han. 2025. Duoattention: Efficient long-context
LLM inference with retrieval and streaming heads. In
The Thirteenth International Conference on Learning
Representations.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming lan-
guage models with attention sinks. In The Telfth
International Conference on Learning Representa-
tions.

Dongjie Yang, Xiaodong Han, Yan Gao, Yao Hu, Shilin
Zhang, and Hai Zhao. 2024. PyramidInfer: Pyramid
KV cache compression for high-throughput LLM
inference. In Findings of the Association for Com-
putational Linguistics: ACL 2024, pages 3258-3270,
Bangkok, Thailand. Association for Computational
Linguistics.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang
Xu, Junhao Chen, Moo Hao, Xu Han, Zhen Thai,
Shuo Wang, Zhiyuan Liu, and Maosong Sun. 2024.
ooBench: Extending long context evaluation beyond
100K tokens. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 15262—
15277, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Ré, Clark Barrett, et al. 2023.
H2o0: Heavy-hitter oracle for efficient generative in-
ference of large language models. Advances in Neu-
ral Information Processing Systems, pages 34661—
34710.

A Extension of The Information Flow of
LLM Decoding Process with KV Cache

KV Cache is initialized at prefilling stage, which
basically computes the Key and Value for tokens
in the initial prompts in the standard way (Vaswani,
2017). In the following, we assume that there ex-
ists a KV Cache of (IV — 1) previous tokens and
demonstrate how decoding is performed at step-/V.

Notation Table The LLM has L layers, each has
H heads. The model and head dimensions are d
and dy, = d/H; K, V; are the KV Cache for the [-
th layer up to the current time step (the N-th token),
which are of [H, (N — 1), dp] sizes. The notations
for the theoretical analysis are listed in Table 3.

13681

https://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2023.acl-long.307
https://doi.org/10.18653/v1/2023.acl-long.307
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=jVsXDLIt45
https://openreview.net/forum?id=jVsXDLIt45
https://openreview.net/forum?id=jVsXDLIt45
https://openreview.net/forum?id=EQgEMAD4kv
https://openreview.net/forum?id=EQgEMAD4kv
https://arxiv.org/abs/2412.15115
https://openreview.net/forum?id=EytBpUGB1Z
https://openreview.net/forum?id=EytBpUGB1Z
https://openreview.net/forum?id=cFu7ze7xUm
https://openreview.net/forum?id=cFu7ze7xUm
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://doi.org/10.18653/v1/2024.findings-acl.195
https://doi.org/10.18653/v1/2024.findings-acl.195
https://doi.org/10.18653/v1/2024.findings-acl.195
https://doi.org/10.18653/v1/2024.acl-long.814
https://doi.org/10.18653/v1/2024.acl-long.814

Notation Explanation ‘ Notation ‘ Explanation
N Current token length A,]\;L[z] Attention weight of position ¢ at layer [, head h and step N
Ne Expected token length le Attention output of layer [and step N
L Total number of layers ;QIN Modified attention output of layer [and step N after eviction
H Total number of heads per layer D Logits after last layer for next token
l Layer index, [€ [L] D Modified logits after last layer for next token after eviction
h Head index, h € [H| P Information loss function of Transformer residual streams
d The model embedding dimension w Sliding window size
dp, The head embedding dimension dj, = d/H Bin Budget for head h of layer [
rlN The input hidden states of step NV and layer [B; Budget for layer [
Q,N The query vector of step NV and layer [B Fixed total budget for KV Cache, B = Ele[1] B;
K lN The key vector of step N and layer [51,11 Score of position ¢ at layer [and head h
VIN The value vector of step N and layer [e The uncertainty of layer [for dynamic layer budget allocation
Ky, Key cache of layer [and head h T Attention mask for the head h of layer [, Z; ;, € [1,0]™
Vih Value cache of layer [and head h T Attention mask Z € [1, 0]F*F*N

Table 3: Notation table.

Decoding Process According to (Ferrando and
Voita, 2024), the decoding process of large lan-
guage models (LLMs) can be viewed as a series
of operations on the current residual stream, as il-
lustrated in Figure 1. In each layer, information is
read from the residual stream, updated, and then
written back. Specifically, supposing that yclN is
the current input for layer [, we first calculate the
corresponding QlN , K lN , VlN as follows:

N _ Nw/Q.1-N _ _NwywK.y/N _ N1/ V
Q =z, WK =z, W VD =a' W,

where QIN, KZN, VIN are of size (H x 1 x dy), con-
taining H head-wise caches. The layer-wise KV
Cache is then updated as follows:

K, = Cat[K;, K], V; = Cat[V;, V}]

where K, V; are tensors of size (H x N X dp), and
Clat indicates the concatenation operation. We then
calculate the attention scores of step-N for layer-I:

Al = Catyemy (A)
QY. Kin
Softmax(W)
textbfAl]Yh [i] indicates how much the token at step-
N (the N-th token) attends to the i-th token (i <=

N). Layer-[attention output is calculated as fol-
lows:

where AlNh = Here,

yl' = Catyem (ANVip) WP € R4

where VVIO € R¥*?, The layer output :Ul]il, which
is also the input for the layer-(I + 1), is calculated
as)y, =y + FFN(yM).

In the last layer, we exploits an un-embedding
layer (WM ¢ R4 VI to get the probability vector
p for next token sampling:

®)

Head-wise vs Layer-wise Cache Current query
matrix and KV Cache on head h of layer [are :

N = (yp + FFN(yp) WM

Qf?[h = QZN[:,dh x«h:dpx(h+1)]€ R1*dn 9)

Kl7h:Kl[:,dh*hZdh*(h-i—l)], (10)
Vin = Vilsydp x ho: dp % (h+ 1)) € RV >4

(11)

Henc, the layer-wise KV Cache can be treated as

concatenation of head-wise elements where we just
change the order of dimensions:

K; = Catyepm K] € RTNV* - (12)

Vi = Catyepm [Vip] € RN >n (13)
And the same to the query matrix:

Q' = Catyem[Qr)) € RF*n (14)

B Extension of A Principled Framework
for KV Cache Eviction based on
Information Loss

The unified problem for budget allocation and
cache eviction can be defined as follows:

min P (x}+V, 7, B)

)

(15)

1E€[N]
Y Bh=B;) B =B
he[H] le[L)

Tin[k] = 1,1, h; and ¥k € [N — w, N]

13682

The optimization problem in Eq. 15 is infeasible to
solve for several reasons. We can instead search for
a scoring function s, where s; ;,[i] assigns an impor-
tance score to token ¢ at layer [and head h. This
scoring function allows us to greedily choose the
least important entries to be masked until the bud-
get is met Z = Select(s, B). Bringing everything
together, we arrive at the following (surrogate) op-
timization problem:

min P(xi~V, s, B)

16
B,seF (16)

Current various kv cache eviction methods can
be adapted into our framework, just defining sev-
eral significant functions and parameters (includ-
ing P,Z, B and s) and introducing additional con-
straints, which will result in suboptimal perfor-
mance. In addition, they adopt many heuristic
techniques based on observations to simplify the
problem. The full summarization of how existeing
methods can be formalized within our framework
is presented in Table 4.

H20. (Zhang et al., 2023) Allocation budgets B
are all fixed before generation. The budgets of all
layers are the same and the budgets of all heads are
also the same.

B
B = WL

H20 uses head attention loss and adopt accumu-
lated attention scores as score function.

a7

N
siuli] = Z Al Lli, Ty = Select (s, Bin)
j=i+1

(18)
H20 claimed that the accumulated attention score
can preserve the future attention pattern better. This
technique is heuristic and based on observations
of experiments in several methods like H20 and
SnapKV (Liet al., 2024), but it is valid and actually
can improve the performance, mitigating the im-
pact of absolutism of only current attention scores
(Oren et al., 2024).

TOVA. (Oren et al., 2024) The difference be-
tween TOVA and H20 is that TOVA uses current
attention scores as score function.

Sl7h[i] = A{Yh[i],zljh = Select(shh, th) (19)

SnapKV. (Lietal.,2024) The difference between
SnapKV and H20 is that SnapKV uses recent atten-
tion scores as score function, which means SnapKV

only utilizes tokens within sliding window to cal-
culate accumulated attention scores. We set sliding
window size as w:

N

sialil = Y AfL[)

j=N-—-w
Ty = Select(si,n, Bip) (20)
SnapKV claims that the accumulated attention
scores of the recent sliding window is enough to
represent the significance of tokens. Furthermore,
SnapKV adopts pooling operation to preserve the
completeness of the information. In our view, bet-
ter protecting the coherence of the text is the reason
for the effectiveness of pooling operation.

PyramidKYV. (Cai et al., 2024) The difference
between PyramidKV and SnapKYV is that consider-
ing the different significance of layers in the long-
context setting, PyramidKYV set the budgets of lay-
ers in a descending order like a pyramid. It uses a
hyper-parameter 3 to control the shape of pyramid.

B 2x B
—m,Bo— 7 —Br-1

Br_1—B
BBy —p g+

Br—1

l 1)

And the budgets of heads in one layer are the same:
Bl,h = %

Hence, compared with SnapKV, PyramidKV
consider about different budgets of layers in a

heuristic way.

CAKE. (Qin et al., 2025) Allocation budgets 5
are generated through the online prefilling stage.
All heads of one layer have the same budget. So
CAKE do not consider the level of head (such as
using mean information across heads).
Considering spatial and temporal information,
CAKE allocates different budgets to different lay-
ers. And not adopting the fixed pattern like Pyra-
midKV, CAKE claims that for different samples,
the allocation pattern also needs to be adapted. It
defines functions of spatial and temporal informa-
tion for one layer [, the spatial information function
‘H is formed as entropy of attention scores (larger
values means more even distribution) and the tem-
poral information function V (larger values means
more distribution shift) is formed as variance of
attention scores (A(”) means the attention scores

13683

Methods | Budgets ‘

Loss ‘

Scoring Function
| Buw | B | | |

H20 (Zhang et al., 2023) Bi/H B/L Accumulated attention scores

sinli] = Zj:iJrl Ag,h[Z]
SnapKV (Li et al., 2024) B, /H B/L Recent attention scores

slh[]zlszwA{hH,W<N—w .
TOVA (Oren et al., 2024) Bi/H B/L Last-token attention scores Head Attention

siuli] = Apy[d]
CAKE (Qin et al., 2025) B /H Dynamic | Recent attention scores + attention shifts

81, h[] = YVARL v, ([47 1))

+1 Z] New lh[z] VZ<N w
VATP (Guo et al., 2024) Bi/H B/L Recent attention scores + value vectors Head Attention

. Vinli i o

sl,h[l] — Il I,,Z}[Z]”l Z;'V:N_w Ag,h[l] Output
Dodo (Qin et al., 2024a) | Dynamic | B/L | Neural Network (LoRA) | Logits |
DuoAttention (Xiao et al., 2025) | w or full - Head classifier (retrieval vs non-retrieval) \
AdaKV (Feng et al., 2024) Dynamic Fixed Recent attention scores Layer Attention
LAVa (Ours) Dynamic | Dynamic | Recent attention scores + value vectors Output

. max k i
sinli] = k”:j'hr[A Z;V:wa A 1]

Table 4: Comparison between different methods; Dodo and DuoAttention require training; The layer cache budget
B; of AdaKV is based on the method it is integrated with.

distribution in the n-th step of prefilling stage):

N
Hy=—> Allog(4]),
j=1
N
Vi=> VAR([AJ[j]]"FN) (22
7j=1

Then CAKE uses these two functions to determine
the budget of layers, where ~y; and 7y, are two hyper-
parameters to control the influence of two func-
tions:

= P By
Pl H VZ’YQ Bl ZZET’PB Bl h _H
(23)

CAKE also uses head attention loss function as
optimization objective but it also introduces tempo-
ral information into score function of SnapKV. It
adopts variance to represent the distribution shift
of attention scores for the same token. Let y be a
hyper-parameter to control the influence of tempo-
ral information, and w as the sliding window size,
CaKE score is:

ZA

j=N—-w
Ty p, = Select(s;p, Bip)

sunli i] + yVAR([A] [1]]'€1N)

(24)

AdaKV. (Feng et al., 2024) The algorithm of
AdaKV is based on other methods. It adopts

layer attention output loss function but not con-
duct real training. Deriving the upper bound of
output loss (as shown in Eq. 25 where C
Maxpe(m HVVZ h Vl l1), AdaKV obtains the in-
sight that allocatlng different budgets to heads of
one layer based on the score function just consider-
ing about information within attention scores can
preserve the performance of model further.

lye — il < 2C > (> AN = Tislil)

he[H] i€[N]
(25)

We set §; as the topk results of all s; 1, h € [H], the
budget of one head h can be calculated by:

Bl,h = Num(él’h), §l,Zl = Select(sl’h, Bl,h)
(26)
AdaKV combines this insight with SnapKV and
PyramidKYV for better results. So the score func-
tion of AdaKYV is the same as Eq. 20. However, the
bound of AdaKV ignores the influence of value in-
formation and just use the max information, which
will make the bound too loose. Our framework
about output loss is motivated by this research and
we conduct some modification and further studies.
For the details and how to derive upper bound of

output loss, refer to Section 4.

DuoAttention. (Xiao et al., 2025) DuoAttention
uses layer attention output loss function as op-
timization objective. Unlike H20 and TOVA, at-
tention mask Z of DuoAttention is constraint to

13684

a pattern combined with sink and recent tokens
based on allocation budgets B, which means score
function s id for tokens are not needed. Here sink
tokens means several initial tokens in prompt de-
fined by Streamingl.LM (Xiao et al., 2024).

if position & is sink or recent, k € [N]

Lipli]l = {1 . .
0 otherwise, evict K; »[k] and V; 1, [k]
(27
DuoAttention adopts real optimization method and
needs training based on 2-norm of output loss func-
tion. The optimization result is to determine the
allocation budgets B. In detail, it determines which
head was allocated with full budget and which head
was allocated with a compressed budget. So be-
sides Z and B, DuoAttention introduces a param-
eter « to be optimized and finally determines the
different functions of heads, including Retrieval
Heads (Wu et al., 2025) and Streaming Heads. We
define w as the numbers of sink and recent tokens.

B, — n if head h of layer [is Retrieval Head
b w otherwise, Streaming Head

(28)

Dodo. (Qin et al., 2024a) Dodo uses logit loss

function as optimization objective. But not adopt-
ing a predefined rule for attention mask Z, Dodo
uses a score function ¢ implemented by LoRA (Hu
et al., 2021) adapters to determine the attention
mask for tokens, which is trained along with log-
its loss. Logits loss is defined by loss of future
expected tokens which are not pratical. So Dodo
converts the expected tokens into past tokens and
the loss function can be formalized as:

P(Z,B) = Y CE(p,p)’
]

€[N

(29)

The score function ¢ is trained via this loss func-
tion and finally determines which tokens will be
preserved. The cache budget B for all heads and
layers are the same. Besides, Dodo merges the in-
formation within tokens evicted into the preserved
tokens similar to KV Cache merging methods.

VATP. (Guo et al., 2024) The difference between
LAVa and VATP is shown in Table 4 and explained
as follows: (1) VATP directly multiplies each to-
ken’s value norm with attention scores. In contrast,
LAVa calculates the maximum value norm, which
serves as scaling factors for heads; (2) VATP has
fixed head and layer budgets, while L AVa is totally

Budgets 128 512 1024
SnapKV 3442 4148 43.00
+VATP 3534 4193 43.32
LAVa 36.74 42.59 43.65
-layer dynamic 36.20 42.11 43.35

Table 5: Comparison between VATP and LAVa.

dynamic. The deeper difference, however, lies in
how the two scores are developed. VATP comes
with an intuition of "Value also matters" but lacks
theoretical analysis. We independently derive from
layer attention output with a complete reasoning
process: starting from layer attention output, de-
riving the upper bound, getting an approximate
score in greedy solution, smoothing it out based on
multiple residual stream.

This reasoning is very important. As we start
from the layer point of view, we can see that such
scores can be used to compare entries across heads
for layer-wise KV Cache eviction. And we ar-
gue that doing so could reduce the information
loss at layer attention output. The reasoning pro-
cess shows what approximation we make and gives
room for future improvement.

To validate our elaboration, we compares three
configurations: (1) VATP integrated with SnapKYV,
(2) standard LAVa, and (3) LAVa without dynamic
layer budgeting based on Mistral-7B-Instruct-v0.2
in LongBench. The results in Table 5 demonstrate
that while VATP shows improvement over baseline
SnapKYV, it consistently underperforms compared
to both LAVa and LAVa (-layer dynamic). From
the computational perspective, VATP incurs similar
overhead to LAVa(refer to Appendix D, yet delivers
suboptimal performance. This verifies our claim
that intuition and a theoretical analysis help you
get to a more optimal solution.

C Extension of LAVa: Layer-wise Cache
Eviction with Dynamic Budget
Allocation

Details of Lemma 1. We define and derive the
Layer Attention Output Loss in this lemma.

Lemma 1. Based on the L, norm, the layer at-
tention output loss due to the attention mask 7 is
measured for layer-/ at the current (/V-th) decoding

13685

step as follows:

PN, Z,B) = [y — oVl (30)
AN Oy
= Cath AN - L Vlh Wo
(Lh ”A%l@z-lﬁnl)) l ,

where © indicates element-wise multiplication and
9 = Caty (AN, Vin)WP
As we mentioned above:
yl' = Catyem (AN Vin) WP
g = Catpep (A, Vin) WP
(31)
And based on the definition of attention mask 7, the

attention weights after eviction can be calculated
as:

—inf®1 -Z;p) + Q%th)
Vi
(32)

Hence, Lemma 31 is equal to (Temporarily ignor-
ing the superscript V):

Afvh = Softmax(

. An ©Lp
Az,h=| : :

_— 33
|A1p © Lyl 33)

This theorem has been proved by AdaKV (Feng
et al., 2024), so we will not elaborate further here.

Proof of Theorem 1. Then we drive the upper
bound of Layer Attention Output Loss and give
this theorem.

Theorem 1. The L; norm of layer attention out-
put loss can be bounded by:

v — Dl (34)
he[H] kE[N]

<20) Via(Y AN = Tislk)

where Vi = mawyepy[Vialklls and € =

Ty, . o
WP |1 is a constant, which is independent of
any head or token within layer-/.

Proof. First we need to introduce a lemma:

Lemma 2. Given a vector x € RY™ and a matrix
W € R™ ™ we can get the relationship between
matrix norm and vector norm.:

leW o< llllp W71l (35)

|2W ||, and ||z||, are vector p-norm, |WT||, is
matrix p-norm which is calculated by the largest
sum of column absolute value.

This lemma is derived from Horn and Johnson
(2012). Then we can obtain (Temporarily ignoring
the superscript V):

lyi — 91l

A ©Lp

T
m)VZMHIHWIO Hl

<||Catn[(Asn—

(36)

T A .
We set [|[W,°" ||1 as C because it is the constant
model parameter. Then we know that and set:

)W,h c Rl)(dh

37
Thus ||Cat"€H1[Gy 4]||1 is the vector 1-norm of a
vector € R*(dn*H) - According to the definition of
vector 1-norm, we can transform cat operation to
sum and continue derivation based on Theorem 2:

A ©Iyy,
G = (A [L A LA
th = (A [A © Ziplh

lyi — il
sd@m%mm&ﬁ—hﬁﬁigﬂgwum
—ég%wmﬁ—wﬁzﬁghwmm
sé@%ﬁmm—njjgéﬁlmwﬁm>
(38)
Next we will prove that ||A; 5 — m%m:

1€[N] .
2 Ziflz,h[i]zo Al’h[z]’

Let HAl,h © Il7h”1: ZiE[N]Il,h[i]Al,hm _
i€[N ,
Zi?ﬂ,i[i]:l A plilas F € (0,1]:

13686

A ©L F—-T

Ay ———2— |y = oA
_ Z | (F — ILh[i])Al’h[i] |
F
1E€[N]
1€[N] 1€[N] .
1—F)A; .l
— Y Ayl 3 ()AL i]
ifZ) p[i]=0 ZfIL,h[i}Zl
i 1€[N .
o, 252 iz A
- lh
ifT) p[i]=0
1€[N]
— > Al
if Ty nlil=1
i€[N] i€[N]
=) Aplil+1— > Al
ifTy p [i]=0 if Ty =1
1€[N]
> Auli]
ifZ; 1 [i]=0
(39

Then based on the definition of matrix 1-norm
and HVZYI;H 1€ R4 >N we can calculate this as the
largest sum of row absolute value of V, ;, € RN xdn,
which is equals to the largest vector 1-norm of V

value of previous tokens, formalized as:

Vi = IVihlh= mazpen IVinlK]l - (40)

Now we can obtain:

v — il (41)

1€[N]

202 (2, Al

he[H] ifT; p[i]=0

2C) (Y ANViA(= Typli)))

he[H] i€[N]

IVl

Here the proof is done. 0

Potential Future Work. Building on our frame-
work, multiple research directions can be further
explored. One possible question is whether the
Layer Output Loss, which takes into account the
FFN layer, should be considered. The interaction
between the FFN layer and the layer attention out-
put determines what information a layer writes to
the residual stream (Ferrando and Voita, 2024). In
other words, certain tokens in past residual streams
may play a crucial role in activating the layer’s
knowledge within the FFN. Accounting for these
interactions could reduce performance loss, yet the
challenge lies in how to do so efficiently.

Another potential avenue is formulating the prob-
lem as an online reinforcement learning (RL) task,
where the objective is to optimize the policy (i.e.,
the scoring function) to maximize the expected re-
ward. Here, the expected reward can be cast as min-
imizing the expected loss in future residual streams,
not just the past ones. This direction is potential for
the cache-offload and retrieval problem, where we
need to decide which parts of the cache to offload
to CPU or retrieve from CPU while maintaining
the communication cost.

Additionally, this framework could be extended
to model pruning, not just masking tokens but also
selectively masking model parameters to minimize
information flow while preserving efficiency. Also,
the value of algorithms like LAVa and SnapKYV,
CAKE lies in their potential to serve as compo-
nents of larger solutions tailored for long output
and multi-turn contexts. These static methods can
be integrated with merging techniques , cache re-
trieval and offloading, quantization methods, or
dynamic approaches. This is also a promising di-
rection for our future work.

D Extension of Experiments

Implementation Details. For SnapKV and Ada-
SnapKYV, no additional hyperparameters are re-
quired. However, for PyramidKV, we must adjust
the parameter (3 to control the shape of the cache
budget pyramid. We set 3 to (5, 10, 20) and select
the best-performing result, the same approach to
Ada-PyramidKV. For CAKE, three parameters re-
quire tuning: ~y; and ~y, for layer budget allocation,
and ~ys for the scoring function, as explained in Ap-
pendix B. Based on recommendations from (Qin
et al., 2025), we set 1/v1 to (0.2, 0.3, 0.5, 1, 2),
1/72t0(0.2,0.3,0.5, 1, 2), and 3 to (0, 5, 10, 200).
We then evaluate different combinations and select
the one that yields the best overall performance.

Pooling operators, such as max pooling or aver-
age pooling, can be applied to token score vectors
to smooth score variations across adjacent tokens
(Li et al., 2024; Cai et al., 2024; Qin et al., 2025).
This strategy is also employed in the implemen-
tation of LAVa and all the baselines. For pooling
operation, for all methods, we adopt maxpool func-
tion and set kernel size as 7.

Results of LAVa in LongBench. The results of
Qwen2.5-7B-Instruct are listed in Table 6. The re-
sults of Qwen2.5-14B-Instruct and Qwen2.5-32B-
Instruct are in Table 7. The results of Llama3-8B-

13687

Instruct are in Table 8. From all these results, we
can obtain the similar conclusion like Mistral in
main text. LAVa outperforms all baselines across
different budgets, even in models with larger pa-
rameter size.

Results of LAVa in Needle In A Haystack. The
results of Needle In A Haystack are shown in Ta-
ble 9. The conclusion is consistent with that of
LongBench. Our method shows superior overall
performance, demonstrating its robust in preserv-
ing the model’s retrieval capacity.

Results of LAVa in Ruler and InfiniteBench.
The results of Ruler and InfiniteBench are shown
in Table 11 and Table 12. we set the cache budget
as 5%-10% of the task context length, i.e. 1024
and 10000. We use Mistral-7B-Instruct-v0.2 as
the backbone of Ruler. For InfiniteBench, we
change the backbone into Mistral-7B-LongPO-
128K (Chen et al., 2025), which is fine-tuned based
on Mistral-7B-Instruct-v0.2, because the task con-
text length of InfiniteBench is much longer than the
original maximum model length 32K. The results
reconfirm the effectiveness of LAVa.

Results of Dynamic Budget Allocation. The de-
tailed results of ablation study based on Mistral-7B-
Instruct-v0.2 in LongBench are listed in Table 10.
It demonstrates that dynamic budget allocation at
both the head and layer levels is essential for strong
performance, with a more pronounced performance
drop when head-wise allocation is removed under
constrained budgets. This is expected, as LAVa’s
strength lies in its ability to compare cache entries
across heads.

Analysis of Different Layer Allocation. To vali-
date the effectiveness of our layer budget allocation,
we modify LAVa to incorporate two alternative
strategies: LAVa-Uniform, which is equivalent
to LAVa (-layer), and LAVa-Pyramid, which re-
tains LAVa’s head budget allocation and layer-wise
cache eviction but adopts Pyramid for layer allo-
cation. The results in Table 13 indicate that our
method outperforms these alternatives. Notably,
LAVa-Pyramid requires finetuning, whereas the
other methods do not. Moreover, LAVa-Pyramid
fails to outperform LAVa-Uniform at higher bud-
gets, aligning with the observed comparison be-
tween Ada-SnapKV and Ada-Pyramid. This un-
derscores the limitation of heuristic-based designs,
which may not always yield optimal results.

Analysis of Time Complexity. Our study builds
upon the SnapKV framework with a batch size of 1,
consistent with prior works like CAKE and AdaKV.
We start with the analysis for SnapKV (the most
computationally efficient method among baselines)
in computation for one layer as a reference.

* For layer [, SnapKV needs to calculate the
layer’s original KV Cache with the time com-
plexity of O(H N?2dj,), ignoring the IO opera-
tions. Generally, this is done with FlashAtten-
tion, which avoids saving the large attention
matrix of size O(N?). The computation cost
in practice is high due to IO operations and
recomputation (to avoid saving the attention
matrix), but we ignore it for simplicity.

* As Flash attention does not save the attention
matrix, for calculating the scores to evict KV
Cache, SnapKYV needs to recompute the atten-
tion scores for the recent window of size w
in the second pass. The time complexity is
O(HNwdyp,).

* The top-B, ;, selection for head-wise cache
eviction with a min-heap takes O(NlogBy 1),
and for H heads, it takes O(H NlogBy),
where Bl7hH = Bl, BZL = B.

To summarize, SnapKV requires:
» O(HN?d},) for original cache for one layer;

* O(H Nwdp,) for recomputing the recent atten-
tion scores;

* O(HNlogBy) for cache eviction.

In contrast, LAVa requires the computation for one
layer as follows:

» O(HN?d},) for the original cache of one
layer, same as SnapKV;

* O(H Nwdp,) for recomputing the recent atten-
tion scores, same as SnapKV;

* O(H Ndjp,) for computing the value norms for
each token;

* O(HNlogBy) for layer-wise cache eviction
because the eviction of LAVa is operated in
all cache of one layer.

13688

Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code

2 Z 2, 2 <& < < <,
L8 % % % 0L % %% % 0% % % %% 9t %% % % 7,
AN T T T T 2 e % N T W T %
v CE T T S 7% %
2 2 % %
o
Full Cache 29.05 4334 5252 6227 5759 47.05 3024 2925 3178 2364 1596 2396 72.50 88.82 45.61 4275 850 100.00 96.50 59.61 67.12 48.96
B = 128HL
PyramidKV 21.96 2641 4253 5277 49.33 42.17 2348 17.88 16.80 1929 1124 1430 4250 8378 41.15 2239 850 9550 63.50 48.53 51.39 37.88
SnapKV 2524 27.66 43.90 5353 51.00 4212 2459 1856 18.04 1985 1132 1555 41.00 83.18 40.68 24838 9.00 98.00 81.50 49.44 52.58 39.60

Ada-PyramidKV 23.08 27.53 4207 53.17 50.73 42.03 2331 18.03 1748 19.65 11.21 1471 4250 83.90 4125 2281 9.00 9400 76.00 49.17 52.69 | 38.78
Ada-SnapKV 28.45 4500 5437 51.08 44.02 2466 1881 1826 20.09 11.50 1625 4250 84.06 41.00 2249 9.00 96.50 87.50 49.92 5432 | 4024

CAKE 24.43 30.15 45.03 5486 50.65 4241 2591 18.89 1821 20.66 11.60 1584 42.00 84.54 4195 2624 850 9550 8150 51.60 55.09 |40.26
LAVa (Ours) 2329 2887 46.80 56.10 52.65 4296 2509 19.25 1824 20.52 11.80 1628 43.00 84.56 42.18 2395 850 96.00 8500 5345 56.07 | 40.69
B = 256HL
PyramidKV 24.82 31.13 46.92 56.06 53.07 4231 2506 19.54 1927 2047 1201 1655 50.00 84.88 42.04 2539 850 96.00 8550 52.03 5582 |41.30
SnapKV 26.61 2377 49.15 5837 56.03 44.18 2568 2096 20.84 2099 12.19 1852 4850 8631 43.06 2989 850 97.50 95.00 5426 5942 | 4332

Ada-PyramidKV 2597 31.01 4731 5643 54.17 4303 2523 1941 19.60 21.09 1187 17.07 5450 86.04 42.69 2728 850 97.00 90.00 5278 5655 |42.26
Ada-SnapKV 26.52 3450 50.01 5828 55.61 43.60 26.14 20.89 21.30 2094 1251 1859 5250 8550 4297 2843 850 98.00 9350 5394 5930 |43.41

CAKE 2659 3395 49.80 5825 5489 4442 2647 2035 2123 21.94 1235 1853 4750 8541 4351 3233 850 9750 9400 5556 61.13 | 43.53
LAVa (Ours) 27.04 3519 4936 59.74 5535 44.13 2725 2088 21.15 2151 1277 1896 49.00 86.73 4342 3035 850 98.00 9300 56.19 62.19 | 43.84
B = 512HL

PyramidKV 28.02 3574 50.84 58.11 5526 4472 2585 2094 21.83 21.34 1233 1895 59.50 86.13 43.04 850 99.00 96.00 55.65

SnapKV 2827 2822 50.69 6027 56.18 4469 2728 2198 2379 21.89 1320 20.64 5950 84.10 43.68
Ada-PyramidKV 27.31 37.36 49.62 5857 55.40 44.66 2674 2135 2239 2112 1242 1932 62.00 8629 43.78
Ada-SnapKV 28.03 3851 50.06 60.54 5550 4506 28.81 22.04 2398 2249 13.05 2080 62.00 8583 4437

8.50 100.00 94.00 56.66
850 99.00 9550 55.78
8.50 100.00 94.00 56.44

CAKE 39.09 5022 60.00 54.89 4521 2631 2220 23.65 2198 13.04 2057 5750 85.60 44.61 850 99.50 94.00 58.27

LAVa (Ours) 39.08 50.47 60.09 55.63 4525 2775 2291 2383 2281 13.05 20.84 5850 86.15 45.02 8.50 100.00 93.50 58.02
B = 1024HL

PyramidKV 28.06 40.11 51.83 6022 57.55 4538 2931 2242 2435 2204 1312 2112 68.00 8527 4418 3699 850 100.00 96.50 58.29

SnapKV 29.01 42.02 5186 61.22 56.82 45.04 2895 2397 2626 2276 13.66 2250 6850 86.85 4552 4250 850 100.00 96.50 57.94

Ada-PyramidKV 28.52 2050 5187 6027 5642 4580 2918 2301 2445 2210 1331 2125 69.00 8641 4510 3779 850 100.00 96.50 57.16
Ada-SnapKV 2061 4230 5179 6029 5638 4575 2930 23.64 2621 2280 1385 2239 69.00 88.09 4536 4175 850 100.00 96.00 58.15
CAKE 2970 41.08 5185 60.64 57.34 4502 3048 2382 2592 2295 1369 2245 6750 86.63 4522 4200 850 100.00 9650 59.49
LAVa (Ours) 2979 4168 51.84 6079 57.04 4527 3001 2399 2636 2290 1381 2242 69.50 8742 4546 41.00 850 10000 9650 59.97

Table 6: Final comparison based on Qwen2.5-7B-Instruct among 21 datasets of LongBench. (Note: The best result
is highlighted in bold, and the second is in underline.)

Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code
. < Z 2 2 @9 < < < <,
2. Z %
AR AT T T T v v %
k4 & - 2 A k4 % %,
7 > kS
“
Qwen2.5-14B-Instruct
Full Cache 29.33 4519 5359 6279 6259 57.69 3847 29.87 2974 2353 1475 2190 7750 9023 4727 5000 923 98.67 9825 62.60 5113 |50.21
Qwen2.5-14B-Instruct, B=128h
PyramidKV 19.67 2226 39.57 50.04 5075 4947 3031 1667 16.10 1943 1053 13.51 42.00 8229 4090 27.00 12.12 8250 56.67 5452 4138 |37.03
SnapKV 21.04 2550 42.11 49.89 5431 51.87 3360 17.78 17.12 1995 1075 1453 4350 8595 4181 2675 1050 89.58 65.00 5542 4342 | 39.07

Ada-PyramidKV 20.85 24.83 40.88 51.78 54.65 5234 2978 1683 1667 1959 1032 1390 46.50 80.76 40.58 2575 11.18 8775 63.75 5372 4349 | 37.90
Ada-SnapKV 22.16 2558 42.80 5222 55.10 5321 3350 1798 17.69 2025 1086 14.81 4550 85.62 4249 2700 9.05 9133 68.17 5626 43.39 | 39.76

CAKE 2220 26.13 42,10 50.83 54.75 53.25 3177 1773 17.56 19.98 10.84 1544 44.00 8751 4265 2850 1396 8650 78.83 54.92 43.90 40.16
LAVa (Ours) 2224 2652 43.09 5239 5597 5343 3368 1823 17.94 2057 1098 1510 46.00 86.79 4220 27.17 10.53 92.00 73.00 5574 44.63 | 40.39
Qwen2.5-14B-Instruct, B=512h
PyramidKV 26.18 38.19 4871 59.81 60.74 5526 3682 20.55 2121 2127 1186 1843 6850 8921 4538 4425 859 9833 9675 59.71 4871 |46.59
SnapKV 2699 3934 4884 5934 6020 54.86 3747 2143 2225 2195 1193 1934 6650 8878 4595 4525 822 9825 9858 61.12 4942 | 4695

Ada-PyramidKV 26.78 40.25 49.71 60.40 60.64 55.69 3772 2075 2149 2154 1167 18.60 70.00 88.59 4570 4450 877 9833 9675 60.23 48.85 | 47.00
Ada-SnapKV 26.03 41.56 49.42 60.88 59.99 55.63 3834 21.33 2249 2209 1196 1932 69.50 89.01 4635 4675 7.72 98.17 98.50 6221 49.92 | 47.48

CAKE 2539 3992 4862 6030 60.42 55.19 3837 2140 2256 2172 1231 1957 70.00 89.03 46.19 4625 6.68 98.17 9825 60.90 49.31 47.17
LAVa (Ours) 2623 40.65 4893 5945 6034 5536 37.50 21.53 2257 2213 1191 1948 67.00 88.68 46.50 4675 798 9775 9775 6185 50.38 | 47.18
Qwen2.5-32B-Instruct

Full Cache OooM

Qwen2.5-32B-Instruct, B=128h
PyramidKV 21.32 27.86 4355 56.05 55.74 53.85 3225 1674 17.08 18.88 10.71 1576 48.00 5441 40.69 29.50 11.17 94.00 73.09 48.04 35.36 38.29
SnapKV 21.72 2831 42.83 56.03 5443 5552 3078 1694 1692 19.04 1053 1569 4850 5830 39.64 2750 12.00 9375 7437 47.15 3582 | 3837

Ada-PyramidKV 21.19 29.67 45.61 58.04 57.30 55.65 3296 1745 1737 1930 10.89 1602 51.50 5624 4024 3025 1200 97.00 8267 48.14 3594 | 39.78
Ada-SnapKV 2179 28.64 4549 5656 57.12 56.14 3254 17.66 17.63 1931 10.66 16.12 4950 60.07 40.03 27.50 12.00 96.04 8513 4796 3629 | 39.72

CAKE 21.28 2840 4330 5571 5593 5489 3286 17.04 17.00 1944 1050 16.18 4650 5635 4038 31.88 12.50 9479 8292 46.63 36.05 |39.07
LAVa (Ours) 2229 3012 4550 57.06 5659 5851 3372 17.50 1742 1997 1109 1629 4850 5721 4023 28.17 10.00 9742 84.09 48.12 36.68 | 39.83
Qwen2.5-32B-Instruct, B=512h
PyramidKV 26.00 37.40 48.67 61.17 60.60 6044 3475 1937 2084 2061 11.64 1848 66.00 55.11 4271 39.00 11.56 99.75 98.54 50.28 38.12 43.86
SnapKV 2571 4023 4881 6294 61.16 6060 3485 20.64 2269 2127 1161 20.04 6650 77.77 4401 4186 11.19 100.00 99.03 5220 39.15 |45.82

Ada-PyramidKV 2641 3897 50.14 6150 6150 61.86 37.55 1967 2149 2071 1123 1868 67.50 6081 4340 3975 11.08 9975 99.62 50.60 3827 |44.79
Ada-SnapKV 27.51 3944 4921 6309 6170 6160 3723 2035 2269 2172 1174 2045 69.00 77.87 44.19 4204 1156 100.00 9824 5222 39.14 |46.24
CAKE 2532 4024 4966 6328 5975 6142 3711 2044 2273 2122 1167 2028 6650 7731 4392 4458 11.19 100.00 9878 5236 3899 | 46.04
LAVa (Ours) 2656 4118 50.80 6249 6190 60.83 3725 2144 2316 2202 1186 2030 6850 77.69 4397 4223 1150 100.00 98.53 5224 3886 | 46.35

Table 7: Final comparison based on Qwen2.5-14B-Instruct and Qwen2.5-32B-Instruct among 21 datasets of
LongBench. (Note: The best result is highlighted in bold, and the second is in underline.)

13689

Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code
2, - 2, 0,
%LD % %‘“ 1?“‘ %'6» 4;% %" %“ %’33 % LO% %’c %?w é" (%47 %"z o% f% 'ﬁ% b ?%@ %
<X > 2 2 % 2 % s, 2 A < D 2
k4 e 4707 % <. %, 2 Z % Q, % > %%
i)

Full Cache 2123 4325 4468 5747 4812 3855 2472 2746 2997 2219 0.8 27.32 7300 9050 4204 2350 7.00 7050 93.00 60.76 48.85 | 44.71
B = 128HL

PyramidKV 1836 3037 4249 49.83 47.59 3511 2320 1865 18.62 2095 007 2027 49.50 88.67 3852 2100 375 6850 91.00 5854 5029 |39.76

SnapKV 1888 30.10 4133 50.68 47.16 3447 2391 1873 1843 2092 008 1963 4650 87.98 3825 2000 350 68.00 89.50 59.16 5297 | 3951

Ada-PyramidKV 1662 3227 4341 5049 4707 3570 2409 1927 1963 2114 006 2096 5850 89.10 3841 2100 4.00 6850 9350 5927 5172 | 4073

Ada-SnapKV 1778 3031 42.60 49.81 4694 3497 2372 1906 1921 2128 009 2037 5550 89.68 38.96 21.00 4.00 69.00 9350 60.32 5352 | 4058

CAKE 1840 3092 4241 4950 4704 3508 2403 1877 1877 2095 007 1974 4700 8934 3803 2075 400 6850 9200 5897 5333 | 39.88

LAVa (Ours) 1724 31.54 4326 4996 4669 3517 2409 1899 1902 2019 0.2 2052 5250 8922 3845 2000 4.00 69.00 9350 5974 5358 | 4038
B = 256HL

PyramidKV 1834 3626 4369 5291 4719 3644 2503 2028 2059 2157 0.4 2250 6150 8877 3926 2175 500 7000 93.00 6036 49.74 | 4171

SnapKV 1937 3525 42.82 52.53 4657 3688 24.68 20.10 2075 2115 016 2239 6100 89.82 3894 2200 500 70.00 9400 61.16 5257 | 41.84

Ada-PyramidKV 1871 37.29 4459 53.63 4726 3639 2433 2092 2106 2132 0.4 2322 6550 89.81 39.07 2275 450 69.50 9250 61.00 5027 |42.18

Ada-SnapKV 18.65 36.66 4514 5262 4727 3629 2484 1991 2141 2114 015 2270 6550 8972 39.15 2225 550 6950 93.00 6211 5191 |42.26

CAKE 1941 3581 4314 5181 4719 3676 2476 2030 2081 2102 0.2 2250 60.50 89.94 39.09 2175 500 6950 9350 6145 5265 |41.84

LAVa (Ours) 19.16 37.04 4515 53.58 47.87 3657 2461 2084 2141 2141 015 2314 6500 9036 3993 2200 550 70.00 93.00 6270 53.69 | 42.65
B = 512HL

PyramidKV 19.63 4070 4399 5536 47.30 37.81 2490 2243 2278 2144 016 2438 6850 90.23 40.18 2375 7.00 7050 93.00 61.83 4951 | 4326

SnapKV 19.67 4065 4565 54.68 4757 3738 2437 2139 2265 2178 0.7 2444 6800 90.19 4032 2325 7.00 7000 9300 6259 5051 | 4325

Ada-PyramidKV 1946 4142 4619 5586 4772 3790 2454 2198 2291 2184 0.2 2485 6950 9023 4060 2350 650 7050 9350 61.64 49.77 | 4352

Ada-SnapKV 1938 41.03 4505 5553 4730 3775 2461 2173 2310 2159 0.5 2470 7050 9023 4049 2375 650 7050 9350 6221 5164 | 4355

CAKE 19.83 4169 4576 5477 4723 37.33 2508 2151 2256 2150 0.7 2434 69.00 90.19 4047 23.00 7.00 70.00 93.00 6264 5055 | 4337

LAVa (Ours) 1935 41.52 4553 5549 4725 3796 2436 2201 2319 2153 0.7 2538 7050 9021 4130 2375 7.00 7050 9350 6204 5157 |43.70
B = 1024HL

PyramidKV 1973 4162 4351 5675 4873 3723 2432 2276 2472 2191 015 2597 7100 9023 4099 2375 600 7100 93.00 60.66 4931 |43.66

SnapKV 1931 4167 4392 5625 4790 3777 2450 2255 2476 2172 025 2591 7200 9024 4143 2350 650 7100 93.00 6159 5053 | 43.80

Ada-PyramidKV 2023 4147 4482 5639 4848 3762 2435 2359 2514 2224 0.7 2605 7100 9023 4134 2375 600 7100 9300 6101 4865 |43.82

Ada-SnapKV 1999 42.07 4586 57.16 4829 3801 2440 2360 2537 2219 0.6 2610 7200 9031 4150 23.50 650 7100 9350 6162 5030 | 44.16

CAKE 1929 4167 4372 5638 4770 38.10 2483 2272 2468 2190 021 2625 7200 9024 4159 2350 6.00 7100 93.00 6146 50.17 | 4381

LAVa (Ours) 2093 4274 4643 5726 4835 3809 2444 2326 2526 2233 0.7 2625 7250 9039 4205 2350 600 7100 93.00 6193 5023 | 44.30

Table 8: Final comparison Based on Llama3-8B-Instruct among 21 datasets of LongBench. (Note: The best result is

highlighted in bold, and the second is in underline.)

Methods Mistral-7B Qwen2.5-7B
Full Cache 99.88 99.66
B = 128HL
PyramidKV 91.44 91.10
SnapKV 91.25 93.28
Ada-PyramidKV 92.08 92.70
Ada-SnapKV 92.12 94.30
CAKE 92.79 94.61
LAVa (Ours) 93.35 95.57
B = 1024HL
PyramidKV 97.88 99.56
SnapKV 97.95 99.48
Ada-PyramidKV 98.58 99.58
Ada-SnapKV 98.54 99.53
CAKE 98.32 99.55
LAVa (Ours) 98.95 99.59

Table 9: Average scores of Mistral-7B-Instruct-v0.2 and
Qwen2.5-7B-Instruct in Needle In A HayStack.

For one layer [, the difference of time complexity
between LAVa and SnapKV is O(HN (dy,+logH).
In a long context, N is very large, and thus
O(HN (dp, + logH) is much smaller than the dom-
inant factor O(H N2d},). Based on the setting of
Mistral-7B-Instruct-v0.2, we have d;, = 128 and
H = 32, the extra computation of LAVa com-
pared to SnapKYV is H N (d;, + logH) divided by

HN?dy, which is approximately 0.01% when
N = 10,000. The computation time increases
with the increase of the number of layers and batch
size for both SnapKV and LAVa, but the ratio of
the extra computation time for LAVa is still 0.01%.
A similar analysis can be achieved to see that all
the other methods have similar latency, aligning
with the latency results in Figure 3.

Analysis of Memory Usage. We analyze the dif-
ference between SnapKV and LAVa/CAKE, which
are dynamic layer budget methods.

* For SnapKYV, the cache size increases from
O(H Kdp,) in the first layer to the last layer,
where it reaches the peak of O(LH B pdp,).
The memory peaks when the latest (full)
layer cache O(H Nd},) is not pruned, and
the current retained cache reaches the size of
O(LH By dp). In sum, the peak memory is
O(HNdy, + LHBy pdp,).

* For LAVa and CAKE, the cache size is always
O(LH By j,dy,) from the first layer to the last
layer, yet it is distributed among prefilled lay-
ers. The memory peak, however, is similar to
SnapKYV, which is O(HNdj, + LH By pdp),
except that for LAVa/CAKE, we need to store
the layer scores. As we save only the top
scores for each layer, the size for scores is
O(LHBy). Given that the total cache size

13690

Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code
AL T T T T 42 Y 4 S T N T T %,
7 % B L v 3 %
E4 > G %,

Full Cache 2677 3234 49.63 4842 4343 2789 1861 30.85 3292 2454

1504 2720 7100 86.23 4341 39.00 281 8656 89.75 5529 5255 ‘45.07

B = 128HL

LAVa (Ours) 19.57 21.11 4429 3391 3829 2359 1532 1856 19.33 2232
— layer 20.32 21.18 4517 35.00 3737 23.62 15.09 1820 1921 22.04

— head 20.33 20.27 44.06 3223 36.64 2284 1419 1815 1888 21.51

1142 2107 5350 8520 40.16 21.75 2838 69.87 7475 51.94 4892 | 36.74
1135 2099 4850 8532 3933 2075 342 6793 7375 5128 4752 36.20
11.09 2089 4500 8429 39.57 2025 321 6523 6425 51.88 4751 34.95

B = 256HL

LAVa (Ours) 2270 2467 48.62 37.81 39.68 2596 1677 20.26 21.92 2248
— layer 2178 2474 47.82 3747 39.06 25.53 1621 1994 21.86 2322

— head 21.34 2277 4743 3587 37.71 25.50 1547 1943 2155 23.06

11.88 2291 65.00 8524 41.28 2675 288 76.76 8575 54.17 5177 | 40.12
11.81 2291 62.00 8537 41.53 2525 277 7853 87.67 5278 49.85 39.77
12.08 22.86 58.00 84.88 41.69 2225 3.11 7477 84.18 5389 51.19 38.80

B = 512HL
LAVa (Ours) 25.01 27.84 4897 42.14 40.95 2688 1833 2112 2359 2359 1228 2451 68.50 8634 4248 3350 290 87.23 89.83 5583 52.85 | 42.59
— layer 2443 2798 4872 41.00 40.23 26.17 1850 20.74 24.00 2340 12.68 2420 6650 86.04 4226 3275 284 87.89 89.33 54.11 5122 | 42.11
— head 23.59 27770 48.61 40.61 40.22 2579 17.87 20.68 2391 2339 1238 2428 6650 86.09 4195 2850 297 86.88 89.17 5573 5253 |41.82

B = 1024HL

LAVa (Ours) 25.59 31.21 4827 4343 4192 2738 1948 2348 2606 23.86
— layer 2576 3038 49.54 43.54 41.08 27.03 1883 2273 2579 23.69
— head 2576 29.61 4931 4277 40.82 27.63 1859 22.64 2629 2377

13.38 26.00 70.00 8622 4243 38.00 273 87.01 8875 57.31 53.28 |43.65
13.13 2588 69.50 8630 43.10 3725 271 87.56 89.25 5504 5167 |43.35
1270 2582 68.00 85.82 41.77 3500 263 89.06 89.25 5731 5322 |43.26

Table 10: Ablation study based on Mistral-7B-Instruct-v0.2 among 21 datasets of LongBench. (Note: The best

result is highlighted in bold.)

Context Length 4K 8K 16K

PyramidKV 72.55 62.02 55.42
SnapKV 70.71 61.52 55.61
Ada-PyramidKV 70.80 60.83 54.95
Ada-SnapKV 71.14 60.31 55.05
CAKE 72.41 61.55 55.84
LAVa (Ours) 75.39 62.61 56.70

Table 11: Results of Mistral-7B-Instruct-v0.2 in Ruler.

Tasks En Sum EnMC En Dia
PyramidKV 25.3 67.2 6.5
SnapKV 25.1 67.2 7.0
Ada-PyramidKV 24.9 67.2 7.0
Ada-SnapKV 24.6 66.8 7.0
CAKE 24.8 67.8 6.6
LAVa (Ours) 254 66.8 9.5

Table 12: Results of Mistral-7B-LongPO-128K in In-
finiteBench.

is O(LH By pdp,), it is sufficient to just keep a
total of LH K scores for comparison. Again,
the extra factor is dominated by O(H Ndj, +
LHB; dp,). The extra memory usage of
LAVa is 0.6% of SnapKV peak memory
when L = H = 32, By, = 1024, d), = 128,
and N = 10,000. This is small, but not as
negligible as in time complexity, consistent
with Figure 3. However, dynamic layer bud-
get is important for tasks like summarization
or code generation, as shown in Figure 2.

Analysis of Layer Attention Output Loss. To
validate the effectiveness of LAVa in minimizing
layer attention output loss, we compare LAVa with
AdaKYV, which also aims to minimize layer atten-
tion output loss and its scoring function is the same
with SnapKV. We set the cache budget as 128 to
make the difference clear and calculate the loss
in the first and the last layer. The backbone is
Mistral-7B-Instruct-v0.2. The results in Table 14
are consistent with the evaluation of other bench-
marks, proving that the upper bound of LAVa is
tighter compared to that of AdaKV.

13691

Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code
> L 2 2 o)), <,
L8 % % % 0% % % % 9 5 % % 0% 0% 9t koo % %
T T T T T T T T A T T o | T
<N %)
v 5 B B B 2 TR % % ” %
7 & K3
)
Full Cache 26.77 3234 49.63 4842 4343 27.89 18.61 30.85 3292 2454 1504 2720 7100 8623 4341 39.00 281 86.56 89.75 5529 5255 ‘ 45.07
B = 128HL
LAVa-Pyramid 1991 2036 4432 35.06 37.68 23.58 1540 1799 19.61 22.09 1087 21.05 5200 8445 40.09 2025 2.89 7232 7692 5181 46.81 36.63
LAVa-Uniform 20.32 21.18 4517 3500 37.37 23.62 1509 1820 19.21 2204 1135 2099 4850 8532 3933 2075 342 6793 7375 5128 47.52 36.20
LAVa (Ours) 19.57 21.11 4429 3391 3829 23.59 1532 1856 1933 2232 1142 21.07 5350 8520 40.16 21.75 288 69.87 7475 5194 4892 36.74
B = 256HL
LAVa-Pyramid 2122 2396 47.86 37.12 3892 24.94 1670 19.11 2143 2244 1120 2277 6250 85.17 4134 2375 334 79.07 8658 5225 49.70 39.40
LAVa-Uniform 21.78 24.74 47.82 3747 39.06 25.53 1621 1994 21.86 2322 11.81 2291 6200 8537 4153 2525 277 7853 87.67 5278 49.85 39.77
LAVa (Ours) 22.70 24.67 48.62 37.81 39.68 2596 1677 20.26 21.92 2248 11.88 2291 6500 8524 4128 2675 288 76.76 8575 54.17 5177 40.12
B = 512HL
LAVa-Pyramid 24.59 2733 4836 4024 39.75 26.18 1826 20.82 2339 2338 1235 24.08 67.00 86.66 42.55 3200 293 86.13 89.62 5346 51.53 41.88
LAVa-Uniform 2443 2798 4872 41.00 40.23 26.17 18.50 20.74 24.00 2340 12.68 2420 66.50 86.04 4226 32.75 2.84 87.89 89.33 54.11 51.22 42.11
LAVa (Ours) 2501 27.84 4897 4214 40.95 26.88 1833 2112 2359 2359 1228 2451 68.50 8634 4248 3350 290 8723 89.83 5583 52.85 4259
B = 1024HL
LAVa-Pyramid 24.88 29.51 49.01 4257 41.16 27.20 1940 22.61 2558 24.00 13.08 2571 6850 86.19 43.19 37.00 267 8773 9025 5472 5153 43.19
LAVa-Uniform 25.76 30.38 49.54 43.54 41.08 27.03 18.83 2273 2579 23.69 13.13 2588 69.50 8630 43.10 3725 271 87.56 8925 5504 51.67 43.35
LAVa (Ours) 2559 3121 4827 4343 41.92 27.38 1948 2348 2606 2386 13.38 2600 70.00 8622 4243 38.00 273 87.01 8875 57.31 53.28 43.65

Table 13: Layer allocation comparison based on Mistral-7B-Instruct-v0.2 among 21 datasets of LongBench. (Note:
The best result is highlighted in bold.)

Tasks

Qasper

HotpotQA

Gov Report

TriviaQA

Passage Retrieval ZH

LCC

AdaKV

LAVa

1.77

1.61

1.63
1.59

Layer 0
1.82
1.73

2.64
2.61

1.59
1.40

1.91
1.86

AdaKV

LAVa

134.69

132.97

133.33
130.02

Layer 31
107.94
106.06

121.53
121.31

93.50
90.50

149.25
147.16

Table 14: Results of Layer Attention Output Loss.

13692

