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Abstract

Safety alignment is critical in pre-trained large
language models (LLMs) to generate responses
aligned with human values and refuse harm-
ful queries. Unlike LLM, the current safety
alignment of VLMs is often achieved with
post-hoc safety fine-tuning. However, these
methods are less effective to white-box attacks.
To address this, we propose Adversary-aware
DPO (ADPO), a novel training framework
that explicitly considers adversary. Adversary-
aware DPO (ADPO) integrates adversarial
training into DPO to enhance the safety align-
ment of VLMs under worst-case adversar-
ial perturbations. ADPO introduces two key
components: (1) an adversarial-trained refer-
ence model that generates human-preferred re-
sponses under worst-case perturbations, and
(2) an adversary-aware DPO loss that gener-
ates winner-loser pairs accounting for adver-
sarial distortions. By combining these inno-
vations, ADPO ensures that VLMs remain ro-
bust and reliable even in the presence of so-
phisticated jailbreak attacks. Extensive exper-
iments demonstrate that ADPO outperforms
baselines in terms of both safety alignment and
general utility of VLMs. The resource is avail-
able at https://github.com/thunxxx/Adversary-
aware-DPO.

1 Introduction

Safety alignment is essential in pre-trained large
language models (LLMs) (Bai et al., 2022; Ouyang
et al., 2022a), guiding the models to generate re-
sponses aligned with human values and enabling
them to refuse harmful queries. Such alignment is
typically achieved by reinforcement learning with
human feedback (RLHF) (Ouyang et al., 2022a) or
Direct Preference Optimization (DPO) (Rafailov
et al., 2024). However, Vision-Language Models
(VLMs), which use a pre-trained LLM as the back-
bone along with an image encoder to adapt to down-

*W.Wang is the corresponding author.

straeam tasks (Liu et al., 2024b,a; Zhu et al., 2023;
Dai et al., 2023; Bai et al., 2023), often lack safety
alignment as a unified model in the same way as
LLMs. As a result, even when the underlying LLM
is safety-aligned, VLMs remain vulnerable to jail-
break attacks, where attackers craft sophisticated
prompts to manipulate the model to generate toxic
content (Qi et al., 2024; Niu et al., 2024; Gong
et al., 2023; Liu et al., 2025).

Figure 1: Safe response rate under white-box and black-
box attacks on LLaVA-1.5. Post-hoc safety fine-tuning
(SFT and DPO) is less effective on white-box attack.

Jailbreak attacks can take two forms: generation-
based black-box attacks (Gong et al., 2023; Liu
et al., 2025), where malicious images are gen-
erated with typography or text-to-image models
like Stable Diffusion (Rombach et al., 2022), and
optimization-based white-box attacks (Qi et al.,
2024; Niu et al., 2024), where harmful queries are
distilled into imperceptible noise added to the orig-
inal image. Existing countermeasures build safety-
relevant datasets and perform post-hoc safety fine-
tuning on the target VLMs, such as VLGuard and
SPA-VL (Zong et al., 2024; Zhang et al., 2024b).

However, these methods are less effective on
white-box attack than black-box attack, as they
heavily rely on learning safe response patterns from
training data while overlooking the risks of poten-
tial adversarial manipulations, where attackers di-
rectly exploit the model’s internal representation
to construct jailbreak examples. To highlight the
limitation of existing post-hoc safety fine-tuning in
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Figure 2: Pipeline of ADPO: achieving adversarail-aware safety alignment with adversarial-trained reference model
and adversary-aware DPO loss. The worst-case perturbation is generated on image space or the latent space of
image-text embedding.

VLMs, we conduct a preliminary study comparing
the safe response rates under both black-box and
white-box attacks (Figure 1). While SFT and DPO
achieve moderate robustness against black-box at-
tacks, their performance degrades significantly un-
der white-box scenarios, underscoring the need for
safety alignment methods that are robust to adver-
sarial perturbations.

To bridge this gap, we propose to integrate ad-
versarial training into the safety alignment pro-
cess of VLMs, which is a well-established ap-
proach in adversarial robustness research (Goodfel-
low et al., 2014), that exposes the model to adver-
sarially perturbed inputs and optimizes the model
to resist such manipulations. Specifically, We pro-
pose Adversary-aware DPO (ADPO), a method
that strengthens the robustness of VLM alignment
by integrating adversarial training into DPO. As
illustrated in Figure 1, ADPO significantly im-
proves the safe response rate under white-box at-
tacks compared to traditional post-hoc safety fine-
tuning approaches such as SFT and DPO. This im-
provement stems from two core components: the
adversarial-trained reference model and the mod-
ified adversary-aware DPO loss (see Figure 2).

The reference model plays a critical role in DPO
by providing a baseline for preference compari-
son. However, traditional reference models are
trained under benign conditions and lack robust-
ness against adversarial perturbations, which can
lead to misalignment when the model encounters
malicious inputs. To address this, we introduce

an adversarial-trained reference model, which is
explicitly optimized to generate human-preferred
responses under adversarial conditions, ensuring
that the target model is guided by a robust and reli-
able reference. Moreover, we revise the standard
DPO objective by introducing an adversary-aware
DPO loss that explicitly incorporates a min-max
optimization framework. In our formulation, the
objective is to optimize the probability of gener-
ating human preferred responses (Ypre) while si-
multaneously accounting for worst-case adversarial
perturbations, leading to a more robust safety align-
ment.

Our contribution can be summarized as:

• We propose ADPO, a novel framework to
achieve safety alignment under adversarial sce-
narios for Vision-Language Models (VLMs).
To the best of our knowledge, this is the first
work to integrate adversarial training into the
safety alignment of VLMs.

• ADPO achieves the robust safety alignment
through an adversarially trained reference
model and the adversary-aware DPO loss, with
adversarial perturbation on both image space
and latent space to achieve a broader safety
alignment against various jailbreak attacks.

• Extensive experiments demonstrate that ADPO
outperforms existing safety fine-tuning, achiev-
ing the lowest ASR against almost all jailbreak
attacks and preserving the utility on normal
tasks. Ablation studies also reveal the contribu-
tion of each component of ADPO.

13645



2 Related Work
2.1 Safety Alignment of LLMs
Ensuring the LLM’s behavior aligns with human
values is essential. Reinforcement Learning from
Human Feedback (RLHF) (Ouyang et al., 2022b)
proves to be a straightforward and the most effec-
tive method to achieve this goal. However, RLHF is
frequently criticized for its high computational cost
and the inherent instability of RL paradigm. Con-
sequently, Direct Preference Optimization (DPO)
(Rafailov et al., 2024) was proposed as a simpler al-
ternative to RLHF. Unlike RLHF, DPO eliminates
the need to train an additional reward model and in-
stead enables direct learning from preference data
in a supervised way.

2.2 Adversarial Training
Despite safety alignment efforts, prior studies (Zou
et al., 2023; Liu et al., 2023; Zhou et al., 2024)
have demonstrated that carefully crafted jailbreak
prompts can bypass LLM safety guardrails, high-
lighting the persistent vulnerabilities of these mod-
els. Adversarial training, originally proposed to
defend against adversarial examples (Goodfellow
et al., 2014) in image classification tasks, enhances
the robustness against adversarial attacks in im-
age classification tasks by forming a min-max opti-
mization, which maximizes the worst-case pertur-
bation while minimizing the classification loss of
the worst-case perturbed training data. Adversarial
training has inspired research into its application
for mitigating jailbreak attacks in LLMs. For in-
stance, Mazeika et al. (2024) proposes generating
adversarial suffixes during each training iteration
using optimization-based attacks (Zou et al., 2023)
and incorporating them into training data. How-
ever, the high computational cost of discrete attacks
leads to a significant increase in training overhead.
To address this, Xhonneux et al. (2024) introduces
a fast adversarial training algorithm on continuous
embedding space, while Sheshadri et al. (2024) ex-
plores adversarial attack in the latent space. To the
best of our knowledge, no prior work has integrated
adversarial training in VLM safety alignment.

2.3 Safety of VLMs
Building upon a backbone LLM, VLMs also face
significant safety concerns. To evaluate their safety,
several benchmarks (Li et al., 2024; Luo et al.,
2024; Hu et al., 2024) and jailbreak techniques
(Gong et al., 2023; Liu et al., 2025; Qi et al., 2024;
Niu et al., 2024) have been proposed. Jailbreak
attacks on VLMs can be categorized into two types:

generation-based attacks and optimization-based at-
tacks. Generation-based attacks (Gong et al., 2023;
Liu et al., 2025) create malicious images directly
through typography or text-to-image models like
Stable Diffusion, while optimization-based attacks
(Qi et al., 2024; Niu et al., 2024) distill harmful
queries and add imperceptible noise to original im-
ages. To mitigate these vulnerabilities, numerous
studies have explored methods to enhance VLM
safety at either the training (Lab et al., 2025; Zong
et al., 2024; Zhang et al., 2024b) or inference stage
(Xu et al., 2024; ?). The predominant strategy is to
construct safety-oriented datasets and subsequently
fine-tune the target model on them. For example,
Zong et al. (2024) introduces VLGuard, a vision-
language dataset for safety instruction following,
while Zhang et al. (2024b) proposes a safety prefer-
ence alignment dataset. MMJ-bench (Weng et al.,
2024) presents a thorough evaluation of existing
jailbreak attacks and defenses on various models.
While these datasets improve the safety of VLMs
in handling normal harmful queries, they overlook
the challenge posed by adversarial users with mali-
cious intent.

3 Methods

In this section, we introduce Adversary-aware
DPO (ADPO). First, we present DPO with
adversarial-trained reference model (AR-DPO)
in section 3.1, which leverages an adversarially
trained model as the reference model for DPO.
Then, in Section 3.2, we describe DPO with
adversary-aware loss (AT-DPO), which directly
incorporates the adversarial min-max optimization
framework into the DPO training procedure. Fi-
nally, in section 3.3, we combine these components
to present the ADPO framework.

Adversarial training. Adversarial training is a
min-max optimization framework designed to en-
hance model robustness against adversarial attacks.
It involves two key stages: (1) the adversary gen-
erates worst-case perturbations δ within a certain
constrained set ∆ to maximize the model’s loss,
and (2) the model updates its parameters to mini-
mize the loss on these perturbed inputs. Formally,
this can be expressed as:

min
θ

max
δ∈∆

L(fθ(x+ δ), y), (1)

where fθ represents the model, x and y denote the
input and output respectively.
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3.1 AR-DPO: DPO with Adversarial-trained
Reference Model

The reference model is the cornerstone of DPO,
providing a benchmark to guide the target model’s
output. However, training the reference model
solely under benign conditions without the aware-
ness of the adversarial parties leaves the target
model vulnerable to perturbations and suscepti-
ble to jailbreak attacks. Therefore, an intuitive
approach is to train the reference model with worst-
case perturbations, enhancing its resilience to jail-
break attacks and consequently ensuring the target
model’s robustness.

Worst-case perturbation search on image space.
Since most jailbreak attacks of VLMs are pro-
posed to manipulate the image modality, we first
consider to search for the worst-case perturba-
tion in the image space. To create a reference
model that is aware of jailbreak attacks in im-
age space, we employ Projected Gradient Descent
(PGD) (Mądry et al., 2017) to maximize the prob-
ability of rejected harmful responses Yr. For each
harmful image-text pair xI -xT , we optimize the
perturbation δ within a constrained perturbation
set ∆ = {δ | xI + δ ∈ [0, 1], ∥δ∥p ≤ ϵ}. This
constraint ensures that each pixel of the perturbed
image remains within the valid range, and the max-
imum perturbation magnitude ϵ preserves the se-
mantic meaning of the image. The maximization
of the probability of rejected responses Yr can be
formulated:

δ∗ = argmax
δ∈∆

Lθ(xI , xT , Yr), where (2)

Lθ(xI , xT , Yr) = log fθ(Yr | xI + δ, xT ) (3)

This optimization can be solved with Projected
Gradient Descent:

δt+1 = Π∆(x
t
I + αsign∇xt

I
Lθ(xI , xT , Yr)) (4)

Worst-case perturbation search on latent space.
To provide a reference model that is also aware of
the jailbreak attacks in both text and image domain,
we also propose to search for perturbation in the
latent space of image-text token embedding. We
don’t choose to optimize adversarial perturbation
over the discrete text token space for two key rea-
sons: (1) optimizing worst-case perturbations in
the discrete token space is computationally expen-
sive (Mazeika et al., 2024), and (2) prior studies

have shown that such approaches often yield unsat-
isfactory performance (Xhonneux et al., 2024). By
operating in the latent space, we achieve a more
efficient and effective optimization process in pro-
viding an adversary-aware reference model. Given
a VLM fθ, it can be expressed as the composi-
tion of two functions, fθ(Y | xI , xT ) = gθ(Y |
hθ(xI , xT )), where hθ extracts latent representa-
tion of the image-text token embedding, and gθ
maps these latent activations to the outputs. Simi-
lar to the optimization in image space, the search
for adversarial perturbation δ on image-text latent
space can be formulated as:

δ∗ = argmax
δ∈∆

log gθ(Yr | hθ(xI , xT ) + δ) (5)

Reference model updates to minimize the loss on
perturbed inputs. After generates the worst-case
perturbation δ∗, the reference model is adversari-
ally trained to minimize the loss on perturbed in-
puts. The loss is designed to achieve two objectives:
(1) maximizing the probability of generating pre-
ferred answer on harmful inputs and (2) maintain
the general utility on a normal instruction follow-
ing dataset. To this end, the adversarial training
loss consists of two components: the toward loss
Ltoward to increase the likelihood of preferred safe
responses Yp and the utility loss Lutility to preserve
the general utility, which can be formulated as:

Ltoward = − log fθ(Yp | xh
I + δ∗, xh

T ) (6)

Lutility = − log fθ(Yutil | xutil
I , xutil

T ) (7)

If the perturbation is optimized on latent space,
the Ltoward can be reformulated as:

Ltoward = − log gθ(Yp | hθ(x
h
I , x

h
T ) + δ∗) (8)

The overall loss of adversarial training can be
formulated as weighted combination of the above
two parts and the adversarially trained reference
model fθAT

is optimized with following formula:

fθAT
= argmin

fθ

Ltoward + αLutility (9)

DPO training. Next, we take the adversarially
trained VLM fθAT

as the reference model for DPO.
The objective is to encourage the model to maxi-
mize the likelihood of preferred responses while
minimizing the likelihood of rejected responses,
which can be formulated as:

LDPO = − log σ

(
β log

fθ(Yp|xI , xT )

fθAT
(Yp|xI , xT )

−β log
fθ(Yr|xI , xT )

fθAT
(Yr|xI , xT )

)
(10)
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where β is a hyperparameter and controls the
penalty of deviations from reference model fθAT

.
A higher β enforces stricter adherence to the refer-
ence model, while a lower β allows more flexibility.
The term log

fθ(Yp|xI ,xT )
fθAT

(Yp|xI ,xT ) and log fθ(Yr|xI ,xT )
fθAT

(Yr|xI ,xT )

measures likelihood of generating the preferred
response and rejected answer respectively under
the target model fθ versus the reference model
fθAT

. Maximizing the former term encourages
the target model to assign higher probability to pre-
ferred responses compared to the reference model,
while minimizing this term discourages the target
model from assigning high probability to rejected
responses.

3.2 AT-DPO: DPO Training with
Adversary-aware Loss

Adversarial training can be viewed as the integra-
tion of adversarial examples into the training pro-
cess, and it is independent of the particular choice
of the training objective function. Therefore, in
addition to utilizing an adversarially trained model
as the reference for DPO, we also investigate the
potential of direct incorporation of adversarial tech-
niques into the DPO training process. If the pertur-
bation is searched on image space, the loss funtion
for AT-DPO can be formulated as:

LAT-DPO = − log σ

(
β log

fθ(Yp|xI + δ∗, xT )

fref (Yp|xI , xT )

−β log
fθ(Yr|xI + δ∗, xT )

fref (Yr|xI , xT )

)
(11)

where fref represents a normal reference model
without fine-tuning. In each training iteration of
DPO, the worst-case perturbation δ is computed
according to Equation 2 and subsequently added to
the input images.

If the perturbation is optimized on latent space,
the loss funtion for AT-DPO is:

LAT-DPO = − log σ

(
β log

gθ(Yp | hθ(xI , xT ) + δ∗)
fref (Yp|xI , xT )

−β log
gθ(Yr | hθ(xI , xT ) + δ∗)

fref (Yr|xI , xT )

)
(12)

where δ is computed according to Equation 5
and then is added to the latent activations.

3.3 Adversary-aware DPO (ADPO)
Adversary-aware DPO (ADPO) combines both the
adversarial reference model and adversary-aware
loss into DPO framework. In Adversarial reference
model training stage, the training procedure fol-
lows the adversarial training process of AR-DPO,

producing a robust and adversary-aware reference
model fθAT

. This model is adversarially trained to
generate human-preferred responses under worst-
case perturbations, ensuring it serves as a reliable
benchmark for the second stage.

In adversary-aware DPO Training stage, ADPO
incorporates the adversary-aware loss of AT-DPO
directly into the DPO training process. The goal
is to optimize the target model fθwhile accounting
for adversarial conditions. This process can be
formulated as:

LA-DPO = − log σ

(
β log

fθ(Yp|xI + δ∗, xT )

fθAT
(Yp|xI , xT )

−β log
fθ(Yr|xI + δ∗, xT )

fθAT
(Yr|xI , xT )

)
(13)

4 Experiments
We begin by detailing our experimental configura-
tion, including the training and evaluation datasets,
jailbreak attacks, and baseline methods. Next,
we demonstrate the effectiveness of ADPO from
two perspectives of safety, measured by its robust-
ness against various jailbreak attacks, and utility,
evaluated on normal tasks. To further validate
our approach, we visualize latent space shifts to
show improved robustness, conduct ablations to
justify hyperparameter choices, and compare train-
ing efficiency across methods. Finally, we com-
pare ADPO against advanced closed-source mod-
els under black-box attacks.. Additional results,
including the rationale for using PGD, latent space
adversarial training and generalizaton to IPO, are
provided in Appendix Sections B.2 and B.3.

4.1 Experiment Setup
Safety alignment dataset. Harmful queries in
VLMs can take many forms, including adversar-
ial text prompts, harmful image-text pairs, and
synthetic images using Stable Diffusion or typo-
graphic techniques. To ensure comprehensive
safety alignment, we construct a dataset combin-
ing 80 image-text pairs from HarmBench multi-
modal (HarmBench-mm), 40 adversarial training
(HarmBench-AT) text prompts paired with blank
images, and 80 additional samples generated using
typographic and Stable Diffusion methods based
on HarmBench-AT—yielding 200 harmful image-
text pairs. For most experiments, the preferred
safe responses are set to "Sorry, I can’t do that."
These labels are effective in teaching the model
to reject harmful prompts, but they also make the
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model overly conservative, leading to unnecessary
refusals even on benign or ambiguous inputs. To
mitigate this, we conduct additional experiments
where we replace the hard refusal labels with Chain-
of-Thought (CoT) safety responses, which are gen-
erated using GPT-4o.

Utility dataset. For utility alignment, we sam-
ple 500 examples from LLaVA-Instruct-150K to
balance safety and task performance during fine-
tuning.

Evaluated VLMs. We evaluate our method on five
widely used open-sourced VLMs:LLaVA-1.5-7B,
LLaVA-1.6-7B, Qwen2-VL-7B, InternVL2-8B and
Qwen2.5-VL-7B. We employ LoRA to fine-tune
all the models. The results of LLaVA-1.6-7B and
Qwen2.5-VL-7B are presented in Appendix B.1.

Evaluated jailbreak attacks and utility bench-
marks. For safety evaluation, We evaluate two
optimization-based attacks, VisualAdv (Qi et al.,
2024) and MMPGDBlank (Mazeika et al., 2024).
Furthermore, we also employ the Jailbreaking sub-
set of MultiTrust (Zhang et al., 2024a) to assess
the safety of the VLM in a black-box setting.
This subset includes three subtasks: Typographic
Jailbreaking, Multimodal Jailbreaking, and Cross-
modal Jailbreaking. For utility evaluation, we con-
duct experiments on four widely adopted utilities
benchmarks, including MMStar (Chen et al., 2024),
OCRBench (Liu et al., 2024c), MM-Vet (Yu et al.,
2023b), LLaVABench (Liu et al., 2024a). Detailed
descriptions of jailbreak attacks and utility bench-
marks are provided in Appendix A.1 and A.2.

Baselines. In addition to its ablations: AR-DPO
(adversarial-trained reference model only) and AT-
DPO (adversary-aware DPO loss only), we com-
pare ADPO against four baselines: supervised fine-
tuning (SFT), standard DPO, ESCO (Gou et al.,
2024), a training-free safety alignment approach,
and direct adversarial training (AT) incorporating a
log-likelihood comparison term. Detailed descrip-
tion of the baselines is provided in Appendix A.3.

4.2 Safety Evaluation
In this section, we evaluate the effectiveness of
ADPO in improving safety alignment. The evalua-
tion focuses on Attack Success Rate (ASR) across
various jailbreak attacks, which is defined as the
fraction of successful attacks over all tested exam-
ples. The HarmBench classifier (Mazeika et al.,
2024) is employed to determine whether the model
responses are harmful.

VisualAdv

MMPGDBlank
MultiTrust

MMStar

OCRBench

MM-Vet
LLaVABench

20 40 60 80

LLaVA-1.5Supervised FT
ESCO
AT
DPO
AR-DPO
AT-DPO
ADPO

Figure 3: Safety-utility trade-off, where jailbreak dimen-
sions indicate the ASR reduction (the larger the better).
A larger area for each method represents more effective
in safety alignment and utility maintainness.

Overall safety gains. As shown in the safety
column of Table 1, ADPO and its ablations (AR-
DPO and AT-DPO) significantly reduce the ASR
across all jailbreak attacks on all VLMs, outper-
forming the baselines. Specifically, ADPO emerges
as the most effective method, reducing the ASR to
nearly 0 across almost all attacks, underscoring
the importance of integrating both the adversarial-
trained reference model and adversary-aware DPO
loss. Although SFT and DPO exhibit compara-
ble performance on some cases in the Multitrust
benchmark, they demonstrate reduced effectiveness
against white-box optimization-based attacks, such
as the MMPGDBlank attack.

ADPO vs. AT. ADPO consistently outperforms AT
across adversarial scenarios, which we attribute to
differences in objective design. The log-likehood
term used in AT, L = log f(Yr | xI + δ, xT ) −
log f(Yp | xI + δ, xT ), directly encourages the
model to prefer safe responses over unsafe ones,
which are dominated by the second term, pushing
the model to minimize loss by generating uniformly
low-probability outputs. This shortcut behavior
leads to unstable training and degraded generation
quality. In contrast, DPO loss uses a reference
model to guide preference alignment, offering a
more structured and constrained optimization pro-
cess for stable and balanced safety alignment.

4.3 Utility Evaluation
ADPO, along with its ablations and baselines are
evaluated on four normal task benchmarks, each
has its own evaluation metric (detailed in Appendix
A.2). MMStar focuses on image-based multiple-
choice questions, while the other three benchmarks
are visual question answering (VQA) datasets. The
results are shown in the utility column of Table 1.
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Safety ↓ Utility↑

VisualAdv MMPGDBlank
MultiTrust

MMStar OCRBench MM-Vet LLaVABenchTypographic Multimodal Crossmodal
Jailbreak Jailbreak Jailbreak

LLaVA-1.5-7B 64.5 84.0 22.2 55.1 42.0 32.7 202 29.9 59.5
+Supervised FT 19.0 76.0 0.5 10.3 27.1 33.7 (↑) 201 28.6 53.6

+ESCO 12.0 25.0 8.7 31.2 37.3 32.3 207 (↑) 30.5 (↑) 58.9
+ AT 20 17.5 3.5 24.1 28.4 31.9 198 28.9 58.6

+ DPO 12.0 33.0 0.7 8.8 9.6 33.9 (↑) 198 28.9 54.4
+AR-DPO 2.5 1.0 0.0 0.0 2.4 34.1 (↑) 187 23.3 47.7
+AT-DPO 7.5 8.5 0.5 3.4 9.1 33.4 (↑) 193 28.9 51.6
+ ADPO 5.0 0.5 0.0 0.0 0.2 33.7 (↑) 184 24.2 48.2

+ ADPO-CoT 2.5 0.5 0.2 2.0 3.2 32.8(↑) 191 29.2 57.7
Qwen2-VL-7B 13.5 30.0 4.5 54.3 6.3 58.5 841 64.7 88.0

+ Supervised FT 0.0 10.0 0.2 6.4 0.0 58.1 835 57.6 74.6
+ ESCO 10.5 13.5 2.3 39.5 8.8 58.6 (↑) 841 64.8 (↑) 88.1 (↑)

+ AT 2.0 9.5 0.3 14.5 0.3 58.5 841 62.2 84.0
+ DPO 0.0 6.0 0.0 5.1 0.0 58.4 842 (↑) 63.6 82.5

+ AR-DPO 0.0 4.0 0.0 4.7 0.0 58.0 836 59.5 79.2
+ AT-DPO 0.0 4.5 0.0 4.5 0.0 58.3 841 54.1 83.1
+ ADPO 0.0 1.5 0.0 4.0 0.0 57.6 830 53.9 74.2

+ ADPO-CoT 0.0 2.5 0.0 4.5 0.0 58.0 840 62.5 85.8
InternVL2-8B 15.0 65.5 9.3 50.2 1.0 59.6 799 59.5 73.3

+ Supervised FT 3.5 49.5 2.3 19.2 0.5 59.1 805 (↑) 55.5 66.6
+ ESCO 14.5 42.0 4.2 47.0 1.0 55.9 726 60.1 (↑) 73.7

+ AT 0.0 34.5 1.3 22.2 0.5 59.7 (↑) 799 58.3 69.6
+ DPO 2.0 33.5 0.7 16.2 0.3 59.8 (↑) 798 59.4 73.9 (↑)

+ AR-DPO 0.0 22 0.3 10.9 0.0 59.5 787 56.7 71.7
+ AT-DPO 1.0 19 0.0 8.8 0.0 59.7 (↑) 789 56.7 68.2
+ ADPO 0.0 9.0 0.0 4.7 0.0 59.3 772 55.0 63.2

+ ADPO-CoT 0.0 7.0 0.5 5.1 0.0 59.2 792 58.0 72.2

Table 1: Safety and utility evaluation of ADPO, its ablations, and baselines on various VLMs. ADPO-CoT refers to
the variant where Chain-of-Thought (CoT) safety responses are used as supervision labels in place of direct refusals.
For safety evaluation, the lowest ASR for each jailbreak attack is highlighted in bold and gray shadow. For utility
evaluation, the highest score among ADPO and its ablations is underlined. Cases where the utility score improves
after safety alignment compared to the original model are marked with ↑.

For all datasets, a higher score indicates better per-
formance on that dataset. The highest score among
ADPO and its ablations is underlined. Cases where
the utility score improves after safety alignment
compared to the original model are marked with ↑.

Overall utility evaluation. Overall, all methods
somehow reduce the utility score on utility bech-
marks, whihe multiple-choice dataset MMStar ex-
periences an increase in the utility score after safety
fine-tuning, indicating its less sensitive to the safety
alignment.Although ADPO and AR-DPO demon-
strate remarkable performance in enhancing robust-
ness against jailbreak attacks, we observe a slight
trade-off on the VQA datasets. This suggests that
using direct refusals as supervision labels, although
effective for enhancing safety, can make the model
overly conservative and partially compromise its
general capabilities. These results highlight the
need for more refined fine-tuning strategies and ob-
jective functions to better balance safety and utility
in future work.

Effect of CoT supervision. To mitigate the trade-

off between safety and utility introduced by direct
refusal supervision, we employ Chain-of-Thought
(CoT) safety responses as labels, which are gen-
erated by GPT-4o. This variant, ADPO-CoT, en-
hances robustness against jailbreak attacks while
largely preserving the general utility of the model.
CoT-based supervision encourages the model to
internalize the rationale behind safety decisions
rather than relying on rigid refusal patterns, en-
abling the model to better differentiate between
genuinely unsafe queries and benign instructions.
Consequently, ADPO-CoT achieves a more favor-
able balance between safety alignment and general
capability, alleviating the over-conservatism typi-
cally induced by direct-refusal training.

Safety and utility trade-off. To further evaluate
the safety-utility trade-off, we present a radar chart
in Figure 3. Note that the jailbreak dimensions
indicate the ASR reduction (the larger the better),
and MultiTrust dimension denotes the average ASR
reduction across its subtasks. A larger area repre-
sents more effective in safety alignment and utility
maintainess. As shown in Figure 3, the area for
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Figure 4: Visualization of representation space of LLaVA-1.5 trained with ADPO, its ablations and FT. (1)
Harmbench queries (green) are closer to the harmful anchor cluster (yellow) , demonstrating the model’s success in
recognizing their harmfulness. (2) LLaVA-1.5 trained with ADPO and its ablations successfully moves the orange
cluster closer to the harmful (yellow) and HarmBench (green) clusters (black arrow) while pushing it further from
the harmless cluster (blue, red arrow), indicates that the safety aligned model can better recognize the harmfulness
in Harmbench queries even with the existence of jailbreak attacks.

ADPO (purple area) and AR-DPO (green are) are
the largest compared with SFT and DPO.

4.4 Latent Space Representation Analysis
To further assess the effectiveness of ADPO,
we visualize the latent representation space of
LLaVA-1.5 using the last hidden state of the LLM,
which encodes the full sequence context. Inspired
by findings in Lin et al. (2024), which show that
harmful queries tend to shift toward harmless direc-
tions during jailbreaks, we apply principal compo-
nent analysis (PCA) (Wold et al., 1987) to analysis
four types of queries: Harmful and Harmless an-
chor query, HarmBench query, HarmBench query
under attacks. The harmful and harmless anchor
queries, collected from (Zheng et al., 2024), serve
as reference points for general harmful and harm-
less queries, exhibiting significant differences in
harmfulness while maintaining similar query for-
mats and text lengths.

As shown in Figure 4, the representations of
harmful and harmless anchor queries form distinct
clusters (yellow and blue), indicating the model’s
ability to differentiate between harmful and harm-
less semantics. Harmbench queries, which is in-
dicated as green clusters are closer to the harmful
anchor cluster (yellow), demonstrating the model’s
success in recognizing their harmfulness. How-
ever, after jailbreak attacks (MMPGDBlank and
VisualAdv), HarmBench queries shift significantly
towards the harmless cluster (blue), as seen in the

orange clusters in the first column of Figure 4.
We compare the latent space of LLaVA-1.5

trained with AR-DPO, AT-DPO, ADPO and SFT
in the subsequent columns of Figure 4. Notably,
LLaVA-1.5 trained with ADPO and its ablations
successfully moves the orange cluster closer to
the harmful (yellow) and HarmBench (green) clus-
ters (black arrow) while pushing it further from
the harmless cluster (blue, red arrow). In contrast,
the SFT model fails to exhibit this behavior. This
finding indicates that the safety aligned model can
better recognize the harmfulness in Harmbench
queries even with the existence of jailbreak attacks.

4.5 Ablation Study
Figure 5 presents ablation studies of LLaVA-1.5
and Qwen2-VL on α in Equation 9, which balance
the trade-off between safety and utility during ad-
versarial training. The left Y-axis displays the ASR,
while the right Y-axis illustrates the False Harm
Rate (FHR) on MM-Vet, representing the propor-
tion of benign samples incorrectly flagged as harm-
ful. The optimal goal is to minimize both ASR
(enhancing safety robustness) and FHR (preserving
utility). Based on the intersection of the two curves,
we select the appropriate α value for our experi-
ments. Additional ablation studies of LLaVA-1.6
and InternVL2 are provided in Appendix B.5.

4.6 Training Time Comparison
Table 2 presents the training time per iteration for
various methods on LLaVA-1.5 and Qwen2-VL. The
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Figure 5: Ablation study on hyperparameter α.

results indicate that ADPO incurs a higher train-
ing cost than DPO and SFT due to its adversarial
component, but it remains comparable to direct AT.
However, ADPO outperforms AT in terms of ro-
bustness, as demonstrated in our main results, mak-
ing the additional cost worthwhile. Notably, the
training time difference between ADPO and AT is
relatively small (e.g., 227s vs. 225s for LLaVA-1.5,
396s vs. 360s for Qwen2-VL), meaning that the
robustness gains from ADPO come with minimal
additional computational overhead compared to
AT.

SFT DPO ADPO AT
LLaVA-1.5 28s 45s 227s 225s
Qwen2-VL 31s 84s 396s 360s

Table 2: Comparison on training time (sec) per iteration
among different methods.

4.7 Comparision to closed-source models

Typo Multimodal Cross Average
GPT-4o 0.0 25.6 0.4 8.7

Claude-3.5 0.2 13.2 0.0 4.5
Gemini2-pro 55.8 52.1 40.4 49.4

LLaVA-1.5+ADPO 0.0 0.0 0.2 0.07
LLaVA-1.6+ADPO 0.0 0.2 8.4 2.9
Qwen2-VL+ADPO 0.0 4.0 0.0 1.3
InternVL-2+ADPO 0.0 4.7 0.0 1.6

Table 3: Comparison of ADPO-trained VLMs with
advanced closed-source VLMs: GPT-4o, Claude-3.5-
Sonnet, and Gemini2-Pro, under black box attacks.

We evaluate the adversarial robustness of
ADPO-trained models with advanced closed-source
VLMs, including GPT-4o, Claude-3.5-Sonnet, and
Gemini2-Pro under three black-box attacks. As
shown in Table 3, ADPO-trained models consis-
tently exhibit lower ASR than all proprietary mod-
els, highlighting the effectiveness of ADPO in en-
hancing adversarial robustness against black-box
attack compared to closed-source VLMs.

5 Conclusion
We propose ADPO, a novel training framework to
enhance safety alignment of Vision-Language Mod-
els (VLMs) under adversarial scenarios. Compared

with baselines, ADPO demonstrates its effective-
ness through extensive experiments, achieving an
ASR close to 0 across nearly all jailbreak attacks.
Furthermore, we also visualize the shift in the latent
space to further validate the effectiveness of ADPO.
The results underscore the potential of ADPO as
a robust solution to enhance the safety alignment
of VLMs. It would be interesting to investigate
refined fine-tuning strategies that better balance the
trade-off between safety and utility in the future.
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tion of China (NSFC) under Grant 62372195.

Limitations
We outline the limitations of our study as follows:

1. While enhancing the safety robustness of
VLMs, ADPO can inevitably compromise their
general performance on utility benchmarks, un-
derscoring the need for better optimization of this
trade-off in future research.

2. We only focus on integrating adversarial train-
ing into offline preference optimization method like
DPO and the exploration of incorporating adver-
sarial training into online reinforcement learning
methods such as PPO or GRPO is reserved for
future work.

3. While CoT labels generated by GPT-4o help
mitigate utility degradation, they also introduce
reliance on a stronger model. In the future, ex-
ploring self-refinement approaches to reduce such
dependence while further optimizing safety–utility
trade-offs would be a promising direction.

Ethics Statements
In this paper, we propose a safety alignment frame-
work to enhance the safety robustness of VLMs
against jailbreak attacks. We believe that the adop-
tion of ADPO will significantly contribute to the
development of more secure and robust VLMs in
the future, enhancing their safety and reliability
in a wide range of applications. We acknowledge
that data utilized for training and evaluation in our
paper may contain harmful content and is strictly
limited to the model training and evaluation pro-
cess. ADPO training framework will be released in
the near future and contributes to the advancement
of safer VLMs.
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A Detail Experiment Setting

A.1 Jailbreak attacks

VisualAdv is a universal attack that optimizes a
universal adversarial pattern for all harmful be-
haviors, while MMPGDBlank is a one-to-one at-
tack that optimizes a distinct image for each harm-
ful behavior. VisualAdv and MMPGDBlank are
evaluated on 200 harmful queries from Harm-
Bench standard behaviors. The jailbreak subset of
MultiTrust includes three sub-tasks: Typographic
Jailbreaking, Multimodal Jailbreaking, and Cross-
modal Jailbreaking. Typographic Jailbreaking sim-
ply embeds the jailbreaking prompts generated
by GPTfuzzer (Yu et al., 2023a) and DAN (Shen
et al., 2024) into images using typographic meth-
ods. Multimodal Jailbreaking involves the ran-
dom sampling of instances from the existing Mul-
timodal Jailbreak Benchmark (Gong et al., 2023;
Liu et al., 2025). Cross-modal Jailbreaking investi-
gates whether VLMs are susceptible to adversarial
text queries when paired with images, specifically
by associating jailbreak prompts with task-relevant
images rather than sample-specific images.

A.2 Utility Benchmarks

MMStar. MMStar is a benchmark for multimodal
multiple-choice questions, consisting of 1,500 sam-
ples that assess six fundamental capabilities of
vision-language models (VLMs): fine-grained per-
ception, coarse perception, mathematics, science
and technology, logical reasoning, and instance rea-
soning. The metric used to evaluate MMStar is
accuracy and is calculated by some heuristic rules.

OCRBench. OCRBench is a comprehensive Opti-
cal Character Recognition (OCR) benchmark to as-
sess the OCR capabilities for VLMs. It comprises
1,000 question-answer pairs, and its evaluation met-
ric is based on the number of outputs that match
the ground truth answers.

MM-Vet. MM-Vet is an evaluation benchmark that
examines VLM on six core capabilities, including
recognition, OCR, knowledge, language genera-
tion, spatial awareness, and math. For each sample,
MM-Vet score is calculated by GPT-4 based on the
input question, ground truth, and model output.

LLaVABench. LLaVABench contains 60 samples
in three categories: conversation, detailed descrip-
tion, and complex reasoning. The evaluation score
is determined by GPT-4, which compares the gen-
erated answer with a reference answer.

A.3 Baselines

ESCO. ESCO is a training-free safety alignment
method that generates responses by adaptively
transforming unsafe images into texts.
AT. Previous work (Xhonneux et al., 2024) has ex-
plored the integration of log-likelihood ratio com-
parisons into adversarial training. To extend this
approach to VLMs, we drive the following loss
function:

L = log f(Yr | xI + δ, xT )

− log f(Yp | xI + δ, xT )

which directly encourages the model to prefer safe
responses over unsafe ones.

A.4 Hyperparameter Choices
Table 4 presents a full list of hyperparameter
choices for each fine-tuning method.

Hyperparameter FT AT DPO AR-DPO AT-DPO ADPO

L
L

aV
A

-1
.5

-7
B

Learning rate 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
Batch size 64 64 64 64 64 64

Epochs 2 2 10 5 10 5
α 30 30 - - - -
β - - 0.1 0.01 0.1 0.01

Lora r 128 128 128 128 128 128
Lora alpha 256 256 256 256 256 256

Q
w

en
2-

V
L

-7
B

Learning rate 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
Batch size 64 64 64 64 64 64

Epochs 2 2 10 3 10 3
α 3 3 - - - -
β - - 0.1 0.1 0.1 0.1

Lora r 128 128 128 128 128 128
Lora alpha 256 256 256 256 256 256

In
te

rn
V

L
2-

8B

Learning rate 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
Batch size 64 64 64 64 64 64

Epochs 2 2 10 3 10 3
α 0.4 0.4 - - - -
β - - 0.1 0.1 0.1 0.1

Lora r 128 128 128 128 128 128
Lora alpha 256 256 256 256 256 256

Table 4: Hyperparameters for various VLMs with dif-
ferent fine-tuning settings.

B Supplementary Materials

B.1 Evaluation on LLaVA-1.6-7B and
Qwen2.5-VL-7B

The safety and utility evaluation of LLaVA-1.6-7B
and Qwen2.5-VL-7B are presented in Table 5.

B.2 Perturbation generation on FGSM
We adopt PGD as the primary perturbation genera-
tion method, as prior work (Mądry et al., 2017) has
demonstrated that that models trained with PGD
are often more robust against a range of other adver-
sarial attacks, including FGSM (Goodfellow et al.,
2014), CW (Carlini and Wagner, 2017), and black-
box attacks. Additionally, we conduct experiments
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Safety ↓ Utility↑

VisualAdv MMPGDBlank
MultiTrust

MMStar OCRBench MM-Vet LLaVABenchTypographic Multimodal Crossmodal
Jailbreak Jailbreak Jailbreak

LLaVA-1.6-7B 33.5 48.5 8.5 58.3 56.2 37.9 500 43.1 66.8
+ DPO 2.0 7.0 1.2 7.1 27.1 38.1 (↑) 489 38.3 59.1

+ ADPO 0.0 0.0 0.0 0.2 8.4 36.9 433 37.6 50.9
+ ADPO-CoT 0.5 1.5 0.2 1.0 3.4 37.1 491 42.8 64.8

Qwen2.5-VL-7B 15.5 31.5 4.0 54.9 10.5 62.9 873 63.4 97.1
+ DPO 12.0 7.5 0 23.5 0 62.3 862 64.2 96.5

+ ADPO 0 1.0 0 2.1 0 62.1 868 56.6 87.0
+ ADPO-CoT 0 1.0 0 3.4 0 61.6 869 61.6 93.7

Table 5: Safety and utility evaluation on LLaVA-1.6-7B and Qwen2.5-VL-7B.

using perturbations generated by FGSM to further
validate this conclusion. The results are presented
in Table 6.

Safety ↓ Utility↑
MMPGDBlank MultiTrust

MM-Vet
Typo Multimodal Cross

LLaVA-1.5-7B 84.0 22.2 55.1 42.0 29.9
+AT-DPO (PGD) 8.5 0.5 3.4 9.1 28.9

+AT-DPO (FGSM) 4.0 1.2 7.5 8.3 28.9
LLaVA-1.6-7B 48.5 8.5 58.3 56.2 43.1

+AT-DPO (PGD) 3.5 0.5 4.9 21.3 38.9
+AT-DPO (FGSM) 6.0 1.0 7.1 25.3 39.4

Qwen2-VL-7B 30.0 4.5 54.3 6.3 64.7
+AT-DPO (PGD) 4.5 0.0 4.5 0.0 54.1

+AT-DPO (FGSM) 5.5 0.0 5.1 0.0 61.7
InternVL2-8B 65.5 9.3 50.2 1.0 59.5

+AT-DPO (PGD) 19.0 0.0 8.8 0.0 56.7
+AT-DPO (FGSM) 26.0 1.2 16.9 0.0 58.4

Table 6: Comparison of worst-case perturbation
searched by PGD versus FGSM.

B.3 Latent Space Adversarial Training
We also investigate the search of adversarial per-
turbations in the latent space of image-text embed-
dings, introduced in Section 3.1. Specifically, we
perform adversarial perturbations at layers 8, 16,
24, and 30 of the backbone LLM for the VLM.
As shown in Table 7, where L-ADPO, L-AR-DPO
and L-AT-DPO represent the latent space counter-
parts of ADPO and its ablations. We hypothesize
that unlike image space perturbations, which in-
troduce explicit variations that align more closely
with real-world adversarial manipulations, latent
space perturbations operate in a more abstract and
constrained domain. This can limit their ability to
cover the full range of adversarial variations effec-
tively. Additionally, the optimization landscape in
latent space differs from that in image space, po-
tentially leading to suboptimal adversarial training.

B.4 Extension to IPO

we conduct additional experiments with IPO to
demonstrate the generalizability and effectiveness

Safety ↓ Utility↑
MMPGDBlank MultiTrust

MM-Vet
Typo Multimodal Cross

LLaVA-1.5-7B 84.0 22.2 55.1 42.0 29.9
+AR-DPO 1.0 0.0 0.0 2.4 23.3
+AT-DPO 8.5 0.5 3.4 9.1 28.9
+ ADPO 0.5 0.0 0.0 0.2 24.2

+L-AR-DPO 2.5 0.0 0.0 1.6 23.4
+L-AT-DPO 31.5 1.0 23.1 14.9 28.9
+ L-ADPO 2.0 0.0 0.0 2.2 25.1

LLaVA-1.6-7B 48.5 8.5 58.3 56.2 43.1
+AR-DPO 8.5 0.2 0.0 2.4 38.0
+AT-DPO 3.5 0.5 4.9 21.3 38.9
+ ADPO 0.5 0.0 0.2 8.4 37.6

+L-AR-DPO 11.0 1.0 0.0 21.6 41.0
+L-AT-DPO 12.0 1.7 8.5 29.1 39.6
+ L-ADPO 10.5 1.2 0.0 24.9 42.6

Table 7: Comparison of worst-case perturbation
searched in the image space versus in the latent space
of image-text embedding.

of our approach. The results are shown in the Table
8.

Safety ↓ Utility↑
MMPGDBlank MultiTrust

MM-Vet
Typo Multimodal Cross

Qwen2.5-VL-7B 31.5 4.0 54.9 10.5 63.4
+IPO 9.5 0.0 8.5 0.0 58.0

+AIPO 0.5 0.0 2.2 0.0 57.6

Table 8: Safety and utility evaluation of AIPO.

B.5 Ablation study of LLaVA-1.6 and
InternVL2

B.6 Radar chart of LLaVA-1.6

The radar chart of LLaVA-1.6 are presented in Fig-
ure 7.

C Computing Resources

The experiments are carried by 2*NVIDIA A40
gpus. All conducted experiments required at least
2400 gpu hours.

13656



0.0 0.5 1.0
alpha

5.0

7.5

10.0

AS
R 

(%
)

0

1

2

3

4

FH
R 

(%
)

LLaVA-1.6-7b

0.0 0.5 1.0
alpha

4

6

8

AS
R 

(%
)

2

1

0

1

2

FH
R 

(%
)

InternVL2-8B

Figure 6: Ablation study on adversarial training α of
LLaVA-1.6-7B and InternVL2-8B.
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Figure 7: This graph illustrates the reduction in ASR
and utility score of ADPO, its ablations and baselines
over different jailbreak attacks and utility benchmarks
on LLaVA-1.6.

D AI Assistants

We use AI only for grammar correction and sen-
tence polishing in the paper.
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