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Abstract

Previous work has reported both empirical and
theoretical evidence, for specific training mod-
els, of the correspondence between the squared
norm of an embedding and the information con-
tent of the text it represents. In this paper, we in-
vestigate the relationship at the theoretical and
empirical levels, focusing on the mechanisms
and composition functions used to combine to-
ken embeddings. i) We formally derive two suf-
ficient theoretical conditions for this correspon-
dence to hold in embedding models. ii) We em-
pirically examine the correspondence and the
validity of these conditions at the word level for
both static and contextual embeddings and dif-
ferent subword token composition mechanisms.
iii) Building on Shannon’s Constant Entropy
Rate (CER) principle, we explore whether em-
bedding mechanisms exhibit a linearly mono-
tonic increase in information content as text
length increases. Our formal analysis and ex-
periments reveal that: i) At the word embed-
ding level, models satisfy the sufficient condi-
tions and show a strong correspondence when
certain subword composition functions are ap-
plied. ii) Only scaled embedding averages pro-
posed in this paper and certain information-
theoretic composition functions preserve the
correspondence. Some non-compositional rep-
resentations—such as the CLS token in BERT
or the EOS token in LLaMA—tend to converge
toward a fixed point. The CLS token in Modern-
BERT, however, exhibits behavior that aligns
more closely with the CER hypothesis.

1 Introduction

Embeddings remain a cornerstone of modern natu-
ral language processing, underpinning a wide range
of tasks such as information retrieval, semantic
textual similarity, and knowledge graph reasoning.
Their utility, however, depends not only on the
representations themselves but also on the opera-
tors that act upon them, which enable measuring

similarity, performing composition, and support-
ing more complex forms of inference. An equally
important aspect is measuring the amount of in-
formation embedded in these representations, as it
plays a central role in defining and guiding such
operators.

Previous studies have provided empirical evi-
dence of a relationship between the squared norm
of an embedding and the information content (IC)
or self-information (I (w) = —log(P(w))) of the
corresponding text (I(w) oc ||]|?). For instance,
Levy and Goldberg (2014) analytically demon-
strated this correspondence at the word level in the
context of the Skip-Gram with Negative Sampling
(SGNS) objective. Oyama et al. (2023) further de-
rives a relationship between the squared norm and
the Kullback-Leibler (KL) divergence between a
word’s context distribution and the unigram distri-
bution, extending the analysis to contextual word
embeddings (see references in Section 2.1).

In this paper, we investigate the correspondence
between IC and the squared norm of embeddings
at the text level, focusing on how embedding com-
position and text-level representations preserve this
relationship. To this end, we first identify sufficient
(though not necessary) theoretical conditions un-
der which the correspondence holds, regardless of
the embedding model or the mechanism used to
represent full texts (e.g., CLS token, EOS token,
or composition functions). Specifically, the suffi-
cient theoretical conditions identified that support
this correspondence are: i) a monotonic relation-
ship between the norm and the amount of informa-
tion, and ii) that each component of the embedding
contributes independently to the estimation of the
information content.

We then empirically evaluate these conditions
at the word level for both static and contextual
embedding models. Our results show that, when
the appropriate subword composition function is
applied, the models satisfy the sufficient theoreti-
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cal conditions and exhibit a strong correspondence
between IC and squared norm (I (w) o ||]|?).

To analyze the correspondence at the word se-
quence level, we build on Shannon’s Constant En-
tropy Rate (CER) hypothesis. CER states that when
processing a sequence of words (e.g., a sentence),
the average entropy per unit (word, symbol, etc.) re-
mains constant as the sequence grows longer. This
is equivalent to say that the IC or self-information
of the full text increases linearly with its length, at
least beyond a certain length (Shannon, 1951). The
phenomenon has been corroborated by numerous
studies across both psycholinguistics and computa-
tional linguistics (see references in Section 2.2).

In this paper, we formally analyze the extent
to which word embedding composition functions
(e.g., sum, average) preserve the linear monotonic-
ity of the squared norm as words are incrementally
added to a text. In parallel, we empirically examine
the behavior of various text embedding strategies.
Specifically, we compare single-token representa-
tions—such as the CLS token in BERT or the last
token in LLaMA—with composition-based meth-
ods applied to both static and contextual embed-
dings (see Sections 2.4 and 2.3 for further details).

At a theoretical level, we conclude in Section 4
that neither embedding summation (> _ ¥;) nor aver-
aging (%) preserves the linear growth of squared
norm (information content). However, normalizing
the sum by the square root of the number of tokens

(z\:/% ), which we call the scaled embedding aver-
age, ensures this linearity. We further analyze other
composition functions based on information theory
(Amigé et al., 2022). The empirical study in Sec-
tion 5 verifies the previous theoretical conclusions
regarding compositional representations.

Regarding non-compositional representations
based on a single token, we observe that in models
such as BERT (CLS token) and LLaMA (last to-
ken), the growth of information content eventually
plateaus, indicating that they do not strictly satisfy
linear monotonicity. The CLS token in Modern-
BERT, however, displays a behavior more consis-
tent with the CER hypothesis.

2 Background

2.1 The Square Norm as Information Content
Estimate

Substantial empirical evidence supports the cor-
respondence between the norm of an embedding
and the amount of information conveyed by the

text (Yokoi et al., 2020; Gao et al., 2019; Schakel
and Wilson, 2015; Arefyev et al., 2018; Pagliardini
et al., 2018).

At a theoretical level, the analyses by Levy and
Goldberg and Arora et al. demonstrate that, in
the SGNS framework, the dot product between
word vectors approximates the Pointwise Mutual
Information (PMI). This result directly implies a
correspondence between the amount of information
contained in a text and the squared norm of its
associated embedding. Being w0, the embedding of
the sequence z:

(W, W) = waHQ ~ PMI(z,z) = I(x)

Arora et al. (2019) offer an explanation of this phe-
nomenon in the context of generative models. How-
ever, they rely on the assumption of isotropy, which
is known not to hold in practice (Ethayarajh, 2019;
Gao et al., 2019; Cai et al., 2021). In parallel,
Oyama et al. (2023) established a formal corre-
spondence in the SGNS framework between the
squared norm of a word embedding and the KL.
divergence between the word’s co-occurrence dis-
tribution and the unigram distribution. The authors
also extended this analysis to contextual embed-
dings, under certain assumptions.

In general, all these studies focus on the word
level. In this work, we analyze the correspondence
at the word sequence level by identifying more
general sufficient formal conditions and by con-
ducting both theoretical and empirical analyses of
composition functions that aim to preserve this cor-
respondence.

2.2 The Constant Entropy Rate

From Shannon’s early work in the 1950s to the
present, the notion of a Constant Entropy Rate
(CER) has inspired extensive research in (psy-
cho)linguistics. This principle suggests that, in
human communication, the rate of entropy remains
relatively stable over time. In other words, although
the complexity and diversity of vocabulary may
vary, speakers adjust their linguistic choices, such
as word length or syntactic structure, so that the
amount of information transmitted per unit of time
remains constant. A direct formal consequence
is that the total self-information of a text, defined
as —log(P(x)), tends to increase linearly with the
number of words, at least beyond a certain length.
In other words, each additional word contributes,
on average, a similar amount of information. How-
ever, in practice, the growth of self-information
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may exhibit an initial non-linear phase and then
stabilize toward a linear trend. Moreover, this lin-
earity is not exact, as the rate of growth may grad-
ually decelerate due to increasing redundancy or
predictability in longer texts (Genzel and Charniak,
2002).

Beyond linguistic studies (Aylett and Turk, 2004;
Florian Jaeger, 2010), this phenomenon has been
validated across diverse datasets and probability
estimation techniques (Genzel and Charniak, 2002;
Meister et al., 2021).

To the best of our knowledge, the extent to which
embedding models reflect this property has not
been thoroughly investigated. Verma et al. (2023)
reexamine the CER hypothesis using GPT-2. The
authors find no clear evidence supporting CER
when neural language models are employed, in
contrast to the patterns previously suggested by n
n-gram models. In our work, we revisit the CER
hypothesis across different models as well as com-
position functions over embeddings.

2.3 Token-based Text Embeddings

Text embedding models that do not rely explic-
itly on compositional techniques often derive
sentence-level representations from a single token,
memory cell, or global aggregation mechanism.
Early approaches primarily employed recurrent
architectures, where models such as Long Short-
Term Memory (LSTM) networks (Hochreiter and
Schmidhuber, 1997) or bidirectional LSTMs (Pe-
ters et al., 2018) encoded sentence representations
by processing sequences token by token and ex-
tracting the final hidden state. However, these ar-
chitectures struggled with long-range dependencies
due to their sequential nature and susceptibility to
the vanishing gradient problem.

Between 2015 and 2021, to address these lim-
itations, several alternative representation mecha-
nisms were proposed, most of which were trained
at the sentence level. Examples include encoder-
decoder architectures like Skip-thought vectors
(Kiros et al., 2015), training word embeddings opti-
mized for direct averaging (Siamese CBOW) (Ken-
ter et al., 2016), hybrid models combining recurrent
and convolutional layers (Lai et al., 2015), exten-
sions of Seq2Seq embeddings incorporating atten-
tion for classification tasks (CoVe) (McCann et al.,
2017), sentence embeddings optimized for pairwise
similarity (SBERT) (Reimers and Gurevych, 2019),
multi-task training strategies (Subramanian et al.,
2018), and contrastive learning approaches (Gao

et al., 2021; Giorgi et al., 2021; Yang et al., 2021).
While these methods enhanced representation qual-
ity, they were often tailored for sentence-level sim-
ilarity tasks rather than for general-purpose text
embedding.

In our experiments, we consider widely adopted
non-compositional representations: the CLS token
used in BERT (Devlin et al., 2019) and Modern-
BERT, as well as the final token (EOS) (Neelakan-
tan et al., 2022; Wang et al., 2024) in LLaMA
(3.1 8B). These approaches represent state-of-the-
art token-based strategies for sentence embedding
without explicit compositional mechanisms.

2.4 Compositional Text Embedding

Since the introduction of static word embeddings
by Mikolov et al. (2013)., various composition
functions have been proposed to represent longer
text spans. Simple methods such as the global
average—i.e., the mean of all word vectors in a
sentence—and vector summation have proven to
be robust baselines across numerous tasks (Boleda,
2020; Lenci, 2018; Blacoe and Lapata, 2012; Per-
one et al., 2018; Baroni and Lenci, 2010; Rimell
et al., 2016; Czarnowska et al., 2019; Wieting and
Gimpel, 2018; Ethayarajh, 2018; Wieting et al.,
2016). Gittens et al. (2017) formally show that,
under certain conditions, vector summation approx-
imates paraphrasing of word sets.

Word embedding composition is also a core com-
ponent of neural language models. For instance, in
Transformer architectures, the self-attention mech-
anism constructs token representations by dynami-
cally aggregating contextual information from all
positions in the input. More recently, NV-Embed
models (Lee et al., 2025) introduce a latent atten-
tion layer that computes a weighted aggregation of
token embeddings into a single fixed-size vector.
However, we exclude this approach from our norm-
based analysis as it applies an /s-normalization
step immediately after pooling, producing strictly
unit-length embeddings. Since every output vector
satisfies ||e||2 = 1, its squared norm contains no
variation and thus cannot serve as a proxy for IC.

A known limitation of additive methods like av-
eraging or summation is that they disregard word
order. To address this, Amigé et al. (2022) propose
several information-theoretic composition func-
tions that preserve text structure. These are in-
stantiations of the general form F) , (), W) for
various \ and p values:
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w1 + Wa
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Fo (i, 02) =

This function reduces to simple vector summa-
tion (Fgyp) when (A, ) = (1,—2), and to pair-
wise averaging (Fpyg) when A = % and p = —%
(Amigé et al., 2022). Under the assumption of
correspondence between squared norm and IC,
the Fjoiny variant (A, ) = (1,1)) captures the
idea that the information content of the compo-
sition corresponds to the word joint probability
(I(wy,w2) = —log(P(wy,ws))). The variant
Fing (A, ) = (1,0)), assumes statistical indepen-
dence between the components, i.e., I (wq,ws) =
—log(P(w1)-P(w2)). The third variant, F;, ; with

(A\p) = (1, %), is designed to satisfy
additional formal ccl)ﬁstrQaints such as redundant in-
formation (same direction and smaller norm) does
not affect the composition!.

In this paper, we analyze both theoretically and
empirically the ability of these composition func-
tions to preserve the relationship between IC and
the squared norm of embeddings.

3 Sufficient Theoretical Conditions

In this section, we formally derive two sufficient
conditions for the correspondence (I (w) o< ||@]|?)
regardless of the embedding model (static or con-
textual) or the mechanism used to represent full
texts (CLS token, EOS, or composition functions).
Note that we are not claiming that these conditions
always hold, but rather that they are sufficient con-
ditions for the correspondence. The purpose of
this formal analysis is to examine under which con-
ditions the correspondence at the text level may
hold independently of specific architectures and
composition functions.

The first condition (see Section 2.1) is that the IC
of the represented content must grow according to
its embedding norm without jumps or abrupt peaks.
We denote as w the embedding of the expression
w = (w,...,wy).

Property 1 INFORMATION MONOTONICITY)
There exists a strict monotonic and differentiable
function f such that: I(w) = f(|)).

'Tn this work, we apply these composition functions se-
quentially across tokens to preserve the linear structure of the
text. Amigé et al. (2022) suggest that the sequential structure
achieves similar results than dependency trees or constituency
parses.

This property can be grounded in the notion of
distributional semantics. If we assume that the
empty expression is represented at the origin of
the coordinate system (the zero vector), and that in
distributional semantics expressions sharing similar
contexts tend to be located close to each other in the
space, then the distance from the empty text (the
origin) depends solely on the number of contexts
in which the expression appears, that is, on its IC.

The second sufficient condition is that each di-
mension represents independent semantic features
and therefore independently affects the probability
assigned to the embedding. Therefore, the amount
of information contributed by each dimension must
be additive. This means that the function estimat-
ing the amount of information can be decomposed
into a sum of functions for each dimension. That
is:

Property 2 (INFORMATION ADDITIVITY)
For each embedding dimension, there exists a
differentiable function g; : R — Rx>q such that
6:(0) = 0 and I(w) = Y0, g:(15;).

On the basis of the previous properties, we can
formally demonstrate that (see the formal proof
that can be found in Appendix A):

Theorem 1 (EMBEDDING INF. CONTENT) If
properties 1 and 2 hold, then the information
content of expressions is proportional to the square
of the embedding norm:

I(w) o |||

Essentially, Property 1 states that / must take the
form f(||]|), where f is a strictly increasing and
derivable function. Property 2 states that it must
also take the form I(w) = "7, g;(w;). Conse-
quently, the information content estimator must
satisfy:

n n
) = 1 (z w> =S g
i=1 i=1
Therefore, the function I must take the form:

I(w)=c-y @} =c- |||

4 1IC Monotonicity of Compositional
Functions

In this section, we formally examine the ability of
composition functions to preserve the correspon-
dence I(w) o< ||w]|? as words are added to a text,
assuming the correspondence at the token level
and the Constant Entropy Rate mentioned in Sec-
tion 2.2.
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Model Embedding Type Parameters Embedding Size Context Window
GloVe (6B) Static - 300 -
Word2Vec Static - 300 -
BERT-base-uncased Contextual 110M 768 512 tokens
ModernBERT-base Contextual 149M 768 8,192 tokens
LLaMA 3.1 8B Contextual 8B 4,096 128,000 tokens

Table 1: Characteristics of the models used for embedding generation.

4.1 Averaging and Max-Based Functions

We begin by showing analytically that none of the
standard composition functions—namely sum, av-
erage, or maximum—satisfy CER. However, the
parameterized version of the average, which we re-
fer to as the scaled embedding average, does satisfy
it.

We can generalize the summation and averaging
composition functions as follows. Let wy, ..., wy,
be a sequence of tokens, and let w; ; denote the j-th
dimension of the embedding of token ¢, with j =
1,...,dand ¢ = 1,...,n. Then, the dimension j
of the generalized composition function is defined

as: I
Zi:l Wi, j

Fo (i, ... =L

where v = 0 and v = 1 correspond to the tra-
ditional vector summation and averaging, respec-
tively. Therefore, the squared norm of the com-
posed vector is:

T\ 2
I (@, D) [P =) (1])

ny
Jj=1

Let E;[w); ;] denote the expected value of dimen-
sion j across tokens. Then, for sufficiently long
sequences, the squared norm tends to:

- LS (1 Eifdig)
F (1, oyt 2 D ———E

nYy
i=1

d

=n’"21> " (Elwy,)°

J=1

This means that the squared norm grows linearly
with n when v = % decreases with n when v > %
(e.g., standard averaging), and grows superlinearly
when v < % (e.g., pure summation)?.

Therefore, for the standard summation (v = 0)
or averaging (v = 1), the Constant Entropy Rate
(CER) does not hold. Instead, an intermediate

’Linearity in n means ||F,||?> oc n'. Since ||F,||®> ~

1?2727, we require 2 — 2y = 1, hence v = 1

approach is required—one where the sum of em-
beddings is normalized by the square root of the
number of tokens. We refer to this as the scaled
embedding average:
2iy Wi

nl/2

An alternative consists of taking the maximum
absolute value in each dimension while preserving
the sign of the highest-magnitude component. This
serves as a composition function that highlights the

most dominant signal per dimension (Zhelezniak
et al., 2019).

e, ) =

Fmax(u_jla cee awn)j = Argmaxwlyj,“.,wn,j(|U7i,j’)

By definition, this function will exhibit decelerated
growth as more tokens are added, and therefore the
CER does not hold.

4.2 Information Theory based Composition
Functions

Following Amigo et al. (2022), several embedding
composition functions based on information theory
are proposed. In this section, we show that not all
of these functions satisfy CER.

These are specific instantiations of a general
composition function denoted as F, M(u71, W), de-
fined as:

Wy + Wa = = ——
AW || + || e ||?) — (i, o
ey VA R) — i, )

The sum (A = 1,4 = —2) and averaging

(A = 1/4,4 = —1/2) parameter instantiations
were analyzed in the previous subsection.

Beyond these basic cases, Frpg (A =1and pu =
0) assumes word independence. Its squared norm is
additive and leads to a linear growth in information
content, satisfying CER.

[Fsaa (1, w2) | = i ||* + [l

On the other hand, Fj,in¢ is defined by setting
A = 1and ¢ = 1. The resulting squared norm
¥ soint (w1, W) ||? is:

11| + |21 — cos(wr, @) | | |2 |
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In this case, the information content grows lin-
early only when the embeddings are orthogonal
(i.e., cos(wh, W) = 0), indicating independence.
However, if the cosine similarity is greater than

W, then the information content in the composi-

tion decreases (i.e., ||Fyoint [ < |1 ||%), violating
CER.

Finally, Fr¢ corresponds to the parameteriza-
tion A =1and y = W The intuition
) . [l [la=]) }
is that adding redundant information (same direc-
tion, smaller norm) should not alter the original
embedding’. The squared norm of the composition
depends on the redundancy between the embed-
dings, as captured by their cosine similarity. Being
||wh]| > ||| (see proof in Appendix B):

e (W1, Wa) || = ||Wh —cos (w1, Wa))||wa
[[F1ns ( )I? = [Jadiy || >+ (1—cos( ))|lija||?

While cos (w1, wo) < 1, this function always yields
an increase in norm. However, if the redundancy
introduced by composition remains approximately
constant, the information content will grow linearly
with the length of the expression, thereby satisfying
CER.

In summary, our analysis shows that the compo-
sition functions that satisfy CER are the variants
F1ng and Fr,¢ proposed in (Amigé et al., 2022), as
well as the scaled Fw: % introduced in this paper.
5 Experiments

In this section, we empirically examine the cor-
respondence between the squared norm and the
amount of information. At the lexical level, we
analyze its correlation with word probabilities in
a corpus. At the sequence level, we study how
the squared norm grows as tokens are added to a
sequence.

5.1 Embedding Models

In our experiments, we use a range of models span-
ning both static and contextual representations, as
summarized in Table 1. Static embeddings en-
code words as fixed-dimensional vector representa-
tions derived from word co-occurence statistics in
large corpora. In this category, we use GloVe (6B)
(Pennington et al., 2014) and Word2Vec (Mikolov
et al., 2013), which produce 300-dimensional em-
beddings that remain unchanged across different
contexts.

3When the input vectors are aligned, the function returns

the longer one. If cos(w, w2) = 1 and ||w1 || > ||wW2]|, then
Frnt (W, Wa) = Wh.

For contextual representations, we study
transformer-based models that dynamically ad-
just token embeddings based on surrounding text.
Due to their popularity, we consider BERT-base-
uncased (Devlin et al., 2019) and the recent model
ModernBERT-base (Warner et al., 2024). Both are
bidirectional encoders that incorporate both left and
right context, generating 768-dimensional token
representations with a context window of up to 512
and 8,192 tokens, respectively. ModernBERT em-
ploys rotary positional embeddings (RoPE), which
can influence the encoding of information content,
and its extended context window enables the analy-
sis of significantly longer sequences compared to
BERT.

In addition, we consider LLaMA 3.1 8B (Tou-
vron et al., 2023), which is a decoder-based model
that computes embeddings autoregressively, condi-
tioning each token’s representation on previously
processed tokens within a context window of up to
128K tokens. These models provide complemen-
tary perspectives on representation learning, allow-
ing us to analyze how embedding norms evolve
with text length across different architectures.

5.2 Experiments at the Word Level

To evaluate the correspondence at the lexical
level, we computed the information content
(—log(P(w))) of the 5,000 most frequent words
in the Brown corpus. Additionally, we calculated
the squared norm of the corresponding embeddings
using different models. Overall, the initial cor-
relations obtained were very low, in contrast to
previous empirical studies (Oyama et al., 2023).
Upon inspecting the data, we found that these
discrepancies were due to differences in the dis-
tribution of words in the Brown corpus compared
to the pre-training corpora of the models. In par-
ticular, some words that are infrequent in Brown
for circumstantial reasons—such as named enti-
ties—are not generally rare. For this reason, we
applied a smoothing procedure. We divided the
5,000 words into subsets based on intervals of in-
formation content (—log(P(w))) in Brown (e.g.,
from 4 to 5, from 5 to 6, etc.). Then, within each
subset, we computed the average information con-
tent in Brown and the average squared norm of the
embeddings. Finally, we calculated the Pearson
correlation over these aggregated points.
Additionally, in order to connect the results with
the theoretical analysis, we empirically examined
the second sufficient condition, namely, the statis-
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Figure 1: Expected squared norm of embeddings for 1-2000-token sequences: static GloVe and Word2Vec, and
transformer last-layer embeddings from ModernBERT-base and LLaMA. The CLS and EOS tokens are reported
only for ModernBERT-base and LLaMA, respectively, as these are unique to the architecture of each model.
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Figure 2: The expected squared norm (amount of infor-
mation) of last-layer embeddings with a length ranging
from 1 to 510 tokens in BERT.

tical independence of embedding dimensions. To
this end, we computed the average of the absolute
Pearson correlation between dimensions across the
5,000 selected words.

Table 2 presents the results. Since contextual
models represent words at the subtoken level, we
include in the table only the best-performing com-
position function for each model. The results show
that, in general, models achieve low average abso-
lute dimension correlation—especially static mod-
els—indicating statistical independence across di-
mensions. On the other hand, all models exhibit
a strong correlation between IC and squared norm

when certain composition functions are applied.
Although not shown in the table, for BERT-base
the correlation between IC and norm significantly
decreases when using composition functions in-
stead of the CLS token. In contrast, for Modern-
BERT, the correlation remains stable across compo-
sition functions and decreases when using CLS. In
the case of LLaMA, correlations remain above 0.95
regardless of the composition function applied.

5.3 Experiment at Sequence Level

In the following experiment, we analyze the mono-
tonicity of the squared norm as words are added to
a sequence. Theoretically, under the CER assump-
tion, this growth should be linear, or at the very
least monotonically increasing.

For this purpose, we generate embeddings from
word sequences in the C4 dataset*, specifically the
train split of the realnewslike subset from Hugging
Face’s repository. This corpus consists of filtered
English web text, selected to provide a diverse and
representative sample of contemporary written lan-
guage. Text sequences of varying lengths are ran-
domly sampled from the corpus’. We consider 100

*https://huggingface.co/datasets/allenai/c4

3Sequence lengths are determined post-tokenization, en-
suring that special tokens are excluded from token counting
but included during model inference
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Model Token composition Avgerage Absolute Correlation
Dimension Correlation IC vs Norm?
Word2Vec - 0.045 0.997
GloVe - 0.053 0.989
bert-base-uncased CLS 0.125 0.985
ModernBERT-base  Fpax 0.127 0.985
LLaMA 3.1 8B Floint 0.064 0.971

Table 2: Average absolute dimension correlation and correlation between Information Content (IC) and squared

norm across different embedding models at word level.

different sequences for each sequence length (rang-
ing from 1 to 2000 tokens), resulting in a total of
200K samples.

Figure 1 shows the expected squared norm
(amount of information) of embeddings with a
length ranging from 1 to 2,000 tokens. We ob-
served significant variance in the absolute norms of
embeddings depending on the model and composi-
tion function. For clarity, we normalized the values
for each embedding method between the minimum
and maximum across all sequence lengths.

The results for BERT are shown in Figure 2,
where the sequences do not exceed 510 tokens. We
limited the sequence length in the case of BERT
to compare the relative behavior of the embedding
based on the CLS token. Since the model was
trained with two special tokens in the input, the
effective usable sequence length is restricted to 510
tokens.

Averaging based Text Embeddings. The be-
haviour of sum, average, and scaled average, aligns
with our theoretical analysis®. For all models, the
average tends to decrease as text length increases
(light green). The sum composition function ex-
hibits accelerated growth behavior (dark blue line).
However, the scaled average behaves linearly in all
cases (dark green line).

Maximum Absolute Value Composition. It is
denoted as max in the figure legend, light pink. It
presents a strictly increasing but decelerating be-
havior. Although it appears to saturate at 2,000
tokens, this is not actually the case. The theoreti-
cal square norms given the value ranges are much
higher in all models. Therefore, there is still signif-
icant room for growth.

Information Theory based Composition. The
behavior of Frpq, Frns and F it also aligns with
the theoretical analysis described in the previous
section. Frnq4 results in an average linear growth as

The small variations are due to the effect of sequence
sampling.

text length increases (red line in the figure). Fiy¢ is
also linear, suggesting that information redundancy
captured by the cosine component in Fry¢, iS uni-
formly distributed across texts (orange line). The
function Fj,in¢ (yellow line) presents a decreasing
behavior in some ranges and models’. According
to Amig6 et al. (2020), Fjoint should approximate
the amount of joint information — log(P(z,y)), so
it should be increasing. However, the correspon-
dence proposed by the author assumes an equiva-
lence (not proportionality) between the dot product
and the PMI. The composition function Fys is ac-
tually a parameterization of F ;51 that solves this
issue, being monotonically increasing.

Token based Text Embeddings. The CLS to-
ken of BERT exhibits growth that progressively
decelerates (light blue line). The results suggest
that the growth stops after the first 300 to 400 to-
kens. We hypothesize that because over 90% of
BERT’s pre-training sequences are capped at 128
tokens (with the remaining 10% extending to its
512 token-maximum), the model seldom encoun-
ters longer contexts and thus has limited oppor-
tunity to increase CLS norms beyond that win-
dow—explaining the observed breakpoint in lin-
earity. This finding indicates that the CLS token is
not suitable for capturing the increase in informa-
tion quantity in long texts.

In the case of the EOS token in LLaMA, the
growth levels off around token 100, showing limi-
tations similar to those of BERT’s CLS token. In
contrast, the CLS token in ModernBERT displays
behavior more in line with the CER hypothesis:
self-information increases sharply during the initial
tokens and then follows a roughly linear trend, with
a gradual deceleration as the sequence lengthens.

Additionally, we have studied the squared norm
of individual tokens within the sequence in con-
textual models. We wanted to analyze the effect
of context sequence length on the amount of in-

"We have no concrete explanation for the decrease in in-
formation content in ModernBert after token 1500

13638



formation encoded in lexical embeddings. We did
not find any consistent pattern across contextual
models.

6 Conclusions

Theoretical analyses and empirical findings in the
literature support a correspondence between the
square norm of a word embedding and the IC of
the word it represents. In this work, we extend
this correspondence to representations of word se-
quences. At the theoretical level, we identify two
sufficient properties of the representation system
that establish this correspondence: the growth of
the norm with the IC of the represented text and
the statistical independence between dimensions.
Although these properties are not strictly neces-
sary, our word-level experiments show that when
the appropriate subword composition function is
applied, the models satisfy the sufficient conditions
and exhibit a strong correspondence between 1C
and squared norm.

In addition, we have formally analyzed exist-
ing composition functions under the assumption
that information content increases linearly with
text length (Constant Entropy Rate). According
to our analysis, validated by experiments, neither
summation nor averaging satisfies this property. As
a solution, we propose a scaled embedding average,
which simply divides by the square root of the num-
ber of embeddings being averaged. The analysis
also shows that the function Fry¢ is able to preserve
this property, while max-based composition does
not exhibit linear behavior.

Our experiments also suggest that some token-
based text embeddings such as CLS in BERT or
EOS in LLaMA, do not preserve this property ei-
ther. However, the CLS token in ModernBERT
exhibits a more expected behavior in terms of the
CER hypothesis.

This work opens new avenues for studying the
representation power of embeddings from a formal
perspective and exploring/exploiting the geometric
properties of dense text representations in distribu-
tional semantics from the perspective of Informa-
tion Theory.

Limitations

We acknowledge certain limitations in this work,
though addressing them in detail would require
more space. First, many of the non-compositional
approaches discussed in Section 2.3 are trained

specifically for sentence representation and are not
widely adopted. As a result, we excluded them
from our experiments. However, we do not rule out
the possibility that these embeddings could exhibit
interesting behavior at longer text lengths.

Second, while both the literature and our anal-
ysis have shown that the correspondence between
IC and the squared norm of embeddings naturally
emerges in models based on distributional seman-
tics, some models may still exhibit consistent be-
havior, provided that specific estimation functions
for information content are explicitly defined for
them.

Third, the datasets used in our initial word-
level correlation experiments between IC and the
squared norm are limited. Additionally, more so-
phisticated methods could be applied to analyze
statistical independence across dimensions. As this
work focuses on composition functions, we leave a
more in-depth investigation of word-level aspects
for future research.

Fourth, beyond examining the CER hypothesis,
this work could be extended with experiments on
the correspondence between the norm and empiri-
cal probabilities of word sequences. However, we
have not pursued this experimental line due to the
difficulty of objectively estimating the probability
of long sequences in a corpus.

Fifth, we have not conducted experiments to
examine the effect of the correspondence between
IC and embedding norm on downstream tasks. We
leave this line of research for future work.

Finally, rather than a limitation, a potential av-
enue for future work is the parametrization of com-
position functions by empirically analyzing the
actual entropy growth rate across a text collec-
tion. This could enable the adjustment of com-
position functions—or even the embedding process
itself—to align with this empirical parameter.
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7 Appendix

Appendix A: Formal Proof for Theorem 1

We want to prove that if the following equation verifies being
f astrictly increasing differentiable function

5=t (zvz> =S g
=1 i=1
Then, holds

n
H=cd vi=c |’
i=1

Proof:

I is differentiable because it is the composition of the
function f and the square norm, and both are differentiable.

For the proof, we are going to derive I in two ways, and
equalizing we will get that if we want to achieve the equality,
we will get Vo € RT, f/(x) = c and therefore the final result.

First, we are going to derive I decomposing it in the fol-
lowing way: I(¥) = f(h(¢)) where: h : R® — R and

h(D) =i + ... + vy
The gradient of his:
Vh(¥) = (2v1,...,2v,) =2 (v1,...,Vn)

Then, applying the chain rule:

dI() = d(f(h(D)) = f'(h(®)) - V(D) =
Fi+. 4022 (vr,...

,Un)

On the other hand, we have I(¥) = >0, gi(v:).
Deriving the sum of functions we get:

dI(@) = (¢'(v1), ..., ¢ (vn))
So, we need that Vo € R™,Vi € {1,...,n}:

Ff 4. +vh) -2 v = gi(vi)

So, if f/(v? 4 ... + v2) isn’t a constant and depends
on v; for some j # i, the equality can’t be true. Like f
is strictly increasing, f'(v$ + ... + v2) > 0 and therefore
f'(wi+...+v2) = c,c > 0 for some constant c. So,
Vz € R, f(z) = ¢z and then:

~f (Z) = e[

Appendix B: The Magnitude of F1,¢

The magnitude square of the composition function Frys is:

IFue (30, 92)1° = || gy
VT2 + [[32]12) — p(@, ) ||
; — _ Uzl 1521D 7147
With A =1land u = % Given that %
is an unitary vector, we can state that:
R 2
[Frat (51, 52) > = (VAP + [%IP) — @, 52 )

= A7 * + 132]1) — (71, T2)

Given that A = 1 and p = ZenUloLlLIv2])

Hthat A = maz (71 [ [72])
equatlon 1S equlvalent to;

then the previous

min([| 7], [|72]])

52 ]|* + 1|21 —
mazx(|[71]], [|2]])

(v, Ua)

In the case of |01 ]| > ||T2||, we obtain:

21
7]l
l[72]l
[l

[|72]|cos (@1, 72)[| 2|

192]* + 17211 ~

(U1, Ta)

o2
= |31 + 152]|* — {5 cos(@r, 2) |5 ||| ]|

= |17 * + 1|72)1” ~

= 311 + (1 — cos(@r, B)) |22
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Appendix C: Computational Experiments

All experiments were conducted using a NVIDIA
RTX 4090 GPU (24GB VRAM). The total esti-
mated computational cost amounts to 200 GPU
hours, with an approximate financial cost of 105€,
based on standard electricity and cloud-equivalent
pricing. The reported computational budget ac-
counts for model inference and embedding gener-
ation across all datasets and experimental condi-
tions.

Appendix D: Licensing of Used Artifacts

In this work, we utilize pre-trained models and
datasets from Hugging Face’s Model Hub. The ar-
tifacts are publicly available under their respective
licenses, as specified on their respective Hugging
Face pages. Specifically, we ensure that all used
models and datasets comply with open-source li-
censes such as Apache 2.0, MIT, or Creative Com-
mons (CC), as applicable. Users can find detailed
licensing information on the Hugging Face reposi-
tory pages of each artifact.

We acknowledge the importance of respecting
these licenses and provide proper citations for all
resources used in our study.
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