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Abstract

Rapid developments of large language mod-
els have revolutionized many NLP tasks for
English data. Unfortunately, the models and
their evaluations for low-resource languages
are being overlooked, especially for languages
in South Asia. Although there are more than
650 languages in South Asia, many of them ei-
ther have very limited computational resources
or are missing from existing language mod-
els. Thus, a concrete question to be answered
is: Can we assess the current stage and chal-
lenges to inform our NLP community and facil-
itate model developments for South Asian lan-
guages? In this survey1, we have comprehen-
sively examined current efforts and challenges
of NLP models for South Asian languages by
retrieving studies since 2020, with a focus on
transformer-based models, such as BERT, T5,
& GPT. We present advances and gaps across 3
essential aspects: data, models, & tasks, such
as available data sources, fine-tuning strate-
gies, & domain applications. Our findings
highlight substantial issues, including missing
data in critical domains (e.g., health), code-
mixing, and lack of standardized evaluation
benchmarks. Our survey aims to raise aware-
ness within the NLP community for more tar-
geted data curation, unify benchmarks tailored
to cultural and linguistic nuances of South Asia,
and encourage an equitable representation of
South Asian languages. The complete list of re-
sources is available at: https://github.com/trust-
nlp/LM4SouthAsia-Survey.2

1 Introduction

South Asia is one of the most linguistically diverse
regions, encompassing Indo-Aryan, Dravidian, Ira-
nian, and Tibeto-Burman languages, along with

1Bhaasha (Hindi), Bhās.ā (Bengali), and Zabān
(Urdu/Persian) all mean “language” and are commonly used
across South Asian language families.

2This work was done when the first author was a remote
intern at the University of Memphis.

numerous isolates (Arora et al., 2022; Borin et al.,
2014). However, the regional languages are often
missing from training corpora or present in imbal-
anced quantities (Khan et al., 2024), and many of
them are not supported by current large language
models (LLMs) (Lai et al., 2024). There are mul-
tiple factors behind this disparity, and it’s crucial
to identify and address them for better representa-
tion of South Asian languages. The definition of
“low-resource” varies based on data availability and
digital presence (Nigatu et al., 2024; Mehta et al.,
2020). We consider a language “low-resource” if it
lacks computational data and standardized evalua-
tion benchmarks for NLP tasks. Crucially, this
framing moves beyond definitions based solely
on speaker population, since even widely spoken
languages like Hindi and Bengali remain under-
resourced in terms of benchmark coverage and
model support. While low-resource languages have
been studied for various regions (Aji et al., 2023,
2022; Adebara and Abdul-Mageed, 2022), there
is no comprehensive study on the current status of
South Asian NLP, which will be fulfilled by this
survey outlined in Table 1.

Study retrieval methods. We retrieved relevant
studies from 2020 onward via ACL Anthology,
Semantic Scholar, and Google Scholar by broad
and specific keyword combinations. We extended
the publication list by screening their citation net-
works in Google Scholar, such as journals or work-
shop venues. To assess on the latest trends, we
excluded papers before 2020 and focused on neu-
ral and Transformer-based models. The detailed
methodology is presented in Appendix A.1.

Objectives and Contributions. We assess the
current state of NLP research for South Asian lan-
guages and summarize their key issues, evaluation
limits, and research gaps unique to these languages.
Unlike prior related surveys in Table 1, our work
makes three unique contributions: 1) we present
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Figure 1: Language families regarding Speaker population and Resource availability. Bubble Size indicates speaker
population per language and color intensity indicates the amount retrieved NLP resources. Darker color means more
resources, and vice versa. "Resource size" refers to the number of papers in the ACL Anthology (until 2024) that
mention the language in the title and/or abstract. Languages primarily spoken outside South Asia (e.g., Uzbek) are
excluded from resource size visualization to maintain regional focus.

Study
Inclusive
Language
Coverage

Data
Insights

Multiple
NLP Tasks

Interdisciplinary
Integration

Recent
LLMs

Hedderich et al. ✓1 ✓ ✓ ✗ ✗

Arora et al. ✓ ✓ ✓ ✓ ✗2

Maddu and Sanapala ✗ ✓ ✓ ✗ ✗

Ranathunga et al. ✓1 ✓ ✗ ✗ ✗3

Our Work ✓ ✓ ✓ ✓ ✓

Table 1: Comparing related surveys of low-resourced
languages to ours by multiple key criteria. We denote
superscript 1 as not specific to South-Asian languages;
2 as limited discussion of LLMs; and 3 as related to
multilingual models but not for LLMs or low-resourced
languages. “Interdisciplinary Integration” refers to stud-
ies connecting NLP with health, education, etc.

comprehensive language families in South Asia and
broadens coverage beyond Indo-Aryan and Dravid-
ian languages by covering other widely spoken lan-
guage families in the region; 2) we examine data
sources and provide data insights to accelerate low-
resourced language research in South Asia; and 3)
we analyze studies across various domains (e.g.,
healthcare and education) and summarize recent
LLMs and their tuning strategies (e.g., LoRA (Hu
et al., 2022)). We hope this survey will inspire
future directions to strengthen NLP community ef-
forts for underrepresented languages in South Asia.

2 Data and Resources

A large text corpus is essential to enable language
models to understand complex and heterogeneous

semantics and structures of South Asian languages.
Over 650 languages are spoken in the region, yet
computational resources remain scarce and highly
skewed toward a few languages (Zhao et al., 2025;
Hasan et al., 2024; Narayanan and Aepli, 2024;
Ali et al., 2024; Baruah et al., 2024). For example,
most language resources consist of small text sam-
ples, with a major focus on languages like Hindi
and Urdu (Kakwani et al., 2020; Philip et al., 2021;
Gala et al., 2023). However, existing studies may
merely address the questions that will be answered
in our study: 1) What are the available corpora
for the low-resourced languages in South Asia? 2)
What NLP tasks are in the corpora? and 3) What
domains are the corpora? To answer those ques-
tions, we summarize data distributions by language
families in Figure 1 and statistics in Table 2.

2.1 Language resources

Figure 1 presents the uneven distribution of South
Asian languages in our collected resources. The
color gradient and circle sizes show that there
are a few dominant languages with comparatively
more resources, such as Hindi, Bengali, and Tel-
ugu, while the others are severely underrepresented.
This highlights resource challenges and opportuni-
ties. We categorize retrieved studies by language
family: Indo-Aryan, Dravidian, Tibeto-Burman,
and Iranian languages.

1387



Data / Benchmark Language(s) Size NLP Task Year Source Domain Acc
INDIC-MARCO Multiple (11) 8.8M Neural IR 2024 Haq et al. General Yes
BPCC Multiple( 22) 230M Machine Translation 2023 Gala et al. General Yes
TransMuCoRes Multiple (31) 1.8M Coreference Resolution 2024 Mishra et al. General Yes
Samanantar Multiple (11) 12.4M Machine Translation 2022 Ramesh et al. General Yes
IndicCorp Multiple (11) 453M LM Pretraining 2020 Kakwani et al. News Yes
Sangraha Multiple (22) 74.8M LM Pretraining 2024 Khan et al. General Yes
HinDialect Multiple (26) - Model Pretraining 2022 Bafna et al. General Yes
L3Cube-IndicNews Multiple (11) 360K Headline Classification 2023 Mirashi et al. News Yes
Aksharantar Multiple(21) 26M Transliteration 2023 Madhani et al. General Yes
PMIndiaSum Multiple (14) 697K Multilingual Summarization 2023 Urlana et al. Government Yes
CVIT-PIB v1.3 Multiple(11) 2.78M Multilingual NMT 2021 Philip et al. Government Yes
IndicSynth Multiple (12) 4000 Audio Deepfake Detection 2025 Sharma et al. General Yes
CaLMQA Multiple (23) 1.5K Long-form QA 2024 Arora et al. Culture&Society Yes
MultiCoNER Multiple (11) 26M NER 2022 Malmasi et al. Wiki&Search Yes
Homophobia Data Telugu, Kannada, Gujarati 38,904 Homophobia Detection 2024 Kumaresan et al. Social Media No
Fake News Detection Malayalam 1,682 Fake News Detection 2024 K et al. News Media No
POS Tagging Dataset Angika, Magahi, Bhojpuri 2124 POS tagging 2024 Kumar et al. News,Conversations Yes
Assamese BackTranslit Assamese 60K Back transliteration 2024 Baruah et al. Social Media Yes
IruMozhi Tamil 1,497 Diglossia Classification 2024 Prasanna and Arora Wikipedia Yes
Paraphrase Corpus Pashto 6,727 Paraphrase detection 2024 Ali et al. News Media Yes
Hate Speech Data Bengali, Hindi, Urdu - Hate Detection 2024 Hasan et al. Social Media No
AS-CS Dataset Hindi, Bengali 5,062 Counter Speech Generation 2024 Das et al. Social Media Yes
CoPara 4 Dravidian Languages 2856 Paragraph-level alignment 2023 E et al. News Media Yes
NP Chunking Data Persian 3,091 Noun Phrase Chunking 2022 Kavehzadeh et al. News Media No
Punctuation Dataset Bengali 1.3M Punctuation Restoration 2020 Alam et al. News&Stories Yes
L3Cube-MahaCorpus Marathi 289M Classification & NER 2022 Joshi. News/Non-news Yes
HATS Hindi 405 LLM Reasoning 2025 Gupta et al. Education Yes
WoNBias Bengali 31,484 Bias Classification 2025 Aupi et al. Culture&Society Yes
UFN2023 Urdu 4,097 Fake News Detection 2025 Ali et al. News Yes
Flickr30K (EN-(hi-IN)) Hindi 156,915 Multimodal MT 2018 Chowdhury et al. Image Captions Req
SENTIMOJI Hindi 20k Emoji Prediction 2024 Singh et al. Social Media Yes
Suman Kadodi,Marathi 942 Machine Translation 2024 Dabre et al. Conversation Yes
WMT24 En-Hi Data Hindi 1500 Machine Translation 2024 Bhattacharjee et al. Mutlidomain Yes
AGhi Hindi 36,670 AI-generated text detection 2024 Kavathekar et al. News Yes
Mizo News Summary Mizo 500 News Summarization 2024 Bala et al. News Yes
ADIhi Hindi 36,670 AI-generated Text Detection 2024 Kavathekar et al. News Yes
En-Tcy test dataset Tulu 1300 Machine Translation 2024 Narayanan and Aepli Wiki,FLORES Yes
MMCQS dataset Hindi 3,015 Multimodal Summarization 2024 Ghosh et al. Healthcare Yes
BNSENTMIX Bengali 20K Sentiment Analysis 2025 Alam et al. Social Media Yes
Multi3Hate Hindi 300 Multimodal Hate Detection 2025 Bui et al. Social Media Yes
Hindi-BEIR Hindi 5.89M 7 Retrieval Tasks 2025 Acharya et al. General Yes
IN22 Benchmark Multiple (22) 2527 Machine Translation 2023 Gala et al. General Yes
Indic-QA Multiple (11) - Question Answering 2025 Singh et al. General Yes
En-Hi Chat Translation Hindi 16,249 Chat Translation 2022 Gain et al. Customer Service Yes
CounterTuringTest(CT2) Hindi 26 AI-generated Text Detection 2024 Kavathekar et al. News Yes
MMFCM Hindi - Multimodal Summarization 2024 Ghosh et al. Healthcare Yes
BenNumEval Bengali 3.2k Numerical Reasoning 2025 Ahmed et al. Education Yes

Benchmarks
VACASPATI Bengali 11M Multiple Tasks 2023 Bhattacharyya et al. Literature Yes
BELEBELE Multiple (122 variants) 900 Reading Comprehension 2024 Bandarkar et al. Web Articles Yes
Multilingual DisCo Multiple(6) 84 Gender Bias Evaluation 2023 Vashishtha et al. General Yes
IndicNLG Benchmark Multiple (11) 8.5M Multiple Tasks 2022 Kumar et al. News, Wiki Yes
IndicGlue Multiple (11) 2M Multiple NLU Tasks 2020 Kakwani et al. News, Wiki Yes
MILU Multiple (11) 79,617 Exam QA 2025 Verma et al. Multiple Yes

Table 2: Available Datasets and Benchmarks for Low-Resource South Asian Languages Across Tasks and Domains,
organized by resource type (task-specific and general-purpose datasets, followed by benchmarks). We denote ‘Req’
as Available on Request; ‘Acc’ as Public Accessibility.

Indo-Aryan Languages own the largest lan-
guage population in South Asia and are relatively
more represented in our collected studies. For
example, Hindi, Bengali, Marathi, and Urdu are
among the largest bubbles in Figure 1, and Hindi
corpora are available for all major NLP tasks in
Table 2, aligning with existing language speaker
populations (Gala et al., 2023). Large-scale data
are not evenly-distributed across NLP tasks. For
instance, IndicMARCO, IndicCorp, IndicGlue,
MultiCONER, and BELEBELE offer large-scale
datasets for IR, model pretraining, NER, and read-
ing comprehension, particularly in high-resource
Indic languages (Haq et al., 2024; Malmasi et al.,
2022; Bandarkar et al., 2024; Kakwani et al., 2020).
However, Bhojpuri, Sindhi, and Assamese are only

in a few domain-specific datasets (Baruah et al.,
2024; Malmasi et al., 2022; Kumar et al., 2024):
their dataset size is comparatively smaller (less than
5,000 samples) (Gala et al., 2023).

Dravidian Languages include Tamil, Malay-
alam, Telugu, and Kannada in a number of in-
tegrated multilingual corpora (Gala et al., 2023;
Haq et al., 2024; Urlana et al., 2023; Philip et al.,
2021; Mirashi et al., 2024) for NLP tasks, such as
diglossia classification, machine translation, and
hate speech detection (Prasanna and Arora, 2024;
Kumaresan et al., 2024; K et al., 2024). How-
ever, many Dravidian languages, including Kodava,
Toda, and Irula, are absent from major data re-
sources and benchmarks. A rare exception is Tulu,
which is included in a recently developed paral-
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lel corpus for machine translation (Narayanan and
Aepli, 2024). The language resources are relatively
smaller in size compared to Indo-Aryan Languages
(e.g., Hindi) and cover much fewer application do-
mains, such as healthcare.

Tibeto-Burman and Iranian Languages are
critically underrepresented. South Asia is home
to 245 Tibeto-Burman and 84 Iranian languages
(Hammarström et al., 2024; Eberhard et al., 2023),
yet only a handful resource appear in available
datasets. Manipuri, Mizo, and Bodo are Tibeto-
Burman languages in our retrieved studies, such
as summarization data (Urlana et al., 2023; Bala
et al., 2024; Madhani et al., 2023). However, the
other languages including Dzonkgkhe (the national
language of Bhutan) are not covered. Iranian Lan-
guages including Pashto, Persian, and Balochi are
available in our data collections, such as a para-
phrase detection corpus in Pashto (Ali et al., 2024),
a noun phrase chunking corpus in Persian (Kave-
hzadeh et al., 2022), and a question answering
corpus in Balochi (Arora et al., 2025). While In-
dicNLG is one of the largest benchmarks, many
Tibeto-Burman and Iranian languages (e.g., Dari &
Wakhi) are largely missing (Kumar et al., 2022b).

2.2 NLP Tasks
The availability of NLP tasks varies by language in
Table 2. For example, Indo-Aryan languages cover
all major NLP tasks, such as machine translation,
information extraction, and sentiment analysis; in
contrast, the other language families only cover
very few NLP tasks. This section summarizes ma-
jor NLP tasks from the data perspective in two ma-
jor categories, 1) generative and 2) discriminative
tasks. Methodologies are referred to in Section 3.

Generative NLP tasks cover three major tasks,
machine translation, text generation, and summa-
rization. Machine translation is the most repre-
sented task in Table 2, including BPCC (Gala et al.,
2023) and domain-specific parallel corpora CVIT-
PIB v1.3 and Suman (Philip et al., 2021; Dabre
et al., 2024). However, Kashmiri, Sindhi, and Tulu
lack sufficient bilingual corpora––relying on back-
translation (Baruah et al., 2024) and cross-lingual
transfer (Narayanan and Aepli, 2024). The scarcity
of consistent annotations and high-quality datasets
can be a critical issue. Text Summarization is
mainly in general domains (e.g., news) for Indo-
Aryan languages, such as PMIndiaSum (Urlana
et al., 2023), and misses coverages of Dravid-

ian and Tibeto-Burman languages. MedSumm
data aids in multimodal summarization for Hindi-
English code-mixed clinical queries, specifically
for the healthcare (Ghosh et al., 2024), while
domain-specific summarizations are not available
in other languages. Text Generation resources in-
clude the IndicNLG benchmark (Kumar et al.,
2022a), which covers biography generation, news
headline generation, sentence summarization, para-
phrasing, and question generation across 11 Indic
languages. Long-form question answering remains
underdeveloped (Arora et al., 2025), and chat trans-
lation resources are also scarce (Gain et al., 2022)

Discriminative NLP tasks mainly focus on se-
quential classifications, such as Named entity
recognition (NER). Classification tasks account for
the majority of discriminative NLP tasks in our
study, such as hate speech detection. For exam-
ple, SENTIMOJI (sentiment prediction for Hindi-
English code-mixed texts) (Singh et al., 2024), and
hate detection resources are available for Hindi,
Tamil, Bengali, (Hasan et al., 2024), Kannada, and
Telugu (K et al., 2024). However, related task cor-
pora remain nearly absent for Tibeto-Burman and
Iranian languages. The table also shows that seman-
tic or syntactic tasks are most likely available for
Hindi, such as syntactic parsing and coreference
resolution (Kumar et al., 2024; Mishra et al., 2024).
Similarly, recently new data releases are primarily
for Hindi, such as AI-generated text detectability
(Kavathekar et al., 2024).

3 Model Advances

We examine recent model advances of South Asian
languages in Table 3 — covering three major topics,
multilingual language models, training and fine-
tuning methods, and model evaluations.

3.1 Multilingual Language Models

Code-Mixed Tokenization is the fundamental
step to encode input texts of different languages
and usually starts by fine-tuning existing language
model tokenizers. For example, Kumar et al. (2023)
train FastText (Bojanowski et al., 2017) on code-
mixed, transliterated, and native-script social me-
dia text for Indic languages, other studies fine-tune
BERT (Devlin et al., 2019) tokenizers to predict
positive hope speech in Kannada-English (Hande
et al., 2022), Hindi-English sentiments (Singh et al.,
2024), and review ratings (Yu et al., 2024). The
Overlap BPE method (Patil et al., 2022) improves
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Model Architecture Language Training Strategy Parameter Size Year Source
AxomiyaBERTa BERT Assamese Continuous Pretrain + Supervised Fine-tuning 66M 2023 Nath et al.
IndecBERT BERT Multiple (11) Continuous Pretrain on IndicCorp + Supervised Fine-tuning 12M 2020 Kakwani et al.
IndicBART BART Multiple (11) Continuous Pretrain on IndicCorp + Supervised Fine-tuning 244M 2022 Dabre et al.
BUQRNN LSTM+BERT Bengali Supervised Training NA 2024 Yu et al.
PN-BUQRNN LSTM+BERT Bengali Supervised Training NA 2024 Yu et al.
Matina Transformer Persian Domain-specific Fine-tuning 8B 2025 Hosseinbeigi et al.
IndicTrans Transformer Multiple (11) Continuous Pretrain on Samanatar + Supervised Fine-tuning 1.1B 2022 Ramesh et al.
IndicTrans2 Transformer Multiple (22) Pretrain + Supervised Fine-tuning 1.1B 2023 Gala et al.
DC-LM BERT Kannada Supervised Fine-tuning 110M 2022 Hande et al.
Lambani NMT Transformer Lambani Pretrain + Supervised Fine-tuning 380M 2022 Chowdhury et al.
Indic-ColBERT BERT Multiple (11) Supervised Fine-tuning 42M 2023 Haq et al.
MedSumm Multiple LLMs Hindi (Code-mixed) Supervised Fine-tuning 7B-13B 2024 Ghosh et al.
Tri-Distil-BERT BERT Bengali, Hindi Continuous Pretrain 8.3B 2024 Raihan et al.
Mixed-Distil-BERT BERT Bengali, Hindi Continuous Pretrain + Supervised Finetuning 8.3B 2024 Raihan et al.
CPT-R Llama Multiple (5) Continuous Pretrain 7B 2024 J et al.
IFT-R Llama Multiple (5) Instruction Fine-tuning 7B 2024 J et al.
Nepali DistilBERT BERT Nepali Nepali corpora Pretrain by Progressive Mask 66M 2022 Maskey et al.
Nepali DeBERTa BERT Nepali Nepali Corpora Pretrain by Mask-LM 110M 2022 Maskey et al.
TPPoet Transformer Persian Persian poetry Pretrain + Supervised Fine-tuning 33M 2023 Panahandeh et al.
MahaBERT BERT Marathi L3Cube-MahaCorpus Pretrain 110M 2020 Joshi
Emoji Predictor Transformer Hindi (Code-mixed) Supervised Fine-tuning NA 2024 Singh et al.
RelateLM BERT Multiple (5) Wiki/CFILT Pretrain + Supervised Fine-tuning 110M 2021 Khemchandani et al.
Multi-FAct Mistral-7B Bengali Supervised Fine-tuning 7B 2024 Shafayat et al.
AI-Tutor Transformer Pali, Ardhamagadhi Pretrain + Supervised Training 1.1B 2024 Dalal et al.
LlamaLens Llama3.1 Hindi Instruction tuning + Domain Fine-tuning; Multilingual Shuffling 8B 2025 Kmainasi et al.
NLLB-E5 NLLB Hindi Knowledge Distillation + Zero-shot transfer 1.3B 2025 Acharya et al.

Table 3: Model summary by language, architecture, training strategies, and others.

tokenization consistency on subword-level process-
ing for orthographically similar languages.

Transformer-based models (Vaswani et al.,
2017) have dominated recent developments for
monolingual and multilingual settings. BERT
is a common architecture on multi-domain and
monolingual tasks, such as AxomiyaBERTa (Nath
et al., 2023), Nepali DistilBERT and DeBERTa
(Maskey et al., 2022), and MahaBERT (Joshi,
2022). For multilingual models, IndicBERT (Kak-
wani et al., 2020) covers classification and retrieval;
IndicTrans2 (Gala et al., 2023) covers translation
across 22 languages; Indic-ColBERT (Haq et al.,
2024) employs retrieval-augmented supervision for
search to improve document retrieval across 11
languages; and IndicBART (Dabre et al., 2022)
supports NMT and summarization across 2 lan-
guage families. Together, these represent some of
the most comprehensive models for South Asian
languages. Chowdhury et al. (2022) trains Trans-
former models from scratch for machine translation
to Lambani, using data from closely related source
languages. Classification tasks mainly use super-
vised fine-tuning on pretrained BERT (Devlin et al.,
2019) and its variants.

Generative LLMs are being rapidly adopted for
South Asian languages in the recent 3 years. Med-
Summ (Ghosh et al., 2024) fine-tuned 5 public
LLMs (Llama 2 (Touvron et al., 2023), FLAN-
T5 (Chung et al., 2022), Mistral (Jiang et al., 2023),
Vicuna (Zheng et al., 2023), and Zephyr (Tunstall
et al., 2024)) on medical question summarization
with visual cues for code-mixed Hindi-English pa-

tient queries. Multi-FAct (Shafayat et al., 2024)
uses Mistral-7B (Jiang et al., 2023) to extract facts
from LLM-generated texts. CPT-R and IFT-R (J
et al., 2024) fine-tuned LLaMA2-7B models on
romanized Indic corpora to enable transliteration-
aware and mixed-script text processing. Addition-
ally, AI-Tutor (Dalal et al., 2024) applied Indic-
Trans2 (Gala et al., 2023) to Pali and Ardhama-
gadhi. These findings suggest that multilingual
models alone cannot resolve low-resource chal-
lenges in South Asia; corpus coverage and script
fidelity continue to constrain their applicability, par-
ticularly for languages with limited web presence
and domain coverage.

3.2 Training and Fine-tuning Methods

Code-mixed and script-specific adaptations en-
able model understanding of text inputs with mixed
languages. For example, LLMs struggled with
Bengali script generation due to inefficient tok-
enization (Mahfuz et al., 2025). Studies introduced
related corpora to assess code-mixed capabilities,
such as IndicParaphrase (Kumar et al., 2022a), the
largest Indic language paraphrasing dataset across
11 languages. Transliterating Indic languages into
a common script could effectively improve cross-
lingual transfer, such as NER and sentiment analy-
sis (Moosa et al., 2023). Kirov et al. (2024) aligned
transliteration patterns with phonetic structures,
which further improves multilingual representation.
Overlap BPE (Patil et al., 2022) finds shared sub-
word representations, which enhances consistency
for orthographically similar languages. Contin-
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ual pretraining strategies (Guo et al., 2025; Zheng
et al., 2024) improve adaptation without degrading
prior performance, for example in machine trans-
lation (Koehn, 2024), by preventing catastrophic
forgetting by iteratively fine-tuning with new lan-
guage pairs. Agarwal et al. (2025) introduces script-
agnostic representations for Dravidian languages
and show that mixing multiple writing systems
during training improves robustness. While the
current studies have achieved substantial progress,
script-aware tokenization remains a foundational
bottleneck to enable encoding multilingual inputs
of South Asian languages.

Supervised multilingual transfer learning
Leveraging linguistic similarities in characters and
morphology, cross-lingual transfer learning has
become a key adaptation strategy. IndicBART
(Dabre et al., 2022) and IndicTrans2 (Gala
et al., 2023) show that pretraining on large
multilingual corpora of related languages (that
can be mapped to a single script) significantly
improves translation. Llama 2-based models
(J et al., 2024) were fine-tuned on task-specific
corpora; however, effectiveness varies based
on linguistic proximity, with underrepresented
languages facing performance declines (Hasan
et al., 2024). Studies found that jointly trained
NER models on multilingual corpora outperformed
monolingual ones as for shared script and grammar,
such as Hindi-Marathi (Sabane et al., 2023) and
Bengali-Tamil-Malayalam (Murthy et al., 2018).

Several studies explored fine-tuning approaches.
Adaptive multilingual fine-tuning (Das et al., 2023)
leverages subword embedding alignment to en-
hance transferability across related languages.
Zhou et al. (2023) integrates sociolinguistic fac-
tors into offensive language detection. Poudel
et al. (2024) fine-tunes with domain-specific knowl-
edge to enhance legal translation. Cross-lingual in-
context learning (ICL) (Cahyawijaya et al., 2024)
improves generalization by query alignment.

Distillation and parameter-efficient fine-tuning
(PEFT) methods Adapting large models to
South Asian languages often face computing and
data constraints. As a result, recent work has ex-
plored PEFT strategies like LoRA, QLoRA, and
multi-step PEFT (Hu et al., 2022; Petrov et al.,
2023). These approaches fine-tune models like
Gemma (Khade et al., 2025) with fewer param-
eters and lower memory cost. While LoRA im-
proves efficiency, its effectiveness can vary across

tasks: it captures dialectal variations when com-
bined with phonological cues (Alam and Anasta-
sopoulos, 2025) but may struggle with syntacti-
cally rich tasks. Adapter-based methods (Nag et al.,
2024) offer modular, language-specific adaptation
and can avoid catastrophic forgetting when tuned
with domain/task-specific knowledge.

Distillation-based approaches (Ghosh et al.,
2024) compress large models but typically require
access to high-quality teacher models and syn-
thetic data, which remains a bottleneck in many
South Asian contexts. Feature-based fine-tuning
(Bhatt et al., 2022) focuses on internal representa-
tion refinement to enable knowledge transfer across
resource boundaries. Other strategies like rank-
adaptive LoRA (Yadav et al., 2024) balance param-
eter savings with performance. Complementary
strategies such as QLoRA (Dettmers et al., 2023)
reduce memory overhead, while data-centric ap-
proaches like IndiText Boost (Litake et al., 2024)
combine augmentation techniques to enhance clas-
sification for morphologically rich languages (e.g.,
Sindhi, Marathi). Few-shot learning offers benefits
morphologically rich languages but struggles with
syntactic generalization (Nag et al., 2024; Pal et al.,
2024). While parameter-efficient and data-light
methods have achieved progress, their benefits are
uneven across linguistic variations, and have rarely
been extended to the least-resourced languages.

3.3 Model Evaluations
Model evaluation varies by task, such as BLEU and
human evaluation (Gala et al., 2023; Narayanan
and Aepli, 2024; Duwal et al., 2025). Tables 2 and
3 summarize diverse evaluation approaches such
as FLORES for machine translation (Goyal et al.,
2022; Gala et al., 2023). NER (Venkatesh et al.,
2022; Khemchandani et al., 2021; J et al., 2024) and
sentiment analysis (Hande et al., 2022; Singh et al.,
2024) usually include accuracy, F1-score, preci-
sion, and recall. MRR (Mean Reciprocal Rank) and
NDCG (Normalized Discounted Cumulative Gain)
are common evaluation approaches for retrieval and
ranking tasks (Haq et al., 2024). BLEU, ROUGE,
METEOR, and human evaluations are standard
metrics for generation tasks, such as summariza-
tion, machine translation, and question answering
(Rajpoot et al., 2024; Gala et al., 2023). Recent
new metrics such as COMET (Rei et al., 2020),
phonetic-aware metrics like PhoBLEU (Arora et al.,
2023), SPBLEU (Alam and Anastasopoulos, 2025),
and chrF++ (Popović, 2017) complement exist-
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Challenge Example
POS Tagging
Inconsistency

“ ” should be tagged as NOUN in
“ ” (I am watching a game)
and VERB in “ ” (I am play-
ing)

Lexical Vari-
ability

Bengali (India): “ ” (today); Ben-
gali (Bangladesh): “ ” (today)

Diglossia “Where are you going?” in Literary
Tamil: “ ”; Spo-
ken Tamil: “ ”

Romanization Hindi: “I am fine” can be romanized as
“main theek hoon” or “mai thik hu”

Morphological
Segmentation

“ ” (nadanthirukirathu,
“has happened”) can be broken into
[“ ” (nada, “walk”) + “ ” (nthu,
past suffix) + “ ” (irukirathu,
auxiliary verb)

Code mixing Hinglish: “Mujhe ek idea aaya” (I have
an idea)

Table 4: Linguistic Challenges in Low-Resource South
Asian Languages for NLP

ing ones (Costa-jussà et al., 2024; Gajakos et al.,
2024). Overall, current evaluation relies heavily on
English-centric benchmarks and metrics (BLEU,
F1, etc. ), which can misrepresent true performance
on South Asian languages. This highlights the need
for region-specific, script-aware, culturally aligned
evaluation frameworks.

4 Trends and Challenges

Building on the contributions reviewed in the previ-
ous sections, we now synthesize emerging patterns
and persisting challenges.

Data Scarcity and Quality Issues for low-
resource languages affect model generalizability
and applicability (Gala et al., 2023). Existing
resources, especially small datasets, are often
domain-specific (e.g., government or political) due
to limited digital content and copyright restrictions,
and may potentially introduce cultural or politi-
cal biases in downstream applications (Gain et al.,
2022; Ali et al., 2024; Urlana et al., 2023; Kumar
et al., 2024). The lack of gold-annotated resources
complicates tasks, such as co-reference resolution
(Mishra et al., 2024), and the rapidly evolving on-
line discourse hurts model long-term sustainability
(Bandarkar et al., 2024; Kumaresan et al., 2024).

Non-standardized transliteration and represen-
tation of South Asian languages introduce biases
as annotators often rely on phonetic judgment
(Baruah et al., 2024). Bhattacharjee et al. (2024)
noted inconsistencies in language identification and
translation quality due to style and dialect differ-

ences within translations and translated text, which
are common as for missing human re-verification
(Hasan et al., 2024). Also, datasets translated from
English to a South Asian language can be cultur-
ally misaligned (Das et al., 2024). For culturally
nuanced languages (Arora et al., 2025), the require-
ment for proficient annotators restricts the scalabil-
ity of data collection efforts. Biases from human
annotators’ varying interpretation and background
can harm sensitive tasks like hate speech detection
(Kumaresan et al., 2024).

Further, certain data exhibit class imbalances,
leading to bias toward majority classes; solutions
such as cost-sensitive learning and oversampling
have been proposed (K et al., 2024) but not ex-
amined. Languages exhibiting diglossia need ad-
ditional efforts as literary text cannot be used for
tasks in all settings (Prasanna and Arora, 2024).
Limited computing resources further restrict im-
provements in the curation of high-quality datasets
(Philip et al., 2021).

Transliteration and Tokenization Inconsisten-
cies reduce generalizability of multilingual mod-
els on code-mixed languages, such as Hinglish,
Tanglish, and Romanized Bengali (Narayanan and
Aepli, 2024; Maddu and Sanapala, 2024). Models
often learn script-dependent embeddings, which
limits cross-script generalization (Koehn, 2024).
For example, transliteration ambiguity can eas-
ily affect speech-text alignment in ASR models
(Ramesh et al., 2023).

Existing tokenization strategies such as Byte-
Pair Encoding (BPE) (Gage, 1994) and Word-
Piece (Devlin et al., 2019) frequently fragment
morphologically rich words in Dravidian and Indo-
Aryan languages, leading to over-segmentation and
loss of meaning (Wang et al., 2024). Similarly, ag-
glutinative languages like Tamil and Manipuri form
complex word structures that are inconsistently
tokenized, affecting syntactic parsing and NMT
(Narayanan and Aepli, 2024). For extremely low-
resource languages, pretrained tokenizers (Kumar
et al., 2024) fail to adapt effectively as they frag-
ment words into multiple sub-word tokens, some-
times even individual characters, introducing noise
to tasks like POS tagging.

Morphological segmentation is particularly chal-
lenging for Dravidian languages as words are
formed by adding multiple suffixes (Narayanan
and Aepli, 2024). Hindi, Assamese, and Bengali
exhibit different, complex inflectional systems com-

1392



plicating parsing (Chowdhury et al., 2018; Nath
et al., 2023). Most Indo-Aryan languages rely on
dependent vowel signs (matras) and nasalization
markers, where BERT tokenizers often split them
incorrectly (Doddapaneni et al., 2023) and cause
ambiguities (Maskey et al., 2022). For instance, the
word “ ” (Flower) can be incorrectly tokenized
as “ ” (Fruit). Assamese possesses unique sound
patterns and alveolar stops, showing the tokeniza-
tion complexity (Nath et al., 2023). Besides struc-
tural differences, administrative vocabulary include
Persian-origin words like “farman” (order), along-
side English-origin terms (Pramodya, 2023).

Code mixing, Diglossia, and Ambiguity are
highly domain-dependent issues and can inte-
grate English letters, words, or phrases, such as
Hinglish/Tanglish (Das et al., 2024). Diglossia
shows substantial differences in speaking and writ-
ing. For example, Literary Tamil retains its formal
vocabulary, but spoken Tamil incorporates loan-
words and phonetic simplifications (Prasanna and
Arora, 2024). Additionally, polysemy and contex-
tual ambiguities can fail many models on tasks
like NER (Bhatt et al., 2022). For example, In-
dic languages do not typically capitalize proper
nouns, making it difficult to distinguish named en-
tities from common words (Philip et al., 2021);
“Hindustan” ( ) can refer to a location, a
person, or an organization (Mishra et al., 2024).
Many languages are grammatically gendered, even
inanimate objects being referred to with gendered
pronouns (Ramesh et al., 2023).

Dialect Variations and Continua are common
issues in South Asian corpus development as most
studies consider a single standard variety. Re-
cent efforts have started addressing this by creat-
ing dialect-specific resources (Kumar et al., 2024;
Chowdhury et al., 2025; Alam et al., 2024). For
example, Bafna et al. (2022) curated HinDialect,
a folk-song corpus covering 26 Hindi-related di-
alects; and VACASPATI (Bhattacharyya et al.,
2023) compiles 115M Bengali literature sentences
sampled across West Bengal and Bangladesh to
capture regional lexical differences. Several stud-
ies incorporated dialectal cues into models: Ax-
omiyaBERTa (Nath et al., 2023) includes phono-
logical signals via an attention network; Alam and
Anastasopoulos (2025) utilized LoRA (Hu et al.,
2022) to achieve dialectal normalization and trans-
lation across South Asian dialects with limited su-
pervision.

However, existing studies show that performance
is lower on underrepresented dialects compared to
common varieties, which reflects biases in data
coverage. Annotation and orthography for dialectal
text are inconsistent––many informal dialects lack
standardization and the boundary between “dialect”
and “standard” is often arbitrary (Sarveswaran
et al., 2025). Data frequently conflate dialectal
variants with the standard language, while current
benchmarks rarely consider these variants. Most
multilingual benchmarks only cover a few domi-
nant languages, so dialectal evaluations are missing.
CHiPSAL and recent shared tasks (e.g., NLU of
Devanagari Script Languages) have started to ad-
dress this by building annotated dialectal corpora
(Sarveswaran et al., 2025). Together, these findings
show that dialect-specific corpora and evaluation
benchmarks are essential to avoid biasing models
toward standard varieties.

LLM Alignment and Reasoning Tasks Cur-
rent LLM benchmarks have limited coverage of
South Asian languages. For example, the MMLU-
ProX covers 13 languages (e.g., Hindi, Bengali)
but omits many others such as Tamil, Marathi, and
Kannada (Xuan et al., 2025). Even broader tests
like Global-MMLU span multiple languages ( e.g.,
Hindi, Telugu, Nepali, etc.) (Singh et al., 2025b),
yet these datasets were generated by translating En-
glish questions. This leads to cultural mismatch.
Many MMLU (Hendrycks et al., 2021) questions
(e.g., US History, Law) are Western-specific and
thus irrelevant in South Asia; and the translation in-
troduces artifacts that distort evaluation (Kadiyala
et al., 2025). Ghosh et al. (2025) show that Hindi,
the most spoken language in the region, is only
represented in 5 multilingual reasoning corpora.

Recent work on cultural and value alignment
(CultureLLM) fine-tunes LLMs on global survey
data; however, such efforts test broad value judg-
ments rather than deep reasoning in vernacular
settings (Li et al., 2025). For example, Chiu
et al. (2025) covers Bangladesh, India, Nepal, and
Pakistan, but the corpus only focuses on trivia/
etiquette and not cultural knowledge in the low-
resourced languages spoken in the regions. In prac-
tice, South Asian languages are severely under-
represented in reasoning and alignment tasks with
cultural considerations.

Standard evaluation benchmarks exist, but
gaps have remained in evaluating multilingual mod-
els of South Asian language options, distributional
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balances, and NLP task diversities. Fine-tuned
multilingual models often overfit high-resource
regional languages (e.g., Hindi), leading to de-
graded performance on lower-resource languages
(Pal et al., 2024). Catastrophic forgetting happens
when adapting models to new languages or tasks,
such as in LoRA & adapter-based fine-tuning (Nag
et al., 2024). Phonetic variation across dialects
within the same language family (e.g., Bengali &
Assamese) results in inconsistencies in phoneme-
based word embeddings (Arif et al., 2024). Tibeto-
Burman and Austroasiatic evaluation data are al-
most non-existent and most studies for very low-
resourced languages use manually curated datasets
(Dalal et al., 2024; Chowdhury et al., 2022).

Model evaluation from our collected studies gen-
erally rely on English-origin benchmarks in Table 3,
which can misinterpret model performance (Haq
et al., 2024). Das et al. (2025) mentions biases
in back-translated datasets cause skewed results,
compromising model evaluation across languages.
For nuanced tasks (e.g., paragraph-level transla-
tion), sentence-level evaluation methods may not
be sufficient (E et al., 2023; Hasan et al., 2024).
Mukherjee et al. (2025) suggests LLM-based eval-
uation in the text style transfer task correlates better
with human judgment than existing automatic met-
rics on Hindi and Bengali. Critical dimensions of
bias—such as caste and ethnicity—are not widely
explored in lower-resourced languages. Indeed,
without culturally relevant and task-specific bench-
marks, evaluations fail to interpret performance pre-
cisely, especially for languages with rich structural
and cultural variations (Vashishtha et al., 2023).

4.1 Multilingual Resources vs South
Asian-Specific Efforts

Broad multilingual resources are attracting more
attentions in the NLP communities, such as two
recent workshops for South Asian languages
(Sarveswaran et al., 2025; Weerasinghe et al.,
2025). XNLI benchmark extends English NLI
to 14 languages (including Urdu) (Conneau et al.,
2018), and XCOPA provides commonsense reason-
ing examples in 11 languages (Ponti et al., 2020).
Similarly, models such as XGLM-7.5B included
major South Asian languages (Lin et al., 2022),
and new corpora like Glot500 (Imani et al., 2023)
and MaLA-500 (Lin et al., 2024) included over 500
languages. These resources bring valuable South
Asian language coverage for cross-lingual evalua-
tion. However, they rely on general-domain and

synthetic data, which can overlook region-specific
linguistic and cultural features. For instance, even
XGLM’s balanced training includes only approx-
imately 3.4B Hindi tokens versus 803B English,
while XCOPA only covers a single Indic language.

Recent efforts explicitly address resource gaps.
For example, IndicLLMSuite provides 251B tokens
of pretraining and 74.8M instruction-response pair
data across 22 Indian languages (Khan et al., 2024),
INDIC-MARCO provides MS MARCO-style re-
trieval queries translated into 11 Indian languages
(Haq et al., 2024), BPCC parallel corpus contains
230M English-Indic sentence pairs covering 22
Indic languages (Gala et al., 2023), and TransMu-
CoRes is a coreference resolution data of 31 South
Asian languages (Mishra et al., 2024). These initia-
tives incorporate regional linguistic structures (e.g.,
scripts, complex morphology) and cultural context
beyond generic multilingual resources.

Challenges are endless. Many cross-lingual ap-
proaches depend on back translation, introducing
new bias and noise and suffering on code-switch
(e.g. Hindi-English) issues (Raja and Vats, 2025;
Conneau et al., 2018). Standard metrics may fail
on region-specific phenomena (Mishra et al., 2024)
among Indic languages. These persistent gaps un-
derscore the necessity of region-specific research
to ensure equitable and diverse NLP advancements
for the region.

5 Conclusion

In this study, we provide comprehensive synthe-
sis and analysis of recent NLP advances on low-
resourced languages in South Asia. Our work
examines persisting challenges at every stage of
resource development––uneven representation in
multilingual corpora, model availability, multilin-
gual tuning, and evaluation benchmarks. While a
few languages have received more attention, chal-
lenges remain in collecting and processing data and
adapting models to specific orthographies. More-
over, existing evaluation metrics fall short due to
a lack of script- and task-specific benchmarks, as
well as overlooked sociocultural biases. We present
model tuning guidelines that reflect current lim-
itations of South Asian NLP, calling for South
Asian-specific frameworks and script-aware model
adaptation. We include our future envisions in Ap-
pendix A.2. We expect this study can encourage
broader participation in advancing further research
of low-resource languages in South Asia.
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Limitations

Research and development of resources for South
Asian languages have been steadily advancing. Sig-
nificant progress has been made in multilingual
datasets and modeling, and many advancements
in high-resource languages are now being adapted
for low-resource South Asian languages. Since we
aimed for a thorough and balanced analysis, below
are some key limitations and certain measures we
took to address them.

• Enumerating all studies on low-resource
South Asian languages is challenging, as re-
search is dispersed across multiple venues.
Many studies are not indexed in the ACL
Anthology. During the retrieval stage, we
conducted an extensive search across various
sources, such as Google Scholar and Semantic
Scholar, and have cross-referenced key papers
to ensure proper coverage.

• Identifying relevant studies is complicated due
to inconsistent terminology. Papers often use
non-standard or domain-specific keywords to
describe work on low-resource languages. For
instance, some studies refer to ‘low-resource
languages,’ while others use ‘under-resourced
languages,’ ‘resource-scarce languages,’ or
‘marginalized languages.’ To account for this,
we have tested multiple keyword variations
and have manually reviewed the related work
sections of key papers to identify additional
references.

• Some studies on extremely low-resource lan-
guages remain inaccessible because they are
published in regional or less widely-indexed
journals. We have, to our best efforts, in-
cluded such publications by searching sources
outside of major repositories, especially for
Tibeto-Burman and Iranian languages. Future
work could benefit from engagement with re-
gional scholars and institutions to access non-
digitized resources.
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A Appendix

A.1 Study Retrieval and Selection
Methodology

To identify relevant work on natural language pro-
cessing for South Asian languages, we conducted
an exhaustive literature review led independently
by the two authors.

We ran systematic keyword queries combining
South Asian language names (e.g. Hindi, Urdu,
Bengali, etc.), region-specific words (e.g., “Indic”,
“South Asian”, “Low-Resource Languages”), along
with task-specific keywords (e.g., “Machine Trans-
lation”, “Named Entity Recognition”, “Sentiment
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Analysis”, “Multilingual Pretraining”) across ma-
jor databases (ACL Anthology, Semantic Scholar,
and Google Scholar). This process retrieved over
1,000 initial papers. We then removed duplicates
and applied inclusion criteria to focus the review:
(a) study of at least one South Asian language
with a speaker population ≥1 million, (b) use of
neural or transformer-based models (e.g., BERT,
mBART, T5, GPT), and (c) publication year 2020
or later. After filtering on these criteria, 188 papers
remained for full analysis.

All authors independently read and annotated
all 188 papers. For each paper, we recorded de-
tailed metadata and qualitative observations using
an iteratively-developed structured coding template.
Disagreements in coding were resolved through
discussion until consensus was reached. The an-
notation template included both structured meta-
data (for example: language(s) studied, NLP task,
model architecture or family, dataset size, year, and
publication venue) and emergent, inductive tags
capturing noted phenomena. Examples of induc-
tive tags include transliteration handling, dialectal
variation, data scarcity, or evaluation gaps, which
were added to the template as they were discovered
during reading. These were added as qualitative
codes and grouped into higher-order themes.

To ensure coverage of less widely reported re-
search, we searched beyond mainstream venues
using citation tracking to identify less accessible re-
search from under-indexed sources. This included
work from regional conferences like Technology
Journal of Artificial Intelligence and Data Min-
ing, etc. (Kavehzadeh et al., 2022), and work-
shops focused on low-resource languages. We
also scanned citations of benchmark papers like
IndicNLG, TransMuCoRes, and BPCC to identify
follow-up work not indexed in ACL Anthology.

We prioritized the inclusion of languages with
over 1 million speakers. This allowed us to include
both high-resource languages like Hindi and Ben-
gali, as well as low-resource and often overlooked
ones such as Manipuri, Balochi, Santali, and Tulu.
As discussed in Figure 1 and Section 2.1, the ob-
served imbalance in dataset and model availability
reflects publication patterns, not retrieval bias.

Themes for Sections 3 and 4 were identified in-
ductively by synthesizing recurring patterns across
the annotated data. As we reviewed papers, we
documented recurrent patterns, gaps, and method-
ological approaches, which were then grouped into
cohesive sections based on relevance to ongoing

challenges in South Asian NLP.

A.2 Open Challenges and Future Work

Building on our survey findings, we outline several
forward-looking directions to guide future NLP
research for South Asian languages.

Code-Mixing Beyond Major Language Pairs
Code-mixing is pervasive in South Asian commu-
nication (Huzaifah et al., 2024), yet most avail-
able corpora focus on English-Hindi or English-
Tamil interactions. We encourage future work to
expand toward less-resourced combinations, such
as Assamese-Bodo or Hindi-Magahi, and trilin-
gual mixing patterns. Studying the sociolinguistic
contexts in which switching occurs (e.g., informal
communication, shifts in topic, regional broadcasts)
can inform models that generalize better to mul-
tilingual discourse. This is particularly relevant
for applications like dialogue agents and education
technology, where switching is frequent.

Leveraging Bilingualism and Linguistic Proxim-
ity for Parallel Data Creation Given the high
rates of bilingualism in South Asia (Bhatia and
Ritchie, 2006), parallel data can be efficiently con-
structed by pairing low-resource languages with
regionally-dominant but better-resourced ones like
Hindi, Tamil, or Urdu. We encourage community-
driven data collection efforts that take advantage of
such speaker fluency. Translation pivots using En-
glish–Hindi or English–Tamil models (Khan et al.,
2024; Gala et al., 2023) can further support indi-
rect transfer. Additionally, our findings on shared
scripts and lexical similarity among related lan-
guages in Section 2.1 (e.g., Bhojpuri–Hindi, As-
samese–Bengali) suggest promising avenues for
cross-lingual data augmentation (Chowdhury et al.,
2022; Patil et al., 2022).

Bias Mitigation and Inclusive Dataset Design
As detailed in Section 4, our review identifies per-
sistent sociocultural biases in existing resources,
ranging from gender and caste under-representation
to cultural misalignment in machine-translated data
(Bhatt et al., 2022; Ramesh et al., 2023), with many
datasets relying on translations from English. Very
recent work on Nepali-English MT (Khadka and
Bhattarai, 2025) also highlights that traditional sys-
tems perpetuate gender stereotypes in occupational
terms (while GPT-4o demonstrates lower bias and
better gender accuracy). However, there are no
South-Asian specific large-scale bias evaluation
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resources. Future work should prioritize partici-
patory dataset development, with native speaker
involvement in both content and annotation design.
Additionally, targeted efforts are needed to build
corpora for languages with scheduled or official
status but little NLP presence (e.g., Bodo, Sindhi,
Dzongkha, Pashto).

Evaluation Frameworks Tailored to South Asia
Existing benchmarks rarely capture the linguistic
complexity of South Asian languages (e.g., diglos-
sia, agglutination, script multiplicity). Metrics such
as BLEU or COMET are often used by default de-
spite them lacking sensitivity to regional variations.
We call for the creation of culturally grounded eval-
uation datasets across tasks like summarization,
retrieval, and QA (Philip et al., 2021; Kumar et al.,
2024; Pourbahman et al., 2025), alongside human-
in-the-loop assessments in multilingual and code-
mixed contexts.

Developing Computationally Efficient NLP
Models As noted by Philip et al. (2021), South
Asian research institutions often face compute con-
straints. Future work should prioritize efficient
fine-tuning strategies such as adapter-based tuning
and LoRA. For example, fine-tuning multilingual
LLMs with language-specific instructions (Khan
et al., 2024) or leveraging LoRA-based adapters
(Huzaifah et al., 2024; Singh et al., 2024) can
yield strong performance with minimal data. Ad-
ditionally, reasoning and logical inference is be-
ing explored in multilingual contexts (Ghosh et al.,
2025), but remains under-explored in South Asian
NLP. Further research would improve the decision-
making capabilities of models catering to South
Asian languages.

Script-Robust and Transliteration-Aware Mod-
eling South Asian languages often use multiple
scripts or informal romanizations. The survey notes
that transliterating text into a common script can
improve cross-lingual transfer, but current mod-
els still suffer from script-specific tokenization is-
sues (Koehn, 2024). Recent work such as Nayana
(Kolavi et al., 2025) demonstrates that combining
synthetic layout-aware data generation with LoRA
can enable scalable OCR for 10 Indic languages
without requiring annotated corpora.

Future research should focus on script-agnostic
modeling: for example, designing multilingual
tokenizers or shared subword vocabularies that
link Devanagari, Perso-Arabic, and Roman scripts.

Modules that automatically transliterate or phoneti-
cally encode text (so that Hindi and Urdu versions
of the same word align) could boost transfer. Such
techniques (training on mixed-script data or using
script-independent representations) will help mod-
els generalize across writing systems common in
South Asia.

Coordinated South Asian Benchmarks and
Shared Tasks We observe fragmented evalua-
tion across studies, with little standardization. In-
spired by initiatives like IndicGLUE (Kakwani
et al., 2020) and BigScience (Akiki et al., 2022),
we propose community-organized shared tasks fo-
cused on regionally relevant domains (e.g., health-
care, law, government communication) and lan-
guages. These should include multilingual, multi-
script benchmarks, standardized metrics, and code-
mixed test sets to advance reproducibility and col-
laboration.
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