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Abstract

As general large language models continue to
advance, their real-world adaptation through
effective fine-tuning remains a significant chal-
lenge. We introduce Hierarchical Multilevel
Contrastive Learning (HMCL), a new con-
trastive learning framework that improves task-
specific text representation for general models.
HMCL integrates 3-level semantic differenti-
ation (positive, weak-positive, and negative)
and unifies contrastive learning, pair classifi-
cation, and ranking objectives into a cohesive
optimization strategy. HMCL demonstrates ex-
ceptional results across multi-domain and mul-
tilingual benchmarks, including text similarity,
retrieval, reranking and Retrieval-Augmented
Generation (RAG) tasks. It outperforms top un-
supervised methods and supervised fine-tuning
approaches while maintaining broad compati-
bility with architectures ranging from BERT
to Qwen, 330M to 7B. In real-world mer-
chant consultation scenarios, HMCL shows
a 0.70-6.24 point improvement over original
fine-tuning methods in large-scale base models.
This establishes HMCL as a versatile solution
that bridges the gap between general-purpose
models and specialized industrial applications.

1 Introduction

From the past to the present, text representation has
played a fundamental role in natural language pro-
cessing (Babic et al., 2020). Especially in the era of
large language models, as the most crucial part of
the RAG process, knowledge retrieval and rerank-
ing demand better text representations in specific
fields (Gao et al., 2023), which determine the ac-
curacy and completeness of the answers generated
by Large Language Models (LLMs). Addition-
ally, it is also central to unsupervised classification,
evaluation, and clustering (Patil et al., 2023). In
summary, the quality of text representation signifi-
cantly affects the performance of all fields related
to language understanding in artificial intelligence.

Nowadays, with the continuous growth of pre-
trained model parameters and the expansion of pub-
lic datasets, more general models are emerging to
address the challenges in text representation. In
recent years, successful general base models in
this field have become a focal point of research,
achieving top scores in public evaluation bench-
marks (Chen et al., 2024; Wang et al., 2022; Li
et al., 2023; BehnamGhader et al., 2024).

However, even with the success of general mod-
els, real-world text representation applications of-
ten require modifying these models to better match
the specific standards, special expressions, and
styles of each distinct task. This is because the
definitions of what answers a query, what is con-
sidered similar, partially acceptable, or unaccept-
able can vary across different tasks. To illustrate
this, we provide an analysis of seven prominent
datasets across semantic textual similarity (STS),
retrieval, and reranking tasks in Table 1 (Cer et al.,
2017; Marelli et al., 2014; Wu et al., 2020; Li et al.,
2025; Wadden et al., 2020; Yang et al., 2018; Muen-
nighoff et al., 2023).

STS measures sentence similarity with 0-5
scores, but STS-B and SICK-R have starkly dif-
ferent standards: STS-B rates positive and neg-
ative forms of the same sentence as dissimilar
(1.6), while SICK-R assigns a "very similar"
score (4.2). Their tolerance for subject specificity
(e.g., woman→girl, kids→boys) also differs. In
reranking, positive pairs involve deeper associa-
tions rather than surface-level semantic similar-
ity. For example, in MindSmallReranking, posi-
tives are based on user preferences, making con-
nections of language and knowledge vague, while
in StackOverFlowDupQuestions, positives must
strictly follow question-answer relationships. In re-
trieval, dataset differences extend beyond language
style and knowledge domains. SciFact requires
only a detail in long passages to answer queries;
FIQA2018 expects retrieved passages to serve as
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STS tasks
Evaluation
Task

Sentence A Sentence B Score NLI label

STS-B a woman is dancing in the rain . a girl dances in the rain . 3 Entailment
some people have complete confidence in
the people running these institutions .

other people have no confidence at all in the
people running these institutions .

1.6 Contradiction

SICK-R A group of kids is playing in a yard and an
old man is standing in the background

A group of boys in a yard is playing and a man
is standing in the background

4.5 Neutral

There is no biker jumping in the air A lone biker is jumping in the air 4.2 Contradiction
Reranking Tasks
Evaluation
Task

Query Passage Label

MindSmall-
Reranking

Donald Trump Jr. reflects on explosive
’View’ chat: ’I don’t think they like me
much anymore’

Opinion: Colin Kaepernick is about to get
what he deserves: a chance

Positive

Officer placed on leave after threatening
teen skaters at gunpoint

Officer placed on leave after threatening teen
skaters at gunpoint

Negative

StackOver-
Flow-
DupQuestions

String isNullOrEmpty in Java? Java equivalent of c# String.IsNullOrEmpty()
and String.IsNullOrWhiteSpace()

Positive

String isNullOrEmpty in Java? String [] to String Negative
Retrieval tasks
Evaluation
Task

Query Passage Score

SciFact 0-dimensional biomaterials show inductive
properties.

...Examples include magnetic nanoparticles
and quantum dots for stem cell labeling and
in vivo tracking...and engineered nanometer-
scale scaffolds for stem cell differentiation and
transplantation...

1 (Relevant)

FIQA2018 Having a separate bank account for busi-
ness/investing, but not a ’business ac-
count’?

If it makes your finances easier, why not?...I
also have an account to handle transactions for
my rental property, and one extra for PayPal
use...

1 (Relevant)

HotpotQA What science fantasy young adult series,
told in first person, has a set of compan-
ion books narrating the stories of enslaved
worlds and alien species?

The Hork-Bajir Chronicles...The book is in-
troduced by Tobias, who flies to the valley of
the free Hork-Bajir, where Jara Hamee tells
him the story of how the Yeerks enslaved the
Hork-Bajir...

1 (Relevant)

Table 1: Comparison of labeling standards across prominent public datasets for text embedding evaluation.

suggestions aiding in problem-solving through in-
ference or extension; HotpotQA emphasizes holis-
tic understanding, requiring precise recall of the
exact noun description matching the query.

Similar phenomena are more widespread in real-
world industrial applications. Therefore, powerful
general-purpose models still need to be adapted
to specific tasks, learning the language style and
labeling standards of those tasks, to ensure optimal
performance in specific scenarios.

We introduce HMCL, a novel framework
for task-oriented fine-tuning of text embedding
models. HMCL extends traditional positive-
negative contrastive learning by incorporating
multi-hierarchical comparisons, excelling in sen-
tence similarity, reranking, retrieval and RAG tasks.
It performs effectively across various base models,
including SimCSE, E5, GTE, BGE, and large lan-
guage models like Qwen-GTE. HMCL consistently
outperforms other contrastive learning methods,

whether unsupervised or supervised, such as E5’s
distilled methods (Wang et al., 2022), GTE’s im-
proved contrastive loss (Li et al., 2023), or BGE’s
ANN-style sampling strategy (Xiao et al., 2024;
Xiong et al., 2020). Notably, HMCL achieves su-
perior results with small-scale datasets and low
computational costs, addressing the challenge of
acquiring task-specific fine-tuning data while pre-
serving the model’s general capabilities. Rele-
vant materials are available in the project repos-
itory: https://github.com/antgroup/hmcl-merchant-
question.

2 Related Work

In the past, text embeddings served as low-
dimensional vector representations for texts of
varying lengths, primarily based on keywords and
word understanding. Representative methods from
this period include TF-IDF, LSA, word2vec, and
the utilization of average or extreme word vec-
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Figure 1: Illustration of HMCL training framework.

tors (Mikolov et al., 2013a; Forgues et al., 2014;
Sparck Jones, 1988; Zhixiang et al., 2013; Mikolov
et al., 2013b; Deerwester et al., 1990). However,
long paragraphs, extensive word dictionaries, and
complex contextual meanings in texts demanded
more accurate and efficient ways to match rele-
vant passages and sentences. With the advent of
pre-trained language models, contrastive learning
based on these models has emerged as the most
effective method for acquiring semantic represen-
tations. This learning framework gained popularity
due to SimCLR, which achieved remarkable re-
sults in image classification (Chen et al., 2020). By
aligning similar pairs and distinguishing unrelated
ones during training, this framework successfully
generates distinct and meaningful vectors for texts.
In the field of text representation, numerous works
have proposed ways to enhance positive pairs (such
as CERT, ConSERT) or negative pairs (such as Sim-
CSE, ESimCSE) to improve the effectiveness of
contrastive learning (Fang and Xie, 2020; Yan et al.,
2021; Gao et al., 2021; Wu et al., 2022b).

With the development of comprehensive labeled
datasets, many general models trained on very
large-scale corpora have become key solutions for
text representation. Examples include sentence-T5,
E5, INSTRUCTOR, GTE, BGE, and even using
LLMs as text encoders (Ni et al., 2021; Wang et al.,
2022; Su et al., 2023; Li et al., 2023; Chen et al.,
2024; Nie et al., 2024). To some extent, the com-

petition among these general models has shifted
to a race for larger data and more extensive train-
ing resources. From the era of SimCSE to the
current era of LLMs, the number of training pairs
has increased from millions to billions, leading
to a significant improvement in performance on
public benchmarks such as SentEval, MTEB and
CMTEB (Conneau and Kiela, 2018; Muennighoff
et al., 2023; Xiao et al., 2024).

When general base models achieve excellent
performance in text embedding benchmarks, task-
specific fine-tuning is still needed to help them
achieve optimal performance in real-world indus-
trial scenarios. Although these general models are
typically trained using a multi-stage training frame-
work and incorporate improved methods for the
second or third training stages, there is still limited
research focused on developing effective methods
to fully leverage the potential of all kinds of base
model to learn the standards of a specific task and
perform exceptionally well in that actual scenario.

3 Approach

3.1 Training Framework

Our HMCL training framework, shown in Figure 1,
transforms a base model into a task-specific embed-
ding model. In HMCL, each query is associated
with three types of comparisons: positive, weak-
positive, and negative. The positive item represents
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a completely correct match to the query, while the
negative item is entirely irrelevant or incorrect. The
weak-positive item is partially related to the query:
it may not be the best choice to directly answer
the query, but it contains useful information, such
as related concepts, background context, or incom-
plete answers. It is more relevant than a negative
item but less relevant than a positive one, address-
ing real-world scenarios where partially relevant
or useful content is often selected for a query (see
Appendix A.3 for examples of "weak-positive").

In the original 2-level contrastive learning frame-
work, the probability distribution P in the vector
space is encouraged to follow:

P (a+ | q) > P (a− | q) (1)

where P is given by:

P (aj | q) =
es(q,aj)/τ∑
k e

s(q,ak)/τ
(2)

Here q represents the query in a sample, a+ denotes
the positive item, a− denotes the negative item, and
aw+ denotes the weak-positive item. The function
s(q, a) represents the similarity measure between
q and a.

Under the assumptions that s(q, a) is normal-
ized (e.g., cosine similarity), the temperature τ is
fixed, and optimization converges sufficiently, the
condition implies:

P (a+ | q)
P (a− | q)

= e
s(q,a+)−s(q,a−)

τ > 1 (3)

and hence

s(q, a+)− s(q, a−) > 0 (4)

This ensures a positive similarity gap, but it may
be arbitrarily small. In practice, we expect an ideal
text representation model to establish a clear deci-
sion boundary between positive and negative pairs,
rather than merely producing a continuous similar-
ity ranking. Therefore, we desire a minimal lower
bound r > 1 on the probability ratio:

P (a+ | q)
P (a− | q)

≥ r > 1 (5)

However, 2-level contrastive learning does not
enforce such a lower bound r; it only encourages
P (a+|q) > P (a−|q) without requiring a minimum
separation.

In the HMCL framework, we introduce a weak-
positive item aw+ whose relevance lies between a+
and a−. The desired ordering

P (a+ | q) > P (aw+ | q) > P (a− | q) (6)

implicitly imposes stronger constraints on the prob-
ability ratios. Specifically, it requires:

P (a+ | q)
P (a− | q)

>
P (aw+ | q)
P (a− | q)

> 1 (7)

Therefore, in the 3-level framework, the con-
dition in Equation (5) is more likely to hold dur-
ing training. This is because Equation (6) estab-
lishes an explicit separation between weak posi-
tives and negatives, introducing a data-dependent
lower bound:

r′ =
P (aw+ | q)
P (a− | q)

> 1 (8)

Consequently, we have

P (a+ | q)
P (a− | q)

=
P (a+ | q)
P (aw+ | q)

· r′ > r′ > 1 (9)

which yields an explicit margin in similarity space:

s(q, a+)− s(q, a−) ≥ τ log r′ > 0 (10)

This ensures that strong positives are sepa-
rated from negatives by a similarity margin of at
least τ log r′, establishing a more reliable decision
boundary in the embedding space. Compared to
standard 2-level contrastive learning, where no in-
termediate supervision exists, HMCL leverages the
weak-positive item as an anchor to simultaneously
pull relevant content closer and push irrelevant con-
tent further away. As a result, HMCL encourages
more robust and well-structured representations.

In HMCL, the best practice is to use supervised
labels to select positive, weak-positive, and nega-
tive samples. For example, when similarity scores
are available, high-, mid-, and low-scoring items
can serve as positives, weak-positives, and nega-
tives, respectively. In a retrieval list, annotators
may directly label one fully correct answer, one
partially relevant answer, and one entirely incor-
rect answer. However, complete 3-level tuples are
not always obtainable for every query. To address
this, we integrate an unsupervised sample supplier
that randomly draws from multiple unsupervised
modules to fill missing items during training (see
Appendix A.2), ensuring the framework remains
applicable in less supervised settings.
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3.2 HMCL Loss
To accommodate this design, we have developed
our HMCL loss, which comprises three compo-
nents: the absolute contrastive loss Lc, the pair-
type classification loss Le, and the list-wise ranking
loss Ll:

Loss = µc · Lc + µl · Ll + µe · Le (11)

In this formula, µc, µl, and µe are constants.
After conducting ablation experiments, we select
µe = 0.2, µl = 1.0, and µc = 2.0 as the stan-
dard settings, which are used consistently across
all experiments in this paper.

We use the list-wise ranking loss Ll prompts the
model to assign similarity scores that reflect the
correct ranking. We primarily refer to ListMLE,
which is commonly employed in recommendation
ranking systems (Xia et al., 2008). If Ŝ represents
the correct ranking sequence for m items involved
in the comparison (where 1, 2, 3, ..., m denotes the
correct order) and s represents the actual ranking
scores, the probability of the correct sequence P (Ŝ)
is given by:

P (Ŝ) =

m∏

k=1

esk
m∑
l=k

esl
(12)

In our framework, we aim for the model to cor-
rectly rank 3-level answers for each sample. Specif-
ically, for every sample, the correct order is such
that the positive answer is ranked first, the weak-
positive answer is ranked second, and all negative
answers are considered tied for third place. Given
that the ranking score is determined by the similar-
ity score between the query and the answer, s(q, a),
the loss function to optimize the probability of the
correct sequence for a batch of samples (with a
batch-size of n) can be formulated as follows:

Ll = −
1

n

n∑

i=1

log(
es(qi,a+,i)/τ

es(qi,a+,i)/τ + Z1

·e
s(qi,aw+,i)/τ

Z1
)

(13)
Z1 represents the sum of the scores from the

weak-positive pair and all types of negative pairs:

Z1 = es(qi,a−,i)/τ +

n∑

j ̸=i

es(qi,qj)/τ

+
n∑

j ̸=i

es(qi,a+,j)/τ +
n∑

j

es(qi,aw+,j)/τ

+
n∑

j ̸=i

es(a+,i,a+,j)/τ (14)

Besides, we also use the absolute contrastive
loss Lc which is adapted from the InfoNCE loss
(van den Oord et al., 2018):

Lc = −
1

n

n∑

i=1

log
e(s(qi,a+,i))/τ

Z2
(15)

here,

Z2 = es(qi,a−,i)/τ+

n∑

j ̸=i

es(qi,qj)/τ+

n∑

j

es(qi,a+,j)/τ

(16)
Simultaneously, we employ a cross-entropy loss

to enhance the similarity scores generated by the
model, thereby effectively distinguishing the three
level pairs.

Le = −(
1

N(pair+)

N(pair+)∑

p=1

log
ezp,yp

3∑
k=1

ezp,k

+
1

N(pairw+)

N(pairw+)∑

p=1

log
ezp,yp

3∑
k=1

ezp,k

+
µe,d

N(pair−)

N(pair−)∑

p=1

log
ezp,yp

3∑
k=1

ezp,k
)/n (17)

Here, N(pair) denotes the total number of pos-
itive, weak-positive, and negative pairs. The vari-
able yp represents the true label for the three differ-
ent types of pair levels and zp,k means the logit on
the category k of the sample pair p. The constant
µe,d is set to 0.1 in the standard configuration. In
all components of the HMCL loss, the temperature
hyperparameter τ (set to 0.05) controls the strength
of this effect.

This loss function, by simultaneously optimizing
the contrast between positive and negative samples,
pair-level classification, and ranking tasks, enables
the model to thoroughly learn the hierarchical dif-
ferences among the three different levels of pairs.
Additionally, possible extensions more than the
standard mode of our HMCL, such as negative
sample expansion, are discussed in Appendix A.6.
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Training Method Avg. STS & SICK Best on
10 thousand training sentences
SimCSE 69.71 2
DiffCSE 69.87 1
ESimCSE 68.81 0
InfoCSE 69.65 0
HMCL 71.51 4
30 thousand training sentences
SimCSE 69.95 1
DiffCSE 71.33 0
ESimCSE 71.03 0
InfoCSE 71.73 2
HMCL 72.21 4
50 thousand training sentences
SimCSE 68.28 0
DiffCSE 71.63 0
ESimCSE 72.35 2
InfoCSE 71.86 1
HMCL 72.87 4

Table 2: Comparison of the effectiveness of unsuper-
vised training methods for text representation based on
BERTbase on small-scale training corpora. Results are
reported as Spearman’s correlations on the benchmarks,
calculated using the "all" setting. Training data are con-
structed by randomly sampling sentences from the NLI
corpus.

4 Experiments

4.1 Training embedding model with small
dataset

We first evaluate our HMCL framework by apply-
ing it to a generic pre-trained model through few-
shot training. We randomly sample 10k, 30k, and
50k sentences from the SNLI dataset (Bowman
et al., 2015) to form the training sets. The HMCL
framework’s unsupervised sample supplier is used
to augment the samples and train the BERTbase

model for 5 epochs. As shown in Table 2 and Table
A7, our method consistently achieves the highest
average scores in few-shot training settings, out-
performing classical unsupervised approaches and
showing strong potential for rapidly constructing
text representation spaces in scenarios with limited
data.

Similarly, we conduct supervised training start-
ing from BERTbase, using the train datasets for
each task and measuring performance on the tar-
geted test datasets. Compared to the SimCSE
framework (Table 3), our method shows significant
improvement. This is because the comprehensive
HMCL loss enhance the semantic discriminability

Training Method STS-B Test SICK-R Test
SimCSE 81.71 73.17
SimCSE-ALL 80.48 71.93
HMCL 82.72 75.24

Table 3: Comparison of the effectiveness of super-
vised training methods for text representation based
on BERTbase. Results are reported as Spearman’s cor-
relations on the test dataset of benchmarks.

Model STS-B
Test

SICK-R
Test

Average

SimCSE-Large 86.68 81.51 84.09
SimCSE-Large-OM 86.71 81.66 84.19
SimCSE-Large-HMCL 87.47 81.97 84.72
GTE-Large 86.07 79.05 82.56
GTE-Large-OM 86.49 79.34 82.91
GTE-Large-HMCL 87.73 80.48 84.10
BGE-Large 85.10 80.59 82.85
BGE-Large-OM 87.09 81.17 84.13
BGE-Large-HMCL 88.26 81.34 84.80
E5-Large 86.26 79.71 82.98
E5-Large-OM 87.33 79.33 83.33
E5-Large-HMCL 88.40 80.62 84.51

Table 4: Comparison of the effectiveness of task-
oriented fine-tuning methods for text representation,
based on different general base models, in textual simi-
larity tasks. Results are reported as Spearman’s correla-
tions on the test dataset of benchmarks.

of text representation vectors in training, facilitat-
ing the construction of a well-distributed represen-
tation space (Figure 2).

Additionally, our HMCL uses a 3-level pair con-
trast, while other frameworks rely on a 2-level con-
trast (positive/negative). To ensure a fair compar-
ison, we process SimCSE’s training data in two
ways: one excludes weak-positive sentences (Sim-
CSE), and the other treats weak-positives as hard-
positives (SimCSE-ALL). However, SimCSE-ALL
performs significantly worse than SimCSE, indicat-
ing that weak-positives cannot be directly utilized
without a well-designed framework. As a result,
we exclude weak-positive samples when reproduc-
ing other 2-level contrast methods in subsequent
sections.

4.2 Task-oriented fine-tune for different
general base models

In the subsequent experiments, we utilize several
classic text representation general models that have
been pretrained on large datasets as our base mod-
els, including SimCSE-Large, E5-Large, BGE-
Large, and GTE-Large. We fine-tune these base
models using both their recommended original fine-
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Figure 2: Comparison of cosine similarity score distri-
butions in the STS-B Test between BERTbase models
trained with the HMCL framework and with the 2-level
contrastive framework SimCSE under supervised condi-
tions.

tuning methods and parameters, as well as our pro-
posed HMCL fine-tuning method. The training
data for each task is the same across all models
and methods. We then compare the performance
of the original base models, the models fine-tuned
with the original methods (denoted as -OM: orig-
inal method), and the models fine-tuned with the
HMCL framework (denoted as -HMCL) on the
respective tasks.

Table 4 presents the fine-tuning results of the
four models on the textual similarity task. It is
evident that, regardless of the base model or the
fine-tuning method, task-targeted fine-tuning sig-
nificantly improves the model’s performance on the
test evaluation set. Notably, the HMCL framework
outperforms other fine-tuning methods, with a gen-
eral improvement of 0.62 to 1.95 points over the
original base models and 0.53 to 1.19 points over
the models fine-tuned with the original methods.
This demonstrates the superior effectiveness of our
approach in similarity comparison tasks, applicable
to a wide range of base models.

Furthermore, we conduct preliminary validation
of our HMCL framework on common text repre-
sentation tasks, such as reranking and retrieval, as
shown in Table 5. For this experiment, we select
6 tasks from the MTEB benchmark with training
sets. We also include 2 CMTEB biomedical tasks
and using data from the MedicalRetrieval dataset
to contrust their training data. For each task, all
methods use the same data, allowing us to compare
the performance of HMCL and other fine-tuning
methods on 4 reranking and 4 retrieval tasks.

Our results show that the HMCL framework con-
sistently achieve the highest average scores across
all base models and outperform other methods on

a greater number of tasks. The average score im-
provements over the original fine-tuning methods
ranged from 0.48 to 4.91 points, indicating that our
approach is also effective for targeted fine-tuning
in reranking and retrieval tasks.

To verify the overall stability of the model’s
performance after targeted fine-tuning using the
HMCL framework, we also evaluated the model
on the entire MTEB benchmark of 41 tasks after
fine-tuning it on small training sets from 3 tasks
(FIQA2018, STS-B, and SICK-R). We found that
the overall performance of the fine-tuned model
remained stable. While there was an improvement
in the STS task metrics, the performance on other
types of tasks did not show significant degradation,
with the overall average score remaining largely
unchanged (Table A8). This demonstrates that the
HMCL fine-tuning with small dataset enhances the
performance on specific tasks while still preserving
the model’s strong general capabilities across other
types of tasks.

While the experiments conducted on the widely-
used MTEB benchmark demonstrate the generaliz-
ability of our approach, they do not fully validate
its effectiveness in real-world applications. This is
because publicly available benchmarks, character-
ized by high-quality corpora and annotations, are
extensively used for training various general mod-
els, particularly large-scale ones (Ni et al., 2024).
In selecting our experimental tasks, we exclude
those that are widely used for general model train-
ing, such as FEVER and MSMARCO (Wang et al.,
2022; Li et al., 2023). However, as reported in the
technical report of BGE-M3 (Chen et al., 2024),
plenty of the MTEB and CMTEB evaluation tasks
appear in the training data. The prevalent use of
public corpus for general model training may ex-
plain the limited benefits observed in task-specific
fine-tuning (regardless of the fine-tuning method
employed) for some base models in Table 5.

Therefore, to showcase the effectiveness of
the HMCL framework on larger general mod-
els, we construct two new evaluation datasets,
MerchantQuestion-S2S and MerchantDocs-S2P,
along with their corresponding training data, from
a real-world industrial system for merchant con-
sultation and Q&A. MerchantQuestion-S2S is de-
signed for a textual similarity task (scoring related
sentences based on a query), while MerchantDocs-
S2P is a reranking task (ordering relevant docu-
ments based on a query). The results in Table
6 indicate that task-specific fine-tuning on these
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Model CMedQAV-1 CMedQAV-2 MSR SOFDQ FIQA2018 HotpotQA NFCorpus SciFact Average Best on
SimCSE-Large 13.84 14.31 30.35 38.56 18.72 28.65 17.53 34.73 24.59 0
SimCSE-Large-OM 9.89 19.95 27.82 48.95 37.01 42.18 25.84 58.98 33.83 0
SimCSE-Large-HMCL 27.00 30.33 31.44 49.68 37.14 43.42 26.42 64.46 38.74 8
E5 67.64 66.78 31.42 49.72 43.80 71.23 34.00 70.41 54.38 1
E5-Large-OM 68.30 66.32 33.28 54.40 43.30 63.20 34.11 73.13 54.51 1
E5-Large-HMCL 74.69 76.14 32.78 54.67 45.91 65.20 34.23 74.52 57.27 6
GTE-Large 81.98 82.69 32.63 53.63 44.50 67.16 38.17 74.27 59.38 2
GTE-Large-OM 85.29 85.84 31.79 55.48 44.10 60.41 36.18 76.73 59.48 1
GTE-Large-HMCL 86.86 87.24 32.05 55.68 44.93 62.87 37.90 75.10 60.33 5
BGE-Large 81.88 84.29 30.99 55.24 44.99 74.64 34.57 72.37 59.87 2
BGE-Large-OM 82.03 82.45 32.76 53.04 45.07 68.15 34.91 77.04 59.43 3
BGE-Large-HMCL 81.41 83.69 31.38 56.21 45.50 67.77 38.23 75.12 59.91 3

Table 5: Comparison of the effectiveness of task-oriented fine-tuning methods for text representation, based on
different general base models, in MTEB reranking and retrieval tasks. Results are reported as nDCG@10 for
retrieval tasks and MAP for reranking tasks. Note: MSR here means MindSmallReranking, SOFDQ means
StakOverFlowDupQuestions.

Model MerchantQuestions-
S2S

MerchantDocs-
S2P

BGE-Large 69.87 67.41
BGE-Large-OM 73.26 72.70
BGE-Large-HMCL 74.23 75.81
BGE-M3 71.06 69.07
BGE-M3-OM 71.09 69.94
BGE-M3-HMCL 73.69 76.18
Qwen-GTE-1.5B 67.65 69.31
Qwen-GTE-1.5B-OM 68.10 72.66
Qwen-GTE-1.5B-HMCL 70.53 73.36
Qwen-GTE-7B 64.79 69.66
Qwen-GTE-7B-OM 69.94 73.71
Qwen-GTE-7B-HMCL 71.68 75.16

Table 6: Comparison of the effects of fine-tuning large-
scale text representation base models using HMCL and
the original method on a real-world dataset for merchant
business consulting. Results are reported as Spearman’s
correlation for S2S task and MAP for S2P task.

new, data-leak-free tasks yields significant improve-
ments, with performance gains of up to 8.40 points.
This underscores the necessity of such fine-tuning
steps in practical industrial applications, even when
employing powerful base models.

Compared to the original fine-tuning method,
our HMCL consistently outperforms, achieving im-
provements of 0.98 to 2.59 points on the S2S task
and 0.70 to 6.24 points on the S2P task. These
results convincingly demonstrate the broad appli-
cability and superiority of our HMCL framework
in fine-tuning base models.

Additionally, we compared HMCL with other
fine-tuning frameworks on RAG tasks, as shown
in Table 7. Using the same generative model and
BGE-M3 models fine-tuned with various frame-
works as retrievers, we retrieved the top-3 pas-
sages for each query from CRAG’s web snapshots.
The consistency of the generated answers with the
reference answers was then evaluated. The re-
sults demonstrate that the HMCL-finetuned model

Finance Movie Music Open Sports Total
BGE-M3 23.60 42.71 51.40 58.02 35.38 40.95
BGE-M3-
SimCSE

24.46 44.17 52.51 57.84 33.79 41.29

BGE-M3-
E5

23.60 45.15 49.44 56.72 33.39 40.80

BGE-M3-
GTE

25.70 45.63 52.23 58.02 32.81 41.74

BGE-M3-
BGE

24.61 45.15 52.23 59.51 34.58 42.00

BGE-M3-
HMCL

24.92 45.47 52.79 58.58 34.98 42.12

Table 7: Comparison of RAG performance using differ-
ent fine-tuned BGE-M3 models (with fine-tuning frame-
works: -SimCSE, -E5, -GTE, -BGE, -HMCL) evaluated
on the CRAG dataset. Scoring: 1 for fully correct, 0.5
for partial, and 0 for incorrect answers. Average scores
(multiplied by 100) are compared.

achieves the greatest overall improvement for RAG,
enhancing generation correctness by 1.17 points
compared to the original BGE-M3 and outperform-
ing all other fine-tuning frameworks.

4.3 Ablation studies

Compared with conventional contrastive learn-
ing, HMCL extends the binary positive-negative
scheme to a 3-level hierarchy, enriching the learn-

Similar Pair Level Avg. STS
Positive/Negative 71.78
Positive/Weak-Positive/Negative 73.41
Positive/Weak-Positive/Weak-Negative/Negative 71.48

Table 8: Training performance in the HMCL framework
using 2-level pair samples, 3-level pair samples, and
4-level pair sample. Results are reported as Spearman’s
correlations on the benchmarks, calculated using the
"all" setting. Note: The weak-negative here means the
sample that is less relevant than the positive but more
relevant than the strong-negative. For specific explana-
tions and examples, see Appendix A.3.
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Loss Construction STS-B Test
Standard Mode (µe = 0.2, µe,d = 0.1, µl = 1.0, µc = 2.0) 82.72
Changing µl

µl = 0.0 80.97
µl = 0.5 82.59
µl = 2.0 81.92
Changing µc

µc = 0.0 82.45
µc = 1.0 82.49
µc = 3.0 82.60
Changing µe

µe = 0.0 82.29
µe = 1.0 82.19
Changing µe,d

µe,d = 0.0 82.28
µe,d = 0.5 82.61

Table 9: Ablation study on the optimal values of contri-
bution coefficients that control the proportion of three
tasks in the HCML framework. Results are reported as
Spearman’s correlation on the test dataset.

ing signal. To examine whether additional levels
improve performance, we conduct an ablation study
(Table 8) varying the number of levels while keep-
ing the HMCL loss components unchanged, in-
cluding absolute contrastive loss, ranking loss, and
classification loss. Results show that the 3-level
setting outperforms the 2-level baseline, but perfor-
mance drops with 4 levels (73.41 vs. 71.48). This
indicates that overly fine-grained ranking is imprac-
tical: beyond 3 levels it becomes harder to maintain
meaningful gradient differences and obtain high-
quality samples, while relevance boundaries blur,
reducing positive-negative separation.

As noted, the HMCL loss combines three com-
ponents weighted by contribution coefficients. Ab-
lation results in Table 9 show that removing any
component degrades performance, especially the
ranking loss. Overemphasizing any single term
also harms results. Based on these findings, we rec-
ommend specific coefficient values for the standard
mode, which are adopted in all other experiments
in this paper.

5 Conclusion

We propose HMCL, a novel fine-tuning frame-
work that enhances task-specific text representa-
tions. By integrating 3-level semantic differen-
tiation and unifying multiple learning objectives,
HMCL achieves outstanding performance across
diverse benchmarks and various model architec-
tures. It demonstrates significant gains in real-
world applications, such as a merchant consultation,
bridging the gap between general-purpose models
and specialized tasks.

Limitations

HMCL is a task-oriented fine-tuning framework
that achieves strong results across diverse tasks and
base models, but several limitations remain.

First, the presence of influential public bench-
marks in the pretraining data of recent high-
performing base models risks data leakage, making
it difficult to assess the real gain from task-specific
fine-tuning. Moreover, many text representation
tasks lack dedicated training sets, limiting evalu-
ation scope. To address this, we created two new
benchmarks for fairer comparison, but their con-
struction was costly, labor-intensive, and domain-
limited, restricting further expansion.

Second, HMCL relies on a fixed 3-level con-
trastive hierarchy. Experiments with 4-level struc-
tures consistently underperformed—sometimes
even trailing the 2-level baseline—due to the diffi-
culty of defining clear relevance tiers and obtain-
ing reliable supervision beyond three levels. Thus,
three levels appear to be a practical upper bound in
our setting rather than a tunable parameter.

Finally, regarding bias and fairness, our unsuper-
vised data augmentation method recombines exist-
ing samples without adding new subjective opin-
ions, thereby avoiding new bias introduction. How-
ever, if future applications use human- or LLM-
generated weak positives, cultural or semantic bi-
ases may emerge or be amplified. Possible mitiga-
tions include neutral label descriptors, bias-aware
annotation guidelines, diverse annotator pools, sub-
population audits (e.g., FPR/TPR disparities), and
data rebalancing when necessary.
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A Appendix

A.1 Experimental settings

For the experiments in this paper, the training con-
figurations of HMCL are shown in Table A1. The
reported experiments consist of two categories: the
first involves directly training pre-trained models
(e.g., BERT) that are not specifically adapted to
text representation tasks into text representation
models using unsupervised or supervised meth-
ods (Tables 2-3, 7-8); the second involves task-
specific fine-tuning for adaptation tasks based on
pre-trained foundational text representation mod-
els (e.g., SimCSE-Large, BGE, GTE) (Tables 4-
6). The learning rates and batch sizes differ be-
tween these two types of tasks, as detailed in the
tables. All experiments are conducted on A100
GPUs, with the number of GPUs used depending
on the parameter size of the base model and the text
sequence length, ranging from 1 to 6 GPUs (e.g.,
1 A100 for 110M parameter-level models, 2-3 for
300M parameter models, and 4-6 for models with
>1B parameters). Information of HMCL parame-
ters have mentioned in Approach and except for
the ablation study, the standard mode of parameters
are used in all the experiments.

For the experiments in Table 2, we compare the
performance differences between recent prominent
unsupervised text representation training methods
and our proposed approach based on BERTbase. To
ensure a fair comparison, all methods are trained
strictly using their corresponding official open-
source code and default parameter configurations

HMCL Training Settings
Batch size (training from BERT) 96
Batch size (supervise) 32
Learning rate (training from BERT) 3.00E-05
Learning rate (fine-tune) 1.00E-05
GPU NVIDIA

A100 Tensor
Core GPU

Table A1: Training settings of HMCL in experiments.

Unsupervised
training method

Learning
rate

Pooler
type

Official training code

SimCSE 3.00E-05 cls https://github.com/
princeton-nlp/SimCSE

ESimCSE 3.00E-05 cls https://github.com/caskcsg/
sen-
temb/tree/main/ESimCSE

InfoCSE 7.00E-06 cls https://github.com/caskcsg/
sen-
temb/tree/main/InfoCSE

DiffCSE 7.00E-06 cls https://github.com/
voidism/DiffCSE

Table A2: Training Parameters and Source Code of
Common Unsupervised Training Methods for Text Rep-
resentation (Gao et al., 2021; Wu et al., 2022b,a; Chuang
et al., 2022)

from the provided shell scripts. Relevant imple-
mentation details are listed in Table A2. For the
unsupervised experiments training from BERTbase,
we train with all methods for 5 epochs and report
the best results based on the evaluation conducted
at the end of each epoch fairly in a continuous sin-
gle run. For the supervised training in Table 3, we
train the models for 10 epochs.

Table A3 provides detailed statistics for all unsu-
pervised evaluation tasks from STS-12 to SICK-R.
Since these evaluation datasets have many splits,
we calculated the final results using a Spearman’s
correlation based on the unified ranking of all
samples within each task (Reimers and Gurevych,
2019) (rather than averaging the results across dif-
ferent splits).

Task name Number of splits Number of total evalua-
tion pairs

STS-12 5 3108
STS-13 3 1500
STS-14 6 3750
STS-15 5 3000
STS-16 5 1189
SICK-R 5 9927
STS-B 3 8356

Table A3: Statistics for the unsupervised evaluation
tasks (Agirre et al., 2012, 2013, 2014, 2015, 2016; Cer
et al., 2017; Marelli et al., 2014)
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Base model
name

Model in HuggingFace Parameter
counts

Proposed
learning
rate in origi-
nal method

Pooler type Prompt Official training code

SimCSE-
Large

sup-simcse-roberta-large 355M 1.00E-05 cls / https://github.com/princeton-
nlp/SimCSE

gte-large (for English task) 335MGTE-Large
gte-large-zh (for Chinese task) 326M

5.00E-05 cls / /

E5-Large multilingual-e5-large 330M 1.00E-05 last average
pooling

Official
prompt

https://github.com/microsoft/
unilm/tree/master/e5

bge-large-en (for English task) 335MBGE-Large
bge-large-zh (for Chinese task) 326M

1.00E-05 cls
Official
prompt

https://github.com/
FlagOpen/FlagEmbedding

BGE-M3 bge-m3 560M 1.00E-05 cls / https://github.com/
FlagOpen/FlagEmbedding/
tree/master/FlagEmbedding/
BGE_M3

Qwen-GTE-
1.5B

gte-Qwen2-1.5B-instruct 1.78B / last-token
pooling

Official
prompt

/

Qwen-GTE-
7B

gte-Qwen2-7B-instruct 7.61B / last-token
pooling

Official
prompt

/

Table A4: Model specifications, fine-tuning configurations, and official codebases of base models (Gao et al., 2021;
Wang et al., 2022; Li et al., 2023; Xiao et al., 2024; Chen et al., 2024)

Task name Language Test split rows Fine-tuning data rows Source of fine-tuning data
STS-B Test English 1379 13427 Train and Dev dataset of STS-B
SICK-R Test English 4927 4802 Train dataset of SICK-R
CMedQAV-1 Chinese 1000 1000 MedicalRetrieval dataset
CMedQAV-2 Chinese 1000 1000 MedicalRetrieval dataset
FiQA2018 English 1706 14166 Train dataset of FiQA2018
HotpotQA English 14810 50000 Train dataset of HotpotQA
MindSmallReranking English 141876 50000 Train dataset of MindSmallReranking
NFCorpus English 12334 50000 Train dataset of NFCorpus
SciFact English 339 919 Train dataset of SciFact
StackOverflowDupQuestions English 2992 19847 Train dataset of StackOver-

flowDupQuestions
CRAG English 1332 1366 Dev dataset of CRAG-Task1

Table A5: Supervised fine-tuning task training dataset information (Cer et al., 2017; Marelli et al., 2014; Conneau
and Kiela, 2018; Muennighoff et al., 2023; Xiao et al., 2024; Yang et al., 2024)

In the fine-tuning experiments of public datasets,
we conduct experiments using various base models
and obtain the best results within 3 epochs (How-
ever, many public corpus may have been used in
the pre-training of some base models, the best per-
formance is usually achieved in the first epoch of
fine-tuning). Details such as the correspondence
between model names in the article and Hugging
Face models, training parameters, and official code
references appear in Table A4. For base models
with language-specific versions, we employ ded-
icated language models for English and Chinese
tasks respectively (e.g., gte-large-zh for Chinese
and gte-large-en for English). We use the HMCL’s
learning rate of 1e-5 as the default learning rate
because it is the same as the learning rate offi-
cially recommended by most models (For GTE,
the official recommended learning rate for the pre-

training phase is provided, but the parameters for
the fine-tuning phase are missing. Beside, this
recommended learning rate is much higher than
others and does not yield good results). We use the
training method from the fine-tuning stage (usually
the final training phase) as the baseline for com-
parison with HMCL. For models without official
code available, we faithfully reproduce methods
based on original paper descriptions. When us-
ing the corresponding models, the pooler type and
prompt settings of the original base model, the orig-
inal method fine-tuning, and HMCL fine-tuning are
kept entirely consistent, ensuring absolute fairness.

The detailed training data for each fine-tuning
task using public evaluation datasets is provided
in Table A5. For each task, the training dataset
is composed of randomly sampled and processed
data from the task’s train dataset or similar domain
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Task Name Train dataset Test dataset Example (translated in English)
Query Positive Negative Weak-

positive
MerchantQuestions-
S2S

1186 pairs 591 pairs What is the
calculation
methodol-
ogy for total
user assets?

How is the total user assets calcu-
lated?

How is "merchant’s total visiting
user count" defined?

What does
"total user as-
sets" mean?

MerchantDocs-
S2P

5053 rows 7581 rows Will unused
new cus-
tomer red
packets in
live stream-
ing rooms
be auto-
matically
refunded?

# <a name="PHGX2"></a> ##
Pre-Usage Instructions Live
stream red packets are configured
by merchants through the stream-
ing backend (including amount,
quantity, target audience, etc.)
and distributed to viewers as
cash incentives. These red
packets help enhance fan en-
gagement, viewing duration, and
interaction within live streams.
<a name="qK56y"></a> ## Red
Packet Specifications 1. Red
packets become claimable 5
minutes after being pushed to
the live stream room (countdown
starts from packet generation);\2.
Minimum total amount per
distribution: CNY 10. Minimum
individual packet: CNY 0.1.
Maximum single distribution:
CNY 5,000. Daily cap: CNY
50,000;\3. Unclaimed balances
will be refunded through original
payment channels within 24
hours;\4. Phase I red packet
deductions will be drawn from
enterprise ***accounts: (Ac-
counts must support balance
payments. Ensure sufficient
**[account balance]** before
distribution. Note: Fan accounts
(i.e., personal ***accounts)
currently lack balance pay-
ment functionality and cannot
distribute red packets. Verify
account type in advance);\5.
Exercise caution when grant-
ing operational permissions
to prevent financial security
risks from credential misuse.
<a name="wGebw"></a> ##
Primary Administrator Autho-
rization Configurations

Can claimed red packets (orig-
inally termed "cash red pack-
ets") be refunded? # <a
name="kuPqd"></a> # Context
Merchants seek to recall dis-
tributed red packets after dis-
covering operational errors or
other issues post-user claim. #
<a name="yP6tq"></a> # Re-
fund Eligibility Regrettably, re-
funds cannot be processed for
red packet amounts already de-
posited into users’ *** ac-
counts.\If merchants wish to re-
claim such funds, they must
directly negotiate with users
through private channels. # <a
name="dysy1"></a>

/

Table A6: Information Overview and Sample Examples of MerchantQuestions-S2S and MerchantDocs-S2P

13508



datasets. The processing logic is as follows:
1. In the semantic textual similarity task with

a five-point scale, similarity scores of 4 or higher
are considered positive, scores between 2 and 4 are
considered weak-positive, and scores below 2 are
considered negative.

2. In reranking and retrieval tasks, positive and
negative labels are directly mapped to each row.
weak-positive samples are randomly augmented us-
ing unsupervised methods provided by the Unsuper-
vised Sample Supplier (described in Section A.2),
including random shuffling, random deletion, ran-
dom insertion, number replacement, syntax-aware
degradation, and positive-negative mixing.

To ensure efficient fine-tuning experiments, we
use fewer than 50,000 rows of processed data as
the training set for each task. All training methods
(HMCL and the original recommended fine-tuning
methods) use the same training datasets and data
rows. The only difference is that HMCL is a 3-level
contrastive framework, which can utilize weak-
positive data (if available) during training, while
other frameworks cannot. Through ablation exper-
iments in Table 3, we handle similar 2-level con-
trastive frameworks by removing the weak-positive
column but keeping the total number of training
rows unchanged (this approach yields better train-
ing performance than treating weak-positive data
as positive). This ensures a fair comparison.

Besides, we additionally constructed an experi-
ment to evaluate the effectiveness of RAG using the
public CRAG dataset. In this experiment, we first
processed the data from the dev set according to the
original split of the CRAG dataset. The processing
method is as follows:

For the top 5 webpage snapshots associated with
each query, we used an LLM (Qwen-72b) to la-
bel the content and invited human annotators to
re-check whether "the current paragraph contains
content that directly answers the question." Those
labeled as "contains" were treated as positive items,
those labeled as "does not contain" were treated
as weak-positive items, and one randomly selected
webpage snapshot completely unrelated to the cur-
rent query was used as a negative item. If, after
organizing the data according to the above rules,
there were still queries missing positive items (i.e.,
no content directly answering the question), we
randomly selected one paragraph labeled as "does
not contain" to fill the position of the positive item.
If there were missing weak-positive items, we ran-
domly selected one "contains" paragraph and one

"unrelated" paragraph, combining them to serve as
a weak-positive item.

The data organized in the above manner was
used as the training set. We fine-tuned the BGE-
M3 model using different frameworks for evalua-
tion, with all frameworks utilizing the exact same
training data.

The test set data from the original CRAG split
was used as the evaluation set. During the exper-
iment, each round involved loading a text repre-
sentation model as the retriever to retrieve the top
3 most relevant webpage snapshots from the full
set of webpage snapshots for each question. These
retrieved results were then passed to a generative
model (here, we consistently used qwen2.5-72b-
instruct as the generative model) for answer gen-
eration. After generating the answers, they were
evaluated alongside the standard answers provided
by CRAG using a referee model (here, we con-
sistently used bailing-80b as the referee model).
The differences between the generated answers and
the standard answers were scored as follows: a
fully consistent answer received 1 point, a partially
consistent answer received 0.5 points, and an in-
consistent answer received 0 points. Finally, the
scores for all questions were averaged to obtain the
final score.

The prompt used for answer generation in the
RAG task is as follows (completely adopting the of-
ficial prompt from Task 1 of the CRAG evaluation
set):

You are given a Question, References and the
time when it was asked in the Pacific Time Zone
(PT), referred to as "Query Time". The query time
is formatted as "mm/dd/yyyy, hh:mm:ss PT". The
references may or may not help answer the ques-
tion. Your task is to answer the question in as few
words as possible.

Please follow these guidelines when formulating
your answer:

1. If the question contains a false premise or
assumption, answer “invalid question”.

2. If you are uncertain or don’t know the answer,
respond with “I don’t know”.

### Question
{question}
### Query Time
{query_time}
### References
{contexts}
The prompt used for evaluation in the RAG task

is as follows (originally in Chinese in the code,
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translated here):
# Task Description
You are a professional fact consistency evalua-

tion assistant. Please strictly compare the "Refer-
ence Answer" with the "Generated Answer" and
assess the degree of conformity based on the fol-
lowing three levels:

1. **Fully Consistent**: All key facts in the
generated answer are completely consistent with
the reference answer, with no errors or omissions.

2. **Partially Consistent**: The generated an-
swer contains some correct facts but also includes
errors or omits critical information.

3. **Inconsistent**: The generated answer con-
tains critical factual errors or is entirely unrelated
to the reference answer.

# Input Format
"Question": "[Question text]",
"Reference Answer": "[Standard answer text]",
"Generated Answer": "[Text to be evaluated]"
# Output Requirements
1. Include the following fields:
- "Evaluation Level": "Fully Consis-

tent/Partially Consistent/Inconsistent"
- "Reason": "The rationale for selecting the eval-

uation level"
2. Evaluate strictly based on the provided text

content; do not introduce external knowledge.
3. Recognize semantically equivalent expres-

sions (e.g., "50%" and "half" should be considered
consistent).

# Example Input:
"Question": "What is the main transmission

route of the novel coronavirus, and what is its incu-
bation period?",

"Reference Answer": "The novel coronavirus
mainly spreads through droplets, with an incuba-
tion period typically ranging from 1 to 14 days.",

"Generated Answer": "The virus spreads
through the air, and symptoms may appear within
about two weeks after infection."

Output: "Evaluation Level": "Partially Con-
sistent", "Reason": "The generated answer cor-
rectly identifies the incubation period (14 days/two
weeks) but inaccurately describes the transmission
route (’airborne’ vs. ’droplets’ in the reference
answer)."

# Start Evaluation Input:
"Question": {question},
"Reference Answer": {reference},
"Generated Answer": {generated}
Output:

Besides, detailed information about our custom
evaluation datasets will be provided in Section A.4.

A.2 Unsupervised sample supplier
In the HMCL training framework, to extend each
input sample into a three-dimensional space of
positive/weak-positive/negative, we design an un-
supervised sample supplier composed of multiple
generation methods. As described in the main text,
this module can integrate various unsupervised ap-
proaches and randomly selects one during genera-
tion. The implemented methods that used in exper-
iments include:

1. Positive Sample Generation
a. Random Repetition: Repeat words in the input

query N times, where N ∈ [1, 0.3×Len(words)].
Words are randomly selected and duplicated in their
original positions.

b. Random Insertion of Neutral Words: Insert a
semantically neutral word (e.g., "the", "so", "a") or
punctuation into the query.

c. Syntax-aware Paraphrasing: Based on syntax
tree analysis:

- Reposition adverbs (requires ≥ 1 adverb in the
sentence)

- Convert between simple present and present
continuous tenses

- Remove copula verbs (if present)
If no conditions are met, apply random repeti-

tion.
2. Weak-Positive Sample Generation
a. Random Shuffling: Fully randomize word

order or swap word pairs 7 times.
b. Random Deletion: Delete N ∈ [1, 4] words

(activated only if Len(words) > 8).
c. Random Insertion: Insert N ∈ [2, 5] [MASK]

or [UNK] tokens.
d. Number Replacement: Replace numbers with

random alternatives if present.
e. Syntax-aware Degradation: Based on syntax

tree analysis:
- Swap adjectives/adverbs or replace with

[MASK] (requires multiple adjectives/adverbs)
- Insert random adverbial phrases
- Convert between present and past tenses
f. Positive-Negative Mixing: Concatenate the

positive and negative samples of this query to create
hybrid weak-positives.

3. Negative Sample Generation: Randomly
select samples from other instances as negatives.

The composition of the supplier is highly flexi-
ble. In our attempts, slightly changing the param-
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eters of those methods does not show significant
impact on the overall results if the positive/weak-
positive/negative similarity gradient is still main-
tained.

The pseudocode for the HMCL training frame-
work and the pseudocode for the above simple un-
supervised sample supplier are presented in Algo-
rithm 1 and Algorithm 2, respectively.

In practice, users can further adapt the supplier
to specific tasks: adding new methods into this
supplier, even integrating real-time LLM-generated
samples during training.

A.3 Defination and examples of weak-positive
The core of the proposed HMCL framework in this
paper is the design of a weak-positive anchor to
define an "intermediate state" of reduced similarity.
In tasks involving such intermediate states (e.g.,
five-level scoring in similarity evaluation tasks, or
in RAG scenarios where retrieved segments can
fully answer the question, partially help infer the
answer, or be completely irrelevant), this allows
the model to effectively learn from examples of
similarity, partial similarity, and complete dissim-
ilarity, better capturing the characteristics of the
target task in few-shot settings. Additionally, this
anchor transforms the contrast between positive
and negative samples from a 2-level to a 3-level
scale, further differentiating them.

Therefore, in general, a weak-positive refers to
content that is not directly related to the core part
of the query or the specific details of its main topic.
While it does not directly answer the query, it can
still provide some inspiration or indirect help. In
terms of ranking within the same group of sam-
ples, its relevance is significantly weaker than that
of positive samples but stronger than all negative
samples.

When constructing our custom dataset, we used
to ask annotators to label weak-positive samples.
The questionnaire provided to them is already in-
cluded in Appendix A.3.

However, the specific definition of weak-positive
may vary depending on the application scenario.
Below are a few examples to illustrate this in detail:

(1) Retrieval of relevant knowledge titles for
RAG-based generation (MerchantQuestions-S2S):

Query: What is the calculation methodology for
total user assets?

Positive: How is the total user assets calculated?
Weak-positive: What does "total user assets"

mean?

Here, the positive title is almost a perfect syn-
onym for the query, and the knowledge under this
title should directly answer the query. On the other
hand, the weak-positive title does not address the
user’s core concern about how to calculate total
user assets. From this perspective, the two are un-
related. However, this weak-positive title means
that the knowledge would give a definition of "total
user assets". When the RAG generation module re-
ceives this knowledge, it might infer the calculation
method of total user assets based on its definition
and common sense. Therefore, while the weak-
positive is not entirely relevant to the query, it has
significant potential to contribute to answering the
question.

By learning such examples, the model under-
stands that when no perfectly matching positive
sample exists, it should select knowledge like the
weak-positive example above from a pool of less
relevant candidates to increase the likelihood of
generating correct results.

(2) Passage retrieval (FiQA2018):
Query: How to deposit a cheque issued to an

associate in my business into my business account?
Positive: Have the check reissued to the proper

payee.
Weak-positive: I might have an answer! I imag-

ine they’re capitalizing on people’s laziness. I live
in the Bay Area where some people probably don’t
mind paying $35 to not have to walk 100 feet to
the office and drop off a check...(too long, omit-
ted) Just have the associate sign the back and then
deposit it. It’s called a third party cheque and is
perfectly legal...(too long, omitted)

Here, the weak-positive one is a random mix of
a positive sample and a negative sample from the
dataset, which also aligns with real-world scenarios
of "weak-positive". Compared to the positive sam-
ple, which directly answers the query, this weak-
positive contains some useful information (e.g.,
having the associate sign the back of the check),
but it is buried within a large amount of irrelevant
content (e.g., complaints about laziness in the Bay
Area). As a result, the content and theme are not
clearly focused.

In a retrieval system, it is obviously best to prior-
itize showing users the direct answer like positive
one. However, if no optimal positive sample ex-
ists, displaying a partially relevant weak-positive is
still acceptable because users can extract the use-
ful information themselves by reading through the
content.
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Besides, in Table 8, we evaluate a 4-level con-
trastive setup by adding a weak-negative tier and
assessing the effect. Here, a weak-negative is a
sample whose relevance to the query is higher than
a true negative but lower than a weak-positive. This
is the basic definition of weak-negative, and in dif-
ferent tasks, weak-negative may have different spe-
cific connotations and manifestations, in order to
meet the above conditions.

However, it is very difficult to define the over-
fine level in most practical tasks, so we run the
study for the 4-level contrastive setup only on
STS benchmarks, which provide high-quality ex-
pert semantic similarity labels on a 0–5 scale. We
operationalize the four levels as follows: 0–1 as
negatives, 1–2 as weak-negatives, 2–4 as weak-
positives, and 4–5 as positives. Therefore, we
find that under the STS labeling standards, the
detailed definitions for those 4 levels are as fol-
lows: Positives are pairs that differ only in tense
or voice; weak-positives exhibit minor changes in
modifiers (e.g., adjectives, adverbs, personal pro-
nouns) that leave the core action or event intact;
weak-negatives alter the core predicate and/or ob-
ject enough to substantially change the main mean-
ing while retaining similar sentence structure, back-
ground and scene; and negatives are pairs that are
essentially unrelated. An example for the weak-
negative in Table 8 experiment is as follows:

Query: a man is playing a guitar.
Positive: the man is playing the guitar.
Weak-positive: the girl is playing the guitar.
Weak-negative: A man is playing a trumpet.
Negative: A woman is riding a horse.
Nevertheless, although the STS task provides rig-

orous labels and this gradient difference of seman-
tic similarity seems to be understandable, Table 8
shows that the effect of the 4-level contrastive learn-
ing is still significantly deteriorated. This indicates
that the 4-level training framework is very fragile in
application. It is not only difficult to synthesize and
generate confident training data, but also difficult
to achieve ideal results through training.

A.4 Self-made benchmarks
To prevent public evaluation sets, which have been
extensively used in recent years for foundation
model training, from leading to insignificant bene-
fits of continued task-specific fine-tuning and fail-
ing to effectively differentiate our method from
other fine-tuning approaches, we collect consulta-
tion data from an intelligent assistant to construct

new S2S and S2P benchmarks. The data relates
to the retrieval and recall process of the merchant
consultation and Q&A system. The recalled docu-
ment snippets are all publicly available on external
web pages. The consultation questions have been
manually anonymized, and the use of this data has
been approved by our security review. The original
evaluation set is in Chinese. To better illustrate
the composition of the benchmarks, we include
two examples from each benchmark in Table A6,
presented with English literal translations.

In MerchantQuestions-S2S, all samples consist
of single sentences:

The query is a user’s question. The positive sam-
ple corresponding to the input query is a knowledge
base title directly related to the query. The nega-
tive sample is an irrelevant knowledge base title.
The weak-positive sample is a knowledge base title
that is partially related or potentially helpful for
addressing the query.

In MerchantQuestions-S2P, each sample com-
prises:

A query (user’s question), A positive sample (a
document segment relevant to the user’s question),
A negative sample (a document segment largely ir-
relevant or incapable of answering the user’s ques-
tion). As observed, both positive and negative sam-
ples are paragraphs segmented from formatted web
documents, containing numerous formatting sym-
bols and redundant information. This constitutes
the primary challenge in comprehension, encoding,
and the key objective of fine-tuning.

The labels for this dataset were manually anno-
tated by our institution’s employees (These indi-
viduals have a preliminary understanding of the
knowledge related to responding to those merchant
inquiries). During annotation:

Annotators were asked to answer the question
"Please evaluate the relateness degree between
the query and items in the recall list" and label
each title accordingly For the S2S task, they were
presented with a user’s question and 10 search-
retrieved titles, they have choices including: Rele-
vant (2 points, positive), Not directly relevant but
potentially helpful (1 point, weak-positive), Irrele-
vant (0 points, negative). For S2P, annotators were
presented with a user’s question and 10 search-
retrieved paragraphs. They classified each para-
graph as: Containing information that answers the
question (positive) or unable to answer the question
(negative). We collected these annotated data, ran-
domly sampled instances, and processed them into
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Training Method STS12 STS13 STS14 STS15 STS16 SICK-R STS-B Average
10 thousand training sentences
SimCSE 63.04 75.19 64.97 74.63 75.48 66.68 68.01 69.71
DiffCSE 61.92 72.90 63.95 76.89 72.98 70.48 69.99 69.87
ESimCSE 62.70 72.06 63.39 73.11 72.88 69.21 68.34 68.81
InfoCSE 61.58 72.84 63.72 76.66 72.79 69.66 70.30 69.65
HMCL 62.97 76.63 67.35 77.79 74.15 69.44 72.20 71.51
30 thousand training sentences
SimCSE 61.46 73.91 65.89 75.03 76.93 67.41 69.00 69.95
DiffCSE 63.55 75.54 66.62 78.00 75.39 69.66 70.57 71.33
ESimCSE 62.87 76.38 66.47 77.86 74.91 69.22 69.47 71.03
InfoCSE 64.44 75.65 66.90 78.32 75.80 70.02 70.99 71.73
HMCL 63.38 77.69 68.62 78.92 75.19 68.81 72.89 72.21
50 thousand training sentences
SimCSE 59.50 71.50 64.71 73.84 75.25 66.42 66.71 68.28
DiffCSE 63.69 75.63 67.06 78.24 75.67 70.38 70.76 71.63
ESimCSE 66.58 76.86 69.75 78.10 76.40 67.48 71.25 72.35
InfoCSE 64.43 75.85 67.47 78.15 75.36 71.06 70.69 71.86
HMCL 62.81 78.47 70.27 79.30 75.21 69.65 74.37 72.87

Table A7: Details of comparison of the effectiveness of unsupervised training methods for text representation based
on BERTbase.

Classification Clustering Pair Classification Reranking Retrieval STS Summarization Average
8 Tasks 8 Tasks 3 Tasks 2 Tasks 10 Tasks 9 Tasks 1 Tasks 41 Tasks

Qwen-GTE-7B 88.52 58.97 67.89 68.45 61.77 82.85 77.42 70.72
Qwen-GTE-7B-HMCL 88.19 59.00 68.04 68.30 61.93 83.33 78.10 70.79

Table A8. Overall performance of Qwen-GTE-7B fine-tuned with HMCL on a small mixed training set (FIQA2018,
STS-B, SICK-R) across the MTEB benchmark (https://huggingface.co/spaces/mteb/leaderboard, 41 tasks when
selecting English).

a standardized dataset compliant with the MTEB
format. The anonymized version of the dataset
is available at https://github.com/antgroup/hmcl-
merchant-question.

A.5 Details of experiment results

Table 2 presents the detailed results of the unsuper-
vised experiments for each task, which are listed
in Table A7. As can be seen, although our HMCL
framework is not specifically designed for unsu-
pervised training from scratch (it is more suitable
for supervised fine-tuning), it achieves overall op-
timal performance in few-shot training compared
to recent prominent unsupervised frameworks. Ad-
ditionally, its unsupervised mode is particularly
well-suited for the evaluation sets of STS13-15 and
STS-B, where it consistently outperforms other
methods.

The HMCL framework introduced in this paper
is designed for targeted fine-tuning to enhance spe-
cific tasks. Therefore, in other experiments, we
mainly focus on comparing how different training
frameworks improve performance on correspond-

ing tasks after fine-tuning a base model using task-
specific training sets. Generally, this approach in-
volves creating one fine-tuned model per training
set, targeting one specific evaluation task. How-
ever, the generalizability of the fine-tuned model
then becomes a concern. To assess this, we com-
bined the FIQA2018, STS-B, and SICK-R train-
ing sets mentioned in Table A5 to fine-tune Qwen-
GTE-7B and evaluated its overall performance on
the MTEB benchmark. This was done to observe
the impact of few-shot fine-tuning on the degrada-
tion of general capabilities. The results, shown in
Table A8, indicate that compared to the original
pre-fine-tuned model, there were slight improve-
ments in STS, Summarization, Retrieval, Cluster-
ing, and Pair Classification, while Classification
and Reranking saw minor decreases. The final
Task-level average score rose slightly from 70.72
to 70.79, remaining essentially stable. This demon-
strates that under controlled training sample sizes,
the HMCL framework enables models to quickly
learn specialized tasks without significantly de-
grading their general capabilities. The fine-tuned
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Similar Pair Level STS12 STS13 STS14 STS15 STS16 STS-B Average
Positive/Negative 64.08 74.84 68.59 75.84 76.54 70.80 71.78
Positive/Weak-Positive/Negative 62.81 78.47 70.27 79.30 75.21 74.37 73.41
Positive/Weak-Positive/Weak-Negative/Negative 62.67 73.68 67.70 76.67 74.74 73.45 71.48

Table A9: Details of the ablation studies of using 2-level pair samples, 3-level pair samples, and 4-level pair sample
in HMCL framework.

model shows enhanced performance on specific
tasks while maintaining reasonable performance in
general scenarios, with minimal degradation.

We recommend that if our application scenarios
can be clearly divided into distinct domains (e.g.,
mathematics, coding, news, etc., or applications
with varying similarity/dissimilarity criteria), it is
still advisable to use separate models fine-tuned
on specialized datasets for each domain. These
models can then be organized using a classification-
based architecture or a Mixture-of-Experts (MoE)
framework to better address problems across dif-
ferent fields. However, if the primary application
goal is singular, we can focus on strengthening
that specific direction while relying on the model’s
retained general capabilities to handle occasional
issues from other domains.

The detailed results of the ablation experiments
in Table 7 for each task are presented in Table A9.
Clearly, under the HMCL training framework, us-
ing three contrastive groups not only achieves over-
all optimal performance but also yields the best
results in most tasks. With fewer than three groups,
the full potential is not fully realized. Conversely,
with more than three groups, the finer segmenta-
tion of samples makes it difficult to maintain the
hierarchical differences in similarity during sample
construction (for example, it cannot be guaranteed
that weak-positives are always better than weak
negatives, or that weak negatives are always less
similar than negatives). This leads to a significant
drop in performance. Therefore, in the domain
of text contrastive learning, excessively increasing
the number of contrastive groups does not meet
expectations.

A.6 Other approaches tried

In addition to the standard HMCL framework re-
ported above, we also explore other approaches
during the experimental phase. For example, we at-
tempt to incorporate a momentum method similar
to ESimCSE and the ANN-style sampling strat-
egy to enhance the richness and effectiveness of
negative samples in HMCL. However, the overall

performance improvement is not very significant
compared to the increased training cost. There-
fore, we decide not to include this method in our
standard approach. Nevertheless, in scenarios with
high requirements, this method can be used in tasks
such as retrieval to optimize the final results.

As mentioned in Appendix A.2, using LLMs
into the unsupervised sample supplier to comple-
ment the training data is feasible. However, due to
the substantial increase in training time and cost
when incorporating LLMs, we also exclude this
LLM-generating module from our standard mode
of HMCL. All experiments reported in this pa-
per (to ensure fairness) do not use this sample
augmentation method.

At last, the language polishing of this article was
completed with the help of AI assistants, including
Qwen-max, GPT-5, Gemini-2.5 and DeepSeek.
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Algorithm 1 Training with HMCL framework

Require: Dataset D = {qi, pi, wi, ni}Ni=1; encoder fθ; batch size B; the HMCL loss L(·)
1: Define a cosine similarity function s(q, a) between representations
2: for epoch = 1, . . . , T do
3: for each batch B = {q(b)}Bb=1 from D do
4: for b = 1 to B do
5: if q(b) has labeled positive plabel then
6: p(b) ← plabel
7: else
8: p(b) ← GENERATEPOSITIVE(q(b)) ▷ fallback to unsupervised
9: if q(b) has labeled weak positive wlabel then

10: w(b) ← wlabel
11: else
12: w(b) ← GENERATEWEAKPOSITIVE(q(b), p(b)) ▷ fallback to unsupervised
13: if q(b) has hard-negative nlabel then
14: n(b) ← nlabel
15: else
16: n(b) ← None ▷ explicitly mark missing
17: Compute representations for all items once:
18: {q_e(b) ← fθ(q

(b)), p_e(b) ← fθ(p
(b)), w_e(b) ← fθ(w

(b))}Bb=1

19: if any n(b) is not None then
20: {n_e(b) ← fθ(n

(b)) | n(b) ̸= None}
21: L ← 0
22: for b = 1 to B do
23: s_p(b) ← s

(
q_e(b), p_e(b)

)

24: s_w(b) ← s
(
q_e(b), w_e(b)

)

25: S_n(b) ←
{
s(q_e(b), p_e(j)), s(q_e(b), w_e(j)), s(q_e(b), q_e(j)), s(p_e(b), p_e(j)) |

j ̸= b
}

26: if q(b) has hard-negative then
27: S_n(b) ← S_n(b) ∪

{
s(q_e(b), n_e(b))

}
▷ See Equation (14) for full loss definition

28: L(b) ← L
(
s_p(b), s_w(b), S_n(b)

)

29: L ← L+ L(b)
30: L ← L/B; update θ ← θ − η∇θL
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Algorithm 2 Unsupervised Sample Supplier

1: function GENERATEPOSITIVE(x)
2: L← length(x)
3: m← sample_uniform({rep, ins, syn})
4: Tneutral ← {“the”, “so”, “thus”, “too”, “there”, “a”, “an”, “...”, “,”} ▷ predefined neutral tokens
5: if m = rep then
6: N ← rand_int(1, ⌊0.3L⌋)
7: P ← sample_positions(L,N)
8: for all i ∈ sort_asc(P ) do
9: duplicate_inplace(x, i)

10: else if m = ins then
11: t← sample_uniform(Tneutral)
12: i← rand_int(0, L)
13: insert(x, i, t)
14: else
15: T ← parse_syntax(x)
16: if has_adverb(T ) then
17: reposition_adverb(x, T )
18: else if tense(x) = PresSimple then
19: to_pres_cont(x)
20: else if tense(x) = PresCont then
21: to_pres_simple(x)
22: else if has_copula(T ) then
23: remove_copula(x, T )
24: else
25: x← RANDOMREPETITION(x)

26: return x

27: function GENERATEWEAKPOSITIVEDEGRADE(x)
28: T ← parse_syntax(x) ▷ parse syntactic tree
29: ops←

[
INSERTADVERBIALPHRASE(x), SIMPLIFYVERBTENSE(x)

]

30: if count_adj_adv(T ) ≥ 2 then
31: Add SWAPADJADVORMASK(x) to ops
32: N ← rand_int(1, |ops|)
33: selected← random_subset(ops, N)
34: for each op in selected do
35: EXECUTE(op)

36: return x

37: function GENERATEWEAKPOSITIVEMIXED(p, n)
38: w ← concat(p, n) ▷ hybrid: correct + incorrect content
39: return w

40: function RANDOMREPETITION(x)
41: L← length(x)
42: if L < 2 then
43: return x

44: N ← rand_int(1, ⌊0.3L⌋)
45: P ← sample_positions(L,N)
46: for all i ∈ sort_asc(P ) do
47: duplicate_inplace(x, i)
48: return x
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Algorithm 2 Unsupervised Sample Supplier (continued)

1: function GENERATEWEAKPOSITIVE(x, p)
2: L← length(x)
3: w ← x ▷ initialize weak positive as input
4: m← sample_uniform({delete, insert, number, degrade, mix, shuffle})
5: if m = delete then
6: if L > 8 then
7: N ← rand_int(1, 4)
8: w ← delete_random(w,N)
9: else

10: m← shuffle

11: else if m = insert then
12: N ← rand_int(2, 5)
13: for t = 1 to N do
14: pos← rand_int(0, length(w))
15: tok ← sample_uniform({[MASK], [UNK]})
16: insert(w, pos, tok)

17: else if m = number then
18: if has_number(x) then
19: w ← replace_numbers(w)
20: else
21: m← shuffle

22: else if m = degrade then
23: w ← GENERATEWEAKPOSITIVEDEGRADE(()w)
24: else if m = mix then
25: n− ← sample_uniform(D \ {x})
26: w ← GENERATEWEAKPOSITIVEMIXED(()p, n−)

27: if m = shuffle then
28: if bernoulli(0.5) then
29: w ← shuffle(w)
30: else
31: for t = 1 to 7 do
32: i← rand_int(1, length(w))
33: j ← rand_int(1, length(w))
34: swap(w, i, j)

35: return w

36: function SIMPLIFYVERBTENSE(x)
37: T ← parse_syntax(x)
38: if has_prog_form(T ) then ▷ e.g., is eating → ate
39: to_past_simple(x, T )
40: else if tense(x) = PresSimple then ▷ eats → ate
41: to_past_simple(x)
42: else if tense(x) = PastSimple then ▷ ate → eats / was → is
43: to_pres_simple(x)

44: return x
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Algorithm 2 Unsupervised Sample Supplier (continued)

1: function SWAPADJADVORMASK(x)
2: T ← parse_syntax(x)
3: if count_adj_adv(T ) ≥ 2 then
4: swap_random_adj_adv(x, T )
5: else if has_adj_adv(T ) ∧ bernoulli(0.5) then
6: replace_with_mask(x, T )

7: return x

8: function INSERTADVERBIALPHRASE(x)
9: L← length(x)

10: if L < 2 then
11: return x

12: i← rand_int(0, L)
13: P ← {on, at, in, to, inside, into, for, outside,which, that,where, from}
14: A ← {an, a, the, some, any}
15: M← {[MASK], [UNK]}
16: prep← sample_uniform(P)
17: art← bernoulli(0.8) ? sample_uniform(A) : ϵ
18: mask_count← rand_int(1, 4)
19: phrase← [prep]
20: if art ̸= ϵ then
21: Append art to phrase
22: for k = 1 to mask_count do
23: Append sample_uniform(M) to phrase
24: insert_at(x, i, phrase)
25: return x
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