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Abstract

This study explores how bilingual language
models develop complex internal representa-
tions. We employ sparse autoencoders to an-
alyze internal representations of bilingual lan-
guage models with a focus on the effects of
training steps, layers, and model sizes. Our
analysis shows that language models first learn
languages separately, and then gradually form
bilingual alignments, particularly in the mid
layers. We also found that this bilingual ten-
dency is stronger in larger models. Building
on these findings, we demonstrate the critical
role of bilingual representations in model per-
formance by employing a novel method that
integrates decomposed representations from a
fully trained model into a mid-training model.
Our results provide insights into how language
models acquire bilingual capabilities'.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable multilingual capabilities (Ope-
nAl et al., 2024; Dubey et al., 2024; Team et al.,
2025). However, it is not yet clear how such ca-
pabilities emerge during pre-training. Specifically,
do LLMs initially learn each language separately
before aligning them? Is cross-lingual alignment
distributed across layers or concentrated in spe-
cific components? How does model size affect this
alignment process? These are not just theoretical
questions; they directly impact our understanding
of model scalability and the emergence of general-
ization abilities (Wei et al., 2022).

To address these questions, in this study,
we explore the internal mechanisms through
which LLMs develop their internal representations;
namely, we trace when, where, and how bilingual
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Figure 1: Illustration of the experimental setup (top)
and the key findings (bottom). In the top panel, SAEs
are trained independently on language models at each
training stage, layer, and model size. The bottom panel
visualizes the evolution of bilingual alignment, derived
from comparisons of the features learned by each SAE.

alignment (English-Japanese) emerges during pre-
training. For this purpose, we use sparse autoen-
coders (SAEs; Bricken et al., 2023; Huben et al.,
2024) as a tool for our analysis, which enable us
to extract interpretable latent features from hid-
den representations. Unlike previous approaches
(Bricken et al., 2023; Huben et al., 2024; Balcells
et al., 2024; Wang et al., 2025), our method cap-
tures fine-grained distinctions between language-
specific and bilingual features, as well as semantic
features, and allows analysis of their emergence
across training stages and model layers.

We conduct experiments on decoder-only mod-
els with a variety of sizes, pretrained on an English-
Japanese bilingual corpus. Our observations high-
light three key findings, as illustrated in Figure 1.

* LLMs initially learn languages independently,
and gradually develop bilingual alignment
over training (Section 4.1).

* Bilingual alignments are more prominently
captured in the mid-layers of the model (Sec-
tion 4.2).

* Larger models exhibit stronger bilingual align-
ment than smaller ones (Section 4.3).
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Beyond these observations, we introduce an
SAE-based method to identify which types of repre-
sentations are most essential to the model. We first
decompose the representations of a fully trained
model into three distinct types: English-specific,
Japanese-specific, and bilingual. These compo-
nents are then selectively injected into the model at
a mid-training stage, allowing us to evaluate their
importance by analyzing the resulting changes in
the model’s behavior.

Our results demonstrate that bilingual representa-
tions from a fully trained model enhance the perfor-
mance of a mid-training model (Section 5). Beyond
simply using SAEs to interpret language models,
we harnessed them to directly manipulate internal
representations, demonstrating their versatility as
tools for both analysis and intervention. We be-
lieve that our approach can be further extended to
investigate beyond bilinguality in language models,
providing valuable insights to the broader research
community.

2 Sparse Autoencoders

A sparse autoencoder (SAE) is an autoencoder
that enforces a sparsity constraint on its hidden
layer. In this study, we adopt a variant called
TopK-SAE (Makhzani and Frey, 2014), where the
TopK activation function is applied at the hidden
layer. Compared to a ReLLU-based SAE (Bricken
et al., 2023; Huben et al., 2024), TopK-SAE has
been shown to be easier to train while maintain-
ing sparsity and achieving higher reconstruction
performance (Gao et al., 2025).

Let 2 € R? be the input vector of an SAE and n
be the dimension of its hidden layer. The encoder
E and decoder D are defined as follows:

E(x) = TOpK(Wenc(x - bpre))u (D
i = D(E(x)) = Wi E(@) + bpres (2)

where Wepe € R"*% and Wye. € R™ are learned
linear layers, and bp,re € R¢ is a learnable bias pa-
rameter. Wy, is initialized as the transpose of
Wene, and by is initialized to the geometric me-
dian of the input data.

The training objective is the following mean
squared error (MSE) loss:

L=|z— 2|3 3)

In this study, we control TopK-SAE by two hy-
perparameters: n, the dimension of the hidden

layer, and K, the number of hidden dimensions
to keep active. Interpreting Wye. as n distinct vec-
tors in R%, TopK-SAE can be seen as selecting K
vectors from n and using their weighted sum to
reconstruct the input. In this study, we denote each
dimension of the encoder output E(x) € R™ as a
feature. We say the feature is activated when it is
selected during the TopK operation (i.e., utilized in
reconstruction).

3 Experiments

In this section, we describe our experimental setup
for analyzing the internal representations of bilin-
gual language models using SAEs. We detail the
language models, datasets, and SAE training proce-
dure (Section 3.1); the procedure to find activation
patterns of individual features (Section 3.2), and
the evaluation of language and concept selectivity
of individual features (Sections 3.3 and 3.4).

3.1 Experimental Setup

Language Models We used the models in the
LLM-jp family (150M, 440M, 980M, 1.8B, 3.7B)
as our focus for analysis (Aizawa et al., 2024).
These models were trained on the LLM-jp Corpus
v32, which contains 1.7T tokens: 950B in English,
592B in Japanese, 114B in code, 0.8B in Korean,
and 0.3B in Chinese. We chose the LLM-jp fam-
ily because (i) its intermediate checkpoints are (or
available upon request) publicly available, (ii) it
offers a range of model sizes, and (iii) it demon-
strates bilingual capabilities in both English and
Japanese. We analyzed all of the layers of each
language model. For additional details about the
models, please refer to the original repository>.

Datasets We train SAEs with the Japanese and
English Wikipedia subsets in the LLM-jp Corpus
v3. For each document, we extract the first 64
tokens as the input to the language model, dis-
card the [BOS] token representation, and apply L2
normalization to the remaining 63 representations
(€ R%3%4)_ which serve as inputs to the SAE. We
use 100M tokens (S0M in Japanese and SOM in En-
glish) for training, and 10M tokens (5SM in Japanese
and 5M in English) for evaluation.

TopK-SAE We use TopK-SAE and set the spar-

sity parameter K = 32 and the hidden layer’s di-

mension n = 32, 768 for all our experiments. The
2https://gitlab.llm—jp.nii.ac.jp/datasets/

11m-jp-corpus-v3
Shttps://huggingface.co/1lm-jp/11m-jp-3-3.7b
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batch size is fixed at 32,768, with a warm-up phase
of 500 steps. We perform a grid search to opti-
mize the learning rate (Appendix A.1). Training
a single SAE takes approximately 10 minutes to
1.5 hours on a single A100 40GB GPU. This vari-
ation is primarily due to the size of the Language
Model (LM), as we simultaneously obtain interme-
diate activations through an LM while training an
SAE. Our implementation leverages the activation
buffer to temporarily store a batch of LM activa-
tions, which are then used for SAE training (Nanda,
2023; Samuel et al., 2024). The number of stored
activations is adjusted according to the model size
(see Appendix A.2 for details).

3.2 Finding Activation Patterns

We collect tokens that strongly activate each fea-
ture. Specifically, we first determine the maximum
activation value of each feature. The threshold is
then set at 70% of this maximum value, and all
tokens that exceed this threshold are collected from
the evaluation set.

Next, we define token attribution distribution for
feature 7, denoted f(v|i) for 1 < i < n, as the prob-
ability that an activation of feature ¢ was caused by
token v. This is defined by the count of v activating
feature ¢ divided by the total number of feature ¢
being activated, satisfying ) i, f(v|i) = 1

We also assess the language distribution condi-
tioned on the activation of each feature 7. Specif-
ically, we define p(en|i) and p(ja|i) as the proba-
bilities that the input of the LM was in English or
Japanese, respectively, given that the feature was
activated, satisfying p(en|i) + p(jali) = 1.

3.3 Language Selectivity Metrics

We classify each feature into three categories —
English Feature, Japanese Feature, and Mixed Fea-
ture — based on the calculated language probabil-
ity p(en|?) and p(ja|é). The i-th feature is classified
as an English Feature if p(en|i) > 0.9, a Japanese
Feature if p(jali) > 0.9, and a Mixed Feature if nei-
ther condition is met. This classification reflects the
dominant language context in which each feature
is most strongly activated.

3.4 Concept Selectivity Metrics

To quantitatively evaluate the semantic alignment
of feature-activating tokens (i.e., tokens that acti-
vate a certain feature) over languages, we use three
metrics: Token Entropy, Semantic Entropy, and
Monosemanticity.

fld

peali) =09

1) Clustering:

“dog” and “cat” are grouped into cluster c;

0.5

2) Calculate entropy:
Hioken (i) = =X f(v]i) log f(v]i) = 0.41
v € {dog, cat, hat}

Hsemantic () = =X p(ck|i) logp(ci|d) = 0.14
ke (12}

3) Calculate monosemanticity:

Rimono () = 1 = Hsemantic(1)/Htoken (i) = 0.66

dog cat hat

Figure 2: The procedure for calculating Monoseman-
ticity (Rmono (%)) from Token Entropy (Hioken (7)) and
Semantic Entropy (Hsemantic(¢)) for the i-th feature.

Token Entropy Token Entropy measures the di-
versity of tokens that activate a given feature. For
the ¢-th feature, it is calculated as:

Hioken(i) = = Y f(v]i)log f(v]i)  (4)

veV

A high Token Entropy Hioken (7) value indicates that
a wide variety of tokens can activate the feature,
while a low value suggests that only a limited set
of tokens do so.

Semantic Entropy Semantic Entropy quantifies
the diversity of semantic meanings among the to-
kens that activate each feature. Calculating Se-
mantic Entropy consists of three steps: embedding
tokens, clustering based on cosine similarity, and
computing the entropy of the resulting clusters.

1. Token Embedding: Token embeddings of
feature-activating tokens, or tokens that ac-
tivated feature ¢ at least once, are extracted
from the embedding layer of the 3.7B model.

2. Semantic Clustering: Using the extracted
embeddings, tokens with a cosine similarity
above a predefined threshold are grouped into
the same semantic cluster®.

3. Entropy Calculation: Similar to Token En-
tropy, we compute the entropy over these se-
mantic clusters using the formula:

Hsemantic(i) = - Z p(C’i) 10gp(01i) (5)

ceCy

where Cj is the set of semantic clusters for
the i-th feature, and p(c|é) is the probability
that an activation of feature ¢ was caused by a
token belonging to cluster c.

*We set the cosine similarity threshold at 0.1 because it

effectively balances capturing semantically related tokens and
avoiding over-clustering of unrelated tokens.
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Figure 3: (a) Language Distribution and (b) Semantic Distribution of SAE’s features at the 14th layer of the 3.7B
model across training stages. During early training (< 4 x 10® tokens), the model exhibits a high proportion of mixed
language features and low monosemanticity, indicating that features are activated by tokens from both languages
without clear semantic coherence. As training continues (4 x 10% — 4 x 10 tokens), the mixed language proportion
decreases while monosemanticity increases, reflecting more language-specific and semantically coherent features.
In the late training stage (> 4 x 10° tokens), the mixed-language proportion rises again, but high monosemanticity
is maintained, suggesting the emergence of bilingual semantic representations.

A high value of Hgemanic(7) indicates that the
activating tokens are semantically diverse, while
a low value suggests they are semantically consis-
tent. For example, in Figure 2, “dog” and ““cat” are
grouped into the same cluster, resulting in a rela-
tively low semantic entropy of Hsemantic = 0.14.
This entropy effectively captures the degree of se-
mantic diversity in token activation patterns.

This quantification is based on the approach pro-
posed by Farquhar et al. (2024). While they used
semantic entropy to assess the semantic diversity
among sentences and leveraged LLMs to cluster
these sentences, our method applies semantic en-
tropy to measure semantic diversity among tokens.

Monosemanticity Monosemanticity provides a
normalized measure that quantifies the relationship
between the semantic diversity and token diversity.
It is defined as the complement of the ratio of se-
mantic entropy to token entropy:

H semantic (Z )
H, token (Z)

This ratio ranges between 0 and 1: A value close
to 1 suggests that although the feature is activated
by a wide variety of tokens (high Token Entropy),
these tokens are semantically similar (low Semantic
Entropy). A value close to 0 indicates that the acti-
vating tokens are both diverse in form and meaning
(high token entropy and high semantic entropy) or
they are both consistent in form and meaning (low
token entropy and low semantic entropy). In the

Rmono(i) =1- (6)

special case where Hioen(7) = O (i.e., only one to-
ken activates the feature), we define Riyono(7) = 1.

4 Observations

We first examine the internal representations of
the model by analyzing the distribution of each
SAE’s features trained on various checkpoints (Sec-
tion 4.1), layers (Section 4.2), and model sizes
(Section 4.3).

4.1 LLMs first learn languages independently
before aligning them bilingually

Figure 3 presents the evolution of language and se-
mantic distributions for SAE’s features at the 14th
layer of the 3.7B model across different training
stages. In the early training phase (< 4 x 108
tokens), most features are categorized as mixed
features and exhibit low monosemanticity. This
indicates that individual features are activated by
tokens from both Japanese and English without any
consistent semantic pattern, effectively behaving
as random activation patterns. This observation
is consistent with the activation patterns shown in
Figure 4(a), where activated tokens lack any clear
semantic or linguistic coherence.

As training progresses into the middle phase
(4 x 108 — 4 x 10? tokens), the proportion of mixed
language features sharply declines, while monose-
manticity markedly increases. This shift suggests
that features become more language-specific, acti-
vating on tokens within a single language that share
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Figure 4: Activation patterns of features at the 14th layer
of the 3.7B model across training stages. (a) In the early
training stage (4 x 10 tokens), features are activated
by random tokens without any clear semantic structure.
(b) In the mid-training stage (4 x 10° tokens), features
become more language-specific, with tokens activating
on semantically similar words in a single language. (c)
In the fully trained model (2 x 10'? tokens), features
exhibit bilingual activation, with semantically related
tokens appearing in both Japanese and English.

coherent semantic meanings. For instance, Fig-
ure 4(b) illustrates two representative examples: the
first feature is activated by English tokens “give,”
“gave,” and “given,” which are grammatical varia-
tions of the same verb, while the second feature is
activated by Japanese tokens representing country
names (“ K - " for Germany, “H A" for Japan,
and “- & 1) A” for the United Kingdom). These
patterns demonstrate that the model is beginning to
organize and align semantics within each language
independently.

In the late training stage (> 4 x 10° tokens),
the model exhibits a resurgence of mixed-language
features while maintaining high monosemanticity.
This phase signifies a transition from language-
specific semantics to bilingual semantic alignment,
where features activate on semantically similar to-
kens across both languages. As shown in Fig-
ure 4(c), one feature is activated by “assigned,” “as-
sign,” and “#| O 24 T (the Japanese term for “as-
sign”), while another is activated by “ritual,” “cere-
mon,” and “/# 3" (the Japanese term for “ritual”).
These examples confirm that the model now cap-
tures semantic correspondences between languages,
functioning as a bilingual representation.

These findings suggest that LLMs learn in two

Mixed Language Proportion Monosemanticity

07
06

==ps

10° 10° 101

10° 101 10° 10° 10 10 101
Training Tokens (Log Scale)

Training Tokens (Log Scale)

Figure 5: Layer-wise evolution of mixed language pro-
portion and the monosemanticity in 3.7B model across
training stages.
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= =
N w
=
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-
N

=
=)

10° 10° 100 101 102
Training Tokens (Log Scale)

Figure 6: Layer-wise evolution of span length average
in 3.7B model across training stages.

distinct stages.

1. During the early to mid-training phase, they
develop independent semantic representations
within each language.

2. In the subsequent mid-to-late training phase,
they begin to align these semantic representa-
tions across languages

4.2 Mid-layers capture more bilingual
alignments

Figure 5 illustrates the layer-wise evolution of the
mixed language proportion and the monoseman-
ticity of SAEs’ features in the 3.7B model across
training stages. In the early to mid-training phase
(< 4 x 10° tokens), all layers exhibit a decrease
in the mixed language proportion and an increase
in monosemanticity. This suggests that the model
initially learns the semantics within each language
in all layers.

As training progresses into the later stages, layer
behaviors begin to diverge. The mid layers (green)
align with the behavior of the 14th layer described
in Section 4.1, while the lower (purple) and upper
layers (yellow) follow distinct patterns.

In the lower layers, particularly the initial lay-
ers, the mixed language proportion increases, while
monosemanticity decreases compared to the mid
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Figure 7: Activation patterns of features in the 3.7B
model. (a) In the lower layer (2nd layer), features ex-
hibit activation across multiple meanings. (b) In the
upper layer (26th layer), features primarily activate on
long-span tokens.

layers. This suggests a tendency toward polyse-
manticity, where a single feature is activated by
multiple meanings. As illustrated in Figure 7(a),
the first feature is activated on both the English
word “on” and “Fiffk” (Japanese for “Antarctica”),
and the second feature is activated on *“ portion”,
“ platform”, and “ platforms”. Although these ac-
tivation patterns are less random than in the early
training stages, they still occur across multiple to-
kens, reflecting the model’s polysemantic nature
in these layers. Such behavior can be attributed
to the model’s proximity to the input layer, where
it must distinguish between a vast vocabulary of
approximately 100,000 tokens, which exceeds the
dimension n of the intermediate layers of the SAE.

On the other hand, the upper layers consistently
maintain a lower mixed language proportion than
the mid layers, while their monosemanticity de-
clines even further as training progresses. Ana-
lyzing span length — the number of consecutive
tokens each feature activates — reveals that these
deeper layers increasingly focus on longer spans
(Figure 6), indicating that features are not monose-
mantic at the token level because they span multi-
ple, contextually connected tokens. For instance, as
shown in Figure 7(b), the first feature is activated
on phrases such as “uccoed brick”, “wood-frame”,
and “brick and sandstone”, all referring to build-
ing materials with spans of around three tokens.
The second feature activates on Japanese addresses
such as “2] H10# 15" (similar to “Block 2, No.
10-17), “—T H” (“Block 17), “PUT H” (“Block
4, each spanning multiple tokens.

From these findings, it can be inferred that

» Mid layers specialize in learning bilingual rep-

Mixed Language Proportion Monosemanticity
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Figure 8: Layer-wise evolution of the mixed language
proportion and the monosemanticity in the 150M model
across training stages.
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Figure 9: Layer-wise evolution of span length average
in 150M model across training stages.

resentations, balancing monosemanticity and
mixed language proportion.

* Lower layers exhibit polysemanticity, distin-
guishing a wide variety of tokens in the vocab-
ulary.

» Upper layers focus on multi-token concepts by
capturing longer spans rather than individual
tokens.

4.3 Larger LMs develop more bilingual
alignments

Figure 8 illustrates the layer-wise evolution of the
mixed language proportion and the monoseman-
ticity in the 150M model. Figures 12 to 14 also
show the result of other sizes (440M, 980M, and
1.8B). In the early to mid-training phase (< 4 x 10°
tokens), the behavior of around mid layers mir-
rors that of the 3.7B model: the mixed language
proportion decreases while monosemanticity in-
creases. This indicates that even in smaller models,
the early training stage primarily involves learning
languages individually.

However, a divergence becomes apparent in
three aspects: (1) within mid layers during the late
training phase (> 4 x 10? tokens), (2) within upper
layers during the late training phase, and (3) within
the lower layers during all training phases.

In the mid layers, the smaller model shows a
smaller increase in mixed language proportion com-
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Figure 10: Illustration of adding bilingual representa-
tions from a fully trained model into a mid-training
model.

pared to the larger model, as described in Section
4.2. The features learned by the smaller model
around the mid layers are less inclined to exhibit
high monosemanticity across languages. This sug-
gests that a much lower capacity for learning bilin-
gual features compared to the larger model.

In the upper layers, monosemanticity is smaller
compared to larger models at the late training
stages. As shown in Figure 9, the layer-wise
change in span length in the 150M model indicates
that the increase in span length in the upper layers
is also smaller than in larger models. These ob-
servations suggest that the upper layers in smaller
models cannot capture the context-level meanings.

In lower layers, the smaller model retains a rel-
atively high mixed language proportion and low
monosemanticity. This indicates a failure to ade-
quately capture semantics even within individual
languages, unlike the larger model, where lower
layers effectively acquire intra-language semantics.

In summary, two key observations can be drawn:

» Larger models exhibit a greater ability to learn
bilingual features in the mid layers, while
smaller models struggle to do so.

 Although smaller models may acquire some
degree of semantic alignments within individ-
ual languages in certain layers, they lack a
strong tendency to generalize these features
towards bilingual representations in the later
stages of training.

5 Intervention

We hypothesize that bilingual representations,
which correspond to bilingual features, play a cru-
cial role in the performance of a fully trained model.
If this is true, integrating these representations into
a mid-training model should significantly enhance

its performance. To test this, here, we extract bilin-
gual representations from a fully trained model
using a TopK-SAE and inject them into the inter-
mediate representations of a mid-training model.
This process is illustrated in Figure 10.

5.1 Method

Mathematically, let X £, X£., € RT*4 denote
the outputs of the /-th layer of the fully trained and
mid-training models, respectively, where 7T is the
sequence length and d is the model dimension. We
also denote £ : R? — R” and D : R"® — R? as
an encoder and a decoder of TopK-SAE trained on
the fully trained model. A binary mask mask &€
R™ is also defined, with m elements set to 1 and
others to 0, forcing only the bilingual features to
get activated. The intervention is formulated as
follows:

Xﬁlid — Xﬁﬁd + - D(mask ©O) E(Xf“eull)) (7)

where a is a hyperparameter controlling the
strength of the intervention, set to 0.1 in our ex-
periments (see Appendix B for the result of other
values). This method allows us to assess the direct
impact of the bilingual representation incorpora-
tion.

5.2 Setup

We conducted experiments using the 14th layer of
the 3.7B model. As the mid-training model, we se-
lected the checkpoint at 10,000 (approximately 40B
training tokens), where the mixed language propor-
tion in this layer is relatively low (Figure 3). We
evaluated the effects of three feature types: English,
Japanese, and Bilingual (Mixed). The number of
selected feature dimensions was set to m = 5, 000
(see Appendix B for the result of other values ).
Each setting was evaluated five times, and the re-
sults were averaged.

5.3 Results & Discussion

Table 1 shows the results. Adding English-specific
representations mainly improved English perfor-
mance, while adding Japanese-specific represen-
tations primarily enhanced Japanese performance.
In contrast, adding bilingual representations sig-
nificantly improved both languages’ performances.
This performance boost holds even when varying
the hyperparameters o and m as shown in Table 4.
These results support our hypothesis that the bilin-
gual alignments acquired by the model in the later
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Perplexity ({) COMET-22 (1)
Add En Ja all En—Ja Ja—En
- 18.70 2578 2243 61.1 56.4
En 18.53 25.64 22.28 61.4 56.9
Ja 18.65 = 25.33 22.17 61.3 57.2
Bi 18.36 25.20 21.96 62.5 57.2

Table 1: Baseline denotes the perplexity (PPL) of the
mid-training model without any intervention. Adding
mixed (bilingual) representations leads to a greater re-
duction in PPL compared to adding Japanese or English
representations.

training stages play a crucial role in its perfor-
mance.

Note that this method requires the output of
Layer ¢ from the fully trained model, meaning that
the SAE alone cannot directly enhance the per-
formance of a mid-training model. However, our
findings reveal that the bilingual information en-
coded in the later training stages is more critical for
performance than monolingual information. This
suggests that designing a training schedule that en-
courages the acquisition of bilingual knowledge in
the later stages of pre-training could be beneficial.

6 Related Work

Understanding the internal mechanisms of LLMs
has become a major focus of the research commu-
nity. Recent studies show neural networks can rep-
resent more features than their dimensions (Elhage
et al., 2022). To disentangle these representations,
SAEs have emerged as a key tool for decompos-
ing them into interpretable components (Huben
et al., 2024; Olshausen and Field, 1997). While
early work primarily focused on a single SAE, re-
cent studies have shifted toward comparing SAE
features across layers (Balcells et al., 2024; Bal-
agansky et al., 2025), model architectures (Lan
et al., 2024; Lindsey et al., 2024), or fine-tuning
stages (Lindsey et al., 2024; Wang et al., 2025). Xu
et al. (2024) concurrently tracks feature formation
during training, but lacks quantitative evaluation.
Another line of research has explored the mul-
tilingual capability of language models. Zeng
et al. (2025) explored the formation of multilin-
gual capabilities through neuron-level analysis and
showed that as models become larger and train-
ing progresses, they exhibit an increasing degree
of multilingual understanding. This result aligns
with our SAE-based analysis results. Wang et al.
(2024) identified neurons shared across languages
and tasks, while Tang et al. (2024) and Kojima

et al. (2024) highlighted language-specific neurons,
demonstrating their impact on model performance
and language output.

Our research builds on these foundations and
contributes to them in three key ways: (1) we inves-
tigate the formation process of bilingual capabili-
ties within a bilingual language model, (2) we con-
duct a comparative analysis across training stages,
model sizes, and layers, and (3) we exmploy SAEs
to perform direct interventions on bilingual repre-
sentations, offering novel insights on the dynamics
of bilingual representation in language models.

7 Conclusion

In this study, we investigated the evolution of in-
ternal representations in language models using
SAEs. Our analysis revealed that bilingual lan-
guage models initially learn languages indepen-
dently and later develop bilingual alignments, par-
ticularly in the mid-layers of larger models. We
further demonstrated the importance of bilingual
representations by conducting targeted interven-
tions with SAEs. Beyond using SAEs solely for
interpreting language models, we leveraged them
to manipulate internal representations, showcasing
their potential as a tool for both analysis and in-
tervention. We believe that our approach can be
extended to explore beyond analyzing the bilingual-
ity of language models and offer valuable insights
for the broader research community.

8 Limitations

This study explored the internal mechanisms of
bilingual language models, specifically focusing on
English, Japanese, and their bilingual interactions.
While this provides insights into cross-lingual rep-
resentation between these two typologically dis-
tinct languages, the findings may not generalize to
all language pairs. Future research should inves-
tigate a wider range of language pairs to validate
and extend our observations.

Another limitation is the interpretability of the
SAEs used in our analysis. While SAEs allowed
us to investigate the types of information that
models tend to encode as features, recent studies
have raised concerns about the reliability and in-
terpretability of them. Additionally, given that the
reconstruction accuracy was not perfect, our anal-
ysis is based on an approximation of the model’s
internal representations. As a direction for future
work, combining SAEs with other analytical meth-
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ods could lead to a more robust and comprehensive
understanding of the model’s behavior.
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A Training Details

A.1 Learning Rate Selection

We determined the optimal learning rate for train-
ing SAEs on each LM size by a grid search. Specif-
ically, we tested several learning rates (le-4, 2e-4,
Se-4, 1e-3, 2e-3, 5e-3) for each LM, the last check-
point, and the middle layer (maxlayer // 2), and
selected one that resulted in the lowest reconstruc-
tion loss (Eq. 3) on the validation set.
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Figure 11: Learning Rate vs. Reconstruction Loss for
SAESs on Various Model Sizes. The star markers indicate
the lowest loss points for each model.

Figure 11 shows the result. Our experiments re-
vealed that smaller learning rates were more effec-
tive for training SAEs on larger LMs. The selected
learning rates for each model size are summarized
in Table 2.

LM Size Optimal Learning Rate
150M 2e-3
440M le-3
980M le-3
1.8B Se-4
3.7B Se-4

Table 2: Optimal learning rates for training SAEs across
different LM sizes

A.2 Time for training SAEs & the number of
stored activations

Table 3 shows the details.

B Ablation Study of Adding Bilingual
Features

Table 4 shows the ablation result of different alpha
and m.

LM Size Training Time N of act.
150M 20min 10M
440M 25min M
980M 40min 2M
1.8B 60min M
3.7B 90min 0.5M

Table 3: The training time for each SAE and the number
of buffered activations for each model size.

Perplexity (dif.)

« m Add En Ja all
. 1757 1954 1539

En  —008 —0.06 —0.07

1000 Ja  —0.07 —009 —0.08

Bi —0.10 —-0.10 —0.10

En  —0.10 —0.07 —0.09

005 3000 Ja —0.08 —0.15 —0.12
Bi —0.16 —-019 —0.18

En  —0.12 —0.08 —0.10

5000 Ja  —-0.09 —-021 —0.15

Bi —021 —028 —0.25

En  —0.08 —0.07 —0.08

1000 Ja  —0.06 —012 —0.09

Bi -012 -0.15 —0.14

010 En  —0.13 —0.09 -0.11
10 3000 Ja —008 —025 —0.17
Bi —023 —034 —0.29

En -0.16 —0.11 —0.14

5000 Ja  —0.10 —0.36 —0.24

Bi 033 —050 —0.42

En  +0.13 +0.14 -+0.13

1000 Ja  +0.18 +0.03 +0.10

Bi  +40.05 —003 +0.01

En 4001 +0.10 -+0.06

020" 3000 Ja  +0.15 —025 —0.06
Bi —0.18 —040 —0.30

En  —0.07 +0.05 —0.01

5000 Ja  +0.10 —049 —0.21

Bi  —037 —072 —0.56

Table 4: Baseline denotes the perplexity (PPL) of the
mid-training model without any intervention.
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Figure 12: Layer-wise evolution of the mixed language proportion and the monosemanticity in the 1.8B model
across training stages.
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Figure 13: Layer-wise evolution of the mixed language proportion and the monosemanticity in the 980M model
across training stages.
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Figure 14: Layer-wise evolution of the mixed language proportion and the monosemanticity in the 440M model

across training stages.
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Figure 15: Layer-wise evolution of the span length average in the 1.8B model across training stages.
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Figure 16: Layer-wise evolution of the span length average in the 980M model across training stages.
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Figure 17: Layer-wise evolution of the span length average in the 440M model across training stages.
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