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Abstract

Table understanding is a crucial task in doc-
ument processing and is commonly encoun-
tered in practical applications. We introduce
2Columns1Row, the first open-source bench-
mark for the table question answering task in
Russian. This benchmark evaluates the abil-
ity of models to reason about the relation-
ships between rows and columns in tables, em-
ploying both textual and multimodal inputs.
2Columns1Row consists of six datasets, 28,800
tables, that vary in the complexity of the text
within the table contents and the consistency of
the values in the cells. We evaluate the mod-
els using text-only and multimodal approaches
and analyze their performance. Through exten-
sive evaluation, we demonstrate the limitations
of current multimodal models on this task and
prove the feasibility of a dynamic text-based
system utilizing our benchmark. Our results
highlight significant opportunities for advanc-
ing table understanding and reasoning, provid-
ing a solid foundation for future research in this
domain.

1 Introduction

Document processing has emerged as an essen-
tial component in various production scenarios, en-
abling automated extraction, understanding, and
analysis of information from different types of doc-
uments. A key challenge in this field is understand-
ing tables, often addressed through Table Question
Answering (TableQA) (Jin et al., 2022). TableQA
involves interpreting tabular data and answering
questions based on that information, requiring a
good grasp of both the table structure and its con-
tent.

Large Language Models (LLMs) have signif-
icantly advanced Natural Language Processing
(NLP) by demonstrating strong generalization
across diverse tasks. A critical application involves
table analysis, where tables are typically serialized
into textual formats for LLM processing. Recent

approaches leverage Large Vision-Language Mod-
els (LVLMs), combining visual and textual repre-
sentations to better capture tabular structure and
semantics (Liang et al.). Despite these advance-
ments, state-of-the-art LVLMs still underperform
on complex table-related tasks (Kim et al., 2024).
Furthermore, the lack of publicly available bench-
marks for intricate tables, notably for non-English
languages, inhibits progress in developing special-
ized models for this domain.

To address these issues, we present
2Columns1Row, a detailed benchmark for
TableQA in the Russian language. 2Columns1Row
consists of six datasets that vary in complexity
based on the text within the table contents and
the consistency of values in the cells, totaling
28,800 instances. We evaluated the performance
of several LLMs on 2Columns1Row and closely
examined their errors, identifying specific patterns
in their behavior, especially when dealing with
more complex tables. Our results highlight the
challenges even the most advanced LLMs face
in table analysis. Additionally, we assessed
the dynamism of the benchmark to ensure its
consistency when reassembled. Additionally, we
investigated the effects of various prompts, table
formats, and fine-tuning on the performance of
LLMs.

The contributions of the paper are as follows:
• We present 2Columns1Row 1, a robust and

representative benchmark table consisting of
six datasets that encompass a variety of con-
tent and complexity across two modalities.

• We tested over 25 advanced LLMs on the
2Columns1Row, providing a detailed perfor-
mance analysis. We examined the models’
behavior, particularly in complex scenarios
involving questions and table structures.

1The benchmark is available under the Apache 2.0 license
at https://huggingface.co/ai-forever/2columns1row
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• We reconfigured the 2Columns1Row multi-
ple times to ensure stable performance met-
rics of selected models on different data splits.
Thus, the benchmark can be set up dynami-
cally. Additionally, we analyzed how the sys-
tem prompt, table text representation, and su-
pervised fine-tuning affect the model’s answer
quality.

2 Related Work

Tasks related to table processing are prevalent in
real-world scenarios (Lu et al., 2025), both in pro-
duction settings and academic research. An applica-
tion of machine learning is enhancing the automa-
tion of the table handling process and extracting
valuable insights. However, the difficulty lies in
the fact that plain text is used during pre-training
of neural language models, which generally lacks
the specific structure inherent in tables. To address
this, techniques have been developed for adjusting
models for tabular data using position embeddings,
various attention mechanisms, and learning objec-
tives (Yin et al., 2020; Herzig et al., 2020; Liu et al.,
2021; Deng et al., 2022).

In recent times, LLMs have been developing
rapidly and demonstrating impressive results in
various areas, including the challenges of table un-
derstanding, such as TableQA (Sui et al., 2024).
Due to the versatility of LLMs, the use of LLM-
specific techniques remains relevant, including
instruction-tuning (Zhang et al., 2023), in-context
learning (Dong et al., 2022), chain-of-thought
(CoT) reasoning processes (Wei et al., 2022),
and even the use of autonomous agents (Wang
et al., 2024), which are becoming increasingly
popular. Some approaches fine-tune LLMs, for
example, StructLM (Zhuang et al., 2024) and
TableLLM (Zhang et al., 2024), which enhance
the comprehension of table structures and facilitate
complex reasoning for advanced analysis.

The rapid development of LLMs necessitates
the creation of suitable benchmarks for a com-
prehensive evaluation of these models’ capabili-
ties and their comparison. Nevertheless, the ex-
isting benchmarks based on table processing (Pa-
supat and Liang, 2015) were mostly constructed
for the English language. Moreover, there are only
a few complex benchmarks for the Russian lan-
guage (Fenogenova et al., 2024) and none with
table semantic comprehension.

To evaluate the abilities of modern LLMs in table

analysis in Russian, we present 2Columns1Row, an
extensive and complex synthetic benchmark that
incorporates diverse datasets and frequently real-
world task formulations for table understanding,
effectively addressing the limitations of existing
benchmarks.

3 Methodology

3.1 Idea

2Columns1Row benchmark evaluates a model’s
ability to perform a specific yet highly frequent and
practical task: retrieving a value from one column
based on a corresponding value in another. While
other tasks, such as fact verification or data anal-
ysis, exist, this formulation is representative, as it
tests the model’s comprehension of table structure
(i.e., column-row relationships) and necessitates
sequential reasoning.

Beyond assessing how well LLMs interpret ta-
bles from textual representations, we also compare
performance against a multimodal approach, where
the model receives both the textual prompt and an
image of the table. Additionally, our benchmark
accounts for value diversity across columns and
datasets, employing dynamic regeneration to en-
sure consistent model evaluation.

To mitigate the well-known issue of data con-
tamination and enhance generalizability, we opt for
dynamically generated synthetic data over static ta-
bles. In Section 4.6, we demonstrate the validity of
this approach, showing that it preserves benchmark
integrity while minimizing biases inherent in fixed
datasets.

3.2 Datasets

To create the datasets, we synthetically generated
all tables for the benchmark, intentionally avoid-
ing the use of real tables. Additionally, for some
columns, we sourced data from real-world refer-
ences, such as words in different parts of speech
from Wiktionary 2.

We grouped the tables in the dataset according
to the uniformity and complexity of the values in
the table cells to assess their impact on the model’s
performance. In total, we got 6 datasets based on
the context inside:

• Person Info dataset includes various informa-
tion about a person, such as full name, resi-
dential address, and phone number. All of the

2https://www.wiktionary.org/
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Figure 1: Table example from the Person Info Hard dataset. The columns of the table correspond to: 1) the tool
idea, 2) username, 3) affiliation, 4) SWIFT, and 5) IBAN.

values are generated randomly and indepen-
dently.

• Person Info Hard is an advanced version of the
Person Info, featuring more potential columns
and more complex data structures, such as
synthetic word sequences.

• The Colors dataset includes color values in
the hexadecimal format #RRGGBB.

• The Numbers set consists of float numbers
with six decimal places.

• The Company Info dataset includes the com-
pany’s name, address, fax, and other company
information.

• The Word Sequences dataset contains words
and their combinations from Wiktionary for
Russian, categories of articles from Russian
Wikipedia 3, sentences in Russian, as well as
titles for slides and presentations.

For the Colors and Numbers datasets, we used up-
percase Latin letters as column names. For the
rest, we used column names based on the seman-
tics of the values included in them, for example,
FIO ("Full Name").

To create the multimodal version of the bench-
mark setup, a full-size screenshot was taken for
each table using the Playwright for Python library 4.
We utilized the default font and other rendering pa-
rameters.

An example of the Person Info Hard table is
shown in Figure 1. Additional examples of tables
from other datasets are provided in Appendix A.

The final statistics for the benchmark are as fol-
lows 5: it includes 6 datasets and a total of 28,800

3https://ru.wikipedia.org/
4https://playwright.dev/python/
5The statistics are provided for one setup, as the tables

tables, with an average of 32 rows and 8 columns
per table.

3.3 Generation Pipeline

This subsection describes how we generated the
datasets for the benchmark. To create datasets, we
used two approaches: 1) one based on generation
functions and 2) the other on large pre-assembled
sets for column values.

For the first three datasets (Person Info, Colors,
Numbers), we generated the table’s contents using
generation functions. The appropriate function was
called for each cell in the table based on the dataset
and the column. This approach works well for ho-
mogeneous values that contain many unique values,
as the probability of repeated values in a column is
minimal.

We generated a set of values for the last three
datasets for each column separately. These sets
contain between 5,027 and 896,982 unique values.
For each table size, we randomly selected a set of
columns from the given set and, for each column in
each table, we sampled uniformly values equal to
the number of rows in the table. For some columns,
we used permutations of a random number of val-
ues from the set. This approach creates tables with
a variety of content and avoids repeating values in
columns.

For datasets Person Info and Person Info Hard,
and partially for Company Info and Word Se-
quences, we used Python Faker 6 and Mimesis 7

libraries for synthetic data generation.
Each dataset contains five tables for each size.

remain the same; only the format of the text and images varies.
6https://faker.readthedocs.io/
7https://mimesis.name/master/
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Figure 2: An illustration of the pipeline’s work for generating a dataset.

The number of columns ranges from 2 to 16, and
the number of rows ranges from 1 to 64. We ad-
hered to the principle that each set of unique values
for a column should be at least approximately 100
times larger than the maximum number of rows in
a table. This ensures sufficient diversity in table
content across the dataset.

To summarize the above, the tables in the
datasets differed in several ways:

• table dimensions (width and height);

• uniformity of values in columns (whether it
is possible to determine what each column
means without a heading);

• the amount of text in cells (the more text there
is, the harder the task will be for the model);

Figure 3: Example: What is the coverage if Leslie
Kerkhov is the opponent in the finals? Answer: Hard
Original QA in Russian:

Какое покрытие, если соперница в фи-
нале — Лесли Керхов? Ответ: Хард
(Kakoye pokrytiye, yesli sopernitsa v
finale — Lesli Kerkhov? Otvet: Khard)

To create questions 8, we used the frequent for-
mulation: "Kakoye znacheniye v stolbtse target,

8Although the values in the tables are unique, we verify the
cells in each column for any duplicate entries to ensure that the
questions remain unambiguous. This allows the benchmark
pipeline to be applied to any real-world data.

yesli v stolbtse query znacheniye ravno X?" ("What
is the value of the column target if the value in
the column query is X?"). An example of ques-
tion generation for a table from RuWikiTables is
demonstrated in Figure 39.

After creating the tables and generating the ques-
tions for them, we provide them in the prompt to the
model, having previously converted the table into
one of several popular text representation formats:
Markdown, JSON, CSV, or HTML. The general
process for generating the benchmark is shown in
Figure 2.

3.4 Evaluation Procedure
To evaluate the model’s response apred compared
to the ground-truth answer agt, we used the classic
Exact Match metric (EM) and the Coverage (Cov)
metric that checks the occurrence of the value of
the required table cell in the response to:

EM(apred, agt) =

{
1, if apred = agt.

0, otherwise.
(1)

Cov(apred, agt) =

{
1, if agt in apred.

0, otherwise.
(2)

We also cleaned the models’ responses from
spaces at both ends, as they sometimes appeared in
the output.

4 Experiments

We have conducted numerous experiments in text-
only and multimodal setups using both open-source
and proprietary LLMs. We employ the official

9The example is provided for clarity; the real-world tables
are not included in the benchmark.
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API for all proprietary models (GigaChat-2-family
LLMs; GPT-4o) and DeepSeek-V3 (for optimiza-
tion purposes). For other models, we accessed them
through a vLLM library-based server on a set of 8
NVIDIA A100 GPUs. To provide a deterministic
and accurate model response for all GigaChat-2
models, we used the following settings for gener-
ation: temperature = 1, top_p = 0; for other
models, including both text-only and multimodal,
we applied temperature = 0 and top_p = 1e−6.

We randomly chose five questions for each
dataset and table size in all experiments. We se-
lected the query column evenly from all columns,
except for the target column, which was always
excluded.

4.1 Varying Prompts Impact
We tested the impact of prompt formulation on
model performance in the specified TableQA set-
ting. Writing a comprehensive and high-quality
prompt is an essential step in achieving high LLM
performance.

Answering the question mentioned in Subsection
3.3 not only requires finding the specified columns
q and t in the table, but also determining the target
row r based on the passed value X , and then ex-
tracting the answer from the corresponding cell in
column t. Therefore, it is likely necessary to pro-
vide detailed instructions for the model to follow
when solving the problem.

We used structured prompts following this stan-
dardized format, with tabular data (‘table‘) repre-
sented in Markdown syntax:

system prompt
—–
table
—–
question
—–

We conducted experiments measuring models
using both the usual system prompt and a refined
system prompt that requires strict adherence to the
instructions provided. We have chosen these sys-
tem prompts to ensure that all models understand
the instructions and follow the format. We expect
the output to consist of a response from a single
cell in the table.

Here are the translations of the selected system
prompts in Russian:

USUAL system prompt: "You are an expert in
intelligent document processing. A table in mark-
down format from a document has been provided

as input. The answer to the question is always
in one of the cells of the table. Find this cell and
answer the question briefly, relying ONLY on the
data in this table."

REFINED system prompt: "Solve the task strictly
according to the instructions. Provide an answer
without any explanation. You are an expert in
intelligent document processing. A table from a
document has been provided as input. The an-
swer to the question is always in one of the cells
of the table. Find this cell and answer the ques-
tion briefly, relying only on the data in this table.
In the answer, specify only the value in the re-
quired table cell, without unnecessary words or
symbols. Don’t try to build a dialogue, don’t give
any explanations or comments to your answer."

For both system prompts, we use the same for-
mulation to generate questions from Section 3.3
as the user prompt: "What is the value of the
column target if the value in the column query
is X?", where target and query are selected table
columns and X is the selected cell value in column
query and a specific row of the table.

Person Info Colors Numbers Average
Model (REFINED / USUAL prompt) REFINED USUAL REFINED USUAL REFINED USUAL REFINED USUAL
Qwen-2.5–32B-Instruct 98.50 94.21 74.46 77.95 94.83 96.23 89.26 89.46
T-pro-it-1.0-32B 98.29 96.95 77.21 77.66 98.02 97.95 91.17 90.85
Llama-3.3–70B-Instruct 95.60 94.77 62.81 58.62 98.58 97.97 85.67 83.79
Qwen-2.5–72B-Instruct 95.98 94.56 71.12 71.74 95.31 95.19 87.47 87.16
Llama-3.1–405B-Instruct 98.77 97.22 75.94 75.10 99.81 98.87 91.51 90.40

Table 1: Evaluation of the quality of a subset of models,
depending on the choice of prompts. The Coverage met-
ric values are represented for the selected REFINED or
USUAL system prompt. The "Average" column reflects
a weighted average of the metric values for the selected
datasets.

We have selected a subset of the models and
benchmark datasets that are representative of the
impact of prompt design on the overall LLM per-
formance. The results are shown in Table 1. The
improvement of the prompt led to the enhancement
of all Llama models in all data sets. For Qwen-
Instruct models and their fine-tuned version of T-
Pro-it, the results were comparable, with the ex-
ception of Qwen-2.5-32B-Instruct, which showed
a significant improvement in metrics for the Person
Info dataset and a decrease in metrics for the Col-
ors set. This is probably due to the specifics of a
particular model and the complexity of the Colors
dataset (uniformity of values in table cells).

Experiments demonstrate that careful crafting of
high-quality, comprehensive prompts can signifi-
cantly enhance the performance of models.

4.2 Table Text Representations
It is unclear which format provides the best model
performance. Therefore, we examined several text-
based table formats (Markdown, JSON, CSV, and
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HTML) to determine which one yields the best
results. Our evaluation included various model
sizes and complex datasets. Table 2 presents the
model metrics based on the table formats we tested.

markdown json csv html Average
Model Colors Word Seq. Colors Word Seq. Colors Word Seq. Colors Word Seq. Colors Word Seq.
GigaChat-2-Lite 65.44 47.46 57.33 65.67 41.19 35.67 67.42 56.19 57.84 51.24
Qwen-2.5–32B-Instruct 74.46 79.23 88.56 92.19 72.10 75.88 86.81 92.60 80.48 84.97
Llama-3.3–70B-Instruct 62.81 60.35 89.44 82.15 57.98 56.98 86.35 76.58 74.15 69.02

Table 2: The Coverage metric values show the depen-
dence of models on the textual representation of tables
on the Colors and Word Sequences datasets. The "Aver-
age" column reflects a weighted average of the metric
values across all table formats.

We compared various text representations of ta-
bles to find the most effective format. We chose
a row-based representation for JSON, as identi-
fying corresponding cells in a column-based for-
mat is challenging. Our analysis indicated that the
top three formats, in order of performance, were
JSON, HTML, and Markdown. Although JSON
performed well, it required significantly more to-
kens than Markdown. We also noted that models
struggled to answer questions about tables in Mark-
down. As a result, we opted to use Markdown
format for the remaining experiments.

4.3 LLMs Text Baselines

For the text-only experimental setup, we evalu-
ated 21 models with sizes ranging from 7B to
671B parameters. The following cutting-edge open-
source models were used for performance assess-
ment: Qwen-2.5 models (Qwen et al., 2025), Llama
3.1 and 3.3 models (Dubey et al., 2024), Mistral-
family models (Jiang et al., 2023), DeepSeek-R1-
Distill-Qwen, DeepSeek-V3 (Liu et al., 2024),
YandexGPT-5-Lite-Instruct 10, fine-tuned versions
of Qwen-2.5 T-lite 11 and T-pro 12, adapted for Rus-
sian, and table-specific TableGPT2-7B (Su et al.,
2024) and TableLLM-8B (Zhang et al., 2024). We
also evaluated the proprietary models: Gigachat-2-
family models 13, and GPT-4o (Hurst et al., 2024).

For all models, we used the REFINED system
prompt and the user prompt from the subsection 4.1
and the Markdown text format to present the tables.
Using these, the LLMs showed an optimal quality-
speed trade-off compared to other prompts and text
representations. Additionally, we note that for the

10https://huggingface.co/yandex/
YandexGPT-5-Lite-8B-instruct

11https://huggingface.co/t-tech/T-lite-it-1.0
12https://huggingface.co/t-tech/T-pro-it-1.0
13https://giga.chat/

DeepSeek-R1-Distill-Qwen-32B, we have embed-
ded a system prompt at the beginning of the user
prompt, as specified in the usage recommendations
for the DeepSeek-R1 series models. The results of
the models listed, as well as the metric heatmaps
and error analysis, are presented in Section 5.

4.4 LLMs Multimodal Baselines
Besides LLMs with only textual modality, we
gauged 7 multimodal models, as in real-world
scenarios, it is often challenging to obtain a
high-quality textual representation of a table and
the document as a whole. The considered list
of LVLMs includes: DeepSeek-VL2-27.5B (Wu
et al., 2024), Qwen-2.5-VL-72B (Bai et al., 2025),
InternVL2.5-78B (Chen et al., 2024), Llama-
3.2-90B-Vision (Dubey et al., 2024), Pixtral-
Large-Instruct-124B (Agrawal et al., 2024), Table-
LLaVA-v1.5-7B (Zheng et al., 2024) tailored
for table comprehension, and proprietary model
GigaChat-2-Pro-Vision, adapted for Russian. For
a multimodal setup, a full-size screenshot of each
table is provided. As for purely text-based models,
we used the same user prompt, but the REFINED
system prompt for LVLM is slightly modified here:

LVLM’s REFINED system prompt: "Solve the
task strictly according to the instructions. Provide
an answer without any explanation. You are an ex-
pert in intelligent document processing. An image
of a table from a document has been provided as
input. The answer to the question is always in one
of the cells of the table. Find this cell and answer
the question briefly, relying only on the data in
this table. In the answer, specify only the value
in the required table cell, without unnecessary
words or symbols. Don’t try to build a dialogue,
don’t give any explanations or comments to your
answer."

Multimodal models’ metrics are provided in the
Table 3 with LVLMs subheading, an overview of
model performance and error analysis is considered
in Section 5.

4.5 Training with SFT
In addition to evaluating modern general models,
we conducted Supervised Fine-Tuning (SFT) us-
ing all parameters of the Qwen-2.5–7B-Instruct
to investigate how the availability of suitable data
affects the effectiveness of the TableQA task solu-
tion. One of the reassemblies from 4.6 was used
as a training dataset. We employ a cosine anneal-
ing scheduler with an initial learning rate equal to
1e−5 and a warmup ratio of 0.1. Training was con-
ducted over 3 epochs using the AdamW optimizer,
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Person
Info Colors Numbers Person Info

Hard
Company

Info
Word

Sequences Average

Model EM Cov EM Cov EM Cov EM Cov EM Cov EM Cov EM Cov
Small Size Models

Qwen-2.5–7B-Instruct 82.29 82.35 36.90 36.90 53.85 53.85 71.73 72.02 71.38 71.62 33.58 33.90 58.29 58.44
SFT Qwen-2.5–7B-Instruct 95.83 95.85 98.06 98.06 99.35 99.35 92.44 92.44 89.21 89.23 70.33 70.44 90.87 90.90
T-lite-it-1.0-7B 73.31 73.38 28.96 29.04 69.52 69.52 52.02 52.15 57.58 57.73 21.90 22.71 50.55 50.75
Llama-3.1–8B 77.02 77.67 32.10 32.12 80.58 80.58 70.06 70.69 70.35 71.10 31.23 32.23 60.23 60.73
Ministral-8B-Instruct-2410 57.88 58.31 27.96 27.96 66.08 66.08 50.15 50.62 43.62 44.10 15.44 17.00 43.52 44.01
YandexGPT-5-Lite-8B-Instruct 87.31 90.88 15.35 16.69 30.52 36.12 78.92 84.06 79.90 82.21 19.52 23.73 51.92 55.61
GigaChat-2-Lite 91.54 91.62 65.42 65.44 76.98 77.00 81.42 81.54 82.27 82.42 47.02 47.46 74.11 74.25
TableGPT2-7B 86.92 87.00 44.35 44.35 66.23 66.23 75.42 75.46 79.12 79.33 46.94 47.50 66.50 66.65
TableLLM-8B 15.25 78.27 16.21 29.92 32.85 57.58 10.92 70.73 9.73 69.40 3.58 33.71 14.76 56.60

Medium Size Models
Mistral-Small-24B-Instruct-2501 96.94 96.98 49.81 49.81 91.60 91.60 91.52 91.54 89.42 89.44 57.50 57.58 79.47 79.49
Qwen-2.5–32B-Instruct 98.50 98.50 74.33 74.46 94.83 94.83 96.79 96.85 94.65 94.73 79.12 79.23 89.70 89.77
T-pro-it-1.0-32B 98.29 98.29 77.19 77.21 98.02 98.02 95.48 95.52 92.62 92.92 71.50 71.73 88.85 88.95
DeepSeek-R1-Distill-Qwen-32B 71.71 77.38 32.81 38.60 55.65 60.77 78.25 79.85 67.81 69.44 58.65 59.56 60.81 64.27
GigaChat-2-Pro 97.94 97.96 63.19 64.79 94.21 94.21 94.58 94.73 92.46 92.62 72.54 73.29 85.82 86.27

Large Size Models
Llama-3.3–70B-Instruct 95.58 95.60 62.81 62.81 98.56 98.58 91.94 92.10 90.60 90.69 60.00 60.35 83.25 83.36
Qwen-2.5–72B-Instruct 95.98 95.98 71.12 71.12 95.31 95.31 95.04 95.06 92.42 92.48 77.88 77.92 87.96 87.98
Mistral-Large-Instruct-2411-123B 91.83 91.92 65.81 65.81 93.48 93.48 84.81 84.85 85.52 85.58 48.50 48.60 78.33 78.38
Llama-3.1–405B-Instruct 98.67 98.77 74.33 75.94 99.81 99.81 96.21 96.33 92.94 93.04 68.27 68.58 88.37 88.75
DeepSeek-V3-671B 98.48 98.48 56.15 56.15 99.12 99.12 97.06 97.06 94.52 94.52 80.00 80.00 87.56 87.56
GigaChat-2-Max 95.62 95.62 73.94 73.94 94.96 94.96 88.25 88.29 88.19 88.21 68.69 68.73 84.94 84.96
GPT-4o 99.62 99.62 89.75 89.75 99.79 99.79 99.29 99.29 97.15 97.15 93.77 93.77 96.56 96.56

LVLMs
Table-LLaVA-v1.5-7B 0.00 0.40 0.00 0.25 0.00 0.29 0.00 0.12 0.00 0.21 0.00 0.00 0.00 0.21
DeepSeek-VL2-27.5B 8.88 8.98 6.12 6.12 18.40 18.40 5.58 5.67 5.29 5.35 0.35 0.40 7.44 7.49
Qwen-2.5-VL-72B-Instruct 82.73 82.85 55.75 55.75 67.77 67.77 56.90 56.90 65.75 65.81 46.40 47.60 62.55 62.78
InternVL2.5-78B 28.10 28.40 28.40 28.50 27.88 28.23 12.83 13.15 13.54 13.92 4.92 5.44 19.28 19.60
Llama-3.2-90B-Vision-Instruct 36.17 38.00 38.48 38.58 46.75 46.79 19.79 20.38 22.23 23.15 7.46 7.94 28.48 29.14
Pixtral-Large-Instruct-124B 26.12 26.50 15.12 15.12 32.62 32.62 12.08 12.10 13.10 13.33 3.90 3.92 17.16 17.27
GigaChat-2-Pro-Vision 9.73 9.94 5.21 5.21 9.54 9.58 3.46 3.50 4.15 4.25 0.75 0.83 5.47 5.55

Table 3: Performance of the different LLMs on the 2Columns1Row benchmark. The top result is highlighted in
bold, while the second is underlined. “-”. The "Average" column represents a weighted average of the metric values
for all datasets.

with a batch size of 32 samples, a weight decay
ratio of 1e−4 and a maximum gradient norm of
0.3. The metrics of the Qwen model after SFT are
provided in Table 3 as SFT Qwen-2.5–7B-Instruct.
The impressive performance of the model after fine-
tuning highlights the crucial importance of having
high-quality and diverse data when training LLMs
in different stages.

4.6 Assessing Benchmark Dynamism

In addition to the benchmark version used in our ex-
periments, we generated four alternative synthetic
configurations, each incorporating new tables and
corresponding question-answer pairs. To evaluate
the potential dynamism of the benchmark setup, we
computed the weighted average Coverage metric
across datasets for each benchmark variant, test-
ing a subset of models, including the multimodal
Qwen-2.5-VL (see §5.1). We also report the mean
and standard deviation of the aggregated metric val-
ues across all benchmark reassemblies. The results
are summarized in Table 4.

The results indicate a consistently low standard
deviation (< 0.5%) for all evaluated models, con-
firming the 2Columns1Row benchmark’s reliabil-
ity for dynamic evaluation scenarios across various
row/column configurations.

Model Main version (v1) v2 v3 v4 v5 mean ± std
Llama-3.1–8B 60.73 60.15 59.60 60.37 60.46 60.26 ± 0.43
Mistral-Small-24B-Instruct-2501 79.49 79.16 79.09 79.00 79.34 79.22 ± 0.20
Qwen-2.5–72B-Instruct 87.98 87.89 87.93 88.19 88.07 88.01 ± 0.12
Qwen-2.5-VL-72B-Instruct 62.78 62.48 62.67 62.61 61.89 62.49 ± 0.35

Table 4: Results for validating the dynamism of the
benchmark. The Coverage metric’s weighted average
values across all reassemblies of the 2Columns1Row
are provided. The last column represents the mean and
standard deviation values µ±σ of the aggregated metric
values across all benchmark reassemblies.

5 Results

5.1 LLM Performance

The results of evaluating the models on all bench-
mark datasets are presented in Table 3. Experi-
ments show that all models except TableLLM-8B
follow the expected format in most cases and only
output the value of the required table cell.

According to the metrics in the table, the met-
rics generally improve with increasing model
size. Llama-3.1-405B-Instruct, DeepSeek-V3-
671B, and GPT-4o all showed promising results,
with GPT-4o performing exceptionally well on all
the datasets tested. The Qwen models also stand
out, showing excellent results compared to other
models of similar size. It is remarkable that the
Qwen-2.5-32B-Instruct model performed even bet-
ter than the Qwen-2.5-72B-Instruct model. All
LVLMs, except for Qwen-2.5-VL-72B-Instruct and

13376



Figure 4: Llama-3.1-405B. Colors dataset. The Coverage metric. W × r visualization

partially Llama-3.2-90B-Vision-Instruct, perform
very poorly compared to their text-only counter-
parts.

The most challenging datasets turned out to be
Colors and Word Sequences. Both datasets have
the property of uniformity of values in tables. The
difficulty with the Colors dataset arises from the
fact that the letters A, B, C, D, E and F appear both
in the column headers and in the cell values. This
overlap makes it harder for the model to differenti-
ate between noise and meaningful information. The
Word Sequences dataset consists of semantically un-
related text sequences within columns. Cells may
contain entire sentences that could potentially lead
to the model’s hallucinations.

Models achieved the highest performance on the
datasets Person Info and Person Info Hard, where
columnar heterogeneity enabled value identifica-
tion through semantic matching. In contrast, ho-
mogeneous synthetic datasets required positional
counting (column indexing) for successful task
completion, presenting a greater challenge.

5.2 Error Analysis

The main issues with 2Columns1Row involve the
model selecting incorrect rows or columns and fre-
quently hallucinating table cell values as table size
increases. For multimodal models, challenges in-
clude errors from OCR (Optical Character Recogni-
tion) and processing high-resolution images. Here,
Qwen-2.5-VL stands out for its ability to analyze
complex images effectively. Also, LVLMs of-
ten struggle to recognize text in Latin characters,
even when the source is Cyrillic, including column
names.

Let us denote the width of the table by W , the
row with the answer by r, the query column by q,

and the target column by t. To identify patterns
in model errors, we created two types of heatmaps
that are the most representative:

1. "table width" × "row number": W × r;
2. "table width" × "relative distance of

columns": W × (q − t).
The heatmaps for Llama-3.1-405B on the Colors

dataset are presented in Figures 4 and 10. The rest
of the examples can also be found in the Appendix
B.

As seen in Figure 4, the model’s performance
deteriorates as the number of columns increases.
Additionally, with the same number of columns,
the model is more likely to provide incorrect an-
swers in rows further from the table’s beginning.
This suggests that there are challenges with LLM’s
understanding of large tables.

To interpret the heatmap 10, examine the cell in
the i-th row and j-th column. If i < j (above the
diagonal), the percentage of correct answers corre-
sponds to the table width j and relative distance i.
If i > j (below the diagonal), the width is i and the
relative distance is j. Questions appear above the
diagonal when the question column is to the right
of the answer column, and below it when to the left.
Average values are found along the diagonal. The
figure shows that the model performs well in the
following areas:

• in the upper-left corner, where there are not
so many columns and the tables are simpler;

• in the top row and in the left column: this
corresponds to pairs of columns that are next
to each other at a distance of +1 or −1;

• immediately above and below the diagonal:
this corresponds to pairs of columns, where
one is the first and the second is the last.

As in the previous heatmap, the quality of the
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models decreases as the number of columns in the
table increases. Additionally, the metrics are typ-
ically lower when the query and target columns
are not located in a trivial manner. It can also be
seen from the heatmap W × (q − t) that when q
is positioned to the left of t (lower left part), the
metrics tend to be higher.

For a more detailed examination of LVLMs’ per-
formance, we selected Qwen-2.5-VL due to its su-
perior results among the multimodal models. Fig-
ures 15 and 17 demonstrate that both Qwen-2.5-
VL and Llama-3.2-Vision exhibit significant metric
degradation as the number of columns increases;
however, with a corresponding increase in the num-
ber of rows, the performance of the latter declines
more sharply. This indicates that Qwen-2.5-VL
generally processes high-resolution images more
effectively, partly owing to its dynamic resolution
processing capability.

Model correct
answers

false
cells

non-existent
values

Qwen-2.5–72B-Instruct 87.98 10.30 1.72
Qwen-2.5-VL-72B-Instruct 62.78 29.36 7.86

Table 5: Comparison of the multimodal and text-only
versions of Qwen-2.5. "Correct answers" are evalu-
ated using the Coverage metric; "false cells" refer to
responses containing values present in the table but not
from the target cell, while "non-existent values" denote
those entirely absent from the table.

We also conducted a comparative analysis of
the text-only and multimodal versions of Qwen-
2.5. Model responses were categorized into three
groups: correct answers (based on the Coverage
metric), false cells (values present in the table but
not from the target cell), and non-existent values
(not present in the table). The results are presented
in Table 5. The LVLM demonstrates a lower ratio
of "false cells" to "non-existent values" compared
to the LLM (3.7 vs. 6), suggesting a greater propen-
sity for hallucinations in Qwen-2.5-VL. The Char-
acter Error Rate (CER) across all "non-existent
values" examples was 0.706, with only 5% of these
examples exhibiting CER ≤ 0.143 (equivalent to
a one-character error in the Colors dataset), ac-
counting for less than 0.5% of all examples in the
benchmark. This implies that OCR-related errors
constitute a minor fraction of the overall error dis-
tribution, despite being a common issue for the
Russian language (e.g., predicted "Homepa" vs.
ground-truth “номера”).

6 Conclusion

We present 2Columns1Row, the first open-source
benchmark for TableQA in Russian, which covers
the model’s ability to reason about the relationships
between rows and columns in a table using both tex-
tual and multimodal modalities. This benchmark
offers a comprehensive and dynamic tool for evalu-
ating and improving model performance, thereby
advancing the field of Intelligent Document Pro-
cessing. It assesses textual and multimodal models
across diverse tables, demonstrating the viability
of a dynamic text-based system for table under-
standing. The findings highlight significant oppor-
tunities for enhancing table understanding and rea-
soning, establishing a strong foundation for future
research in this critical area of document process-
ing.
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Limitations

While the 2Columns1Row benchmark provides a
comprehensive foundation for table analysis tasks
in Russian, it possesses several limitations that we
plan to address in future work.

Task Scope and Complexity The current ver-
sion of 2Columns1Row focuses primarily on un-
derstanding column and row relationships, a task
that has become relatively straightforward for state-
of-the-art models. To offer a more rigorous evalua-
tion, we intend to expand its scope to include more
complex tasks such as table summarization, multi-
step reasoning, and integration with autonomous
AI agents.

Real-World Data and Dynamic Structure The
benchmark relies on a synthetically generated
dataset, which allows for controlled evaluation but
lacks the diversity and structural complexity of
real-world tabular data (e.g., multi-level headers,
merged cells, and larger scales). The questions
and answers in the current dataset are generated
algorithmically. While this ensures consistency
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and scale, it may limit the linguistic diversity and
complexity of queries. Importantly, the generation
process incorporates a uniform prior; it does not
inherently favor or "teach to" any specific class of
models, ensuring a fair and unbiased evaluation
framework.

A key direction for future work is to incorporate
complex, real-world datasets to better reflect the
challenges of practical applications and to enhance
the naturalness and difficulty of the queries. Fur-
thermore, developing a dynamic benchmark struc-
ture is crucial for mitigating data contamination
and leakage issues in future evaluations.

Ethical Statement

We respect intellectual property rights and comply
with relevant laws and regulations. The data in the
benchmark is synthetically generated or publicly
available, and we have taken careful measures to
ensure that the documents in our dataset do not
contain any sensitive personal information.

Use of AI-assistants We use Grammarly to cor-
rect errors in grammar, spelling, rephrasing, and
style in the paper. Consequently, specific text
sections may be identified as machine-generated,
machine-edited, or human-generated and machine-
edited.
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A Table examples from 2Columns1Row
datasets

Examples of synthetically created sets are provided
in the following tables:

• The Person Info dataset (see Table 5) includes
information about individuals, such as: 1)
given names, 2) tax identification information,
3) email addresses, 4) date of birth, 5) identi-
fication number, 6) date of registration, and 7)
mobile phone numbers.

• The Colors (see Table 6) dataset contains six
columns of color values in the hexadecimal
format #RRGGBB.

• The Numbers (see Table 7) set consists of
floating-point numbers formatted to six deci-
mal places presented in 8 columns.

• The Company Info (see Table 8) dataset in-
cludes the company’s name, address, fax num-
ber, and other relevant information.

• The Word Sequences (see Table 9) dataset con-
tains words and their combinations from Wik-
tionary for Russian, along with their parts of
speech.

B Heatmap examples for error analysis

Heatmap visualization examples of the Colors
dataset for Llama-3.1-405B, (see Figure 10),
GigaChat-Max (see Figures 11, 12), Qwen-2.5-
32B (see Figures 13, 14), Qwen-2.5-VL-72B (see
Figures 15, 16), and Llama-3.2-90B-Vision (see
Figures 17, 18) on various table widths/heights are
provided.
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Figure 5: Table from the Person Info dataset. The columns of the table correspond to: 1) given names, 2) INN (tax
ID), 3) Email, 4) date of birth, 5) ID, 6) date of registration, 7) mobile phone.
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Figure 6: Table from the Colors dataset.

Figure 7: Table from the Numbers dataset.
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Figure 8: Table from the Company Info dataset. The columns of the table correspond to: 1) Phone numbers, 2)
Name, 3) the date of creation, 4) fax, 5) OGRN (id), 6) address, 7) company email.
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Figure 9: Table from the Word Sequences dataset. The columns of the table correspond to: 1) sentence, 2) adverb, 3)
action, 4) gerund, 5) the set of words, 6) adjective.
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Figure 10: Llama-3.1-405B. Colors dataset. The Coverage metric. W × (q − t) visualization

Figure 11: GigaChat-Max. Colors dataset. The Coverage metric. W × r visualization
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Figure 12: GigaChat-Max. Colors dataset. The Coverage metric. W × (q − t) visualization

Figure 13: Qwen-2.5-32B. Colors dataset. The Coverage metric. W × r visualization
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Figure 14: Qwen-2.5-32B. Colors dataset. The Coverage metric. W × (q − t) visualization

Figure 15: Qwen-2.5–VL-72B. Colors dataset. The Coverage metric. W × r visualization
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Figure 16: Qwen-2.5–VL-72B. Colors dataset. The Coverage metric. W × (q − t) visualization

Figure 17: Llama-3.2-90B-Vision. Colors dataset. The Coverage metric. W × r visualization
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Figure 18: Llama-3.2-90B-Vision. Colors dataset. The Coverage metric. W × (q − t) visualization
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