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Abstract

Recently, Agentic AI has become an increas-
ingly popular research field. However, we ar-
gue that current agent research practices lack
standardization and scientific rigor, making it
hard to conduct fair comparisons among meth-
ods. As a result, it is still unclear how different
design choices in agent frameworks affect effec-
tiveness, and measuring their progress remains
challenging. In this work, we conduct a sys-
tematic empirical study on GAIAbenchmark to
examine the impact of popular design choices
in key agent components in a fair and rigorous
manner. We find that the lack of a standard eval-
uation protocol makes previous works, even
open-sourced ones, non-reproducible, with sig-
nificant variance between random runs. There-
fore, we introduce a more robust evaluation
protocol to stabilize comparisons. Our study
reveals which components and designs are cru-
cial for effective agents, while others are re-
dundant, despite seeming logical. Based on
our findings, we build and open-source OA-
GENTS, a new foundation agent framework that
achieves state-of-the-art performance among
open-source projects. OAGENTS offers a mod-
ular design for various agent components, pro-
moting future research in Agentic AI.

1 Introduction

In recent years, language agents (Significant-
Gravitas, 2023; Wu et al., 2023; Roucher et al.,
2025; Li et al., 2023; Zhou et al., 2023b; Xie et al.,
2023; Zhou et al., 2024) have received significant
attention due to their potential in resolving general,
complex tasks that traditionally required human
intervention. However, despite the surge in the
number of research works and open-sourced agent

* Equal Contribution.◇ Work done during internship at OPPO.
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Zhou.

frameworks, current practices in Agentic AI re-
search are far from being rigorous and scientific.
Specifically, the current landscape of agent research
suffers from a lack of standardized designs and im-
plementation details. Critical components such as
planning (Yao et al., 2023; Shinn et al., 2023; Liu
et al., 2024), memory (Zhou et al., 2023a; Zhang
et al., 2024; Xu et al., 2025), and tool use (Qin
et al., 2024; Wang et al., 2024) vary widely across
different papers and frameworks, making it difficult
to attribute performance improvements to specific
innovations. Compounding this issue, reported re-
sults are often hard to reproduce due to inconsistent
evaluation settings or undisclosed framework con-
figurations (Hu et al., 2025; at Ant Group, 2025).
This fragmentation undermines the scientific rigor
of the field, as findings cannot be reliably compared
or built upon.

Take the widely researched GAIA Bench-
mark (Mialon et al., 2023) as an example. De-
spite the organizers provide a public leaderboard
with evaluation code and a number of papers and
projects being open-sourced, it is still very hard, if
not impossible, for other researchers to reproduce
their results because a number of inconspicuous
factors are not standardized, including the imple-
mentation details of tools and prompts, as well as
details in the evaluation protocol such as how many
runs are performed, how errors and failures are
handled, and how different results are ensembled
or aggregated. These factors often lead to a large
impact on the overall performance, sometimes the
impact is even larger than some new architecture
innovations in new research papers. However, they
are generally not mentioned in the technical reports
of different agent frameworks and are not even in-
cluded in their open-sourced codebases. Moreover,
the engineering design and details in different agent
research papers and codebases are so large that it
makes it impossible to conduct apples-to-apples
comparisons on specific technical designs. This
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makes it very hard for the research community on
agentic AI to properly conduct scientific research
instead of digging into tricks on engineering details
and evaluation protocols. As a result, despite a
lot of agent research papers being released and the
numbers on public benchmarks keeping increasing,
the best practices on building effective agents are
still very obscure.

In this work, to promote truly scientific research
on agentic AI and provide researchers with a clear
understanding of key factors in building effective
agents, we conduct a systematic empirical study on
the GAIA benchmark to sort out the core design
choices in current agent research, analyze their im-
pact on performance, and report practical tips for
improving experimental stability and reproducibil-
ity. Specifically, we: (1) carefully implement and
compare different designs on key agent compo-
nents including planning, tool use, memory, test-
time scaling strategies, etc., (2) systematically in-
vestigate the impacts of different LLM backbones
and their combinations; (3) thoroughly analyze dif-
ferent practices for evaluation and provide a more
robust evaluation protocol.

Based on the empirical study, we implement
and release OAGENTS, a language agent frame-
work that achieves state-of-the-art performance
among open-sourced agent frameworks on the
GAIA benchmark. More importantly, OAGENTS

supports modularized integration of almost all crit-
ical designs and features in critical components
of language agents, including: (1) different agen-
tic planning mechanisms including static and dy-
namic workflow designs; (2) a complete tool box
including web search with different search sources,
browsing tools and web crawlers, parsing tools
compatible with more document types. (3) dif-
ferent design of the agentic memory module; (4)
test-time scaling strategies for agents including dif-
ferent search algorithms and reflection/self-refine
mechanisms. Hopefully, OAGENTS will facilitate
scientific research on language agents by promot-
ing apple-to-apple comparisons and standardizing
evaluation protocols.

In summary, our main contributions are as fol-
lows.

(1) We present a comprehensive agent frame-
work - OAGENTS. OAGENTS encompass periodi-
cally revised plan generation, fine-grained task de-
composition & simultaneous execution, optimiza-
tion of multi-source web browsing, enhanced docu-
ment parsing, and adaptive memory mechanisms

that collectively enhance performance across var-
ious tasks, ranking 1st among open-source agent
frameworks on the GAIA benchmark.

(2) We conduct a systematic empirical study
and performance analyzes based on the OAGENTS

framework, offering principles to decompose, ana-
lyze and optimize agent designs, uncovering opti-
mal architectural choices and key factors influenc-
ing experimental stability.

(3) We introduce practical techniques for reduc-
ing experimental variance, including optimization
of inference parameters and majority voting strate-
gies, enabling a more reliable and consistent evalu-
ation of agent performance.

2 Related Work

Existing work primarily develops agent frame-
works along two dimensions: Role specializa-
tion paradigms construct collaborative networks
through differentiated tool allocation (e.g., Auto-
GPT (Significant-Gravitas, 2023), AutoGen (Wu
et al., 2023), and Camel (Li et al., 2023)) or func-
tional partitioning(e.g., Barcelona2, Omne, Agen-
tIM ). Smolagents (Roucher et al., 2025) com-
bines the ReAct (Yao et al., 2023) and Code
Act (Wang et al., 2024) architectures to build a
multi-functional agents hierarchy to perform multi-
ple rounds of interactions and actions in code to ac-
complish complex tasks. Magentic-One (Fourney
et al., 2024) achieves efficient processing of vision-
language tasks by decoupling perception (Yang
et al., 2023a,b), planning (Song et al., 2023; Torde-
sillas and How, 2021), and execution modules (Qin
et al., 2024; Wang et al., 2024). Dynamic orchestra-
tion mechanisms include Trase-Agent (Trase, 2024)
which proposes task reallocation strategies based
on real-time feedback, while TapeAgents (Bah-
danau et al., 2024) employs an asynchronous
communication framework to enhance system re-
silience. Experimental evidence suggests that sta-
ble sub-agent environment interactions provide
greater task success rates than complex orchestra-
tion algorithms. AutoAgent (Tang et al., 2025)
enables intelligent task execution and personal-
ized agent creation without coding through the
core components such as natural language-driven
multi-agent coordination, customizable workflows,
and self-managing file systems. Hybrid archi-
tecture exploration is exemplified by h2oGPTe-
Agent (H2O.ai, 2024), which transfers single agent

These are closed-source framworks.
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Figure 1: The key components of the OAGENTS framework, including planning, memory, tools, and test-time
scaling.

optimization techniques to multi-agent scenarios,
achieving over 70% accuracy in code generation
tasks. However, it still encounters significant bot-
tlenecks in cross-modal tasks.

3 Building Effective Agents

Table 1: Performance of various agent frameworks on
the GAIA benchmark.

Framework Model Family Avg. Level 1 Level 2 Level 3

Agentic Model

Search-o1-32B - 39.8 53.8 34.6 16.7
WebThinker-32B-RL - 48.5 56.4 50.0 16.7

Closed-source Agent Frameworks

Langfun Agent Claude-3-7 etc. 71.52 83.02 68.60 57.69
TraseAgent Claude etc. 70.30 83.02 69.77 46.15
Deep Research Unknown 67.36 74.29 69.06 47.60
h2oGPTe Claude-3.5 63.64 67.92 67.44 42.31
Desearch GPT-4o 56.97 71.70 58.14 23.08

Open-Source Agent Frameworks

OWL - Workforce Claude-3-7 etc. 69.09 84.91 67.44 42.31
OWL-Roleplaying 4o & o3-mini etc. 58.18 81.14 54.65 23.08
TapeAgents Claude-3-7 etc. 55.76 71.70 53.49 30.77
AutoAgent Claude-3-5 etc. 55.15 71.70 53.40 26.92
Open Deep Research OpenAI o1 55.15 67.92 53.49 34.62
Smolagents Openai o1 etc. 53.33 62.26 54.65 30.77
Magnetic-1 OpenAI o1 etc. 46.06 56.60 46.51 23.08
FRIDAY GPT-4 turbo 34.55 45.28 34.88 11.54

OAGENTS Claude-3-7 etc. 66.67 77.36 66.28 46.15
OAGENTS-Pass@3 Claude-3-7 etc. 73.93 83.02 74.42 53.85

We present a dual-axis analytical paradigm for
architecting cognitive agents in open-world envi-
ronments, focusing on two orthogonal evaluation
dimensions: factual acquisition capacity (FAC)
and logical reasoning fidelity (LRF). The FAC axis
quantifies an agent’s proficiency in assimilating
and updating domain-specific knowledge from dy-
namic information streams, while the LRF axis
measures its capability to maintain rigorous causal

relationships and deduction chains during complex
problem-solving. Through systematic examination
of these complementary dimensions, we establish
methodological guidelines for 1) Enhancing envi-
ronmental perception through adaptive knowledge
integration and 2) Ensuring decision-making ro-
bustness via verifiable inference processes. This
bifocal approach addresses the fundamental chal-
lenges of balancing empirical learning with formal
reasoning in autonomous artificial systems operat-
ing under partial observability.
Factual Acquisition Capacity. FAC evaluates an
agent’s ability to retrieve, validate, and integrate
external knowledge from dynamic sources (e.g.,
web, files, APIs), building on prior work in factual
grounding and knowledge retrieval accuracy. This
capacity is fundamentally governed by the tools
component, which include:
• Tool Heterogeneity: Diversity of integrated re-

sources (e.g., search APIs, vision and audio mod-
ules) defining accessible knowledge domains.

• Orchestration Scalability: Architectural capac-
ity to manage concurrent tool utilization and
cross-modal data fusion.

Empirical boundaries emerge directly from toolset
limitations, establishing hard constraints on factual
knowledge acquisition.
Logical Reasoning Fidelity. LRF assesses an
agent’s capacity to maintain coherent causal rea-
soning and deduction chains during complex tasks,
drawing from research on multi-step inference, rea-
soning robustness, and structured planning. The
framework establishes formal foundations for sta-
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ble and coherent decision-making through synergis-
tic integration of three constitutive elements: Plan,
Memory, and Test-Time Scaling. This triadic archi-
tecture manifests distinct operational principles per
component:
• Plan: Maintains cognitive consistency through

temporal synchronization between algorithmic
planning strategies and memory-encoded experi-
ential patterns.

• Memory: Ensures behavioral coherence through
persistent state representations that anchor plan-
ning operations across decision episodes.

• Test-Time Scaling: Facilitates adaptive re-
silience by leveraging real-time performance di-
agnostics to dynamically recalibrate operational
parameters.

3.1 Factual Acquisition Capacity (FAC)
Factual acquisition competence enables agents to
systematically gather, verify, and integrate external
knowledge via diverse tools. This capacity is funda-
mentally bounded by two critical operational vec-
tors: multimodal tool interoperability and search
tool efficacy, which jointly define the epistemic
frontiers of agent-environment interactions.

We focus on quantifying current capability ceil-
ings through two investigative lenses:
• Multimodal tool constraints: Characterizing tem-

poral alignment errors and modality fusion bot-
tlenecks in cross-domain information synthesis.

• Search tool limitations: Evaluating knowledge
coverage gaps imposed by Search API con-
straints, index freshness thresholds, and seman-
tic disambiguation failures in web-scale data re-
trieval.

3.1.1 Multimodal Toolkit
To address the limitations in contextual understand-
ing faced by current agent systems, a multimodal
toolkit is employed that integrates capabilities for
processing text, speech, images, and video. Unlike
traditional frameworks that rely solely on unimodal
conversion to transform non-textual content into
textual descriptions, this approach enables synchro-
nized and cross-modal semantic parsing:

Response = A(xtext,Timage(I),Tvideo(V )) (1)

where A is the agent function, xtextis the textual in-
put, and Timage,Tvideo are tool functions that extract
features from images I and videos V , respectively.
This capability enhances the agent’s ability to ac-
quire and interpret factual information in complex,

real-world scenarios through direct interaction with
multimodal inputs.

3.1.2 Search Agent Framework
Web search enables LLM-agents to address real-
time information needs and expand epistemic
boundaries. We optimize three subsystems: (i)
Multi-source retrieval, (ii) Query refinement, and
(iii) Minimalist browsing architecture via the
Search Agent framework.
Multi-Source Search. To mitigate single-source
bias, we integrate commercial APIs (Google,
Bing) and archival systems (Wayback Machine
CDX API). Source selection is state-aware, driven
by query temporal constraints (historical/real-
time) and domain requirements (academic/commer-
cial). Historical retrieval uses structured 〈url,date〉
queries to Internet Archive’s temporal index.
Query Optimization Pipeline. Closed-loop refine-
ment combines semantic calibration (REFLECT)
with morphological expansion (EXPAND):

Qopt = REFLECT(Qinit,Mtask) → EXPAND(Qopt, Lterm) (2)

where REFLECT(⋅) resolves semantic ambiguities
by calibrating specificity through prompt-based
constraints and logical simplification guided by
predefined rewrite rules, while EXPAND(⋅) gener-
ates morphological and semantic variants via stem-
ming or lemmatization transformations, as well as
domain-specific synonym expansion (e.g., COVID-
19 → SARS-CoV-2).
Minimalist Browsing. Conventional frameworks
suffer from tool overload. We reduce complexity
to three atomic functions: Search (query): Find
relevant web pages to the query from search en-
gines. Visit (url): Navigate to the webpage
corresponding to url and Read (url, mode): Ex-
tract contens in a page and present observations.

3.2 Logical Reasoning Fidelity (LRF)
In this section, we investigate three key strategies
to improve logical reasoning in agents: dynamic
plan generation and task decomposition, memory-
augmented knowledge system, and test-time scal-
ing for exploration optimization. These approaches
address challenges in logical consistency, environ-
mental adaptability, and efficiency-accuracy trade-
offs.

3.2.1 Dynamic Plan Generation
Strategic Plan Review. To enhance agents’ com-
plex task management, planning modules gen-
erate high-level plans P = (s1, s2, ..., sn) that
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decompose tasks into executable steps, improv-
ing reasoning efficiency. Execution follows the
ReAct framework, alternating reasoning rt and
actions at. For adaptability in dynamic envi-
ronments, plans are revised every N steps us-
ing recent observations {ot−N+1, ..., ot}): P ′ =
revise(P,{ot−N+1, ..., ot}) This iterative planning-
execution loop sustains goal-directed behavior and
strengthens long-term decision-making.
Subtask Decomposition. To enhance systematic
reasoning in planning modules, we propose hi-
erarchical task decomposition: The agent breaks
down the main goal G into interdependent subtasksS = (s1, s2, ..., sn) and constructs a dependency
graph D = (S, ε), where edges eij ∈ ε encode
precedence constraints. At each reasoning step
t, dynamic scheduling selects executable subsetsSt ⊆ S satisfying all dependencies in D. Interme-
diate outputs from completed subtasks are formal-
ized as structured knowledge representations i ∈ K,
which are cross-validated against global constraints
C(G). A validity function ensures alignment with
the overarching goal:

valid (κi) = { true, if κi ⊧ C(G)
false, otherwise

(3)

This mechanism enables error detection through
consistency checks, strengthens long-horizon rea-
soning, and improves decision-making resilience
in complex environments.
Plan Tips. To augment planning capabilities, we
propose integrating experiential knowledge from
historical execution trajectories τ{(st, at, rt)}Tt .
Analysis of past attempts reveals common bottle-
necks and failure patterns, which are distilled into
heuristic guidelines H = {h1, h2, ..., hm} as soft
constraints for the planner. These domain-specific
heuristics influence action selection during plan-
ning through an augmented policy:

πθ (at ∣ st,H) = softmax (Q (st, at) + β ⋅ fH (st, at))
(4)

where fH(⋅) encodes the influence of heuristics and
β controls their weight. This integration enables
preemptive avoidance of known pitfalls, enhances
robustness in plan generation, and improves adapt-
ability to dynamic environments by embedding em-
pirical knowledge into decision-making.

3.2.2 Memory-augmented Knowledge System
The hierarchical memory module enhances agent
cognition through four components: Current Mem-
ory, Memory Summarization, Vectorized Retrieval,

and Long-Term Memory, each addressing distinct
aspects of perception and decision-making.
Current Memory. Serves as a short-term buffer
storing temporally ordered task-specific informa-
tion M c = {(st, at)tt−τ}, for real-time processing
and on-the-fly decisions.
Memory Summarization. This component trans-
forms raw experience sequences into structured
semantic units using topic modeling and sequence-
to-sequence generation:

zi = Summarize({(st, at, rt)ti+1t }) (5)

where zi denotes a memory summarization. By
extracting high-salience knowledge, it facilitates
efficient downstream processing.
Vectorized Memory Retrieval. This component
retrieves beneficial historical memories via vec-
tor similarity. Specifically, the execution log of
each step is embedded into a shared latent space E :E(x) = Encode(x). Contextually relevant memo-
ries are then retrieved based on vector similarity:

Mretrieved = argmax
m∈M sim(E(q),E(m)) (6)

Long-Term Memory. Addresses challenges in
lengthy reasoning chains and contextual redun-
dancy during task execution by integrating his-
torical insights. Updates occur through fusion of
current memory with existing long-term knowl-
edge, enabling continuous optimization recommen-
dations for task execution.

These components form a structured framework
that organizes, stores, and retrieves knowledge at
multiple abstraction levels, helping the agent per-
form effectively in complex environments.

3.2.3 Test-Time Scaling
The Test-Time Scaling (TTS) module enhances
agent capabilities through three mechanisms: diver-
sity enhancement, optimization, and reward model-
ing.
Diversity Enhancement. A mixture-of-agents
sampling strategy combines multiple LLM policies
πθi with weights αi:

at ∼ K∑
i=1αi ⋅ πθi (⋅ ∣ st) (7)

This exploits inter-model diversity to generate
broader solution spaces and improve outcome qual-
ity.

13358



Optimization. The TTS module guides agent
reasoning through process-based reward functions
rt = R(st, at) that assess task progression, error
handling, and efficiency at each step. Rewards are
temporally aggregated as:

Rtotal = T∑
t=1γ

trt (8)

providing continuous feedback to refine reasoning
trajectories and improve solution accuracy.
Reward Modeling. The TTS module enables
real-time reflection for adaptive problem-solving
through::

ct = Reflect({(sτ , aτ)}tτ=1) (9)

where ct captures corrective insights from past
steps, improving error detection and on-the-fly ad-
justments to enhance overall performance.

4 Empirical Study

4.1 Experimental Setup
GAIA(Mialon et al., 2023) presents real-world chal-
lenges that demand essential skills like reasoning,
handling multi-modal inputs, web browsing, and
overall proficiency in tool-calling. True answers
are provided for each question, and the correct-
ness of the model response is evaluated with exact
match. Due to the instability and randomness of
networked experiments, we allow the model to re-
answer a question when the answer given by the
model is empty or contains “Unable to determine”
specified in the prompt. However, recalling incor-
rect answers is illegal. The evaluation protocol
and implementation details can be found in Ap-
pendix A.

4.2 Main results
The results in Table 1 reveal several key insights
into the performance landscape across various
agent frameworks on the GAIA benchmark. No-
tably, our method (OAGENTS-Pass@3) achieves
the highest overall average score of 73.93%, out-
performing all other frameworks, including both
closed-source and open-source systems. This high-
lights the robustness and effectiveness of our agent
design.

In terms of Level 1 task performance, our
method reaches 83.02%, tying with the best-
performing frameworks and establishing a new
standard for esay task handling. This superior per-
formance reflects the reliability and consistency

of our low-level agents and the underlying Sys-
tem Utilities.When compared with leading closed-
source agents like Langfun Agent (71.52%) and
TraseAgent (70.30%), our method shows a clear
edge in both average and Level 2 accuracy. Finally,
in the open-source domain, OAGENTS-Pass@3
demonstrates a significant margin over the best
alternative, OWL-Roleplaying-Pass@3 (58.18%),
reaffirming our method’s leading position among
publicly available systems. Overall, these results
validate our approach as a state-of-the-art solution
for generalist agent tasks.

We replicate Open Deep Research (LangChain,
2024) and note the results as “Smolagents”, and the
performance of the replication shows a significant
degradation. This indicates that the reproducibility
of the current agencies framework is poor.

4.2.1 FAC Evaluations
Multimodal Toolkit. We have refined text extrac-
tion tools with format-specific strategies tailored
for various document types (pdf, xlsx, and etc.).
For audio inputs, we employ the whisper-1 speech-
to-text model to generate accurate transcriptions.
For video content, we implement a pipeline com-
bining keyframe extraction with vision-language
models for temporal and contextual analysis. Im-
portantly, we incorporate a multi-source image un-
derstanding module, which leverages multiple vi-
sion language models source to understand visual
features. Evaluated on the GAIA dataset (Table 2),
our toolkit achieves a cross-modal task accuracy
of 74.07%, outperforming the baseline system’s
48.15%. Notably, in audio question-answering sub-
tasks, temporal reasoning accuracy improves from
0% to 100% (3/3). These results demonstrate that
a deeply optimized multimodal architecture can ef-
fectively bridge modality gaps in intelligent agent
systems.

Findings 1

The multimodal toolkit’s superiority stems
from its ability to bridge modality-specific
information gaps through synchronized se-
mantic parsing.

Search Agent. Our empirical analysis quantita-
tively evaluates how search infrastructure design
affects the performance of GAIA. As shown in Ta-
ble 3, Jina reader outperforms raw HTML parsing
by 9.3% in Level 2 tasks. Its structured text extrac-
tion benefits mid-complexity factual acquisition,
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Table 2: Performance (%) of OAGENTS before and after
integrating multimodal toolkit.

Method
GAIA multimodal tasks

Sum Audio Image Tubular

Task number 27 3 10 14

OAGENTS 48.15 0.00 40.00 64.29
OAGENTS + Toolkit 74.07 100.00 60.00 78.57

highlighting preprocessing’s role in enhancing re-
trieval quality.

Table 3: Performance comparison of browsing methods
on GAIA benchmark. All results are obtained using
information retrieved from Google Search.

Browsing Method
GAIA

Average Level 1 Level 2 Level 3

Text web browser 44.20 54.71 43.02 26.92
Raw reader 49.70 64.51 46.51 30.76
Crawler crawl4ai 50.90 67.92 51.16 15.38
Jina reader 51.52 67.92 48.83 26.92

From Table 4, integrating complementary search
engines (DuckDuckGo, Baidu, Bing) consistently
improves retrieval accuracy, with the largest gain
in Level 3 tasks (+7.69%). This indicates that di-
versifying information sources mitigates individual
engine limitations, particularly in complex retrieval
scenarios.

Table 4: OAGENTS performance of different search
source configurations on GAIA. Note that “single-
source” refers to Google only. “Multi-source (k = 3)”
includes Google, Wikipedia, and DuckDuckGo. “multi-
source (k = 5)” further adds Bing and Baidu as addi-
tional search sources.

Search Method
GAIA

Average Level 1 Level 2 Level 3

Single-source 51.52 67.92 48.83 26.92
Multi-source (k = 3) 52.12 67.92 50.00 26.92
Multi-source (k = 5) 55.15 67.92 53.49 34.61

The proposed query optimization strategy, com-
bining reflection and expansion mechanisms, sig-
nificantly enhances system performance (Table 5).
It yields a 7.55% improvement in Level 1 and
2.31% in Level 2, underscoring the effectiveness of
refined query formulation in improving search out-
comes. Finally, the minimalist system architecture
demonstrates competitive performance, supporting
the hypothesis that reduced interface complexity
can improve robustness without sacrificing func-
tionality.

Table 5: OAGENTS performance comparison of query-
optimization configurations on GAIA.

Query Optimization
GAIA

Average Level 1 Level 2 Level 3

Raw data 55.15 67.92 53.49 34.61
Reflection-Expansion 58.18 75.47 55.80 30.76

Findings 2

Multi-source retrieval and query optimiza-
tion mitigate epistemic biases by diversi-
fying knowledge acquisition and refining
semantic precision.

OAGENTS. By integrating an optimized search in-
frastructure with a multimodal toolkit, and employ-
ing the Jina reader with multi-source (k = 5) strate-
gies, our OAGENTS achieves strong improvement
s on the GAIA benchmark across diverse base mod-
els. With GPT-4o, OAGENTS improves the overall
score by 8.09%, including a 7.69% gain in Level
3 tasks. Gemini-2.5 shows a 9.09% average im-
provement, with Level 3 jumping 19.24%, confirm-
ing the effectiveness of the multimodal toolkit and
refined search agent. Notably, Claude-3-7 gains
20.61%, the highest observed boost, demonstrating
the framework’s adaptability to models with vary-
ing baseline performance. The integrated design
enhances FAC through advanced search and multi-
modal capabilities, establishing a solid foundation
for knowledge-intensive agent systems. These re-
sults confirm that FAC improvements significantly
elevate intelligent agent performance across archi-
tectures.

4.2.2 LRF Evaluations
Dynamic Plan Generation. The results in Table 7
show that our planning and workflow design signif-
icantly enhance GPT-4.1’s ability to solve complex
tasks. Strategic plan review (baseline) improves
overall accuracy by 3.64% over the static work-
flow, confirming that dynamic plan revision sup-
ports better adaptability and long-term reasoning.
Subtask Decomposition achieves a 2.42% improve-
ment over baseline, demonstrating that breaking
down tasks into structured subtasks enhances sys-
tematic reasoning, particularly for tasks of mod-
erate complexity. The Plan tips are summarized
from analysis of historical error logs and incor-
porate heuristic knowledge gained from past fail-
ures. They contribute to a 14.54% performance
improvement, proving that leveraging prior expe-
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Table 6: OAGENTS performance of various base models
on GAIA.

Model Type
GAIA Score

Average Level 1 Level 2 Level 3

GPT-4o
Baseline 36.97 54.72 34.88 7.69
Advance 45.06 62.26 45.35 15.38

Gap ↑ 8.09 ↑ 7.54 ↑ 10.47 ↑ 7.69

GPT-4.1
Baseline 44.20 54.71 43.02 26.92
Advance 55.15 67.92 53.49 34.62

Gap ↑ 10.95 ↑ 13.21 ↑ 10.47 ↑ 7.70

OpenAI-o1
Baseline 49.70 54.72 53.49 26.92
Advance 53.94 67.92 52.33 30.77

Gap ↑ 4.24 ↑ 13.20 ↓ 1.16 ↑ 3.85

Claude-3-7
Baseline 38.18 56.60 36.05 7.69
Advance 58.79 64.15 61.63 38.46

Gap ↑ 20.61 ↑ 7.55 ↑ 25.58 ↑ 30.77

DeepSeek-R1
Baseline 33.90 45.28 33.72 11.54
Advance 49.70 62.26 50.00 23.08

Gap ↑ 15.80 ↑ 16.98 ↑ 16.28 ↑ 11.54

Gemini-2.5
Baseline 49.09 69.81 46.51 15.38
Advance 58.18 73.58 55.81 34.62

Gap ↑ 9.09 ↑ 3.77 ↑ 9.30 ↑ 19.24

rience helps prevent errors and build more robust
plans. This is especially important for high com-
plexity tasks. Together, these components signifi-
cantly enhance the system’s planning capabilities
for complex reasoning.

Findings 3

Adaptive planning enhances long-horizon
reasoning by balancing top-down task de-
composition with bottom-up feedback inte-
gration.

Table 7: OAGENTS performance evaluation of plan
studies on GAIA. Note that Static workflow refers to
a scenario in which all tasks follow the same manually
designed workflow.

Model combination
GAIA

Average Level 1 Level 2 Level 3

OAGENTS 51.52 67.92 48.83 26.92
r.p. Static workflow 47.88 62.26 47.67 19.23
+ Subtask 53.94 71.70 51.16 26.92
+ Plan tips 66.06 79.25 66.28 38.46

Memory. From Figure 2, adding memory summa-
rization slightly improved average accuracy from
51.52% to 52.12%. With memory retrieval, per-
formance increased further to 53.33%. The most
significant gain came from long-term memory, rais-
ing the average to 55.76%, while also achieving
the competitive results across all difficulty levels.
Memory summarization transforms raw experience
sequences into distilled semantic units.

For Level 1 tasks, summarization is the most
straightforward way to achieve optimal perfor-
mance. However, the performance dip in Level
3 suggests that memory summarization erases too
much details and the agent is unable to learn from
past failures. Vectorized memory retrieval based
on vector similarity enables the agent to retrieve
contextually relevant memories efficiently. The per-
formance of vector retrieval in OAGENTS may be
limited by the memory slicing approach and the
prior knowledge of the encoder model. Long-term
memory integrates historical insights and generates
optimization recommendations for task execution.
This allows OAGENTS to continuously learn and
improve over time, based on its accumulated expe-
riences. By fusing current memory with existing
long-term memory, OAGENTS can leverage both
recent and past knowledge to make more informed
decisions, which is crucial for complex reasoning
tasks that require a deep understanding of the con-
text and history.

Findings 4

Hierarchical memory enhances context re-
tention by separating short-term processing
from long-term knowledge preservation.

Average Level 1 Level 2 Level 30
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OAgents
+ Summary
+ Memory Retrieval
+ Long Term Memory

Figure 2: OAGENTS performance evaluation of various
memory methods on GAIA.

Test-Time Scaling. As shown in Figure 3, we
conduct an ablation study to examine how test-
time scaling (TTS) strategies influence the perfor-
mance of OAGENTS across different task com-
plexities. Reflection leads to a moderate overall
improvement (3.03%), yet its effects vary across
task levels. While it enhances performance on
Level 1 and Level 2 tasks through iterative rea-
soning, it unexpectedly degrades results on Level
3 tasks by 6.62%, suggesting potential instability
or error accumulation in complex reasoning chains.
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Best-of-N sampling demonstrates more consistent
gains, with performance improving as the sample
size increases. BO2 yields modest improvements
(1.82%), while BO4 achieves the best overall per-
formance (5.19%), particularly benefiting simpler
tasks (Level 1: 9.44%, Level 2: 10.46%). This indi-
cates that answer diversification helps in navigating
simpler solution spaces more effectively.

OAgents + Reflection + BO2 + BO420

30

40

50

60

70

80

Sc
or

e 
(%

)

Average Level 1 Level 2 Level 3

Figure 3: OAGENTS performance evaluation of TTS
methods on GAIA.

Nonetheless, neither strategy substantially im-
proves performance on Level 3 tasks, underscoring
the persistent difficulty in achieving robust multi-
step reasoning at scale. These findings reveal that
TTS strategies exhibit differential effectiveness de-
pending on task complexity—offering clear bene-
fits for straightforward tasks but requiring further
innovation to address advanced reasoning chal-
lenges.

Findings 5

Test-time scaling improves solution robust-
ness by leveraging model diversity and iter-
ative self-refinement.

5 GAIA Benchmark

The GAIA benchmark has emerged as a promi-
nent evaluation framework for assessing the perfor-
mance of autonomous agents in real-world scenar-
ios. As the leaderboard for this benchmark contin-
ues to grow, it becomes increasingly evident that re-
ported results often vary in terms of evaluation met-
rics—particularly in the use of different Pass@K
criteria. While some methods report Pass@1, oth-
ers adopt more lenient metrics such as Pass@3 or
even Pass@5. This inconsistency complicates fair
comparisons across different agent frameworks and
limits the transparency of their actual capabilities.

To address this issue and ensure alignment with
the leaderboard standards, we reimplement the
OWL-Roleplaying framework to obtain its Pass@1

Table 8: Comparison of performance on the GAIA
benchmark under different Pass@K metrics. Note that
"OWL" stands for the open-source role-playing version.

Method Model Metric
GAIA

Average Level 1 Level 2 Level 3

OAGENTS Claude-3-7
Pass@1

66.67 77.36 66.28 46.15
OWL 4o & o3-mini 53.33 71.70 50.00 26.92
AWorld Claude-3-7 61.81 - - -

OAGENTS Claude-3-7
Pass@3

73.93 83.02 74.42 53.85
OWL 4o & o3-mini 58.18 81.14 54.65 23.08

AWorld Claude-3-7 Unknown 77.58 88.68 77.91 53.85

performance for comparison. Additionally, we
evaluated our proposed open-source framework,
OAGENTS, under the Pass@3 setting, as summa-
rized in Table 8. Built upon integrated multi-modal
toolkit, multi-source information retrieval, and test-
time scaling (TTS) strategies, OAGENTS demon-
strates competitive performance among existing
open-source frameworks under the Pass@3 metric.
These results highlight the framework’s effective-
ness in handling complex reasoning tasks and its
strong potential for deployment in real-world ap-
plications requiring robust and scalable reasoning
capabilities.

6 Conclusion

In this work, we conduct a systematic study on the
GAIA benchmark. We identify key components for
effective agents, such as planning, memory, and
tool use, and propose a robust evaluation protocol.
We release OAGENTS, an open-source modular
agent framework achieves state-of-the-art perfor-
mance on GAIA (73.93), providing a foundation
for future research on agent systems.

Limitations

The analysis reveals three core limitations in evalu-
ating reasoning capabilities. Persistent outcome
instability across models and task complexities
emerges, particularly undermining multi-hop rea-
soning robustness. While multi-source retrieval
enhances factual grounding, infrastructural depen-
dencies constrain knowledge fidelity due to in-
herent search architecture limitations. Moreover,
benchmark-centric evaluations (e.g., GAIA) may
lack ecological validity, as structured test envi-
ronments inadequately capture the non-linear cog-
nitive processes required for authentic problem-
solving scenarios, necessitating adaptive frame-
works for dynamic real-world cognition assess-
ment.
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A Experimental Details

Evaluation Protocol. We follow the evaluation protocol of the GAIAbenchmark (Mialon et al., 2023),
which is based on exact match accuracy. The primary metric used is Pass@N, which measures the
probability that at least one correct solution is found among N independent model attempts. This metric
is widely adopted in tasks such as code generation, where the key evaluation criterion is whether the
model can produce a valid solution at least once. In our experiments, unless otherwise stated, we report
the average Pass@1 score, reflecting the model’s performance in generating a correct answer across all
questions within a single evaluation run.
Implementation Details. In both the FAC Evaluations and LRC Evaluations, the baselines are imple-
mented with the integrated multimodal toolkit in OAGENTS. Unless otherwise specified, all models
employed in the agent are based on GPT-4.1 to ensure consistency in model architecture and capabilities
across experiments.

B Additional Evaluations

B.0.1 Generalizability Evaluation
To investigate the generalizability, we evaluate OAgents using two challenging datasets named Browser-
Comp (Wei et al., 2025) and HLE (Phan et al., 2025), on which the base model rarely answered correctly
or scored. As shown in Table 9, our OAgents significantly improved the model’s abilities in search and
information integration.

Table 9: The performance of OAGENTS on BrowseComp-Subset and HLE-Subset.

Model BrowserComp-Subset HLE-Subset

Claude-3-7 4.76% 8.00%
GPT-4.1 7.94% 5.40%
OpenAI-o1 14.29% 8.00%

OAGENTS - GPT-4.1 22.22% 15.43%
OAGENTS - Claude-3-7 22.22% 14.86%

B.1 Statistical Validation

In Table 10, we report the performance of three variants of OAGENTS at avg@3 and their performance in
each run. Where “OAgents w/ Claude3-7” corresponds to Table 1, “Advance w/ GPT-4.1” corresponds to
Table 4, 5, and 6. “LRF Baseline” is the baseline method for all LRF Evaluations including Table 4, 7,
and 8, Figure 2 and 3.

C Details of OAGENTS

C.1 Search Agent

Web search constitutes a foundational capability for LLM-agents to address real-time information needs
and extend their epistemic boundaries. We focus on optimizing three critical subsystems: (i) Multi-source
retrieval, (ii) Query refinement, and (iii) Adaptive browsing – implemented through the SearchAgent
framework.
Multi-Source Search. Contemporary search engines exhibit non-overlapping ranking mechanisms and
temporal coverage limitations. To mitigate single-source bias, our implementation integrates:
• Commercial APIs: Google Custom Search JSON API and Bing Web Search API.
• Archival Systems: Wayback Machine CDX Server API for historical snapshots.
In a state-aware routing mechanism, source selection is autonomously driven by:
• Query temporal constraints (historical vs. real-time).
• Domain-specific coverage requirements (academic vs. commercial).
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Table 10: Statistical evaluation of OAGENTS

Agents Run Overall Level 1 Level 2 Level 3

OAgents w/ Claude3-7

Run 1 66.67 77.36 66.28 46.15
Run 2 63.64 77.36 61.63 42.31
Run 3 62.42 77.36 62.79 30.77
Avg@3 64.24 ± 2.19 77.36 ± 0.00 63.57 ± 2.42 39.74 ± 8.00

Advance w/ GPT-4.1

Run 1 55.15 67.92 53.49 34.62
Run 2 56.97 69.81 55.81 34.62
Run 3 56.97 69.81 54.65 38.46
Avg@3 56.36 ± 1.05 69.18 ± 1.09 54.65 ± 1.16 35.90 ± 2.22

LRF Baseline

Run 1 51.52 67.92 48.83 26.92
Run 2 48.48 60.38 47.67 26.92
Run 3 50.30 62.26 47.67 34.62
Avg@3 50.10 ± 1.53 63.52 ± 3.92 48.07 ± 0.67 29.49 ± 4.44

The historical retrieval tool accepts structured inputs as <url, date> tuples, querying the Internet
Archive’s temporal index through:

Listing 1: Example of construct a CDX query to retrieval archive information.
def fetch_historical_page(url: str , timestamp: str) -> str:

cdx_query = f"http ://web.archive.org/cdx/search/cdx?url={url}& output=json&from={
timestamp}"

Browsing Method. In Table 3, we introduce four browsing methods, including Text web browser, Raw
reader, Crawler, and Jina reader, among which Jina reader performs the best. We would like to make
further explanations here:
• Text web browser is implemented by Smolagents, which feeds paged html files to the model and

lets the model navigate through the web by paging up and down. This approach is not suitable for
knowledge-intensive tasks because it consumes a large number of requests and challenges the model’s
memory and planning capabilities.

• In Raw reader, we enter all the searched web pages into the model at once. The web pages are still
in HTML format, the model is still responsible for parsing the pages implicitly, and the HTML code
blocks consume a sizable context window.

• We build Crawler using crawl4ai to extract rich text from HTML and simplify the model’s optional
operations to query, visit, and read. However, we found that crawl4ai is unable to access or parse some
domain-specific web pages, such as Arxiv and Youtube.

• Jina has stronger access and parsing ability compared to crawl4ai, we construct Jina reader in a similar
way to Crawler, it works best among all browsing methods.

Query Optimization Pipeline. The closed-loop query refinement follows:

Qopt = REFLECT(Qinit,Mtask) → EXPAND(Qopt, Lterm) (10)

where REFLECT(⋅) resolves semantic ambiguities by calibrating specificity through prompt-based con-
straints and logical simplification guided by predefined rewrite rules, while EXPAND(⋅) generates morpho-
logical and semantic variants via stemming or lemmatization transformations, as well as domain-specific
synonym expansion (e.g., COVID-19→ SARS-CoV-2).
Minimalist browsing architecture. Conventional browser emulation frameworks impose cognitive
overhead through excessive tool options. Our streamlined implementation reduces interaction complexity
by:
• Eliminate non-essential operations (e.g., click, scroll, find).
• Consolidate functionality into three atomic tools: Search, Visit, and Read.
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C.2 Strategic Plan Review

In order to improve an agent’s capability to manage complex tasks, the incorporation of a planning
module is of critical importance. Planning module enables the agent to generate a high-level planP = (s1, s2, ..., sn) before execution, breaking down complex tasks into manageable steps and improving
reasoning efficiency. Execution typically follows the ReAct framework, interleaving reasoning and actions:
at each step t, the agent performs either an action at or a reasoning step rt. To ensure adaptability in
dynamic environments, the plan P is periodically revised—every N steps—based on new observations ot,
updating the sequence of subtasks as P ′ = revise(P,{ot−N+1, ..., ot}) This iterative approach supports
sustained, goal-directed behavior and enhances the agent’s long-term reasoning and decision-making
capabilities.

C.3 Subtask Decomposition.

Given the role of the planning module in managing complex tasks, we can further consider a hierarchical
task decomposition mechanism to enhance systematic reasoning. During planning, the agent decomposes
the main goal G into a set of interdependent subtasks S = (s1, s2, ..., sn), and constructs a dependency
graph D = (S, ε), where edges eij ∈ ε represent precedence constraints between subtasks. This structure
enables dynamic scheduling of non-conflicting subtasks at each reasoning step t, formalized as selecting
an executable subset St ⊆ S such that all dependencies in D are satisfied. A key component is the iterative
synthesis of intermediate outputs: results from completed subtasks are formalized as structured knowledge
representations i ∈ K, and refined through cross-validation against global constraints C(G). This process
ensures alignment with the overarching goal and supports error detection and correction via consistency
checks:

valid (κi) = { true, if κi ⊧ C(G)
false, otherwise

(11)

Collectively, these mechanisms strengthen the planning module’s capacity for long-horizon reasoning,
enabling more effective and resilient decision-making in complex environments.

C.4 Plan Tips.

Beyond designing diverse planning strategies, another promising direction lies in enriching the planning
process with additional prior knowledge. By analyzing the execution trajectories τ{(st, at, rt)}Tt of past
attempts, w, we can identify common bottlenecks, failure points, and suboptimal behaviors encountered
by the agent during task realization. These insights can then be distilled into actionable tips or heuristic
guidelines H = {h1, h2, ..., hm}, which are subsequently injected into the planning module as soft
constraints or preferences.

Such domain-specific knowledge serves as supplementary guidance during plan generation, influencing
the selection of actions and subgoals:

πθ (at ∣ st,H) = softmax (Q (st, at) + β ⋅ fH (st, at)) (12)

where fH(⋅) encodes the influence of heuristics and β controls their weight. As a result, the planner is
better equipped to anticipate potential issues, avoid known pitfalls, and construct more robust strategies
for complex problem-solving. This integration of experiential knowledge enhances not only the effec-
tiveness of individual planning steps but also the overall resilience of the agent in dynamic and uncertain
environments.

C.5 Memory-augmented Knowledge System

The hierarchical memory module is designed to enhance the cognitive capabilities of intelligent agents
through four complementary components: Current memory, Memory summarization, Memory retrieval,
and Long-term memory. Each component contributes uniquely to different aspects of perception, reasoning,
and decision-making.
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C.5.1 Current Memory.
As a fundamental default component of the agent, current memory acts as a short-term buffer to capture
fine-grained, task-specific information in real time. This buffer maintains recent observations and actions
in a temporal sequence M c = {(st, at)tt−τ}, enabling the agent to process dynamic environmental inputs
with high fidelity and support on-the-fly decision-making.

C.5.2 Memory Summarization.
This component transforms raw experience sequences into structured semantic units using topic modeling
and sequence-to-sequence generation:

zi = Summarize({(st, at, rt)ti+1t }) (13)

where zi denotes a memory summarization. By extracting high-salience knowledge, it facilitates efficient
downstream processing.

C.5.3 Vectorized Memory Retrieval.
This component retrieves beneficial historical memories via vector similarity. Specifically, the execution
log of each step is embedded into a shared latent space E : E(x) = Encode(x). Contextually relevant
memories are then retrieved based on vector similarity:

Mretrieved = argmax
m∈M sim(E(q),E(m)) (14)

C.5.4 Long-Term Memory.
This component is designed to address the challenges of lengthy reasoning chains and redundant contextual
information when agents perform tasks by integrating key insights from historical reasoning processes and
generating subsequent optimization recommendations. Specifically, the long-term memory component
achieves updates by fusing current memory with existing long-term memory, continuously guiding agents
in task execution.

C.6 Test-Time Scaling
Agent capabilities can be significantly enhanced through the integration of test-time scaling mechanisms,
which dynamically refine decision-making, improve adaptability, and promote more robust exploration.
Test-Time-Scaling (TTS) module contributes to this enhancement by addressing three core aspects:
diversity, optimization, and reward modeling.

C.6.1 Diversity Enhancement.
Enhancing the diversity of reasoning paths is crucial for improving agent performance in complex tasks.
By leveraging a mixture-of-agents sampling strategy:

at ∼ K∑
i=1αi ⋅ πθi (⋅ ∣ st) (15)

where αi denotes the weight of each agent policy πθi , the TTS module exploits differences in capability
profiles across multiple LLMs, generating a broader range of potential solutions and increasing the
likelihood of identifying high-quality outcomes.

C.6.2 Optimization.
To guide agents toward more effective reasoning trajectories, the TTS module introduces process based
reward functions rt = R(st, at), which evaluate each step along the generation path. These multi
dimensional assessments cover key aspects such as task progression, error handling, and efficiency. The
rewards are aggregated over time:

Rtotal = T∑
t=1γ

trt (16)

providing fine-grained feedback that enables iterative refinement and convergence toward more accurate
final responses.
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C.6.3 Reward Modeling.
Real-time reflection and self-correction are essential for adaptive problem-solving. The TTS module
incorporates a reflection mechanism that evaluates intermediate steps during exploration:

ct = Reflect({(sτ , aτ)}tτ=1) (17)

where ct represents corrective insights fed back into subsequent reasoning stages. This iterative refine-
ment enhances the agent’s ability to detect and rectify errors on-the-fly, leading to improved overall
performance.
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