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Abstract

Large language models (LLMs) can spell out to-
kens character by character with high accuracy,
yet they struggle with more complex character-
level tasks, such as identifying compositional
subcomponents within tokens. In this work,
we investigate how LLMs internally represent
and utilize character-level information during
the spelling-out process. Our analysis reveals
that, although spelling out is a simple task
for humans, it is not handled in a straightfor-
ward manner by LLMs. Specifically, we show
that the embedding layer does not fully en-
code character-level information, particularly
beyond the first character. As a result, LLMs
rely on intermediate and higher Transformer
layers to reconstruct character-level knowledge,
where we observe a distinct “breakthrough” in
their spelling behavior. We validate this mech-
anism through three complementary analyses:
probing classifiers, identification of knowledge
neurons, and inspection of attention weights.

1 Introduction

While large language models (LLMs) have grown
remarkably in recent years, several studies report
that they still struggle with fine-grained character-
level manipulations, such as inserting, deleting, or
extracting individual characters within tokens (Ed-
man et al., 2024; Wang et al., 2024; Chai et al.,
2024; Shin and Kaneko, 2024). Although most
LLMs operate over subword tokens, true mastery of
subtoken information is essential for a range of ap-
plications, such as morphological inflection (Marco
and Fraser, 2024), letter counting (Fu et al., 2024),
typoglycemia (Wang et al., 2025), and handling ty-
pos (Tsuji et al., 2025). To improve their reliability
in such scenarios, we must understand how LLMs
internally represent and process characters.

A paradox emerges from prior work: LLMs can
accurately spell out entire tokens as sequences of
characters (Edman et al., 2024; Xiong et al., 2025),
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Figure 1: Summary of our findings. LLMs spell out
tokens by relying directly on embedding-level informa-
tion for the first character, but gradually shift to using
distributed, higher-layer representations for later charac-
ters. We found a “breakthrough” layer where character
knowledge becomes detectable.

while they often fail at simple tasks such as identi-
fying a single character at a fixed position (Itzhak
and Levy, 2022; Kaushal and Mahowald, 2022; Hi-
raoka and Okazaki, 2024; Chai et al., 2024). For
instance of a token “language,” well-pretrained
models readily generate “l a n g u a g e”
on demand but cannot reliably extract “u” at posi-
tion five. This discrepancy suggests that, despite
lacking explicit access to compositional charac-
ter knowledge, LLMs have some mechanism for
character-by-character spelling.

In this paper, we investigate how and where
LLMs capture and deploy character-level knowl-
edge during spelling-out. We begin by constructing
a token-characters dataset from the vocabularies of
four representative LLMs (§3) and confirming their
ability to spell out tokens with few-shot prompts
(§4). Probing the embedding layer reveals that it
does not encode subtoken characters directly (§5),
but downstream Transformer layers gradually re-
cover this information. We identify a clear “break-
through” layer at which character identities become
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reliably detectable by our probing classifier (§6),
and observe that the first few characters are handled
differently from subsequent ones. Finally, through
neuron-level analyses (§7) and attention-weight in-
spections (§7.4), we trace how character knowledge
is stored and routed, demonstrating that its locus
aligns precisely with the breakthrough point.

Taken together, our study sheds new light on the
internal character-level machinery of LLMs. Our
main contributions are as follows:

• We demonstrate that token embeddings do
not fully encode character-level information,
and that subsequent Transformer layers play a
major role in reconstructing this information
during the spelling-out process.

• We pinpoint the exact layer where composi-
tional character information “breaks through,”
validated via probing classifiers.

• We investigate character knowledge to spe-
cific neurons and attention patterns, showing
alignment with the breakthrough layer.

• We provide a diagnostic framework (dataset,
probes, and analyses) for future research into
subtoken and character-level modeling.

Codes for our experiments are available at:
https://github.com/tatHi/token2char.

2 Related Work

Our research is in line with work focusing on the
LLMs’ capability of character-level manipulation.
Kaushal and Mahowald (2022) investigated the
LLMs’ capability to identify the appearance of
particular characters in a given token using prob-
ing classifiers. Itzhak and Levy (2022) directly
analyzed the information stored in token embed-
dings to spell out tokens using additional character-
level language models. More recently, Edman et al.
(2024) introduced a dataset to evaluate this capa-
bility from some viewpoints of character-level ma-
nipulation, including spelling-out of words or to-
kens. Similarly, Wang et al. (2024) provided a
dataset of complicated character-level manipula-
tion tasks. Both works conclude that LLMs have
limited capability for complicated character pro-
cessing. Furthermore, these works reported that
LLMs can spell out words in the original order, as
reported in Xiong et al. (2025), while they do not
have sufficient knowledge of their single charac-
ters inside words (Shin and Kaneko, 2024; Hiraoka
and Okazaki, 2024; Chai et al., 2024) unless fine-

# Vocab # Dataset %
LLaMA3-8B 128,256 19,724 15.38
Gemma-7B 256,000 47,833 18.68
Qwen2.5-7B 152,064 18,973 12.48
Amber-6.7B 32,000 6,130 19.16

Table 1: The number of tokens in the vocabulary of each
LLM (# Vocab) and in our dataset (# Dataset, §3.2). %
shows the ratio of in-dataset tokens in the vocabulary.

tuning for the models to learn the token internal
information directly (Xu et al., 2024).

This line of literature motivates us to investi-
gate the LLMs’ internal workings of spelling-out
behavior, despite the lack of character-level knowl-
edge. Recently, we can see a trend of understanding
LLMs’ capability of recognizing character-level
information, such as the ability of counting char-
acters (Fu et al., 2024). Moreover, beyond the
word-to-character spelling out, Wu et al. (2025) in-
vestigates their ability to recognize radicals inside
Chinese characters.

Our work is also related to the findings of LLMs’
“detokenization” ability in their later layers (Kaplan
et al., 2025; Kamoda et al., 2025), which is an abil-
ity to internally merge tokens into words or phrases.
In contrast, we focus on the inverse problem: how
LLMs internally “tokenize” tokens into characters.

3 Experimental Setup

3.1 Target Models
We investigate four medium-sized LLMs (≈
7B parameters): LLaMA3-8B (Dubey et al.,
2024), Gemma-7B (Team et al., 2024), Qwen2.5-
7B (Yang et al., 2024), and Amber (Liu et al.).
We selected them because our preliminary trials
showed that smaller models (e.g., 3B) fail to spell
out tokens with sufficient accuracy. All models
have the Transformer-based architecture (Vaswani
et al., 2017). Table 1 shows each model’s vocabu-
lary size, which ranges from 32K to 256K tokens.

3.2 Evaluation Dataset
Our evaluation focuses on spelling out single to-
kens into their constituent characters. In other
words, we exclude multi-token words to ensure a
well-controlled experimental setting. For example,
in the case of “token/s”, the model could easily re-
veal the final “s” without requiring character-level
understanding.

We construct the dataset from each model’s vo-
cabulary by selecting all single tokens that: 1) con-
tain only lowercase alphabets (a-z), 2) begin with
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Few-shot Example hello : h e l l o,
world : w o r l d,
orange : o r a n g e,

Single Token Input libert :
Expected Output l i b e r t

Table 2: An input example for the three-shot setting.

Figure 2: Experimental results with the few-shot setting.
N = 1...5 means the accuracy of the N -th character
prediction. “Entire” shows the accuracy of the predic-
tion for all characters of tokens.

the special prefix indicating the head of words (e.g.,
“_” in “_token”), and 3) are at least five charac-
ters. This yields a set comprising roughly 15 % of
each model’s full vocabulary (Table 1). Note that
our dataset allows tokens that are subword frag-
ments rather than complete words (e.g., “somew,”
“immedi”). Figure 9 and 10 in the appendix show
the distribution of frequency of token length and
alphabet, respectively.

In the spelling-out task, given the target tokens
in our dataset, LLMs are expected to output a se-
quence of compositional characters of each token.
We represent the spelling-out with a whitespace
separation in our experiments. For example, LLMs
with an input “token” are expected to generate a
sequence “ t o k e n”. In other words, the tar-
geted LLMs need to generate character tokens with
the head-prefix such as “_t, _o, _k, _e, _n” 1.

4 LLMs can Spell-out Tokens

We first assess each LLM’s ability to spell out
single tokens given few-shot examples, follow-
ing prior work on word-level spelling-out (Edman
et al., 2024; Xiong et al., 2025). Table 2 shows a
prompt of a three-shot example for this experiment.
We measure performance over the full evaluation
dataset created in §3.2 for each LLM with three-
shot examples randomly selected from the dataset,

1Using other separators such as “t/o/k/e/n” also yields
qualitatively similar results in our experiments.

excluding the tested sample. We count a predic-
tion as correct only if the model’s output exactly
matches the ground-truth character sequence with
no missing or extra characters.

The data points named “Entire” in Figure 2 re-
port the overall token-level spelling-out accuracy
of each LLM. Although direct comparison across
models is impossible because each uses its own vo-
cabulary subset, we observe substantial differences:
LLaMA3-8B achieves 94.41% accuracy, whereas
Amber-6.7B reaches only 58.86%. This variation
shows the impact of model architecture and pre-
training data on character-level capabilities.

In Figure 2, we also report accuracy by character
position within each token. All models achieve
over 94% accuracy on the first character, but ac-
curacy steadily declines for later positions. This
result indicates that correctly generating characters
further along in the token becomes increasingly
difficult. Notably, however, every model main-
tains over 70% accuracy through the fifth character,
demonstrating LLMs’ robust mid-token spelling
capability.

5 Embeddings do not Know All
Compositional Characters

While Section 4 demonstrated that LLMs can
spell out single tokens, two key questions remain:
where is the character-level knowledge stored in the
model, and how is that knowledge utilized during
spelling? A natural hypothesis is that token embed-
dings themselves encode this information (Itzhak
and Levy, 2022), since the spelling of a token (i.e.,
its sequence of characters) is inherently context-
independent and embeddings are derived directly
from token identities. This section investigates
whether the token embedding stores the knowledge
of spelling tokens.

5.1 MLP Probing with Token Embedding
To investigate where LLMs store character-level in-
formation, we train probing classifiers that predict
the N -th character of a token t from its embedding
vt ∈ Rd. We train a separate MLP classifier2 for
each character position N (1 ≤ N ≤ 5), using an
identical architecture across positions.

The MLP classifier maps the d-dimensional to-
ken embedding vt to a 26-dimensional logits vec-
tor, corresponding to the 26 lowercase English char-

2We selected a non-linear probing because a linear classi-
fier was incapable of extracting character-level information
from embeddings, following Kaushal and Mahowald (2022).
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Figure 3: The performance of probing classifiers for
each N (dark-colored lines). The light-colored lines
show the few-shot performance copied from Figure 2.

acters. The probability that the N -th character of t
is c is computed as:

p(tN = c|t) = softmax(f(vt; θN ))c, (1)

where f : Rd → R26 is the MLP classifier with
three linear layers with the tanh activation, and θN
is the set of trainable parameters for predicting the
N -th character. The softmax(·)c operation extracts
the probability assigned to character c.

We train each probing classifier on randomly
sampled 90% of the dataset (§3.2) and evaluate it
on the remaining 10%. This process is repeated ten
times as k-fold cross-validation. If the classifier can
accurately predict characters at a given position, we
interpret this as evidence that the token embedding
encodes character-level information at that posi-
tion. Training is performed using cross-entropy
loss and the Adam optimizer (Kingma, 2014) with
300 epochs of training, for which we observed con-
vergence of the training loss in all experimental
setups.

5.2 Experimental Result

Figure 3 shows the performance of the probing clas-
sifiers across character positions. For LLMs with
larger vocabulary sizes (i.e., LLaMA3-8B, Gemma-
7B, and Qwen2.5-7B), the classifier achieves over
80% accuracy in predicting the first character. How-
ever, performance declines consistently as the char-
acter position increases. In parallel, the gap be-
tween probing accuracy (dark-colored lines) and
few-shot accuracy (light-colored lines) widens at
later positions. These results suggest that LLMs
rely on token embeddings to retrieve the first char-
acter, but access character-level information from
upper layers when spelling out later characters.

Amber-6.7B, the model with the smallest vocab-
ulary, shows a distinct trend. Its probing accuracy is
significantly lower even for the first character. This
result indicates that its token embeddings carry lit-
tle or no character-level information3.

In summary, these results indicate that token
embeddings in LLMs do not encode full character
composition. While the first character is sometimes
recoverable, character-level knowledge beyond that
is primarily stored in the LLM’s upper layers.

6 Which Layer Knows Spelling-out?

This section extends the probing analysis to internal
Transformer layers to investigate where character-
level knowledge emerges within the model.

6.1 MLP Probing with Layer Output
To analyze how character knowledge develops
across the model, we apply the same probing classi-
fier from §5, but instead of the token embedding vt,
we use hidden states from individual Transformer
layers. Specifically, for predicting the N -th char-
acter, we extract the hidden state hl

N−1 from the
l-th layer, corresponding to the token immediately
before the character being predicted. For example,
to predict the third character (N = 3) of the token
“token,” we extract the hidden state for the final to-
ken of the input sequence “[few-shot examples]
token : t o”, expecting the model to predict “k”.

All other aspects of the probing setup, including
model architecture, training procedure, and evalua-
tion, remain the same as described in §5.

6.2 Experimental Result
Figure 4 presents the character prediction accuracy
of probing classifiers across Transformer layers
for all four LLMs. A consistent two-peak trend
emerges: classifiers using early-layer hidden states
can predict characters to some extent but not per-
fectly, whereas those using higher-layer represen-
tations can almost perfectly predict characters at
all positions, following a performance drop in the
intermediate layers. The accuracy at the final layer
closely matches that in Figure 2, supporting the
validity of our evaluation setup.

Interestingly, LLaMA3-8B and Gemma-7B ex-
hibit a notable dip in accuracy at the first Trans-
former layer (i.e., the second data point from the
left). This suggests that character-level information

3Given that probing performance on intermediate layers of
Amber is reasonable (§6), the lower embedding-level accuracy
is unlikely to be caused by the smaller dataset size (Table 1).
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Figure 4: Accuracy of N -th character prediction by probing classifiers at each Transformer layer. The X-axis
represents relative layer depth (0.0 = embedding layer, 1.0 = final layer). Red vertical lines indicate the breakthrough
layers, which are calculated based on the average performance improvement between adjacent layers for 2 ≤ N .

is not immediately accessible after the embedding
layer and may even be disrupted at this stage.

For models other than Amber-6.7B, character
prediction reaches higher accuracy in the early lay-
ers, but then temporarily declines before recover-
ing in later layers. This suggests that LLMs do not
simply pass character-level information through
the network, but they engage in intermediate pro-
cessing that reorganizes it as part of building the
knowledge for solving the spelling-out task.

All models show a distinct “breakthrough” point,
highlighted as red vertical lines, where the accu-
racy of the character prediction sharply increases in
later layers. For example, LLaMA3-8B exhibits a
jump in accuracy around layer depth 0.45. Amber-
6.7B also shows an upward trend in the later layers,
though the improvement is more modest compared
to the other models. This trend can be seen much
more clearly when we use an explicit separator “/”
for the spelling-out (Figure 12).

These results suggest that LLMs begin to con-
solidate character-level spelling knowledge in the
later stages of the network. In other words, the
model first interprets the spelling-out task in its
intermediate layers and then may act more like a
character-level language model in its final layers.

This interpretation aligns with prior findings show-
ing that LLM hidden states gradually shift toward
representations resembling the next predicted to-
ken (Voita et al., 2024; Chang and Bergen, 2025).
Furthermore, this result also aligns with research
reporting the significant workings in LLMs’ later
layers on specific tasks (Merullo et al., 2024; Lad
et al.; Nikankin et al., 2025).

Finally, we observe that probing accuracy con-
tinues to rise even after the breakthrough point,
particularly in the final two layers. This reinforces
the view that character-level information is not stat-
ically stored in the embedding layer but is dynami-
cally constructed and refined throughout the model,
especially toward the end of the forward pass.

7 Knowledge Neuron for Spelling-out

The breakthrough point observed in §6 implies that
large language models (LLMs) possess the ability
to spell out tokens in the layers preceding this point.
Recent work on interpretability has shown that indi-
vidual neurons in Transformer models may encode
factual knowledge or skills, as in knowledge neu-
rons (Dai et al., 2022) and skill neurons (Wang
et al., 2022). Inspired by this line of research, we
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Figure 5: Distribution of knowledge neurons for each layer (dark-colored lines). The accuracy of probing classifiers
(light-colored lines) are copied from Figure 4.

investigate where the knowledge for spelling out
tokens resides within the neurons of each LLM.

7.1 Knowledge Neurons

In line with previous studies on neuron-level analy-
sis of Transformer architectures (Geva et al., 2021),
we define knowledge neurons as the outputs of acti-
vation functions in the feed-forward network (FFN)
sublayers of Transformer blocks. To quantify each
neuron’s contribution to a specific output character,
we compute an attribution score.

For instance, given an input x =“token : t
o”, we aim to measure how much a neuron w
contributes to predicting the next correct char-
acter c =“k”. We define the attribution score
Attr(w|c, x) for the neuron w using the following
integrated gradient-based approximation:

Attr(w|c, x) = w̄

m

m∑

k=1

∂Pc,x(
k
m w̄)

∂w
, (2)

where w̄ is the activation value of neuron w when
the LLM processes the input x. Here, Pc,x(w̄) de-
notes the model’s predicted probability of character
c given input x when w is w̄, and m = 20 is the
number of interpolation steps used in the Riemann
sum approximation, as in Dai et al. (2022).

Using this attribution score, we identify knowl-
edge neurons responsible for generating the N -th
character in the spelling-out task. In other words,
we examine how neuron activations vary depending
on the position of the predicted character.

To identify knowledge neurons for each charac-
ter position N , we proceed as follows. For each of
the 1,000 sampled tokens from the dataset, we com-
pute Attr(w|c, x) for all neurons and rank them.
Then, for each token, we select the top 1% of neu-
rons with the highest attribution scores at position
N . Finally, we define a neuron as a knowledge
neuron for position N if it appears in the top 1%
set of at least 75% of the 1,000 tokens.

7.2 Distribution of Neurons for N

Figure 5 shows the distribution of knowledge neu-
rons across layers for predicting the N -th character.
The distributions commonly exhibit two peaks: one
at intermediate layers and another near the final lay-
ers. However, the peak for the first character tends
to occur in intermediate layers, while the peaks for
later characters (e.g., N = 2 and beyond) appear
more prominently near the final layers. This trend
is consistent across all four models, suggesting a
general phenomenon shared by various LLMs.

We also observe that the location of the first peak
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Figure 6: Venn diagrams showing the number of over-
lapping knowledge neurons across different character
positions N for four LLMs.

is loosely aligned with the breakthrough point iden-
tified earlier. For example, in LLaMA3-8B, where
the breakthrough occurs around mid-depth (layer
∼ 0.5), the first peak of knowledge neurons also
appears around the same depth. Conversely, in
Gemma-7B, where the breakthrough appears later,
the first peak of neurons shifts to a correspondingly
later layer. These findings suggest that knowledge
neurons in the mid-depth layers may play a foun-
dational role in the spelling-out process.

7.3 Intersection of Neurons

Figure 6 illustrates the overlap of knowledge neu-
rons across different character positions N . Across
all models, the largest number of neurons is
uniquely identified for the first character predic-
tion, in contrast to those for the second and third
characters, which share more neurons.

Moreover, the total number of knowledge neu-
rons tends to decrease from N = 1 to N = 3. This
suggests that LLMs use a broader and more redun-
dant set of neurons when initiating the spelling-out
process, but rely on fewer and more specialized
neurons as the character position progresses.

For later positions (N = 3, 4, 5), both the num-
ber of knowledge neurons and the extent of their

Figure 7: Difference in accuracy with ablating 100 neu-
rons for each character position N (LLaMA3-8B).

overlap remain relatively small and stable across all
models. This suggests a shift in internal strategy:
while LLMs rely on a broad and shared set of neu-
rons to initiate spelling-out at N = 1, they grad-
ually move toward using more position-specific
and case-dependent neurons for later characters. In
other words, the model appears to generalize the
beginning of spelling with common mechanisms,
but adapts to the unique structure of each token as
the character position advances.

These consistent trends across the four LLMs
support a general conclusion: LLMs tend to rely
on a broad and shared set of neurons for predicting
the first character, and to some extent the second,
using a general mechanism to initiate the spelling-
out process. In contrast, for characters beyond
the third position, they employ more case-specific
neurons, indicating a shift toward more specialized
processing tailored to individual token structures.

7.4 Neuron Ablation

To gain deeper insight into the roles of individual
neurons, we ablated the top 100 most influential
neurons for each character position N and mea-
sured the resulting performance degradation rel-
ative to the original accuracy shown in Figure 2.
We used LLaMA3-8B for this experiment, as it pro-
vides a sufficient number of neurons for meaningful
ablation analysis (Figure 6).

The experimental results in Figure 7 show that
ablating neurons for N = 1, 2 leads to only modest
accuracy loss, whereas ablating neurons for N ≥ 3
causes a more substantial drop in performance.
This suggests that later-position neurons play a
more critical role in the spelling-out task, compen-
sating for the functions of earlier ones by leverag-
ing contextual information. These results support
our hypothesis in Section 7.3: early-position neu-
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rons primarily extract features from initial charac-
ter embeddings, whereas later-position neurons are
responsible for context-based character prediction.

8 Attention Weight for Spelling-out

Given the nature of the spelling-out task, LLMs
must attend to the target token while generating its
characters. The ability to focus attention on the cor-
rect token is crucial for accurate spelling-out, and
we hypothesize that this ability corresponds to the
breakthrough identified in §6. This section further
investigates the relationship between spelling-out
capability and attention weights to the target token.

Given a sequence consisting of the target token
and its spelling-out from our dataset, we compute
the average attention weight from all related ele-
ments to the target token. For example, when the
input is [few-shot examples] token : t o
k e n, where the target token is “token” follow-
ing a few-shot example, we calculate the average
attention weight to “token” from each of the el-
ements: token, :, t, o, k, e, and n. We average
these attention weights over 1,000 randomly se-
lected samples and across all attention heads in
each layer4. To isolate attention to the target token,
we remove attention weights to “<BOS>” and renor-
malize the distributions prior to averaging, inspired
by Kobayashi et al. (2020).

Figure 8 presents the average attention scores
across the 1,000 examples. Interestingly, the layer
with the highest attention to the target token (red
bars) coincides with the breakthrough point (red
lines) in three out of four models. This finding sug-
gests that the performance improvement observed
in intermediate layers is due to the model’s increas-
ing ability to correctly attend to the target token.

The distinct result observed in Amber-6.7B sug-
gests that performance breakthroughs do not neces-
sarily align with the behavior of attention weights.
Given the overall lower attention weights assigned
to the target token compared to other models, we
consider that this model needs to attend to broader
contextual information rather than focusing on
the single target token, possibly due to a lack of
character-level knowledge in its embeddings.

9 Conclusion

This paper investigated the paradox that, although
large language models (LLMs) struggle to recog-

4These tokens are selected from the dataset as those that
each LLM can correctly spell out in the few-shot setting (§4).

nize individual characters within words, they can
accurately spell out words character by character.

Our probing analyses revealed that the token em-
bedding layer does not encode complete character-
level information, especially beyond the first char-
acter. Instead, character-level features are dynam-
ically reconstructed in the intermediate and later
layers, where we observe a distinct “breakthrough”
point. Around this stage, models begin to reliably
access and utilize character-level knowledge.

We further examined the spelling-out behavior
through the lens of knowledge neurons and atten-
tion patterns, both of which align with the break-
through layers. Crucially, this behavior suggests
that spelling out is a learned task (i.e., dependent on
identifying the target token and retrieving character-
level information), rather than a simple extraction
of character-level information stored in the embed-
ding layers.

As a result, our findings imply that the apparent
success of LLMs in spelling out does not extend to
more complex or unfamiliar tasks such as reverse
spelling, letter insertion, or character-level reason-
ing in novel contexts. Our findings indicate that
current LLMs are not inherently character-aware;
rather, they rely on task-specific heuristics acquired
during training or prompting. This suggests that
models must explicitly learn how to apply character
knowledge to more complex manipulations.

Limitations

While we believe that our experiments were con-
ducted under well-controlled conditions and pro-
vide sufficient support for our hypotheses, we ac-
knowledge the following limitations:

• To ensure well-controlled experimental con-
ditions, we restricted the target vocabulary to
single-token words composed of lowercased
alphabetic characters. Different trends may
emerge when using other languages. However,
considering prior work showing that LLMs
can predict the initial radicals of Chinese char-
acters (Wu et al., 2025), we expect similar
tendencies to hold across languages.

• This study investigates LLM behavior using
probing classifiers, knowledge neurons, and
attention heads. It is important to note, how-
ever, that these methods do not fully capture or
explain the underlying mechanisms of model
knowledge and capabilities (Jain and Wallace,
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Figure 8: Averaged attention weights to the target token across layers (bar graph). The red bar indicates the layer
with the highest attention weight. The line graph shows the performance of predicting the N -th character using the
probing classifier, replicated from Figure 4.

2019; Belinkov, 2022; Kumar et al., 2022; Niu
et al.).

• Our experiments focus on spelling-out behav-
ior using whitespace as a separator. Although
similar trends were observed when using an
alternative separator (“/”, see Figure 12), the
results may vary depending on input format-
ting.

• Our findings do not necessarily generalize to
all LLMs. In fact, Amber-6.7B exhibited di-
vergent behavior across several experiments,
deviating from the patterns observed in other
models. Nevertheless, we argue that present-
ing such counterexamples is essential for a
deeper understanding of model behavior. In
this work, we attribute Amber’s deviation to
its apparent lack of character-level informa-
tion in the embedding layer, a distinctive prop-
erty not shared by the other models. Given
that the remaining three models consistently
followed the same trends, we consider Amber-
6.7B to be a special case rather than a repre-
sentative counterpoint.
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Figure 9: Token length frequency distribution in the
dataset.

A Experimental Environment

All experiments in this paper were conducted us-
ing the HuggingFace Transformers library (Wolf
et al., 2020). Unless otherwise specified, we used
default hyperparameter settings. Most experiments
were performed on NVIDIA A40 GPUs, with the
exception of those involving Gemma-7B, which
were conducted on NVIDIA H100 GPUs.

The most computationally intensive part of our
work was the identification of neurons described
in §7, which took over 24 hours to process 1,000
samples. All other experiments were completed
within 24 hours using a single GPU.

B Additional Dataset Statistics

Figure 9 shows the distribution of token lengths in
our dataset. As illustrated, the three LLMs with
larger vocabularies exhibit similar distributions.
Figure 10 presents the distribution of characters
(alphabets) at each position in the tokens, showing
highly consistent patterns across models.

C Few-shot Results by Token Length

Figure 11 plots the few-shot spelling-out accuracy
from §4 as a function of token length (5–14 charac-
ters). Contrary to the intuition that longer tokens
would be harder to spell out correctly, the relatively
flat trend suggests that token length has a limited
impact on exact token-level accuracy.

D Layer Probing with “/” Separation

Figure 12 presents the results of probing classifiers
when the separator used for spelling out is changed
from whitespace to a forward slash (“/”). The ex-
perimental setup remains the same as in §6, except

Figure 10: Alphabet frequency distribution at each char-
acter position in the dataset.

Figure 11: Few-shot spelling-out accuracy by input
token length.

for this separator change. This modified separator
was used consistently across few-shot examples,
target inputs, and expected outputs (see Figure 2).
For instance, the input “hello :/h/e/l/l/o/”
was used in one of the examples.

To ensure consistency of representation across
character positions, we added a slash before and
after the spelling so that the model does not need
to use tokens with the special prefix indicating the
word head. In contrast, the main experiments used
inputs such as “_h_e_l_l_o”, where the under-
score (“_”) denotes a prefix.

As shown in Figure 12, we observe a similar
trend to that in Figure 4, including the occurrence
of a “breakthrough” at approximately the same
layer. This consistency suggests that our findings
regarding breakthrough behavior may generalize
across different input formats for spelling tasks.
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Figure 12: Accuracy of N -th character prediction using the “/” separator, measured via probing classifiers across
Transformer layers.

E Neurons for Alphabet

Figure 13 shows the distribution of knowledge neu-
rons associated with the output of each alphabet
character. We used the same identification method
as described in §7, but focused on individual char-
acters rather than positional indices (N ). The re-
sults indicate that neurons responsible for alphabet
outputs are primarily located in the near-final layers
of the models.
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Figure 13: Distribution of knowledge neurons responsible for outputting each alphabet character.
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