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Abstract

We study continual information extraction (IE),
which aims to extract emerging information
across diverse IE tasks incessantly while avoid-
ing forgetting. Existing approaches are either
task-specialized for a single IE task or suffer
from catastrophic forgetting and insufficient
knowledge transfer in continual IE. This paper
proposes a new continual IE model using token-
level mixture of LoRA experts with LLMs. We
leverage a LoRA router to route each token to
the most relevant LoRA experts, facilitating ef-
fective knowledge transfer among IE tasks. We
guide task experts’ selection by task keys to
retain the IE task-specific knowledge and miti-
gate catastrophic forgetting. We design a gate
reflection method based on knowledge distilla-
tion to address forgetting in the LoRA router
and task keys. The experimental results show
that our model achieves state-of-the-art perfor-
mance, effectively mitigating catastrophic for-
getting and enhancing knowledge transfer in
continual IE.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities as a powerful expert tool
across diverse applications (Azaria et al., 2024),
and knowledge plays a crucial role in shaping their
effectiveness and future potential (Chen, 2024).
Among such knowledge-intensive applications, in-
formation extraction (IE) (Andersen et al., 1992)
serves as a fundamental task, aims to identify and
structure specific information from unstructured
natural language text. It encompasses diverse tasks,
e.g., named entity recognition (NER), relation ex-
traction (RE), and event detection (ED), based
on the different extraction targets (entity, relation,
event, etc.). In practice, new types and tasks are
emerging continually across diverse IE scenarios.
Studying continual learning (Ring, 1994) within
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IE scenarios is crucial for building adaptive and
scalable IE models.

Previous continual IE models (Wang et al.,
2023c; Zhang et al., 2023a; Zhao et al., 2023; Le
et al., 2024b, 2025) are task-specialized, resulting
in separate application scenarios and isolated mod-
els for different IE tasks. Real-world applications
demand a unified model that can continuously ex-
tract user-specified information across diverse IE
tasks, rather than being limited to a single task.
The task-specific design hinders model reuse and
increases deployment complexity, limiting the scal-
ability of continual IE. Moreover, the different IE
tasks are not completely independent of each other.
There is shared knowledge among different IE tasks
that a model can leverage. The isolated models sig-
nificantly limit the ability to share knowledge be-
tween related tasks and settings. Therefore, these
task-specialized models hinder the development
of IE in terms of cross-task adaptation and effec-
tive knowledge sharing. Toward this issue, we de-
fine a new problem called continual IE to address.
Compared to task-specialized continual learning,
continual IE expects the model to extract different
information of different IE tasks from a continuous
data sequence, not only extracting new information
but remembering all learned information so far.

Existing continual learning methods for IE focus
on alleviating catastrophic forgetting (Thrun and
Mitchell, 1995; French, 1999) in their single tasks
using knowledge transfer and experience replay.
These task-specialized models fall short in knowl-
edge transfer among IE tasks and cannot adapt
to continual IE. Recent continual learning studies
(Wang et al., 2022b; Razdaibiedina et al., 2023;
Wang et al., 2023a; Zhao et al., 2024; Le et al,,
2024a) for LLMs with parameter-efficient finetun-
ing (PEFT) can be applied to continual IE by learn-
ing and selecting independent PEFT blocks such
as soft prompt (Lester et al., 2021) or Low-Rank
Adaptation (LoRA) (Hu et al., 2022) for each task.
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However, they are still struggled with catastrophic
forgetting and insufficient knowledge transfer. On
one hand, the selection modules in these methods
are crucial, as they need correct knowledge for pre-
diction. However, these methods only use concate-
nation or attention weights at the sentence level for
selecting the correct PEFT blocks. These sentence-
level selection modules are insufficiently discrimi-
native in continual IE, where the semantic features
of sentences in different IE tasks are similar. Thus,
these methods easily make incorrect choices and
use wrong knowledge, leading to catastrophic for-
getting. On the other hand, these methods only
update the PEFT blocks for the current task dur-
ing training, while freezing those that have already
been learned. This prevents them from the back-
ward transfer of useful knowledge from new tasks
to old ones. Moreover, their limited use of previous
knowledge in current training hinders the forward
transfer from old tasks to new ones.

To address these issues in continual IE, we pro-
pose a novel continual IE model, MoLE-CIE,
through the token-level mixture of LoRA experts
with LLMs. Specifically, we route each token to the
most relevant LoRA experts by a LoRA router to
facilitate knowledge transfer among IE tasks. We
allocate task experts and a shared IE expert to re-
tain the task-specific knowledge of IE. We design a
gate reflection method using knowledge distillation
to mitigate the forgetting of the LoRA router and
task keys. Our main contributions are threefold:

 Rather than task-specialized methods, we extend
continual learning to universal IE tasks and de-
sign a new continual IE model MoLE-CIE.

* We propose token-level mixture of LoRA experts
and gate reflection to deal with catastrophic for-
getting and insufficient knowledge transfer in
continual IE.

* We conduct extensive experiments on six bench-
mark datasets for three major IE tasks. Our re-
sults show that MoLE-CIE achieves state-of-the-
art performance in continual IE. It also performs
well in facilitating knowledge transfer and miti-
gating catastrophic forgetting.

2 Related Work

2.1 Information Extraction

Conventional IE models rely on a pre-trained en-
coder to capture the semantic representations in text

and treat extraction as a classification task (Soares
et al., 2019), a sequence labeling task (Huang et al.,
2015), or a question-answer task (Du and Cardie,
2020). In recent years, the works (Li et al., 2023;
Zhang et al., 2023b) use LLMs as data augmenta-
tion tools to improve extraction performance. The
works (Wan et al., 2023; Heng et al., 2024; Zhu
et al., 2024) utilize task-specific prompts to guide
the model’s extraction through chain-of-thoughts
(Wei et al., 2022) or iterative self-improvement.
The works (Guo et al., 2024; Sainz et al., 2024) es-
tablish IE schemata through code classes, thereby
unifying IE tasks and facilitating IE via code gen-
eration. These models are not designed for con-
tinual IE, as they learn all types at once. When
deployed in continual settings, they suffer from se-
vere knowledge forgetting and poor generalization
in continuous data sequences.

2.2 Continual Learning

There is a substantial body of work on continual
learning in three main IE tasks: continual ED (Yu
et al., 2021; Wang et al., 2023c; Le et al., 2024b);
continual RE (Zhao et al., 2022, 2023; Le et al.,
2025), and continual NER (Zheng et al., 2022;
Zhang et al., 2023a; Yu et al., 2024, 2025). These
methods alleviate catastrophic forgetting by knowl-
edge transfer and experience replay. However, they
are designed for single IE tasks and cannot gener-
alize to other IE tasks, making them unsuitable for
more comprehensive continual IE scenarios.
Recent continual learning studies for LLMs with
PEFT learn and select PEFT blocks, such as soft
prompt (Lester et al., 2021) or LoRA (Hu et al.,
2022), for each task. These methods follow a
pipeline that trains new PEFT blocks for new
tasks and freezes the previously learned ones. For
prompt-based methods, various prompt selection
strategies have been explored: concatenating all
prompts (Razdaibiedina et al., 2023), similarity
in task feature distributions (Wang et al., 2023b),
retrieving from a fixed prompt pool (Wang et al.,
2022b), and non-linear residual gates (Le et al.,
2024a). For LoRA-based methods, (Wang et al.,
2023a) enforces orthogonality constraints during
training, while (Zhao et al., 2024) leverages shared
attention weights to guide LoRA selection. Al-
though these methods are applicable to continual
IE, they are limited in knowledge transfer due to
parameter isolation and the limited use of previ-
ous knowledge. Furthermore, their reliance on the
sentence-level PEFT block selection module leads
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to incorrect choices due to the high semantic simi-
larity in IE tasks, thereby exacerbating catastrophic
forgetting. For full finetuning, the methods (Wang
et al., 2024; He et al., 2024) equip LLMs with
continual learning capabilities through replay and
attention distillation. But they suffer from high
resource consumption and low knowledge transfer-
ability. We address these problems and propose a
novel continual IE model.

3 Task Definition

IE aims to extract structured information from un-
structured natural language text. In continual IE, a
sequence of K tasks {77, Ty, ..., Tk} is presented
to the model in a sequential manner. Each task is
an independent IE sub-task with its own training
set DIin, development set DI, test set D', and
type set R;. R; of each task 7; is disjoint with other
tasks.

At the i-th stage, a continual IE model is trained
on D;rain and evaluated on current and all previ-
ous test sets DI = [ Ji_, D (their correspond-
ing training sets have been trained in the previous
stage). In other words, the model must handle the
emerging types within the same extraction task and
shift to different extraction tasks over time. The
model will not be informed of the specific extrac-
tion task during inference.

4 Methodology

Figure 1 shows the framework of our continual IE
model MoLE-CIE. We add the Mixture of LoRA
Experts (MoLE) module to the attention layer of
the pre-trained transformer blocks. The attention
from the pre-trained model is combined with the
attention produced from the MoLE module to form
a new attention, which is used in the subsequent
layers. During training, we freeze the parameters
of the pre-trained model and only update the pa-
rameters of the MoLE module.

In the MoLE module, the model first routes each
token to the LoRA experts that are most relevant to
it. Then, the model selects task experts by calcu-
lating the similarity between the task keys and the
input tokens. Finally, the model fixes an IE expert
and aggregates the output of each LoRA expert by
the corresponding weight.

For continual training, we design the Gate Re-
flection module to distill past knowledge in the
LoRA router and task keys. We pick and store a
few instances of new types for the next task.

4.1 Base Model and Experience Replay

Base model. To handle various IE tasks, we model
the IE task as a generation problem by finetun-
ing LLMs. We use the pre-trained LLaMA-3.1-8b
(Grattafiori et al., 2024) as the base model and fine-
tune it by LoRA (Hu et al., 2022) to adapt to the
continual learning tasks.

Experience replay. Inspired by previous methods
(de Masson d’Autume et al., 2019; Wang et al.,
2019; Cao et al., 2020) on continual IE, we replay
a small number of data from previous tasks to alle-
viate catastrophic forgetting. At the i-th stage, we
merge the replay data Dlr-eplay into the current train-
ing set D;min and train the model on it. We use the
k-means algorithm to cluster the feature representa-
tions of each type’s instances, where the number of
clusters equals the memory size M. For details, we
utilize the embedding layer of the backbone LLM
to obtain features for clustering. We employ Eu-
clidean distance (L2 norm) as the distance metric.
We select the instances closest to the centroid of
each cluster and store them as the replay data.

4.2 Mixture of LoRA Experts

In continual IE, the model needs to handle different
extraction tasks and learn newly emerging types
within the same task. This raises higher demands
for knowledge retention and transferability of the
model. We propose a new continual IE model that
allocates the appropriate LoORA experts and task
experts at the token level. It allows our model to
fully integrate knowledge across different tasks and
types and mitigate the forgetting of task-specific
knowledge.

LoRA expert selection by LoRA router. With a
LoRA router, we assign the most relevant LoORA
experts to each token in the input. This implies that
tokens from different types or different tasks can
be assigned to the same LoRA experts based on
their semantic similarity. This approach enables the
model to effectively integrate semantic knowledge
across diverse types or tasks, thereby enhancing its
knowledge transferability.

Given a sentence z, we first use the embedding
layer of the backbone LLLM to obtain the hidden
states hxj for each token xj in z. Then, we feed hxj
into a LoRA router to get the scores S, ; between
x; and each LoRA expert as follows:

Sz; = Wa (tanh (W1hy))) (1)

J
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Figure 1: Framework of our proposed continual IE model MoLE-CIE.

where W1 € R™*" and W2 € R"*" are trainable
parameters. h is the dimension of hidden states and
n is the number of LoRA experts that can be routed.
tanh(-) is the hyperbolic tangent function.

We leverage the softmax activation function to
model a probability distribution P over the experts:

exp (Swjv‘J)
22:1 exp (ij,q) 7

where S;; ; indicates the relevance score between
x; and LoRA expert E,. We select the top-k suit-
able LoRA experts F,. , ..., E, and their corre-
sponding weights 6, ,...,0,,.

Through this mechanism, our model can select
the suitable LoRA experts at the token level, un-
like previous methods (Wang et al., 2022b; Raz-
daibiedina et al., 2023; Wang et al., 2023a; Zhao
et al., 2024; Le et al., 2024a) which operate at the
sentence level. This enables the LoRA experts to
develop varied capacities and efficiently handle di-
verse types and tasks.

P, = @)

Task expert selection by task keys. In the contin-
ual IE task sequence, after learning a newly emerg-
ing extraction task, the model is likely to forget the
knowledge from the previously learned extraction
tasks. To mitigate forgetting, we set task experts
for each extraction task to preserve the correspond-
ing task-specific knowledge. Based on the LoRA
experts selected by the router, our model further
selects the task experts that are most relevant to the
input. Through these task experts, our model can
retain the knowledge of previously learned tasks

when learning new tasks. Additionally, our model
updates the knowledge for the corresponding task
when learning new types within the same extraction
task. In contrast, previous methods (Razdaibiedina
et al., 2023; Wang et al., 2023a; Zhao et al., 2024;
Le et al., 2024a) freeze the LoRA parameters of
the learned tasks, preventing effective updates to
the knowledge of the same task.

We set a trainable task key K, for each IE task
T,, to record the task features of T;,,. Due to the
variation in sentence lengths across different in-
puts, we first perform an averaging operation on
the hidden states h, along the sentence dimension,
denoted by avg (h,). We assign the corresponding
task experts to the hidden states of the current input
by calculating the similarity between the task keys
and the hidden states as follows:

Cr.m = cos (avg (hy) , Kin) , 3)

)

where cos(+) is the cosine similarity between two
features. We choose the task expert E; with the
highest score 6; in normalized C, and assign it to
the input. To learn the shared knowledge across
all extraction tasks, we additionally assign a fixed
task expert Eig to each input. The weight of g is
O =1—6,.

Aggregation of selected LoRA experts. After
selecting LoRA experts F,., ..., F,, and task ex-
perts Ey, g by LoRA router and task keys, respec-
tively, we obtain the MoLE attention AMoLE@j on
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token

k
AMOLE,:(:- =« 97“1- E,, (hx )
J Zz; J (4)

+ B (0:E; (he,) + OBk (he;))
where E(h, ) denotes the output of expert E given

h; as input.] « and (8 are two hyperparameters. We
add AMoLE% and the LL.M’s original attention as
the final output of the attention layer to participate
in the subsequent model training.

The training loss of the current task 7; is defined

as follows:

‘Ctask = - Z

(xﬁlj)ED,‘;ﬂm

log P (y | ; Mrims Mmorg,i) » (5)

where My is the pre-trained LLM. Mo1E,; is
the mixture of LoRA experts trained on T;.

4.3 Gate Reflection

During training, the gates to experts (i.e. LoRA
router and task keys) are updated to adapt to new
types and extraction tasks. We need to reflect the
learned knowledge for the gates to prevent them
from forgetting too much. So, we propose the gate
reflection module to address this issue for the gates
with knowledge distillation (Hinton et al., 2015).

Router knowledge distillation. For the LoRA
router, we enforce that the probability F; ;; over
the experts predicted on token x; by the current
LoRA router does not deviate from the probability
Pi,l,x]. predicted by the previous LoRA router. For
each token x; in the sentence x, we preserve the
knowledge of the previous LoRA router by the
router knowledge distillation loss:

Laa= Y, > KL(Pi1a || Piay), (6)

xeD;rain l‘jEI
where KL (-) is the KL divergence loss.

Keys knowledge distillation. The task keys are
used to retain the feature knowledge for each task.
If the task keys forget their knowledge in the contin-
ual task sequence, our model cannot select specific
task experts correctly, which leads to catastrophic
forgetting. For each sentence x, we expect the task
similarity C; ,, calculated between the current task
keys and x to be similar to C;_; , by the previous
task keys, making the current task keys preserve
more knowledge of the previous tasks. We imple-
ment this strategy by

Likd = Z KL(Cic12]|Ciz). (D)

xE D;ram

We optimize the task loss L and distillation
losses Lxg and Lixg with multi-task learning. The
final training loss is

E == (1 - %) ﬁtask + ‘T;iil (7£rkd + 5£kkd) )
3

where ]5% = Ui:l R; accumulates current and all
previous types at 7;. v and ¢ are hyperparameters.

S Experiments and Results

In this section, we conduct experiments to evaluate
our model and report the results. The source code is
attached as supplementary materials. Please refer
to the appendix for more experimental analyses.
The source code is accessible online.!

5.1 Experiment Setup

Datasets. We carry out our experiments on three
mainstream IE tasks. Appendix A gives details.

* ED benchmarks. (1) ACE05-EN+ (Doddington
et al., 2004) is a classic ED dataset with 33 event
types. We follow (Lin et al., 2020) to pre-process
it. (2) MAVEN (Wang et al., 2020) is a large-scale
ED dataset containing 168 event types. We re-
split the dataset due to the original dataset does
not offer the annotations of the test set.

¢ RE benchmarks. (1) Few-Rel (Han et al., 2018)
is a widely-used dataset for RE. Following (Cui
et al., 2021; Zhao et al., 2022), we use 80 rela-
tions and each relation is assigned 700 samples.
(2) TACRED (Zhang et al., 2017) is another pop-
ular RE dataset, which contains 42 relations and
106,264 samples.

* NER benchmarks. (1) OntoNotes-5.0 (Hovy
et al., 2006) is a popular dataset for NER with 18
entity types and 77k samples. (2) i2b2 (Murphy
et al., 2010) is a dataset with 16 entity types
in the medical domain, bringing more diversity
compared to other datasets.

Following (Yu et al., 2021; Cui et al., 2021), we
partition each dataset into four subsets and merge
them based on the task type. We standardize the
input format for all extraction tasks to prevent task
leakage. Please refer to Appendix B for details.
The types and instances in each subset are disjoint.
Thus, we generate four disjoint splits for each IE

"https://github.com/nju-websoft/MOLE-CIE
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Sequence 1 ED1 RE1 NER1 ED2 RE2 NER2 ED3 RE3 NER3 ED4 RE4 NER4
SeqLoRA 88.74 36.27 2744 28.04 2681 2580 21.55 14.81 22.64 23.60 25.73 16.33
Joint-training | 88.74 93.65 94.11 9133 91.23 90.72 89.32 88.26 90.62 8594 9792 &87.13
L2P~ 88.43 6731 7848 60.59 60.65 62.72 5527 53.54 56.64 5297 5533 49.61
ProgPrompt” | 88.74 63.05 7590 66.79 6125 6455 5197 5434 6326 5136 5043 50.23
NoRGa” 89.38 65.18 7291 66.81 72.53 66.06 61.15 5196 60.04 51.08 58.21 51.78
O-LoRA 88.74 6594 80.85 68.54 70.26 65.64 4245 50.09 58.66 53.86 57.41 50.16
SAPT 88.52 7146 80.13 47.27 5993 65.19 42.04 5394 5255 422 4996 43.77
GPT-40 30.65 36.16 50.07 4429 4128 41.69 37.59 3537 4197 38.63 37.06 36.95
MOoLE-CIE 90.35 8545 8449 70.68 7323 6991 6341 7253 6785 6592 7375 66.10
Sequence 2 ED1 ED2 ED3 ED4 RE1 REQ RE3 RE4 NERl NER2 NER3 NER4
SeqLoRA 88.74 48.86 34.87 2372 1534 15.70 15.70 14.85 1046 1473 1949 17.44
Joint-training | 88.74 85.57 8251 77.76 8145 81.8 82.19 8273 8341 8592 8585 8643
L2P~ 88.43 53.18 45.28 40.79 53.62 4839 48.09 49.75 54.05 53.19 5532 53.99
ProgPrompt” | 88.74 51.09 48.59 40.03 41.70 47.04 4655 4695 56.60 5421 56.12 54.43
NoRGa” 89.38 52.05 46.06 40.89 55.62 59.24 5729 5794 63.29 61.33 6048 57.37
O-LoRA 88.74 50.94 4543 40.10 41.13 44.05 4444 4493 5441 51.64 5634 5423
SAPT 88.52 55.80 44.89 3631 50.19 51.68 46.24 4731 4180 5052 47.81 47.66
GPT-40 30.65 30.51 2640 2220 2528 2529 24.06 23.01 28.65 30.59 37.06 36.95
MoLE-CIE 90.35 59.77 51.06 5040 62.72 63.28 6522 68.72 70.18 6891 67.44 67.29

Table 1: Accuracy comparison between MoLE-CIE and competitors on all current and previous splits. The best
and second-best scores except for joint-training are marked in bold and with underline, respectively. © denotes the

methods replaced with LoRA.

task, denoted by ED1__4,RE1 . 4,NER1 4. As
the majority of types have more than 10 training
instances, we set the memory size to 10. To simu-
late various continual IE scenarios, we design the
following two experiment sequences as defined in
Section 3. The sequence of extraction tasks is ar-
ranged in order of difficulty, from hardest to easiest.

* Sequence 1. In this sequence, different types
of tasks arrive in a polling order. In each cycle,
the model should sequentially learn all IE tasks.
Thus, the task sequence is {EDy,RE1, NER } —
s — {ED4,RE4,NER4}.

* Sequence 2. In this sequence, the model should
learn all splits of the current IE task before learn-
ing the next one. Therefore, the task sequence is
{ED}Y}_, — {RE}}_, — {NER}.,.

Competing methods. We compare our MoLE-
CIE with eight competitors: (1) SeqLoRA simply
trains a LoRA on the current training set without
any memory. (2) Joint-training trains the model
on the current and all previous training data for
each new task. It represents the behavior of re-
training and can be viewed as the upper bound in
continual IE. (3) L2P (Wang et al., 2022b) adapts

the model to sequential tasks by dynamically se-
lecting and learning prompts from a fixed prompt
pool. (4) ProgPrompt (Razdaibiedina et al., 2023)
learns a new soft prompt for each task and sequen-
tially concatenates it with the previously learned
prompts. (5) NoRGa (Le et al., 2024a) proposes
non-linear residual gates to gate the prefix prompt
in continual learning. (6) O-LoRA (Wang et al.,
2023a) learns tasks in different LoORA subspaces
that are kept orthogonal to each other. (7) SAPT
(Zhao et al., 2024) aligns the LoRA learning and
selection by shared attention weights. (8) GPT-
40 (Hurst et al., 2024) is employed as a powerful
zero-shot IE model. The test prompt templates for
GPT-40 are listed in Appendix C.

Hyperparameter setting and environment. We
run all experiments on an X86 server with two
Intel Xeon Gold 6326 CPUs, 512 GB memory,
four NVIDIA RTX A6000 GPU cards, and Ubuntu
20.04 LTS. Due to our limited computational re-
sources, we cannot afford the high cost of full pa-
rameter tuning. Therefore, we do not compare with
continual learning methods (Wang et al., 2024; He
et al., 2024), which are based on full parameter
tuning in our experiments.

For our MoLE-CIE and all competitors, we use
AdamW optimizer to train the model with the learn-
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Hyperparameters | Values

o, B,7,6 0.75,0.25,1,1
M (memory size) 10
Num. of all experts 12
Num. of LoRA experts 8

Num. of activated LoRA experts 2

Num. of task experts for each IE task 1

Num. of activated task experts 1

Table 2: Hyperparameter setting in our model.

ing rate of 5e-5 for LLaMA-3.1-8B (Grattafiori
et al., 2024). The batch size is set to 4 during train-
ing, while 32 during prediction. 7 and « are set
to 4 and 32, respectively. The number of train-
ing epochs and the gradient accumulation steps are
set to 2 and 4, respectively. For the unique hy-
perparameters of all competitors, we follow their
original papers. For the unique hyperparameters of
MoLE-CIE, we list them in Table 2.

For a fair comparison, we replay the data for
each continual learning model and use the same
backbone model LLaMA-3.1 (Grattafiori et al.,
2024). We also replace prompt tuning in L2P, Prog-
Prompt, and NoRGa to LoRA to compare them
fairly with other methods.

Evaluation metrics. (1) Following previous works
(Wang et al., 2023a; Zhao et al., 2024), we use
accuracy to measure the proportion of correctly
predicted samples out of the total number of sam-
ples. (2) Backward transfer (BWT) and for-
ward transfer (FWT) (Lopez-Paz and Ranzato,
2017) are two widely-used metrics to measure
the knowledge transferability and how well the
model alleviates catastrophic forgetting. BWT
measures the influence of learning on previous
splits, while FWT measures the influence of learn-
ing on future splits. BWT scores are defined as
ﬁ Zfi_ll (ar; — ai;), and FWT scores are de-
fined as ﬁ Zfig (@i—1,; — ao,i), where K is the
number of splits. a; ; measures the test accuracy of
the split j after training the split <. Note that BWT
scores are negative due to catastrophic forgetting.
(3) F.Ra (Chaudhry et al., 2018) measures the for-
getting rate of previous splits, which is defined as
ﬁ Zfi}l (maxf:_il at; — aK,i). A lower FRa
score indicates a better performance.

5.2 Results and Analyses

Main results. Table 1 presents the main results
of MoLE-CIE and the competitors in the two se-
quences. Note that the results on ED; are based on

each model itself without any continual learning.

Our model MoLE-CIE is highly effective in ad-
dressing the challenge of catastrophic forgetting
and knowledge transfer in continual IE. After train-
ing on all splits, compared with the best competi-
tor NoRGa, MoLE-CIE gains 14.32% and 9.92%
improvement of accuracy in Sequence 1 and Se-
quence 2, respectively. The significant gap demon-
strates that the token-level mixture of LoRA ex-
perts has a strong capacity to retain task-specific
knowledge across different training sequences. We
also conclude that our model can be effectively
applied to the datasets from different domains of
multiple IE tasks. In Sequence 1, MoLE-CIE main-
tains excellent and stable performance in each cy-
cle, which shows our model’s superior knowledge
transferability with the LoRA experts across multi-
ple IE tasks. In Sequence 2, MoLE-CIE performs
smoothly after adding different splits for the same
IE task, especially on RE and NER tasks, validat-
ing that MoLE-CIE is also effective in mitigating
forgetting of task-specific knowledge by task ex-
perts. Furthermore, the results of MoLE-CIE are
close to joint-training, which is regarded as the
upper bound with re-training in continual IE. Dif-
ferently, our model is more cost-effective without
re-training. Regarding GPT-4o0, although GPT-40
is a powerful model with a large number of param-
eters, it still performs poorly in the continual IE
scenario. This suggests that contemporary LLMs
are not specialized in continual IE and cannot re-
place continual learning models yet.

Ablation study. To evaluate the effectiveness of
each module in our model, we conduct an abla-
tion study. The final results are listed in Table 4,
and the complete results are listed in Appendix D.
Specifically, for “w/o LoRA experts”’, we remove
all LoRA experts. For “w/o Task experts”, we re-
move all task experts. For “w/o IE experts”, we
remove the IE experts. For “w/o Router KD”, we
disable the router knowledge distillation in gate
reflection. For “w/o Keys KD”, we disable the keys
knowledge distillation in gate reflection. For “To-
ken — sentence”, we switch the expert selection
in MoLE-CIE from the token level to the sentence
level. We observe that all modules are effective.

Knowledge forgetting. We analyze the perfor-
mance of knowledge forgetting in continual IE. Ta-
ble 3 and the F.Ra metric in Table 5 present the
results. In Table 3, after training on all splits, our
MOoLE-CIE consistently maintains the highest per-
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Sequence 1 EDI REI NERI EDQ RE2 NER2 ED3 RE3 NER'; ED4 RE4 NER4 Avg.
SeqLoRA 000 000 076 000 0.79 411 0.00 0.19 37.82 0.13 16.11 94.58 | 12.87
L2p~ 3596 58.86 1542 4278 65.66 3553 47.13 5245 4425 5034 6798 91.43 | 50.65
ProgPrompt”™ | 36.71 61.78 21.18 40.54 62.58 3295 39.62 58.65 5345 4599 70.01 88.52 | 50.99
NoRGa® 40.67 66.59 15.18 4798 71.08 27.03 5121 60.15 4449 5743 6822 90.63 | 53.39
O-LoRA 29.67 60.26 22.61 39.02 5533 3221 46.04 5229 57.08 48.04 68.05 91.18 | 50.15
SAPT 31.71 5795 492 49.78 65.65 20.64 33.65 56.74 2927 47.66 6330 94.00 | 46.27
MoLE-CIE 52.62 73.56 35.77 5448 79.99 4848 6751 79.15 68.52 61.05 8530 95.76 | 66.85
Sequence 2 ED1 ED2 ED3 ED4 RE1 REQ RE3 RE4 NER1 NER2 NER3 NER4 AVg.
SeqLoRA 0.00 000 008 0.00 000 023 017 039 0.13 857 47.61 94.03 | 12.60
L2P2 44.53 3991 4841 4842 60.67 67.02 6090 6885 1527 3990 6091 89.85 | 53.72
ProgPrompt®™ | 40.70 49.51 5381 56.82 66.41 7001 59.70 74.44 1773 35.00 50.81 91.57 | 5554
NoRGa® 41.78 49.73 5032 56.87 65.03 7125 59.03 73.68 14.88 49.72 61.71 92.03 | 57.16
O-LoRA 3726 4474 4384 46.12 6042 68.07 57.07 67.55 28.10 34.04 68.13 90.19 | 53.79
SAPT 37.79 3499 47.69 4635 79.09 6246 3555 5123 1555 2193 4952 93.32 | 47.95
MoLE-CIE 58.71 54.84 60.48 58.86 82.54 80.41 71.01 81.11 52.79 4429 74.78 95.60 | 67.95

Table 3: Accuracy comparison on each individual split after training on all splits. We did not report the results of
joint-training and GPT-40, because they do not involve knowledge forgetting.

| Sequence1l Sequence 2
MOoLE-CIE (full) 66.10 67.29
w/o LoRA experts 55.81 58.33
w/o Task experts 59.80 63.48
w/o IE experts 64.36 66.09
w/o Router KD 64.74 66.61
w/o Keys KD 64.21 65.70
Token — Sentence 61.10 63.31

Table 4: Accuracy of ablation study after training on all
splits. “KD” is abbreviated for knowledge distillation.

formance on almost all splits. Particularly, on the
first split ED;, MoLE-CIE outperforms the best
competitor by 11.95% and 14.18% in Sequence 1
and Sequence 2, respectively. In Table 5, MoLE-
CIE also obtains the lowest F.Ra, demonstrating its
strong ability to resist knowledge forgetting.

Knowledge transfer. We use two widely-used
metrics, FWT and BWT, to measure the knowl-
edge transferability of each model in continual IE.
FWT measures the knowledge transferability from
previous splits to new splits, while BWT measures
the ability from new splits to previous splits. Our
MOoLE-CIE achieves the optimal results for both
metrics, which shows the superiority of our model
in knowledge transfer among IE tasks. Further-
more, MoLE-CIE outperforms all competitors in
terms of BWT by a large margin. It verifies that
MOoLE-CIE can effectively use the knowledge of
post-learning IE tasks to update the knowledge of
previously learned IE tasks, in contrast to related
works that freeze the learned knowledge.

Expert selection. To investigate the effect of expert

Sequencel | FWT+ BWT1 FRal
SeqLoRA 129  —8221 89.68
L2P% 3.20 —41.83 45.82
ProgPrompt® | 426  —3896 41.84
NoRGa® 4.49 —37.57  40.99
O-LoRA 3.63 —40.68 44.38
SAPT 499  —4538 4950
MoLE-CIE 646  —2671 29.13
Sequence 2 \ FWT1T BWT{ FRa]
SeqLoRA 270  —8248  89.98
L2P~ 250 —35.66 40.34
ProgPrompt® 4.99 —34.12  37.22
NoRGa® 503  —3233 3553
O-LoRA 2.19  —34.88 38.05
SAPT 456  —44.16  48.17
MoLE-CIE 728  —2582 2816

Table 5: FWT, BWT, and F.Ra scores.

selection by the LoRA router and task keys, we
visualize the frequency of the expert selection for
each split after training all splits. From Figure 2, we
can find that: (1) For task expert selection, MoLE-
CIE assigns task experts that match the IE tasks
for the most tokens, which shows the effectiveness
of task experts in preserving the knowledge of IE
tasks to mitigate catastrophic forgetting. MoLE-
CIE also assigns task experts that do not match the
tasks for some tokens, such as assigning task expert
FEngr to some tokens in the RE task. This indicates
that MoLE-CIE selects all task experts for each IE
task at the token level, effectively integrating the
knowledge from various IE tasks.

(2) For LoRA expert selection, as the number of
activated LoRA experts is set to 2, we can observe
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Figure 2: Heat maps of frequency of expert selection
for each task on (a) Sequence 1 and (b) Sequence 2.

in Figure 2 that MoLE-CIE assigns two different
LoRA experts to the majority of tokens for each
IE task. For example, in Figure 2(a), most tokens
for the ED task are assigned F; and E5, while for
RE are F4 and E5. This suggests that these LoORA
experts store task-related knowledge and can be
appropriately assigned to the corresponding tasks,
further retaining task-specific knowledge. Further-
more, all LoRA experts are selected for each IE
task. This shows that each LoRA expert learns dif-
ferent specific knowledge and uses it in different
IE tasks.

(3) In Figure 2(a), although each new task
learned is different, MoLE-CIE can still assign the
correct experts, showing its strong adaptability to
new tasks. In Figure 2(b), MoLE-CIE can consis-
tently and stably assign LoRA experts for the same
IE task, indicating it can continuously update the
knowledge of corresponding LoRA experts.

6 Conclusion

In this paper, we define continual IE and design a
novel model MoLE-CIE. We propose the mixture
of LoRA experts and gate reflection to mitigate
catastrophic forgetting and facilitate knowledge
transfer. Experiment results on three benchmark
IE tasks show that MoLE-CIE achieves superior
accuracy. The results also verify its effectiveness
in knowledge reservation and transfer.
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Limitations

Our model may have two limitations: (1) It focuses
on the three most typical IE tasks, namely NER,
RE, and ED. However, there exist other IE tasks,
such as sentiment analysis. While it is feasible
to run these tasks with MoLE-CIE, we have not
carried out in-depth evaluation on them yet. (2)
Our model uses a PEFT method, which may result
in the loss of accuracy compared to the continual
learning algorithms employing full-parameter fine-
tuning. Our current hardware environment limits
our experiments on this.
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A Dataset Statistics and Splits

In this section, we introduce how we split the
datasets used in our experiments.

For the event detection task, we follow (Lin et al.,
2020) to pre-process the dataset for ACEOS5-EN+
(Doddington et al., 2004). The original develop-
ment set and test set miss several event types, and
the number of instances in the test set is much
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Tasks ‘ Splits  Types Instances

| Training Dev.  Test

) 52 18148 2050 5112
D 2 46 17754 2000 4675
3 51 19924 2241 5367
4 52 18194 2047 4696
1 32 10337 3037 3037
. 2 20 10127 3013 3013
3 31 10143 3012 3012
4 28 10282 3033 3.033
i 8 19891 2786 3.131
2 10 20840 3771 5402
NER | 3 8 31498 6139 9406
4 8 21610 3975 4885

Table 6: Dataset statistics.

smaller than that in the development set. Following
(Yu et al., 2021), we re-split the training set for
the development set and test set. We combine the
original development set and test set as a new test
set. Then, we randomly sample 10% of instances
from the training set as a new development set. For
the new test set, if the number of instances for a
type is less than 10% of the total instances for this
type, we randomly sample instances from the train-
ing set and remove them from the training set to
make up for the difference. We do not include “Jus-
tice:Pardon” in both the development set and test
set, as it only has two instances in the entire dataset.
For MAVEN (Wang et al., 2020), we follow (Wang
et al., 2023c¢) to take the original development set
as the test set and re-split the training set.

For the relation extraction task, we follow (Cui
et al., 2021; Zhao et al., 2022) to use 80 relations
and each with 700 samples for Few-Rel (Han et al.,
2018). We allocate 420 samples to the training
set, 140 samples to the development set, and 140
samples to the test set. For TACRED, we follow
(Cui et al., 2021; Zhao et al., 2022) to remove the
samples of “no_relation”.

For the named entity recognition task, we use
the origin dataset for OntoNotes-5.0 (Hovy et al.,
2006) and i2b2 (Murphy et al., 2010).

For the partition of each dataset, we ensure that
the label and instance counts for each split are as
consistent as possible. After partitioning, we merge
the split of each dataset based on the task type. The
statistics of the datasets after merging are presented
in Table 6.

Event detection prompt:

Definition:

Please extract the information (such as named entity
types, event types, or relation types) from the sentences
and words below.

Input:

Sentence: {input sentence} Wordl: {word1}

Output:

Relation extraction prompt:

Definition:

Please extract the information (such as named entity
types, event types, or relation types) from the sentences
and words below.

Input:

Sentence: {input sentence} Wordl: {wordl} Word2:
{word2}

Output:

Named entity recognition prompt:

Definition:

Please extract the information (such as named entity
types, event types, or relation types) from the sentences
and words below.

Input:

Sentence: {input sentence} Word1: {word1}

Output:

Table 7: Instructions for different tasks.

B Task Instructions

In Table 7, we provide the prompt templates used
for training and inference. Based on the task in-
structions, it can be observed that:

(1) The model is not informed of the specific task
information during inference. This prevents the
leakage of task information, making the continual
IE problem more challenging and generalizable.

(2) Due to the absence of task information, exist-
ing task-specific continual learning methods (Wang
et al., 2023c; Le et al., 2025; Zhao et al., 2023; Le
et al., 2024b; Zhang et al., 2023a; Yu et al., 2024)
for IE cannot be applied to the continual IE task.
For continual learning methods with LLMs, such
instructions place higher demands on the model’s
selection module. Thanks to the token-level selec-
tion module, MoLE-CIE effectively handles this
challenge and achieves the best performance.

C Test Prompts and Results for GPT-40

Table 8 depicts the test prompts used by GPT-4o.
Considering that GPT-40 requires specific task def-
initions to guide its generation, we provide it with
detailed task information in the test prompts. There-
fore, compared to the task instructions in Appendix
B, the test prompts for GPT-40 are simpler.

Table 9 reports the test results on each extraction
task, comparing with the performance of MoLE-
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CIE trained on all splits from Sequences 1 and 2
with that of GPT-40. From the results, we can find
that GPT-40 performs not well in the continual IE
scenario, especially on the ED and RE tasks. This
suggests that continual learning is still necessary in
the field of IE even after the emergence of powerful
LLM:s.

Event detection prompt:

Please determine the event type that appears in the sen-
tence based on the trigger words.

Sentence: {input sentence} Trigger words: ({trigger
word}

Please select only a type from the following options:
Event types: {event types}

Relation extraction prompt:

Please determine the relation type between the two enti-
ties in the sentence.

Sentence: {input sentence} Entityl: {entityl} Entity2:
{entity2}

Please select only a type from the following options:
Relation types: {relation types}

Named entity recognition prompt:

Please determine the named entity type based on the
sentence and the entity.

Sentence: {input sentence} Entity: {entity}

Please select only a type from the following options:
Entity types: {entity types}

Table 8: Test prompts for GPT-4o.

| ED RE NER IE
GPT-40 2220 2432 5647 36.95
MoLE-CIE (Seq. 1) | 5892 7950 62.13 66.10
MoLE-CIE (Seq. 2) | 5822 7877 66.87 67.29

Table 9: Accuracy comparison between MoLE-CIE and
GPT-4o0 given specific task definitions.

D Complete Results of Ablation Study

In Table 10, we present the complete results of the
ablation study. From the results, we can find that:

(1) After training on each split, all models with
removed or replaced modules exhibit a perfor-
mance degradation. This further demonstrates the
effectiveness of each module in MoLE-CIE.

(2) When MoLE-CIE is switched from token-
level to sentence-level, the model’s performance
declines. This highlights the importance of the
token-level expert selection module to MoLE-CIE.

E Analysis of Number of LoRA Experts

In Table 11, we conduct an analysis with different
numbers n of LORA experts. From the results, we
can find that:

(1) The accuracy of MoLE-CIE degrades in the
two sequences with n = 4 and n = 12. This
suggests the rationale of setting the number of total
experts equal to the number of training splits.

(2) When n = 4, MoLE-CIE does not have
enough LoRA experts to learn the knowledge
across different tasks, leading to knowledge con-
flicts within the same LoRA expert.

(3) When n = 12, the model distributes the
knowledge across too many LoRA experts, caus-
ing that the model lacks the ability to fully uti-
lize knowledge with the same number of activated
LoRA experts.

F Analysis of Individual and All Tasks
Training

We conduct experiments to compare the MoLE-
CIE’s performance after only training on each in-
dividual task with that after training on all tasks in
Sequences 1 and 2. Table 12 presents the MoLE-
CIE’s test results on each individual task under
different training strategies.

From the table, we can observe that the results
of the models trained on all tasks are better than
those of the model trained on any individual task.
There is shared knowledge between the sub-tasks
in IE, which can promote learning between each
other. This is exactly one of our motivations.

G Analysis of Random Sequences

To verify the robustness of our model across dif-
ferent sequences, we conduct an analysis with ran-
dom sequences. We randomly generate three task
sequences and present them in Table 13. We train
and evaluate all models on the three sequences, and
average the accuracy over the current and previ-
ous splits. The results are presented in Table 14.
From the results, we can find that MoLE-CIE con-
sistently maintains the best performance. These
results demonstrate the strong robustness of MoLE-
CIE on different randomly sequences.

H Case Study

In Table 15, we select two instances in the test set
after training all splits in Sequence 1. From these
two cases, we can observe that:

(1) In Case 1, the best competitor NoRGa (Le
et al., 2024a) has forgotten the knowledge from
ED,, resulting in incorrect output. In contrast,
MOoLE-CIE successfully preserves the knowledge
from EDs through task experts and assigned the
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Sequence 1 | ED  RE, NER, EDy RE, NER, ED3; RE; NERs; EDy RE; NER,
MoLE-CIE (full) 90.35 8545 84.49 70.68 7323 6991 63.41 7253 67.85 6592 73.75 66.10
w/o LoRA experts | 87.98 71.32 73.66 62.06 63.77 63.51 5351 6225 58.11 56.13 63.75 5581
w/o Task experts 90.07 78.44 80.78 69.72 71.52 6454 59.66 6933 61.78 5991 68.66 59.80
w/o IE experts 89.78 83.74 8278 69.15 7196 6792 6228 70.86 64.78 6231 70.88 64.36
w/o Router KD 90.35 83.83 82.65 6992 7142 68.08 6143 70.64 6568 63.77 72.04 64.74
w/o Keys KD 90.35 83.60 81.19 69.50 71.77 6827 61.13 71.11 6523 6433 71.70 64.21
Token — Sentence | 88.58 74.94 77.73 67.12 70.78 66.65 59.37 68.04 6148 5998 68.87 61.11
Sequence 2 ‘ ED1 ED2 ED3 ED4 RE1 REQ RE3 RE4 NER1 NER2 NER3 NER4
MoLE-CIE (full) 90.35 59.77 51.06 50.40 62.72 63.28 65.22 68.72 70.18 6891 67.44 67.29
w/o LoRA experts | 87.98 5271 46.01 4030 57.71 4879 49.83 57.61 5437 5540 5798 58.33
w/o Task experts 90.07 54.14 4644 41.81 58.85 58.69 59.66 60.14 6371 6148 6293 63.48
w/o IE experts 89.78 58.09 49.61 48.13 60.16 6142 6125 64.86 69.24 67.13 6584 66.09
w/o Router KD 90.35 5793 50.09 48.64 60.57 60.35 63.73 6643 6895 66.89 6533 66.61
w/o Keys KD 90.35 58.06 49.83 42.62 60.52 6128 63.96 6239 6925 6793 6586 65.70
Token — Sentence | 88.58 57.56 44.38 39.58 57.87 60.55 59.82 5828 65.11 62.13 6231 63.31

Table 10: Accuracy of ablation study on all current and previous splits. “KD” is abbreviated for knowledge

distillation.
Sequence 1 ‘ ED1 RE1 NERy EDy RE; NERy ED3 RE3 NER3 ED,4 RE; NERy
n = 8 (default) | 90.35 8545 8449 70.68 73.23 6991 6341 7253 67.85 6592 73.75 66.10
n=4 89.44 84.61 8248 68.04 73.01 68.05 6193 70.71 6555 6341 71.02 64.00
n=12 89.71 81.53 81.70 69.72 71.82 7037 6145 70.61 67.67 6555 7274 6552
Sequence 2 ‘ ED1 ED2 ED3 ED4 RE1 RE2 RE3 RE4 NER1 NER2 NER3 NER4
n = § (default) | 90.35 59.77 51.06 50.40 62.72 63.28 6522 68.72 70.18 6891 67.44 67.29
n=4 89.44 58.13 4932 4412 6130 6133 6333 64.15 69.12 6699 64.83 66.00
n=12 89.71 5895 50.06 49.70 60.18 61.77 67.71 67.18 74.75 6794 67.10 66.37

Table 11: Accuracy w.r.t. the number n of LoORA experts in the two sequences.

MoLE-CIE after training on | ED RE NER
Each individual task 50.40 73.11 59.09
Sequence 1 (all tasks) 5891 79.50 62.13
Sequence 2 (all tasks) 58.22 78.76 66.86

Table 12: Results of MoLE-CIE on individual tasks and
all tasks training.

Random \ Task sequences

RE, — EE> — RE> — EE4 —
1 RE, — NER4 — EE1 — NER1 —
REs — NER> — NERs — EE3

NER, — NER, — EE> — RE3 —
2 RE; — RE4 — NER2 — EE, —
EE; — EE4 — RE1 — NER3

EE\ — NERy — EE3 — NERy —
3 EE; — RE3s — NERs — RE, —
EE4 — NER2 — RE1 — RE2

Table 13: Three different random task sequences.

correct task expert Egp to this instance, resulting
in the correct answer. This shows the superiority of

MoLE-CIE in mitigating catastrophic forgetting.

(2) In Case 2, NoRGa incorrectly uses knowl-
edge from the NER task and chooses the wrong
knowledge to answer this instance. This suggests
that the sentence-level selection module of NoRGa
is unable to distinguish knowledge from differ-
ent IE tasks effectively, leading to forgetting. It
also highlights the model’s weakness in knowledge
transfer among IE tasks. Thanks to the token-level
mixture of LoRA experts module, MoLE-CIE suc-
cessfully uses the correct experts for this instance
and provides the correct answer. This demonstrates
that MoLE-CIE can effectively distinguish and uti-
lize knowledge from different IE tasks, showcasing
its superiority in mitigating catastrophic forgetting
and facilitating knowledge transfer.

In Table 16, we also provide two bad cases of

our model to analyze the limitations from a com-
prehensive view.

In bad case 1, the semantics of “Scrutiny” and
“Scouring” are very similar, with only subtle differ-
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5] p) T3 T, Ts Ts T7 T Ty T1o T T1o
SeqLoRA 91.89 44.83 41.68 2539 2476 17.53 23.67 20.34 2033 16.63 17.05 20.21
Joint-training | 91.89 94.28 91.39 89.86 88.88 90.17 89.53 89.82 87.11 86.75 87.55 88.03
L2p2 92.35 7038 65.78 60.76 52.14 60.24 5251 52.68 49.57 4294 46.31 45.79
ProgF’romptA 91.89 73.57 67.66 6047 5042 5493 5085 5143 4572 3721 39.83 43.08
NoRGa%® 92.37 72.10 71.31 67.33 61.54 62.75 57.34 6228 50.76 4896 51.83 52.94
O-LoRA 91.89 69.39 70.71 6637 5595 60.21 5730 5692 44.18 4422 43.61 47.96
SAPT 92.51 69.28 53.53 5256 54.06 51.84 4833 47.67 41.55 4146 4291 40.05
GPT-40 36.02 48.04 39.73 34.81 3289 3142 3553 36.17 33.65 33.54 36.05 36.95
MoLE-CIE 93.12 79.33 73.61 70.08 7144 75.70 70.79 73.77 66.75 68.35 70.81 71.64

Table 14: Average accuracy comparison between MoLE-CIE and competitors on all current and previous splits
across three random task sequences. The best and second-best scores except for joint-training are marked in bold
and with underline, respectively. ©* denotes the methods replaced with LoRA.

Case 1:

Definition: Please extract the information (such as
named entity types, event types, or relation types) from
the sentences and words below.

Input: Sentence: In august 1944, the royal navy con-
ducted operation goodwood, four more carrier raids
against “tirpitz”” which also failed and the task of sink-
ing the battleship was transferred to the royal air force.
Word]1: raids.

Output:

Ground truth: Attack (The type in ED3)

Output of NoRGa (Le et al., 2024a):
Patrolling (The type in ED1)

Output of MoLE-CIE:

Attack (The type in ED3)

Case 2:

Definition: Please extract the information (such as
named entity types, event types, or relation types) from
the sentences and words below.

Input: Sentence: The operation ultimately failed when
FRELIMO forces regrouped and thrusted further south
in the province of Tete, opening a new front and over-
stretching the Portuguese Army. Word1: operation.
Output:

Ground truth: Military_operation (The type in ED4)

Output of NoRGa (Le et al., 2024a):
GPE (The type in NER4)

Output of MoLE-CIE:
Military_operation (The type in ED4)

Table 15: Case study of Sequence 1.

ences. MoLE-CIE confuses their semantics. How
to distinguish similar semantics (e.g., using con-
trastive learning methods) is still very challenging
in our work.

In bad case 2, both “winner” and “participant”
can describe the relationship between two entities,
yet “winner” is more appropriate in the given con-
text. MoLE-CIE fails to correctly infer the more
precise relationship. In future work, we plan to
explore ways to enhance this aspect.

Bad case 1:

Definition: Please extract the information (such as
named entity types, event types, or relation types) from
the sentences and words below..

Input: Sentence: The operation ended a nearly 10-year
search for bin Laden, following his role in the September
11 attacks on the United States. Word1: search.
Output:

Ground truth: Scrutiny (The type in EE_3)

Output of MoLE-CIE:
Scouring (The type in EE_2)

Bad case 2:

Definition: Please extract the information (such as
named entity types, event types, or relation types) from
the sentences and words below.

Input: Sentence: Game 6 was a blowout in which the
Lakers defeated the Nuggets 119 - 92 to advance to its
franchise’s 30th NBA Finals appearance . Word1: NBA
Finals. Word2: Lakers

Output:

Ground truth: winner (The type in RE_3)

Output of MoLE-CIE:
participant (The type in RE_3)

Table 16: Bad cases of Sequence 1.

I Analysis of MoE-PEFT Methods

Finetuning methods combining MoE and PEFT can
also be applied to continual information extraction.
For comparison, we select the most recent method,
MoLA (Gao et al., 2025), to conduct a comparative
experiment. The experimental results are presented
in Table 17.

We want to highlight: (1) In continual informa-
tion extraction, our performance is significantly
better than that of MoLA. (2) Compared to other
finetuning methods that combine MoE and PEFT,
MoLE-CIE utilizes task experts to preserve knowl-
edge from extraction tasks during continual learn-
ing, while also designing a gate reflection method
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Sequence 1 ED1 RE1 NERl EDQ REQ NER2 ED3 RE3 NER3 ED4 RE4 NER4
MoLE-CIE | 90.35 8545 8449 70.68 7323 6991 6341 7253 67.85 6592 7375 66.10
MoLA 88.84 77.78 80.17 69.35 69.29 6271 5511 61.09 6034 5749 6584 58.08
Sequence2 | EDy EDy ED3 ED;y RE; RE5 RE3 RE, NERy NERy NER3 NER,
MoLE-CIE | 90.35 59.77 51.06 5040 6272 6328 6522 68.72 70.18 6891 6744 67.29
MoLA 88.84 52.14 4533 4735 56.05 5850 56.28 58.77 61.20 6137 61.72 62.36

Table 17: Accuracy comparison between MoLE-CIE and MoLA on all current and previous splits.

based on knowledge distillation to address forget-
ting. Therefore, MoLE-CIE performs better in con-
tinual information extraction.

J Analysis of Additional NLP Tasks

To assess the generalizability of MoLE-CIE, we
further evaluate its continual learning capabilities
on a set of additional NLP tasks. We use a widely
adopted continual learning benchmark, SuperNI
(Wang et al., 2022a), as our experimental dataset.
Following (Zhao et al., 2024), we construct a se-
quence of 15 splits by selecting three representative
splits from each of the following categories: dia-
logue generation, information extraction, question
answering, summarization, and sentiment analysis.
For each split, we randomly sample 1,000 instances
for training, and 100 instances each for validation
and testing. Following (Zhao et al., 2024), we em-
ploy the same task sequences and evaluation metric,
Rouge-L (Lin, 2004). The task sequences of Su-
perNI are listed in Table 18. The experimental re-
sults are presented in Table 19, which demonstrate
the strong adaptability and scalability of MoLE-
CIE across diverse scenarios.

Seq. | Task sequences

Task1572 — Task363 — Task1290 —
Task181 — Task002 — Task1510 —
1 Task639 — Task1729 — Task073 —
Task1590 — Task748 — Task511 —
Task591 — Task1687 — Task875

Task748 — Task073 — Task1590 —
Task639 — Task1572 — Task1687 —
2 Task591 — Task363 — Task1510—
Task1729 — Task181 — Task511 —
Task002 — Task1290 — Task875

Table 18: Two different task sequences of SuperNI.

\ Sequence 1  Sequence 2
SeqLoRA 21.32 19.61
Joint-training 60.76 60.10
L2p~ 50.21 47.40
ProgPrompt® 48.36 45.51
NoRGa® 51.27 47.80
O-LoRA 50.00 48.28
SAPT 52.22 51.63
MoLE-CIE 55.32 55.39

Table 19: Rouge-L comparison between MoLE-CIE and
competitors after training all splits on two sequences.
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