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Abstract

High-dimensional text embeddings are founda-
tional to modern NLP but costly to store and
use. While embedding compression addresses
these challenges, selecting the best compres-
sion method remains difficult. Existing eval-
uation methods for compressed embeddings
are either expensive or too simplistic. We in-
troduce a comprehensive intrinsic evaluation
framework featuring a suite of task-agnostic
metrics that together provide a reliable proxy
for downstream performance. A key contribu-
tion is EOSk, a novel spectral fidelity measure
specifically designed to be robust to embedding
anisotropy. Through extensive experiments on
diverse embeddings across four downstream
tasks, we demonstrate that our intrinsic met-
rics reliably predict extrinsic performance and
reveal how different embedding architectures
depend on distinct geometric properties. Our
framework provides a practical, efficient, and
interpretable alternative to standard evaluations
for compressed embeddings1.

1 Introduction

Word, sentence, and, more generally, text em-
beddings2 have become central to Natural Lan-
guage Processing (NLP), enabling a range of tasks
from semantic search to classification and cluster-
ing (Muennighoff et al., 2023; Wang et al., 2024a;
Chen et al., 2024; Wang et al., 2024b). As embed-
ding models have evolved from static embeddings
(e.g., GloVe (Pennington et al., 2014)) to contextu-
alised ones (e.g., BERT (Devlin et al., 2019)) and
more recently, large language model (LLM)-based
(e.g., E5 (Wang et al., 2022)), the dimensional-
ity and complexity of these embeddings have in-
creased significantly. Although higher-dimensional

1The framework and EOSk implementation are
available at https://github.com/nathaninkiriwang/
TextEmbedCompress.

2“Embedding” and “representation” are used interchange-
ably in the literature.

embeddings often capture richer linguistic informa-
tion, they incur substantial computational costs in
terms of memory consumption, inference time, en-
ergy usage and carbon emissions (Strubell et al.,
2019; Schwartz et al., 2020; Liu and Yin, 2024).
Such high dimensionality also poses practical chal-
lenges, particularly in low-resource settings or
efficiency-critical environments, where memory,
computational cost, and latency are major con-
straints (Sanh et al., 2019; Turc et al., 2019).

To address these challenges, dimensionality re-
duction (DR) and quantisation have been increas-
ingly adopted to compress embeddings (Raunak
et al., 2019; Sherki et al., 2021; Liu et al., 2022;
Rosa et al., 2022; Yamagiwa et al., 2023; Hwang
et al., 2023; Xue et al., 2024; Bibi et al., 2024;
Lang et al., 2024; Hina et al., 2024). This trend
is motivated, in part, by the finding that many em-
bedding models possess an inherently low intrin-
sic dimensionality (Kataiwa et al., 2025). This
property indicates significant redundancy, which
compression3 methods can exploit to substantially
reduce the computational burden while preserving,
or even improving, downstream performance (Rau-
nak et al., 2019; Zhang et al., 2024). However,
despite growing adoption for compressing embed-
dings, significant gaps remain in both the theoreti-
cal understanding and systematic empirical evalua-
tion of these methods.

The evaluation of embedding compression has
largely relied on two limited practices: (i) using
extrinsic downstream performance metrics (e.g., ac-
curacy or retrieval scores) (Yamagiwa et al., 2023;
Hwang et al., 2023; Xue et al., 2024; Bibi et al.,
2024; Lang et al., 2024); and (ii) relying on a single
intrinsic metric (May et al., 2019). Neither offers a
complete or reliable picture of embedding quality.

Extrinsic evaluations are computationally de-

3Throughout, ‘compression’ covers both dimensionality
reduction and quantisation.
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manding, given the large combinatorial space of
models, tasks, and compression techniques, and
are highly sensitive to dataset and configuration
choices (e.g., classifier design, retrieval settings).
More importantly, they provide limited insight. Per-
formance scores do not show which structural prop-
erties are preserved or lost. This results in a frag-
mented and opaque understanding of compression,
especially across diverse embedding types (Yam-
agiwa et al., 2023; Hwang et al., 2023; Xue et al.,
2024; Bibi et al., 2024).

Intrinsic evaluations based on a single metric
are similarly limited (May et al., 2019). Such ap-
proaches fail to generalise across embedding archi-
tectures and thus offer a limited view that restricts
practical applicability, especially when compres-
sion methods behave inconsistently across tasks.

To address these limitations, we propose a com-
prehensive and scalable evaluation framework for
compressed embeddings4. Our framework includes
a set of theoretically grounded intrinsic metrics
that are task-agnostic, and, crucially, provide a
consistently robust proxy for overall downstream
utility. These metrics are motivated by key goals
in embedding design, preserving local neighbour-
hood structure (May et al., 2019; Wang and Isola,
2020), retaining global topology (Ethayarajh, 2019)
and maintaining information fidelity (Abdi and
Williams, 2010; Mu and Viswanath, 2018), and
aim to capture distinct geometric and statistical
properties that affect downstream performance. We
also introduce EOSk, a novel spectral fidelity met-
ric designed to better measure semantic preserva-
tion. Unlike traditional metrics that focus on the
entire eigenspectrum, EOSk specifically analyses
the residual eigenspace after removing the top−k
principal components. These top components often
capture broad, anisotropic variance that can over-
shadow more subtle, task-relevant information.

We apply our framework to three widely used
open-source embeddings, GloVe (Pennington et al.,
2014) (static), BERT (Devlin et al., 2019) (con-
textual), and E5 (Wang et al., 2022) (contrastive),
which vary in architectures, training objectives,
and anisotropy levels. Through extensive corre-
lation analysis on four downstream tasks across
21 datasets from the MTEB benchmark (Muen-
nighoff et al., 2023), we find consistent patterns
linking intrinsic properties with downstream perfor-
mance: contextual embeddings benefit most from

4Related work is given in Appendix A.

local structures, while static and contrastive embed-
dings align better with global and spectral fidelity.

Our framework provides a practical guide for se-
lecting compression methods based on embedding
type and downstream tasks. By measuring key in-
trinsic metrics: local, global, and spectral structure,
practitioners can determine which properties are
most important for their task. This enables more
informed decisions when selecting compression
methods, allowing them to balance compression ra-
tios with the preservation of structurally important
features for their applications.

Using our evaluation framework, we identify
Random Projection and int8 quantisation as con-
sistently effective compression strategies. This
benchmarked approach will allow users to com-
press embeddings effectively while maintaining
task-relevant performance and avoiding exhaustive
benchmarking. In addition, our novel EOSk metric
outperforms standard spectral metrics in scenar-
ios with anisotropic embeddings, enabling more
reliable intrinsic evaluation of structure-preserving
quality under varying model architectures.

2 Compression Methods

Preliminaries and Notation Let X ∈ Rn×D de-
note the original embedding matrix, where n is the
number of samples (e.g., words, sentences or docu-
ments) and D is the original embedding dimension.
Each row xi ∈ RD is an individual embedding
vector. The objective of embedding compression is
to transform X into a representation that requires
less storage and/or computational resources, while
preserving its utility. We focus on two classes of
operations: Dimensionality Reduction (DR) and
Quantisation (Q).

Dimensionality Reduction (DR): A function
fDR maps X to a lower-dimensional space Rn×d,
where d < D:

XDR = fDR(X)

Quantisation (Q): Given a real-valued matrix
M ∈ Rn×k (e.g., X or XDR), quantisation maps it
to B-bit integers using scale S and zero-point ZP :

fQ : Rn×k → (In×k
B ,PQ)

where k is the dimension of the input matrix (either
D or d), and PQ = {S,ZP} represents the set of
quantisation parameters. The quantised matrix is:

(MQ,PQ) = fQ(M).
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Here, MQ ∈ In×k
B . For this study, we focus on

B = 8 (i.e., ‘int8’ quantisation).

DR followed by Quantisation (DR+Q): First,
DR is applied to X to obtain XDR. Then, XDR is
quantised:

((XDR)Q,PQ) = fQ(XDR) = fQ(fDR(X)).

Appendix B provides detailed explanations of
the compression methods.

3 Evaluation Framework

To comprehensively evaluate the effectiveness of
compression methods, we propose a unified evalu-
ation framework that captures both the structural
and spectral fidelity of compressed representa-
tions. Given original embeddings X ∈ Rn×D and
their compressed representations Z ∈ Rn×d with
d≪ D, we evaluate how well the low-dimensional
space preserves the geometric and informational
properties of original embedding space.

Notation for Evaluation Metrics. Let n be the
number of samples. For each sample i, xi ∈ RD

is its original D-dimensional embedding, and zi ∈
Rd is its compressed d-dimensional representa-
tion. Pairwise Euclidean distances in the original
and compressed spaces are δij = ∥xi − xj∥2 and
dij = ∥zi − zj∥2, respectively. The set of k near-
est neighbours of sample i in the high-dimensional
space isNk(i), and in the low-dimensional space is
N ′

k(i). The rank of sample j in the neighbourhood
of i is r(i, j) in the original space and r′(i, j) in
the compressed space.

We categorise our intrinsic metrics along three
orthogonal axes: local neighbourhood fidelity,
global geometric structure, and spectral and
information-theoretic content. This multidimen-
sional perspective ensures a comprehensive charac-
terisation of compression effects, from fine-grained
local relationships to broader manifold structures
and core informational content.

3.1 Local neighbourhood Fidelity

The preservation of local neighbourhood structures
is critical, as these structures often encode subtle
semantic similarities vital for many tasks.

Trustworthiness (Tk) and Continuity
(Ck) (Venna and Kaski, 2001) These two
metrics evaluate the reliability of local neighbour-
hoods. Trustworthiness (Tk) measures how many

false neighbours are introduced by the DR process.
Specifically, it measures the extent to which points
that appear close in the compressed space (Z) were
not actually close in the original space (X). A high
Tk value indicates that the DR method does not
create spurious local relationships.

Tk = 1− 2

nk(2n− 3k − 1)

n∑

i=1

∑

j∈Uk(i)

(r(i, j)−k)

where Uk(i) = N ′
k(i) \Nk(i). Continuity (Ck), in

contrast, measures how many true neighbours from
the original space X are lost in the compressed
space Z. A high Ck indicates that the DR method
successfully preserves original local relationships.

Ck = 1− 2

nk(2n− 3k − 1)

n∑

i=1

∑

j∈Vk(i)

(r′(i, j)−k)

where Vk(i) = Nk(i) \ N ′
k(i). Together, Tk and

Ck provide a robust measure of how faithfully local
manifold structures are maintained.

Mean Relative Rank Error (MRREk) (Lee and
Verleysen, 2007) Beyond simple neighbourhood
overlap, MRREk measures the average propor-
tional change in the ranks of those neighbours that
are preserved within the top-k set after compres-
sion. A lower MRREk value indicates that the rel-
ative ordering of neighbours is mostly unchanged.
This suggests that the compression preserves fine-
grained local distances. It also means that the local
metric structure experiences minimal distortion.

MRREk =
1

nk

n∑

i=1

∑

j∈Nk(i)

|r(i, j)− r′(i, j)|
r(i, j)

.

Neighbourhood Precision at k (NPk) This met-
ric measures the overlap between the top-k neigh-
bours in the original and compressed spaces. It
quantifies how many true neighbours are retained
after compression, offering a direct and intuitive
measure of local structure preservation.

NPk =
1

n

n∑

i=1

|Nk(i) ∩N ′
k(i)|

k
.

Local Average Procrustes Measure
(LPro) (Schönemann, 1966) This metric
measures the preservation of local neighbourhood
geometry by averaging Procrustes disparities
across all points. For each point i, its k-nearest

13307



neighbours in X and Z forming sets NX(i) with
embeddings and NZ(i) with embeddings ZNZ(i).

A local Procrustes alignment is performed be-
tween these two neighbourhoods. Each set is cen-
tred, and an optimal local rotation Ri, and local
scaling factor ρi are computed to best align the
centred neighbourhood ZNZ(i),c to XNX(i),c, min-
imizing the Frobenius norm of their differences.
The normalised disparity for point i is then calcu-
lated as:

Disparityi =

∥∥XNX(i),c − ρiZNZ(i),cRi

∥∥2
F∥∥XNX(i),c

∥∥2
F

.

A low LPro indicates that the geometric structure
of the local neighbours around each point is well-
preserved. This indicates robustness against local
distortions such as shearing or anisotropic scaling,
thereby maintaining the relative distances, angles,
and overall configuration within the neighbourhood.
Such preservation of fine-grained local structure is
often critical for tasks that rely on nuanced seman-
tic similarity and precise neighbour identification.

3.2 Global Geometry Fidelity
Preserving the global geometry of the embedding
space is crucial for tasks that rely on broader se-
mantic relationships, such as clustering or topic
modelling. This involves maintaining the overall
shape of the data manifold and the relative posi-
tions of distant points or clusters.

Kruskal’s Stress (KS) (Kruskal, 1964)
Kruskal’s Stress (KS) measures the overall
distortion of pairwise distances among all samples.
It calculates the normalised sum of squared
differences between distances in X (δij) and Z
(dij). A lower KS indicates better preservation
of the global metric structure, meaning that
the large-scale arrangement of embeddings and
inter-cluster separations are well maintained.

KS =

√∑
i<j(δij − dij)2∑

i<j δ
2
ij

.

Distance Correlation (Spearman’s ρ and Pear-
son’s r) We compute Spearman’s rank correla-
tion and Pearson’s linear correlation between all
pairwise distances {δij} and {dij}. High posi-
tive correlations indicate that the relative ordering
(Spearman) and linear relationship (Pearson) of
inter-sample distances are preserved, maintaining
the global similarity structure after compression.

Global Procrustes Measure (GPro) (Schöne-
mann, 1966) This metric measures the overall
structural difference between X and Z. It finds
an optimal rigid transformation (including orthogo-
nal rotation R, uniform scaling ρ, and translation,
though translation is handled by centring the data)
that minimises the sum of squared differences be-
tween the transformed Z and X. A low GPro indi-
cates that the overall shape and orientation of the
point cloud are well-preserved after this optimal
alignment, showing robustness to global distortions.
The error is calculated as the sum of squared Frobe-
nius norms of the differences, normalised by the
sum of squared Frobenius norm of the centred orig-
inal embeddings:

GPro =
∥Xc − ρZcR∥2F
∥Xc∥2F

.

3.3 Spectral Retention
This dimension evaluates how well statistical infor-
mation and dominant data directions are preserved,
which often correspond to key semantic axes within
the embedding space.

Explained Variance Ratio (EVR) When the
compression method allows (e.g., PCA, or by com-
paring Z to a PCA of X), EVR measures the pro-
portion of total variance in X that is captured by
Z. A high EVR indicates that the principal com-
ponents of semantic variation are preserved, min-
imising significant information loss. This metric is
most directly interpretable for linear DR methods.
For non-linear methods, EVR is computed based
on the variance of Z and X.

EVR =
tr(Cov(Z))

tr(Cov(X))
.

Pairwise Inner-Product (PIP) Loss (Yin and
Shen, 2018) Inner products are fundamental to
many similarity measures (e.g., cosine similar-
ity). The PIP loss measures the squared Frobenius
norm of the difference between the Gram matrices
(XX⊤ and ZZ⊤). A low PIP loss indicates that key
angular relationships and dot product magnitudes
are well-preserved across the dataset.

PIP = ∥XX⊤ − ZZ⊤∥2F .

Eigenspace Overlap (EOS) (May et al., 2019)
The comparison of linear subspaces, typically de-
fined by the principal eigenvectors or singular vec-
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Algorithm 1 Residual Eigenspace Overlap Score
(EOSk)

Require: X ∈ Rn×D, Z ∈ Rn×d, k, Nsub

Ensure: EOSk
1: for B ∈ {X,Z} do
2: (_, _, V ⊤

B )← SVD(B)

3: V
(k)
B ← VB,1:k

4: B′ ← B −B V
(k)
B (V

(k)
B )⊤

5: (UB′ , _, _)← SVD(B′)
6: rB ← rank(B′)
7: mB ← min(Nsub, rB)
8: end for
9: N ← min(mX ,mZ)

10: if N = 0 then
11: if rX = 0 and rZ = 0 then
12: return 1.0
13: else
14: return 0.0
15: end if
16: end if
17: U∗

X ← UX′,1:N , U∗
Z ← UZ′,1:N

18: M ← (U∗
X)⊤U∗

Z

19: (σ1, . . . , σN )← SingularValues(M)

20: return
1

N

∑N
i=1 σ

2
i

tors of data matrices, is a common method to under-
stand structural similarities. EOS measures the de-
gree of alignment or shared variance between these
subspaces. It indicates whether different datasets
or data representations of the same data emphasise
similar underlying factors or directions of maxi-
mum variance. A high EOS shows that the main
geometric or statistical features captured by one
space are also prominent in the other. This align-
ment is quantified by first identifying the primary
directional axes (eigenvectors) for each data repre-
sentation. Then, one set of these axes is projected
onto the other, and the sum of the squared strengths
of these projections indicates the total overlap be-
tween the two subspaces.

4 EOSk

While the spectral metrics (Section 3.3) offer valu-
able insights, their effectiveness can be compro-
mised in the context of modern, anisotropic, text
embeddings. In such cases, the metric may over-
state the quality of preservation by capturing align-
ment in high-variance directions that lack meaning-
ful semantic content, thereby obscuring the degra-

dation of more subtle, task-relevant structures.

4.1 Anisotropy and Rogue Dimensions
A core assumption of many spectral metrics—that
preserving high-variance directions ensures the re-
tention of salient information—is often misleading
for modern embeddings (e.g., BERT, E5). This is
due to anisotropy, a property where variance is con-
centrated in a few dominant “rogue dimensions.”
These dimensions disproportionately inflate simi-
larity scores while contributing little to downstream
tasks.

This discrepancy is illustrated in Figure 1. The
top panel shows each dimension’s contribution to
cosine similarity, revealing how a handful of rogue
dimensions dominate the score while most con-
tribute almost nothing. Formally, the contribution
of dimension i to the cosine similarity between vec-
tors u and v is CCi =

uivi
∥u∥∥v∥ (Timkey and van

Schijndel, 2021). Rogue dimensions consistently
have large-magnitude values, thus dominating this
sum. The bottom panel, in contrast, shows logistic
regression weights (w) for a downstream classifica-
tion task. Here, importance is spread more evenly
across dimensions, and the rogue dimensions are
appropriately down-weighted, as their large, task-
agnostic variance provides little predictive power.

This fundamental misalignment between what
is structurally dominant and what is semantically
useful necessitates a more robust evaluation ap-
proach. To address this, we propose the Resid-
ual Eigenspace Overlap Score (EOSk), a novel
metric designed to look beyond these confounding
high-variance components. EOSk concentrates on
the semantic content embedded within the resid-
ual eigenspace—the subspace remaining after the
top-k dominant principal components are removed
from both the original and compressed embeddings.
This approach is motivated by prior work (Raunak
et al., 2019; Timkey and van Schijndel, 2021) show-
ing that leading components often capture task-
agnostic noise. By intentionally excluding them,
EOSk offers a more faithful measure of meaningful
semantic preservation, as detailed in Algorithm 1.

4.2 Determining the k Parameter for EOSk

A critical aspect of EOSk is the choice of k, the
number of top principal components to remove.
This choice is not arbitrary; it is grounded in
a data-driven analysis of the embedding space’s
anisotropy. Specifically, k is determined by
analysing the geometry of the embedding space

13309



Figure 1: Comparison of each dimension’s con-
tribution to cosine similarity (top) and its logistic-
regression weight (bottom) for E5 (1024d) on
ToxicConversationsClassification dataset.

by observing how each dimension contributes to a
standard similarity measure like cosine similarity.

In Figure 1, the top panel reveals a clear
anisotropic pattern: only 1–3 dimensions domi-
nate similarity, while the majority contribute neg-
ligibly. The bottom panel, however, shows that
these dominant components are down-weighted by
the classifier, whereas lower-variance dimensions
play a meaningful role. Our experiments consis-
tently revealed a single overwhelmingly dominant
component in both BERT and E5 embeddings. Ac-
cordingly, we set k = 1 in all experiments reported
in this paper.

5 Experimental Setup

We evaluate the proposed framework by perform-
ing a correlation analysis using Spearman’s rank
correlation coefficient to examine how well intrin-
sic evaluation metrics align with performance on
extrinsic tasks, consistent with prior intrinsic eval-
uation studies (May et al., 2019). High correla-
tion indicates that intrinsic metrics align well with
downstream task performance and can therefore
serve as reliable and cost-efficient proxies for eval-
uating embedding compression quality.

For each dataset and embedding family, the ex-
perimental pipeline proceeds as follows: (i) gen-
erate original sentence embeddings; (ii) apply a
range of compression techniques; (iii) compute
the proposed intrinsic scores; and (iv) evaluate the
compressed embeddings on standard downstream
tasks. The intrinsic and extrinsic outcomes are sub-
sequently correlated to assess alignment. Figure 2
provides a schematic overview of this pipeline,
from embedding generation through compression,
evaluation, and correlation analysis.

Beyond correlation, the framework analyses how
compression perturbs embedding classes, identify-

ing which structural properties—local, global, or
spectral—are most critical to preserve.

Figure 2: Overview of the experimental workflow de-
signed to validate the proposed intrinsic evaluation
framework.

5.1 Downstream Tasks

To validate our framework, we follow the MTEB
benchmark (Muennighoff et al., 2023) and use
four tasks: Retrieval, Semantic Textual Similarity
(STS), Clustering, and Classification.

For STS and Retrieval, we compute cosine sim-
ilarity between sentence embeddings. Clustering
is performed using mini-batch k-means (batch size
32, number of clusters = number of gold labels),
and Classification uses logistic regression with a
maximum of 100 iterations.

For each task, we select representative datasets
to ensure broad domain coverage while maintain-
ing computational efficiency. Dataset details are
provided in Appendix D; full statistical details can
be found at (Muennighoff et al., 2023). We follow
MTEB’s standard evaluation protocols and primary
metrics (Retrieval: nDCG@10, STS: Spearman
correlation, Clustering: V-measure, Classification:
Accuracy). The summary of evaluation metrics is
provided in Appendix C.

5.2 Embedding Models and Sentence
Representation

We select three representative embedding models
covering static, contextual, and LLM-based types:

1. GloVe (Static) (Pennington et al., 2014): We
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Group Metric GloVe BERT E5

CLF CLU IR STS CLF CLU IR STS CLF CLU IR STS
L

oc
al

Tk 0.67† 0.24 0.55† 0.62† 0.84† 0.33 0.27 0.34 0.75† 0.28 0.76† 0.83†

Ck 0.65† 0.49 0.69† 0.64† 0.81† 0.22 0.15 0.34 0.64† 0.35 0.80† 0.87†

MRREk 0.65† 0.52† 0.71† 0.65† 0.80† 0.19 0.16 0.42 0.64† 0.35 0.80† 0.88†

NPk 0.67† 0.59† 0.70† 0.65† 0.80† 0.28 0.20 0.45 0.65† 0.35 0.80† 0.87†

LPro 0.65† 0.76† 0.76† 0.76† 0.51† 0.90† 0.86† 0.81† 0.36 0.86† 0.66† 0.50

G
lo

ba
l KS 0.18 0.30 0.27 0.58† 0.20 0.08 0.30 0.18 0.17 0.19 0.24 0.32

SDC 0.34 0.11 0.34 0.27 0.55† 0.44 0.54† 0.46 0.72† 0.37 0.57† 0.48
PDC 0.35 0.20 0.40 0.34 0.64† 0.35 0.40 0.36 0.75† 0.30 0.63† 0.56†

GPro 0.70† 0.59† 0.70† 0.69† 0.74† 0.36 0.44 0.48 0.48 0.46 0.81† 0.84†

In
fo

.R
et

. EVR 0.29 0.12 0.24 0.13 0.30 0.16 0.18 0.16 0.41 0.21 0.44 0.53†
PIP Loss 0.16 0.30 0.28 0.60† 0.13 0.13 0.26 0.24 0.12 0.27 0.26 0.26

EOS 0.60† 0.71† 0.72† 0.63† 0.18 0.32 0.38 0.24 0.15 0.09 0.12 0.30
EOSk (Ours) 0.52† 0.42 0.66† 0.47 0.45 0.44 0.57† 0.60† 0.35 0.50 0.54† 0.49

Table 1: Spearman Correlation between intrinsic evaluation metrics and downstream task performance. Each
correlation value is computed across all datasets within each task category (classification, clustering, IR, and
STS), covering all dimensionality reduction, quantisation, preprocessing methods, and embedding dimensions as
described in Section 5. Results for EOSk are reported with k = 1. Task abbreviations: CLF = Classification, CLU
= Clustering, IR = Information Retrieval, STS = Semantic Textual Similarity. † denotes statistical significance
(p < 0.01). Boldfaced values indicate the highest correlation for each metric-task pair.

use glove.840B.300d5 embeddings. Sen-
tence embeddings are computed by averaging
word vectors of lowercased tokens obtained
via simple whitespace tokenisation.

2. BERT (Contextual) (Devlin et al., 2019):
We use bert-base-uncased6 embeddings.
Sentence embeddings are obtained using the
‘sentence-transformers’ library7, via mean-
pooling of the last hidden state’s token em-
beddings or the [CLS] token representation,
depending on the specific model’s configura-
tion.

3. E5 (LLM-based) (Wang et al., 2022): We
use E5-large-v28 embeddings. We obtain
sentence embeddings using the default MTEB
framework mechanisms when loading the em-
bedding via the ‘sentence-transformers’ li-
brary.

6 Results

Table 1 presents correlation analysis results across
diverse embeddings and tasks, demonstrating that
several intrinsic metrics align closely with down-
stream behaviour.

5https://nlp.stanford.edu/projects/glove/
6https://huggingface.co/google-bert/

bert-base-uncased
7https://huggingface.co/sentence-transformers
8https://huggingface.co/intfloat/e5-large-v2

6.1 Local Structure Preservation

Metrics evaluating local structure preservation
prove to be highly reliable indicators of down-
stream task performance, particularly for classi-
fication. Traditional neighbourhood-based metrics
such as Trustworthiness (Tk), Continuity (Ck),
and Neighbourhood Precision (NPk) consistently
yield strong correlations with classification per-
formance across all models, especially for BERT
(ρ ≈ 0.80− 0.84). For E5 embeddings, these met-
rics are also exceptionally predictive of Informa-
tion Retrieval (IR) and Semantic Textual Similarity
(STS) performance, with correlations reaching as
high as ρ = 0.88. However, the standout metric
in this category is the Local Procrustes (LPro)
measure. It achieves remarkable correlations with
clustering performance for BERT (ρ = 0.90) and
E5 (ρ = 0.86), tasks where all other local metrics
showed limited predictive power.

The strong performance of metrics like Tk and
Ck suggests that for discriminative tasks like clas-
sification, maintaining the identity of immediate
neighbours is paramount. The introduction of false
neighbours or the loss of true ones directly de-
grades performance. Conversely, LPro’s unique
success in predicting clustering performance for
BERT and E5 indicates that for these complex,
anisotropic embeddings, preserving the local geo-
metric configuration (the “shape” of the neighbour-
hood) is more critical than preserving the exact set
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of neighbours. This insight is crucial, as it suggests
that effective compression for clustering tasks must
prioritise the retention of local manifold structures
over simple neighbourhood overlap.

6.2 Global Geometric Fidelity
The utility of global structure metrics is more var-
ied, with measures focused on geometric shape
significantly outperforming those based on pair-
wise distances. Classical metrics like Kruskal’s
Stress (KS), which penalise all pairwise distance
errors, are poor predictors for modern embeddings,
showing negligible correlation with performance
for BERT and E5. In contrast, the Global Pro-
crustes (GPro) measure, which assesses the preser-
vation of the entire point cloud’s shape under op-
timal rigid alignment, emerges as a robust indica-
tor. GPro shows consistently high correlations for
GloVe across all tasks (ρ ≈ 0.70), for BERT classi-
fication (ρ = 0.74), and is exceptionally predictive
for E5 on IR (ρ = 0.81) and STS (ρ = 0.84).

The failure of KS suggests that a strict, global
preservation of all pairwise distances is not aligned
with how modern embeddings encode semantic in-
formation, likely due to their anisotropic nature.
GPro’s success, however, demonstrates that main-
taining the overall geometric configuration of the
embedding space is a far more meaningful objec-
tive. For models like E5, the high GPro correla-
tions on IR and STS tasks imply that the large-scale
thematic organisation of concepts is vital for per-
formance. This highlights the importance of using
metrics that are sensitive to the global “silhouette”
of the data rather than to absolute distance fidelity.

6.3 Spectral Information Retention
Traditional spectral metrics that focus on dominant
variance components are generally poor predictors
of performance for modern transformer-based em-
beddings. Metrics such as Explained Variance Ra-
tio (EVR) and Pairwise Inner-Product (PIP) Loss
show weak correlations for BERT and E5. The
most striking finding is the failure of the standard
Eigenspace Overlap Score (EOS). While EOS is a
strong, consistent predictor for GloVe embeddings
across all tasks (ρ values between 0.60 and 0.72),
its predictive power plummets for BERT and E5,
with correlations often falling below ρ = 0.30.

This dramatic performance drop for modern em-
beddings provides strong evidence of the confound-
ing effects of anisotropy. For models like BERT
and E5, the top principal components, which carry

the most variance, do not necessarily align with the
most semantically informative directions. Conse-
quently, metrics like EOS, which exclusively evalu-
ate the alignment of these dominant (but potentially
task-irrelevant) subspaces, are fundamentally lim-
ited. This finding underscores the inadequacy of
standard spectral methods for evaluating contem-
porary embeddings and directly motivates the need
for metrics that can analyse structure beyond these
misleading dominant components.

6.4 Residual Eigenspace Overlap (EOSk)

Our proposed Residual Eigenspace Overlap
Score (EOSk) was designed specifically to address
the limitations of standard EOS for anisotropic em-
beddings. By first removing the top-k dominant
principal components and then measuring the align-
ment of the remaining, or residual, eigenspaces,
EOSk focuses on less dominant but more semanti-
cally rich structural information. The results com-
pellingly validate this approach. For BERT, EOSk
delivers a marked improvement over standard EOS,
yielding substantial correlations for IR (ρ = 0.57)
and STS (ρ = 0.60). A similar, significant im-
provement is observed for E5, with EOSk showing
notable correlations for Clustering (ρ = 0.50) and
IR (ρ = 0.54).

The superior performance of EOSk confirms
that for models like BERT and E5, a significant
amount of task-relevant information resides in the
residual eigenspace, not the dominant one. By suc-
cessfully capturing the preservation of this “deeper”
structure, EOSk provides a much more reliable
signal of downstream performance for modern em-
beddings. This validates EOSk as a critical tool
for evaluating compression techniques, demon-
strating that to accurately predict performance on
anisotropic embeddings, it is essential to look be-
yond the statistically dominant, and often semanti-
cally noisy, directions of variance.

7 Framework in Practice: Less is More

Our multi-metric evaluation framework not only
aligns well with extrinsic (downstream) perfor-
mance but also offers practical guidance for embed-
ding compression and dimensionality reduction.

Random Projections: Simple, Fast, Effective
Random Projections (RP) perform consistently
well across all embeddings (GloVe, BERT, E5),
reduction ratios (25%, 50%, 75%), and even under
int8 quantisation (Figure 3). Despite its simplicity,
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Figure 3: Comparative performance of dimensionality reduction techniques across intrinsic metrics for GloVe,
BERT, and E5 sentence embeddings. Results shown are averaged over multiple reduction ratios (25%, 50%, 75%)
and utilise int8 quantisation.

RP preserves both local (LPro, TW, CONT) and
global (GPro) structures effectively, supported by
the Johnson–Lindenstrauss lemma, which guaran-
tees that RP can preserve pairwise distances well
in high-dimensional spaces. Its inherent random-
ness and lack of complex learned transformations
may also prevent over-fitting to specific geomet-
ric idiosyncrasies of the original embedding space,
leading to a robust preservation of diverse structural
qualities. This suggests that RP, often considered
a baseline, can serve as a robust and efficient alter-
native to more complex DR methods, especially in
scenarios where computational overhead or imple-
mentation simplicity are key constraints.

Quantisation: Compress Without Compromise
We observed negligible differences between int8
quantised and full-precision embeddings across all
metrics and methods (see Section E). This suggests
quantisation does not significantly distort embed-
ding quality. This indicates that quantisation can be
adopted as a lightweight yet effective compression
step post-reduction, enabling substantial memory
and storage savings without sacrificing the core
representational qualities of the embeddings.

8 Conclusion

We introduced a scalable and interpretable intrinsic
evaluation framework for compressed text embed-
dings over DR methods, combining local, global,
and spectral fidelity metrics. We introduce a
novel metric, EOSk, that captures meaningful in-
formation beyond dominant principal components.
We validate our framework using three embed-
dings across four tasks and 21 datasets. Experi-

ments revealed that our framework robustly pre-
dicts downstream task performance across diverse
downstream tasks.

Key findings highlight that optimal compression
strategies are model-dependent: contextual embed-
dings benefit most from preserving local neigh-
bourhood structures, while static and contrastive
embeddings show stronger alignment with global
and spectral fidelity. Notably, EOSk revealed the
importance of retaining information beyond dom-
inant principal components, showing significant
correlations for BERT and E5, particularly in tasks
like STS. Our analysis also identified Random Pro-
jections as a highly efficient and effective dimen-
sionality reduction technique, and we recommend
the routine application of int8 quantisation for fur-
ther compression with minimal performance loss.
Ultimately, this work provides a principled and in-
terpretable framework, empowering more efficient
and informed development of compressed embed-
ding solutions.

Limitations

While this study introduces a robust framework
for evaluating compressed embeddings, its scope
has several limitations that provide clear avenues
for future research. Our findings are based on a
set of only three representative text embeddings,
and our evaluation is monolingually focused on
English language datasets. Consequently, the con-
clusions may not fully generalise to the entire land-
scape of available embeddings, especially those
with different architectures, or to other languages
with different morphological structures. Further-
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more, our investigation of compression methods
was not exhaustive. We focused on a select group
of dimensionality reduction techniques and int8
quantisation, leaving other promising techniques
such as pruning, knowledge distillation, and more
aggressive, lower-bit quantisation schemes unex-
plored. Finally, our reliance on Spearman cor-
relation as the sole metric provides a valuable
macro-level view of trends but may obscure prac-
tical utility, where a developer typically needs to
select the single best compression method for a task.
Future work should therefore incorporate a top-1
accuracy metric—how often the intrinsic frame-
work’s top-scored method aligns with the actual
best-performing method—and compare it against
a strong baseline to better quantify the practical,
decision-making value of the framework.
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A Related Work

Embeddings The evolution of embeddings
has progressed from static models (e.g.,
Word2Vec (Mikolov et al., 2013), GloVe (Penning-
ton et al., 2014), and FastText (Bojanowski et al.,
2017)) to contextual embeddings (e.g., BERT (De-
vlin et al., 2019), SimCSE (Gao et al., 2021),
and E5 (Wang et al., 2024a)). Static embeddings
capture global co-occurrence statistics, and con-
textual models provide dynamic representations
sensitive to neighbour context. Nie et al. (2024);
Zhang et al. (2024) explore LLMs, including
decoder-based architectures’ capability to generate
embeddings and indicate that LLMs serve as
competitive embedding generators, outperforming
traditional models on downstream retrieval and
classification tasks. These embeddings come
with higher dimensionality and computational
requirements, bringing the necessity of DR for
real-world applications.

Dimensionality Reduction of Embeddings DR
methods such as PCA (Hotelling, 1933), t-
SNE (van der Maaten, 2009), UMAP (McInnes
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et al., 2018) and autoencoders (Hinton and
Salakhutdinov, 2006) are used to compress vector
spaces while aiming to preserve important features
like semantic similarity and cluster structure. DR
has been applied primarily to static embeddings
such as Word2Vec and GloVe, showing that un-
supervised methods (i.e., PCA) can substantially
reduce the dimension of embeddings without per-
formance degradation (Raunak et al., 2019; Mu
and Viswanath, 2018). Zhang et al. (2024) explore
the effectiveness of DR methods on sentence em-
beddings, showing that aggressive compression
(e.g., to half the original size) can be achieved
with minor downstream performance loss. Huertas-
García et al. (2023) extend exploration of DR
methods on embeddings into multilingual settings,
indicating language-specific variance in DR be-
haviour. Huerga-Pérez et al. (2025) explore DR
methods to RAG embeddings, showing that PCA
(standard and Kernel) demonstrates the best perfor-
mance in preserving retrieval quality evaluated on
MTEB benchmark for the IR task.

Evaluation of Dimension Reduced Embeddings
A key limitation in DR research is its heavy depen-
dence on downstream task performance as the main
evaluation criterion. Task-specific performance is
informative, but it can not fully isolate the contri-
bution of the reduced embeddings from classifier-
specific effects (Zhang et al., 2024). This makes
it hard to clearly evaluate how much of the perfor-
mance is due to the DR method itself. On the other
hand, intrinsic evaluation metrics such as Tk, con-
tinuity, and neighbourhood preservation, provide a
more principled view of how well reduced embed-
dings maintain the geometric and structural prop-
erties of the original space. Gladkova and Drozd
(2016) highlight the importance of integrating these
metrics into evaluation to gain a deeper understand-
ing of embedding quality. Finally, Kazempour et al.
(2024) explores the quality not only with down-
stream tasks but also different evaluation criteria
for Computer vision (CV).

Our study aims to address the following gaps
in the literature: (i) compression embeddings are
often evaluated in isolation, focusing narrowly on a
single embedding type; (ii) evaluations frequently
consider only a limited range of compression meth-
ods; and (iii) there is an over-reliance on down-
stream accuracy as the primary evaluation metric.
To address these gaps, we propose a unified eval-
uation framework that systematically benchmarks

Method Linearity Local/Global Time Complexity

PCA Linear Global O(nd2)
ICA Linear Global O(nd2)
RP Linear Global O(ndk)
FA Linear Global O(nd2)
UMAP Nonlinear Local O(n log n)
PaCMAP Nonlinear Local O(n log n)

Table 2: Comparison of DR methods across key char-
acteristics. n represents the number of samples, d rep-
resents the original input dimension and k the reduced
output dimension.

multiple compression methods.

B Compression Methods

B.1 Dimensionality Reduction

We explore a diverse set of DR methods, span-
ning a broad spectrum of algorithmic philosophies,
encompassing classical linear projections, statis-
tical decomposition methods, and contemporary
non-linear manifold learning approaches. This di-
versity is critical for understanding the landscape
of DR performance on text embeddings, which are
known to possess complex, often non-linear, intrin-
sic structures (Kataiwa et al., 2025). A summary
of DR methods, highlighting their key characteris-
tics such as linearity, local/global preservation, and
time complexity, is presented in Table 2.

Principal Component Analysis (PCA)
(Hotelling, 1933): A cornerstone of linear DR,
PCA identifies orthogonal directions (principal
components) that capture the maximum variance
in the data. The transformation is defined by
projecting the data onto the subspace spanned by
the top d principal components: fPCA(X) = XW,
where W ∈ RD×d is the matrix whose columns
are the leading eigenvectors of the covariance
matrix of X, and W⊤W = I. Its inclusion is
motivated by its ubiquity, computational efficiency,
and its utility as a baseline for variance-preserving
linear transformations.

Independent Component Analysis (ICA)
(Comon, 1994): Unlike PCA, ICA aims to decom-
pose a multivariate signal into a set of statistically
independent, non-Gaussian components. It seeks a
linear transformation fICA(X) = XW such that
the columns of the resulting Z are as statistically
independent as possible, typically by maximising a
measure of non-Gaussianity. ICA is selected for
its potential to uncover underlying latent factors
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that may be more semantically meaningful than
principal components, especially when the sources
are not orthogonal.

Random Projection (RP) (Achlioptas, 2003):
RP offers a computationally efficient, data-
oblivious DR method grounded in the Johnson-
Lindenstrauss lemma (Johnson et al., 1984). It
projects data onto a lower-dimensional space using
a random matrix R ∈ RD×d, where entries are typi-
cally drawn from a Gaussian or sparse Rademacher
distribution: fRP(X) = 1√

d
XR. RP is chosen for

its scalability, theoretical guarantees on preserving
pairwise distances (in expectation), and its utility
in scenarios where constructing a data-dependent
projection is computationally prohibitive.

Factor Analysis (FA) (Spearman, 1904): FA
is a statistical method used to describe variabil-
ity among observed, correlated variables in terms
of a potentially lower number of unobserved vari-
ables called factors. It models the data x as
x = Wz + µ + ϵ, where z is a vector of d
latent factors (typically assumed to be N (0, I)),
W ∈ RD×d is the factor loading matrix, µ is
the mean vector, and ϵ is a vector of unique er-
ror terms, often assumed to be N (0,Ψ) with Ψ
being a diagonal covariance matrix. FA is included
to evaluate a generative linear model that explicitly
accounts for measurement error, contrasting with
PCA’s variance-maximisation approach.

Uniform Manifold Approximation and Projec-
tion (UMAP) (McInnes et al., 2018): UMAP is
a non-linear DR method based on manifold learn-
ing principles and topological data analysis. It
constructs a high-dimensional graph representation
of the data and then optimises a low-dimensional
graph to be as structurally similar as possible. This
is achieved by minimising the cross-entropy be-
tween fuzzy simplicial sets representing the neigh-
bourhood structure in the high and low dimensions.
UMAP is selected for its prowess in capturing com-
plex global and local manifold structures, often
outperforming linear methods and other non-linear
methods like t-SNE (Liu et al., 2022) in preserving
topological properties, which can be crucial for text
embedding semantics.

Pairwise Controlled Manifold Approximation
and Projection (PaCMAP) (Wang et al., 2021):
PaCMAP is a more recent non-linear DR method
designed to offer a better balance between local and

global structure preservation than UMAP, while
also being computationally efficient. It utilises a
graph-based approach with a carefully designed
loss function that incorporates mid-range pairwise
distances and local neighbourhood preservation
through graph degree. PaCMAP is included to
benchmark a state-of-the-art manifold learner that
aims to address some limitations of UMAP (e.g.,
sensitivity to initialisation), particularly concern-
ing the overemphasis on local structure and the
separation of global clusters.

B.2 Quantisation
In addition to dimensionality reduction, quantisa-
tion serves as an orthogonal and often complemen-
tary compression strategy. Quantisation reduces
the numerical precision of the embedding values,
thereby decreasing the memory footprint required
to store each individual scalar component of an
embedding vector.

We focus on 8-bit integer (‘int8’) quantisa-
tion, a widely adopted technique offering a trade-
off between compression ratio and performance,
with hardware support on modern CPUs and
GPUs (Gholami et al., 2022). Given an embedding
matrix X ∈ Rn×D (which could be the original em-
beddings or dimensionally reduced embeddings Z),
‘int8’ quantisation maps the floating-point values
(‘float32’) in X to 8-bit integers. For each scalar:

xquant = round(
xfloat
S

+ ZP )

where xfloat is the original floating-point value,
xquant is the quantised 8-bit integer, S is a floating-
point scale factor, and ZP is an integer zero-point.
The scale S and zero-point ZP are determined by
the range of the floating-point values being quan-
tised (e.g., min-max quantisation):

S =
max(xfloat)−min(xfloat)

2B − 1

ZP = round(−min(xfloat)

S
)− 2B−1

where B = 8 for ‘int8’ quantisation. The
de-quantisation step to approximate the original
floating-point value is:

xapprox_float = S · (xquant − ZP )

It offers a direct 4x reduction in model size if con-
verting from ‘float32’ (32 bits per value to 8 bits
per value) without altering the embedding dimen-
sion. This can lead to substantial memory savings
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and faster data transfer, which are critical for on-
device deployment and large-scale retrieval sys-
tems. Furthermore, operations on ‘int8’ data types
can be significantly faster on compatible hardware
accelerators (Jacob et al., 2018). We apply post-
training quantisation to both original and reduced
embeddings. We evaluate ‘int8’ as a stand-alone
method and in combination with DR. We use ‘int8’
specifically over lower bit-depths (e.g., ‘int4’) due
to its proven effectiveness with minimal perfor-
mance loss across downstream tasks (Bhandare
et al., 2019; Yao et al., 2022; Tao et al., 2022;
Parsa Neshaei et al., 2024; Huerga-Pérez et al.,
2025).

C Summary of Evaluation Metrics

The summary of evaluation metrics is given in Ta-
ble 3.

Metric Description

Tk False neighbours introduced in Z
Ck Loss of true neighbours from X in Z

MRREk Change in neighbour ranks after compression
NPk Overlap of top-k neighbours before/after DR

LPro Local geometric configuration (shapes/angles)
KS Global distance distortion

SDC/PDC Correlation of all pairwise distances
GPro Global point cloud shape/orientation

EVR Variance retained post-DR
PIP Inner-product structure preservation

EOS Alignment of dominant subspaces
EOSk Overlap after removing top-k PCs

Table 3: Summary of evaluation metrics.

D MTEB Benchmark Results

D.1 Datasets
We evaluate our framework on four tasks from the
MTEB benchmark:

1. Retrieval: ArguAna, FiQA2018, NFCorpus,
SCIDOCS, TRECCOVID

2. Semantic Textual Similarity (STS):
SICKRSTS, STS12STS, STS13STS,
STS14STS, STS15STS, STSBenchmarkSTS,
STS16STS

3. Clustering: BiorxivClusteringP2P, Medrxiv-
ClusteringP2P, MedrxivClusteringS2S, Twen-
tyNewsgroupsClustering

4. Classification: Banking77Classification, Tox-
icConversationsClassification, TweetSenti-

mentExtractionClassification, AmazonCoun-
terfactualClassification, ImdbClassification

D.2 Results
We evaluate compressed embeddings both with
and without quantisation across downstream tasks.
Results for GloVe are shown in Figure 4, for BERT
in Figure 5, and for E5 embeddings in Figure 6.

E Evaluation of Compression Methods

This section presents the results of our extrinsic
evaluation (Section 3) using radar plots to compare
dimensionality reduction methods across embed-
ding types. Figures 7, 8, and 9 show the averaged
performance of GloVe, BERT, and E5 embeddings
across intrinsic metrics under three different exper-
imental settings.
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(a) Without quantisation

(b) With quantisation

Figure 4: Heatmap of primary evaluation metrics for 21 datasets for four tasks (retrieval, STS, clustering and
classification) using GLoVe embeddings.

13320



(a) Without quantisation

(b) With quantisation

Figure 5: Heatmap of primary evaluation metrics for 21 datasets for four tasks (retrieval, STS, clustering and
classification) using BERT embeddings.
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(a) Without quantisation

(b) With quantisation

Figure 6: Heatmap of primary evaluation metrics for 21 datasets for four tasks (retrieval, STS, clustering and
classification) using E5 embeddings.
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Figure 7: Comparative performance of dimensionality reduction across intrinsic metrics for GloVe, BERT, E5
sentence embeddings. Results shown are averaged over reduction ratios and utilise no quantisation and no
preprocessing.

Figure 8: Comparative performance of dimensionality reduction across intrinsic metrics for GloVe, BERT, E5 sen-
tence embeddings. Results shown are averaged over reduction ratios and utilise no quantisation and standardisation.

Figure 9: Comparative performance of dimensionality reduction across intrinsic metrics for GloVe, BERT, E5
sentence embeddings. Results shown are averaged over reduction ratios and utilise int8 quantisation and standardis-
ation.
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