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Abstract
Sequential dependencies present a fundamen-
tal bottleneck in deploying large-scale autore-
gressive models, particularly for real-time ap-
plications. While traditional optimization ap-
proaches like pruning and quantization often
compromise model quality, recent advances
in generation-refinement frameworks demon-
strate that this trade-off can be significantly
mitigated.

This survey presents a comprehensive taxon-
omy of generation-refinement frameworks, ana-
lyzing methods across autoregressive sequence
tasks. We categorize methods based on their
generation strategies (from simple n-gram pre-
diction to sophisticated draft models) and re-
finement mechanisms (including single-pass
verification and iterative approaches). Through
systematic analysis of both algorithmic inno-
vations and system-level implementations, we
examine deployment strategies across com-
puting environments and explore applications
spanning text, images, and speech generation.
This systematic examination of both theoreti-
cal frameworks and practical implementations
provides a foundation for future research in
efficient autoregressive decoding.

1 Introduction

Large Models (LMs) have demonstrated remark-
able capabilities across diverse domains, from text
generation (Brown et al., 2020; Zhuang et al., 2023;
Touvron et al., 2023) and translation (Zhu et al.,
2023; Hadi et al., 2023; Huang et al., 2023) to im-
age synthesis (Ho et al., 2020; Yang et al., 2023a;
Tian et al., 2024) and video generation (Ding et al.,
2023; Wu et al., 2023; ope, 2024). However,
these models face a critical challenge: their in-
herently sequential nature creates significant la-
tency bottlenecks, particularly for real-time appli-
cations. While traditional optimization approaches

1Equal contributions.
2Corresponding author.

like quantization and pruning often compromise
model quality for speed, recent research has fo-
cused on maintaining output quality while breaking
sequential dependencies through novel algorithmic
and system-level innovations.

Generation-refinement frameworks have
emerged as a promising family of solutions that
directly address these sequential bottlenecks.
These approaches encompass a range of methods,
from speculative decoding with draft models
to iterative refinement techniques inspired by
numerical optimization. The common thread
among these approaches is their division of the
generation process into two phases: an initial
generation step that produces draft tokens in
parallel, followed by a refinement step that ensures
output quality.

The implementation of these frameworks
presents unique system-level challenges across dif-
ferent deployment scenarios. Edge devices require
careful optimization of memory usage and compu-
tation patterns (Svirschevski et al., 2024; Xu et al.,
2024a), while distributed systems must manage
complex communication patterns and load balanc-
ing. These system-level considerations have driven
innovations in areas like kernel design, hardware
acceleration, and batch processing optimization,
significantly influencing both algorithmic choices
and practical performance.

This survey synthesizes research across these
approaches, examining both algorithmic innova-
tions and their system implementations. We present
a systematic taxonomy of generation-refinement
methods, analyze deployment strategies across
computing environments, and explore applications
spanning text, images (Wang et al., 2024d; Jang
et al., 2024), and speech (Li et al., 2024a; Raj et al.,
2024). Our contributions include comprehensive
analysis of system-level implementations and op-
timizations, detailed examination of applications
across modalities, and identification of key research
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Figure 1: Illustration of speculative decoding workflow.

challenges in efficient neural sequence generation.

2 The Sequential Bottleneck in Large
Model Inference

Traditional approaches to accelerating LM infer-
ence have focused on reducing computational costs
through model compression, knowledge distilla-
tion, and architectural optimizations. However,
these methods primarily address individual compu-
tation costs rather than the fundamental sequential
dependency that requires each token to wait for all
previous tokens.

Speculative decoding (SD) (Stern et al., 2018)
has emerged as a promising solution that directly
targets this sequential bottleneck. As illustrated
in Figure 1, this approach introduces a two-phase
process where a smaller, faster draft model first
predicts multiple tokens in parallel, followed by
verification using the target model. The draft model
enables parallel token generation, breaking away
from traditional token-by-token generation, while
the target model’s verification step maintains output
quality through accept/reject decisions.

This strategy has proven particularly valuable for
real-time applications like interactive dialogue sys-
tems, where response latency directly impacts user
experience. The verification mechanism provides a
crucial balance between generation speed and out-
put quality, accepting correct predictions to main-
tain throughput while falling back to sequential
generation when necessary to preserve accuracy.

While SD represents one successful approach
to breaking sequential dependencies in autoregres-
sive (AR) models, it belongs to a broader family
of generation-refinement methods. The following
sections present a systematic taxonomy of these
approaches, examining how different techniques
balance the trade-offs between generation paral-
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lelism and output quality.

3 A Taxonomy for Generation and
Refinement Frameworks

To systematically analyze approaches for breaking
sequential dependencies in large models, we pro-
pose a unified taxonomy that categorizes methods
based on their generation and refinement strategies.
As shown in Figure 2, our taxonomy decomposes
these frameworks into two fundamental phases: Se-
quence Generation and Sequence Refinement. This
decomposition not only encompasses traditional
SD approaches but also captures a broader range
of emerging methods that trade off between gener-
ation parallelism and output quality.

The sequence generation phase focuses on differ-
ent strategies for producing draft tokens more effi-
ciently than conventional auto-regressive decoding
using a single larger model. These strategies range
from simple approaches like random token sam-
pling (used in conjunction with iterative decoding)
to more sophisticated methods like retrieval-based
generation and draft model prediction. Each gener-
ation method offers trade-offs in terms of compu-
tational cost and prediction quality. The sequence
refinement phase then determines how these candi-
dates are processed - either accepting them directly
(with possible poorer quality), verifying a subset of
tokens in a single pass, or refining the draft tokens
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Figure 3: Taxonomy of Speculative Decoding Algorithms. Symbols indicate implementation approach: ▲ Direct
application (no training required), ‚ Full model training from scratch, ■ Model fine-tuning, ‹ Parameter-efficient
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through multiple iterations until convergence.

4 Sequence Generation Methods

4.1 Predefined Fill Tokens

The simplest approach uses random initialization or
predefined tokens (e.g., PAD). While computation-
ally free, these methods provide poor initialization
points, requiring multiple refinement iterations as
discussed in Section 5.2.

4.2 Retrieval-based Methods

LLMA (Yang et al., 2023b) first proposed exploit-
ing overlaps between LLM outputs and reference
documents to accelerate inference through paral-
lel token verification while maintaining identical
generation results. In retrieval-based approaches,
REST (He et al., 2023) replaces smaller language
models with exact suffix matching from a datas-
tore to generate draft tokens. It builds a Trie (pre-
fix tree) from retrieved continuations, where node
weights reflect token sequence frequencies. Spec-

ulative RAG (Wang et al., 2024e) use a fine-tuned
specialist LM to generate complete answer drafts
with supporting rationales. It clusters retrieved
documents by similarity, generates diverse drafts
from different document subsets, and employs self-
consistency and self-reflection scores for draft eval-
uation instead of token-level verification.

4.3 N-gram-based Methods

Several approaches leverage n-gram patterns for
efficient token generation. ANPD (Ou et al., 2024)
replaces traditional draft models with an adaptive
N-gram system that updates predictions based on
context. LOOKAHEAD (Fu et al., 2024) uses
n-gram verification by collecting and utilizing n-
grams from previous iterations as draft tokens. The
N-Grammys (Stewart et al., 2024) further develops
this idea by creating a dedicated n-gram based pre-
diction system that can operate without requiring a
separate draft model.
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4.4 Auto-regressive Generation

Most sequence generation methods employ auto-
regressive drafting, where a smaller model gener-
ates draft tokens that are verified by a larger target
model. This drafting paradigm has spawned nu-
merous techniques that vary in how the draft model
interacts with the target model.

4.4.1 Independent Drafters
Auto-regressive independent drafters are tech-
niques in which smaller model(s) generate to-
kens one at a time while a separate larger target
model subsequently verifies the draft tokens in
parallel. SpecDec (Xia et al., 2023) pioneered
this approach with an independent draft model
using distinct attention queries for masked posi-
tions. SpecDec++ (Huang et al., 2024) improves
SpecDec (Xia et al., 2023) by training a predic-
tion head on top of the draft model that estimates
token acceptance probabilities. Based on these pre-
dictions, it dynamically determines when to stop
generating tokens and trigger verification.

Recent works focus on dynamic adaptation and
confidence monitoring. BiLD (Kim et al., 2024a)
triggers target model verification when draft con-
fidence falls below a threshold, while ON-THE-
FLY (Liu et al., 2025b) dynamically adjusts win-
dow sizes based on prediction accuracy. OSD (Liu
et al., 2023) enables online adaptation through
knowledge distillation during inference, and Distill-
Spec (Zhou et al., 2023) extends this by accessing
target model logits for improved alignment. (Liu
et al., 2025a) introduces special tokens for draft
models to autonomously determine target model
consultation, eliminating separate verification at
some performance cost. For mathematical applica-
tions, Judge(Bachmann et al., 2025) adds a learned
verification layer atop the target model’s embed-
dings, using contextual correctness assessment to
reduce strict output alignment requirements.

4.4.2 Dependent Drafters
The main drawbacks of independent drafting ap-
proaches are that (1) the computation required to
generate the draft tokens is fixed per tokens, mean-
ing that computation is over-provisioned for many
“easy” tokens and (2) the target model cannot reuse
the features of the drafting process, increasing the
amount of compute required. Self-speculative de-
coding approaches generate draft tokens by relying
directly on a subset (Layer Skipping) or extension
(Dependent Heads) of the target model.

Layer Skipping Draft&Verify (Zhang et al.,
2023), SWIFT (Xia et al., 2024a), and Draft on
the Fly (Metel et al., 2024) achieves fast draft to-
ken generation by selectively skipping some in-
termediate layers in the Draft process, and then
verifies these drafts using the full LLM. In or-
der to achieve good draft accuracy, they also de-
signed an intermediate layer selection algorithm
based on Bayesian optimization. LayerSkip (El-
houshi et al., 2024) uses an early exiting (Teerapit-
tayanon et al., 2016) approach to dynamically out-
put tokens at different depths of the target model.
Kangaroo (Liu et al., 2024b) also applied early
exit by adopting a shallow sub-network to gener-
ate drafts and using a lightweight adapter mod-
ule to bridge the performance gap with the full
model, achieving efficient and accurate decoding.
EESD (Liu et al., 2024d) use Thompson Sampling
Control (Slivkins et al., 2019) Mechanism to adap-
tively determines how many draft token will be
generated. SPEED (Hooper et al., 2023) combines
speculative execution with parameter sharing, us-
ing early predictions to process multiple tokens in
parallel through shared decoder layers, rather than
waiting for each token to complete sequentially.

Dependent Heads Dependent head-based draft-
ing eliminates the need for a separate draft model
by adding lightweight feed-forward prediction
heads using the hidden states of the target model.
The main idea is that the first token in sequence
generation block uses the target model as usual but
the features at the end of the model are fed into ad-
ditional heads to predict subsequent tokens without
passing back through the entire target model.

EAGLE (Li et al., 2024e) uses a trained head
that takes in hidden states from the target model
and generates subsequent draft tokens in an AR
manner. Hydra (Ankner et al., 2024) use multiple
decoding, one for each draft token position.

EAGLE extensions have focused on improv-
ing parallel token generation and attention mecha-
nisms. Falcon (Gao et al., 2024) introduces a semi-
autoregressive (SAR) drafting framework which
combines token embeddings and transformer fea-
tures from the target LLM as input, utilizing an ar-
chitecture of LSTM layers, relaxed causal-masked
self-attention, and MLP networks. This design
allows simultaneous generation of k tokens per
forward pass while remaining lightweight with
just two transformer layers. HASS (Zhang et al.,
2024a), improves knowledge distillation by empha-
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sizing high-probability tokens during training. This
approach ensures better alignment between train-
ing and inference, addressing the constraint that
the draft model cannot access the target model’s
hidden states during deployment. Mixture of At-
tentions (Zimmer et al., 2024) further enhances
EAGLE by incorporating Layer Self-Attention
(LSA) for processing cross-layer hidden states,
Self-Attention (SA) for tracking drafted tokens,
and Cross-Attention (CA) for multi-token predic-
tion using LSA outputs. DeepSeek-V3 (Liu et al.,
2024a) adapts (Gloeckle et al., 2024)’s multi-token
approach (discussed in Section 4.5) while maintain-
ing complete causal attention during inference.

4.5 Multi-token Prediction

Stern et al. (2018) proposes adding multiple decod-
ing heads on top of a model to predict k future to-
kens in parallel, requiring training the entire model
from scratch. Medusa (Cai et al., 2024) introduces
a parameter-efficient approach, where lightweight
decoding heads are fine-tuned on top of pre-trained
language models. Each head is trained to predict
a specific future position in the sequence without
modifying the target model. (Gloeckle et al., 2024)
propose a multi-token prediction paradigm where
a shared backbone optimized jointly with multiple
prediction heads that enable propagation of infor-
mation related to sequential tokens during training
that can be discarded at inference to enable parallel
generation (similar to Medusa).

Amphista (Li et al., 2024f) achieves this through
bi-directional self-attention, allowing heads to con-
sider both previous and future predictions, along
with staged adaptation layers that employ two trans-
former decoders to bridge the gap between au-
toregressive and non-autoregressive architectures.
Similarly, CTC-drafter (Wen et al., 2024) estab-
lishes token correlations using Connectionist Tem-
poral Classification (CTC). The model incorporates
blank tokens (ε) and allows token repetition while
predicting multiple candidates for each position. A
CTC transform module then processes these pre-
dictions, removing duplicates and blank tokens to
produce the final draft sequences.

5 Sequence Refinement Methods

5.1 Single-pass Verification

Single-pass verification represents the most com-
mon refinement strategy in draft-and-verify ap-
proaches, where drafted tokens are verified exactly

once by the target model.

5.1.1 Linear Verification
Linear verification sequentially validates draft to-
kens against the target model’s logit distributions,
with early works like SpecDec (Xia et al., 2023)
and Draft&Verify (Zhang et al., 2023) comparing
drafted tokens against the target model’s predic-
tions. When a token fails verification (i.e., when
the draft output doesn’t match the target model’s
distribution), the system falls back to standard AR
generation from that point.

Fast Inference (Leviathan et al., 2023) and
(Chen et al., 2023a) introduced speculative sam-
pling to improve acceptance rates while approxi-
mately maintaining the target distribution. Their
method accepts a token if the target model assigns
equal or higher probability; otherwise, it accepts
with probability ppxq{qpxq or resamples from an
adjusted distribution.

Block Verification (Sun et al., 2025) and
MTAD (Qin et al., 2024b) improve upon linear ver-
ification by examining the joint probability distribu-
tion of draft tokens as a chain of conditional proba-
bilities. This block-based evaluation approach typi-
cally results in higher acceptance rates compared
to token-by-token verification for similar quality.

5.1.2 Tree-based Verification
Tree-based verification extends the single-pass
paradigm by enabling parallel exploration of multi-
ple completion paths. Unlike linear verification that
processes a single sequence, tree-based methods
construct and verify a tree of possible completions
simultaneously, making more efficient use of paral-
lel compute resources.

SpecInfer (Miao et al., 2023) pioneered this ap-
proach by developing an efficient tree-based atten-
tion masking scheme that enables parallel verifica-
tion while maintaining proper token dependencies.
This innovation maintains generation quality while
significantly increasing the number of tokens that
can be verified in parallel.

Recent works have focused on optimizing tree
structure and size to maximize computational effi-
ciency. Sequoia (Chen et al., 2024b) introduces
a hardware-aware tree optimizer that can maxi-
mize inference performance by selecting appropri-
ate tree dimensions based on available computing
resources. OPT-Tree (Wang et al., 2024a) searches
for optimal tree structures to maximize expected
acceptance length per decoding step. DSBD (Qin
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Figure 4: Comparison of speculative decoding ap-
proaches: (a) Sequential processing where draft gener-
ates tokens (0-3) before target verification. (b) Parallel
processing where draft generates new tokens while tar-
get simultaneously verifies previous ones.

et al., 2024a) uses a small model to generate multi-
ple candidate sequences via beam search, then the
large model verifies these sequences layer by layer
while dynamically adjusting the beam width based
on acceptance probabilities to balance efficiency
and quality. DySpec (Xiong et al., 2024) enables
dynamic tree expansion during runtime based on
prediction confidence, while EAGLE2 (Li et al.,
2024d) incorporates context-aware tree construc-
tion to improve acceptance rates. DDD (Brown
et al., 2024) optimizes EAGLE2 (Li et al., 2024d) ’s
tree drafting method by making the depth dynamic
based on draft model confidence. EAGLE3 (Li
et al., 2025) further improves the model architec-
ture by integrating target features from multiple
depths and optimizing training to reduce the gap
between training and inference.

Several works have explored approaches that
combine tree-based verification with other tech-
niques. ProPD (Zhong et al., 2024) integrates pro-
gressive refinement into the tree structure, while
RSD (Jeon et al., 2024) employs recursive verifi-
cation. GSD (Gong et al., 2024) and ADED (Liu
et al., 2024f) extend tree-based methods to cap-
ture complex dependencies through graph-based
representations and adaptive depth adjustment.

In terms of verifying multiple candidate draft
tokens in parallel (also known as Multi-Draft Spec-
ulative Decoding, MDSD), (Hu et al., 2025b)
propose a hybrid sampling strategy that combines
deterministic selection of high-probability tokens
with random sampling of the final token, improving
acceptance rates in certain scenarios. (Khisti et al.,
2024) introduce a two-phase verification method
that uses importance sampling to select a draft to-
ken before applying single-draft verification, opti-
mizing the process for parallel draft generation.
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5.2 Iterative Decoding
Iterative decoding methods extend single-pass ver-
ification by allowing multiple refinement itera-
tions on draft tokens until convergence. These
approaches are inspired by classical methods for
solving systems of nonlinear equations, particularly
the Jacobi and Gauss-Seidel iteration methods.

In (Santilli et al., 2023), the authors reframe AR
text generation as an iterative optimization prob-
lem. Their approach expresses token generation
as a system where each position must output the
most likely token given the current state of all other
positions. Starting with a randomly initialized se-
quence, they adapt the Jacobi method to update
all positions in parallel during each iteration until
convergence. The authors prove that this process
produces identical output to traditional AR decod-
ing under greedy sampling. Fu et al. (2024) builds
upon this framework with LOOKAHEAD decod-
ing, which combines Jacobi iterations with n-gram
verification to accelerate convergence by leverag-
ing predictions from earlier steps.

CLLMs (Kou et al., 2024) leverages consistency
training to accelerate convergence by enabling bet-
ter multi-token prediction in early iterations.

6 System-Level Optimizations and
Implementation Strategies

6.1 Parallel Speculative Decoding
Traditional SD processes tokens sequentially, with
the draft model generating tokens followed by
target model verification, creating inherent bot-
tlenecks. As shown in Figure 4, parallel ap-
proaches overcome this limitation by enabling si-
multaneous operation - while the target model
verifies earlier tokens, the draft model gener-
ates subsequent ones, enabling continuous over-
lapped execution. Recent methods build upon this
paradigm: CS Drafting (Chen et al., 2023b) em-
ploys vertical and horizontal cascade structures
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for 81% speedup, PaSS (Monea et al., 2023) uses
look-ahead embeddings for 30% speedup, and
Faster Cascades (Narasimhan et al., 2024) incor-
porates deferral rules for improved cost-quality
trade-offs. PEARL (Liu et al., 2024e) further
advances this through pre-verify and post-verify
strategies with adaptive draft lengths, achieving
4.43ˆ speedup over AR decoding and 1.50ˆ over
standard SD AMUSD (McDanel, 2024) presents an
asynchronous multi-device approach to SD, decou-
pling the draft and verify phases into continuous,
asynchronous operations.

6.2 Distributed Speculative Decoding

Edge computing environments impose stringent
constraints on memory, compute power, and la-
tency, necessitating specialized SD approaches to
deploy LLMs effectively in resource-constrained
settings. SpecExec (Svirschevski et al., 2024) is
designed to harness the parallel processing power
of consumer GPUs to accelerate LLM inference.
By generating multiple tokens per target model it-
eration and constructing a “cache” tree of probable
continuations, SpecExec efficiently validates these
continuations with the target model in a single pass.
EdgeLLM (Xu et al., 2024a) further optimizes on-
device LLM inference through novel techniques
for resource allocation and error correction, achiev-
ing great token generation speeds and significantly
outperforming existing engines. Dovetail (Zhang
et al., 2024b) represents a significant advancement
in heterogeneous computing for LLM inference.
By deploying the draft model on the GPU and the
target model on the CPU, Dovetail reduces the gran-
ularity of data transfer and enhances the overall
inference process. The introduction of Dynamic
Gating Fusion (DGF) and optimizations for low-
end hardware further improve the balance between
latency and performance.

6.3 Compiler and Hardware Optimization for
Speculative Decoding

Efficient implementation of SD requires careful
optimization of both hardware resources and com-
piler strategies to maximize throughput and mini-
mize latency. SpecPIM (Li et al., 2024b) presents
a novel approach to accelerate speculative infer-
ence on a Processing-in-Memory (PIM) system
through co-exploration of architecture and dataflow.
This method constructs a design space that com-
prehensively considers algorithmic and architec-
tural heterogeneity, enabling optimal hardware re-

Draft
AR process

Diffusion
process

Target
AR process

Diffusion
process1 32 4

p(x) < q(x) ?
Visual token 
verification

1 32 4

Figure 6: Flow of AR image generation with SD.

source allocation for different models and compu-
tational patterns. (Wagner et al., 2024) investigates
improvements in speculative sampling on GPUs,
achieving significant speed gains by parallelizing
computations and using sigmoid approximations
for softmax, though this comes with a minor reduc-
tion in accuracy.

Recent studies have focused on enhancing the
throughput of LLMs using SD by optimizing batch
processing and scheduling strategies. Figure 5 il-
lustrates two scheduling strategies for SD systems:
(a) Asynchronous Schedule: The draft stage is
followed by the verify stage, with optional stop
signals determining further processing. This non-
blocking approach enhances system efficiency. (b)
Heterogeneous Schedule: Both CPU and GPU de-
vices are utilized for different stages of the decod-
ing process, enabling parallel processing and op-
timizing performance through resource allocation.
Using Markov chain theory, (Yin et al., 2024) es-
tablishes SD’s optimality among unbiased algo-
rithms while highlighting the tradeoff between in-
ference speed and output quality. Their analysis
reveals that batch processing benefits are limited by
the distribution gap between small and large mod-
els. MagicDec (Chen et al., 2024a) identifies the
shift from compute-bound to memory-bound bot-
tlenecks as batch size and sequence length increase,
using sparse KV caches in draft models to optimize
throughput. BASS (Qian et al., 2024) extends SD
to a batched setting with customized CUDA ker-
nels for ragged tensors in attention calculations and
dynamically adjusts draft lengths for better GPU
utilization. SEED (Wang et al., 2024c) accelerates
reasoning tree construction through scheduled spec-
ulative execution, using a rounds-scheduled strat-
egy for conflict-free parallel processing. PipeIn-
fer (Butler et al., 2024) addresses single-request
latency through pipelined speculative acceleration,
reducing inter-token latency via asynchronous spec-
ulation and early cancellation. TRIFORCE (Sun
et al., 2024a) introduces a hierarchical SD mecha-
nism with a dynamic sparse KV cache to achieve
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lossless acceleration of long sequence generation,
significantly improving generation speed and ef-
ficiency while maintaining quality. (Zhao et al.,
2024a) proposes QSPEC, a novel framework that
combines weight-shared quantization schemes with
SD, achieving up to 1.55× acceleration without
quality loss, paving the way for efficient and high-
fidelity quantization deployment in diverse and
memory-constrained settings. (Wang et al., 2024b)
introduces a hardware-aware SD algorithm that ac-
celerates the inference speed of Mamba and hybrid
models. Inspired by SD, SKD (Xu et al., 2024b)
represents a novel, adaptive approach to knowledge
distillation. By dynamically generating tokens and
using the teacher model to filter or replace low-
quality samples, it bridges the gap between super-
vised KD’s reliance on static data and on-policy
KD’s susceptibility to low-quality outputs. This
ensures a better alignment between training and
inference distributions, and improved performance.

7 Multimodal Models and Applications

7.1 Speculative Decoding for Visual Output
Generation

Researchers are now using SD to improve the effi-
ciency of AR image generation (Ding et al., 2021;
Yu et al., 2022; Li et al., 2024c). As shown in
Figure 6, this method greatly speeds up the pro-
cess by reducing the inference steps needed for
generating visual tokens. For instance, (Wang
et al., 2024d) proposes a novel continuous SD
method that designs a novel acceptance criterion for
the diffusion distributions, significantly improving
the efficiency of AR image generation. Similarly,
LANTERN (Jang et al., 2024) presents a relaxed
acceptance condition for the SD strategy to substan-
tially speed up the inference process in visual AR
models. Additionally, Speculative Jacobi Decoding
(SJD) (Teng et al., 2024) offers a training-free spec-
ulative Jacobi decoding technique that effectively
accelerates text-to-image generation tasks.

7.2 Speculative Decoding for Multimodal
Output Generation

Recent advancements in SD have substantially im-
prove the efficiency and quality of AR generation
across various modalities. In the domain of speech
synthesis, VADUSA (Li et al., 2024a) leverages SD
to accelerate the inference process in AR text-to-
speech (TTS) systems, which enhances the quality
speech synthesis as well. Inspired by the flavor of

SD, (Raj et al., 2024) introduces a multi-token pre-
diction mechanism, offering substantial improve-
ments in inference efficiency for speech generation.

In the context of multimodal large language mod-
els, (Gagrani et al., 2024) investigates the inte-
gration of SD into the LLaVA 7B model to opti-
mize inference efficiency. Their findings indicate
that employing a lightweight, language-only draft
model facilitates a memory-constrained acceler-
ation of up to 2.37×. Besides, IbED (Lee et al.)
proposes the "In-batch Ensemble Drafting" method
to further enhance the robustness and efficiency
of SD. It adopts the ensemble techniques during
batch-level inference, requires no additional model
parameters and significantly increases the valida-
tion probability of draft tokens, thereby improving
performance and robustness across diverse input
scenarios. DREAM (Hu et al., 2025a) further ex-
tends this line of research with a speculative decod-
ing framework tailored for vision-language models.
It introduces a cross-attention mechanism to inject
intermediate target-model features into the draft
model for tighter alignment, an adaptive feature-
selection strategy guided by attention entropy to
improve draft.

7.3 Recommendation Systems

LLM-based recommendation systems have shown
great potential in enhancing personalized recom-
mendations, but their high inference latency poses
a significant challenge for real-world deployment.
To address this, recent research has focused on
optimizing decoding efficiency to accelerate rec-
ommendation generation. (Xi et al., 2024) pro-
pose DARE that integrates retrieval-based SD to
accelerate recommendation knowledge generation,
thereby improving the deployment efficiency of
LLM-based recommender systems in industrial set-
tings. AtSpeed (Lin et al., 2024) combines strict
top-K alignment (AtSpeed-S) and relaxed sampling
verification (AtSpeed-R), to significantly acceler-
ate LLM-based generative recommendation with
speedup from 2ˆ to 2.5ˆ, addressing inference
latency challenges in top-K sequence generation.

8 Conclusion

This survey analyzes generation-refinement frame-
works for mitigating sequential dependencies in
autoregressive models, highlighting how these ap-
proaches are fundamentally changing efficient neu-
ral sequence generation across text, speech, and vi-
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sual domains. Through examining both algorithmic
innovations and system-level implementations, we
have demonstrated their broad applicability while
providing crucial deployment insights for practi-
tioners. Moving forward, significant challenges
persist in constructing solid theoretical foundations
to grasp the balance between parallelism and qual-
ity, as well as in developing comprehensive ap-
proaches that span different modalities—efforts
that could narrow the divide between the capabil-
ities of large models and their actual implementa-
tion. Additionally, it remains crucial to examine
the scalability of the speculative decoding system
as the quantity of draft and target models increases.

Limitations

While this survey provides a comprehensive
overview of generation-refinement frameworks,
some limitations should be acknowledged. De-
tailed performance comparisons across different
approaches are challenging due to varying experi-
mental settings, model architectures, and hardware
configurations used in the original papers. The
lack of standardized benchmarks for speculative de-
coding makes it difficult to make definitive claims
about the relative efficiency of different methods.
Additionally, while we examine applications across
different modalities, our analysis may not fully cap-
ture all domain-specific challenges and optimiza-
tions, particularly for emerging areas like video
generation and multimodal reasoning.
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A1: Appendix

Experimental set-up. Following the public implementation of (Xia et al., 2024b), we run all methods
on a single NVIDIA A100 80GB GPU. Greedy Decoding with batch size = 1 in Table. 1.

Model MT-bench WMT16 EN-RO CNN/DM GPQA GSM8K BRIGHT #Acc. Tok. Overall
(conv.) (trans.) (summ.) (QA) (QA) (RAG) (↑) (↑)

EAGLE2 2.58× 1.80× 2.11× 2.06× 2.72× 1.85× 4.39 2.17×
HASS 2.43× 1.75× 2.05× 1.99× 2.52× 1.80× 3.96 2.11×
EAGLE 2.26× 1.68× 2.07× 1.93× 2.31× 1.81× 3.56 1.98×
Hydra 2.16× 1.82× 1.69× 1.84× 2.23× 1.67× 3.33 1.96×
SpS 1.98× 1.32× 2.01× 1.85× 1.88× 1.78× 2.20 1.87×
PLD 1.69× 1.22× 2.41× 1.27× 1.65× 1.74× 1.78 1.60×
Recycling 1.47× 1.38× 1.40× 1.25× 1.66× 1.37× 2.64 1.48×
Kangaroo 1.63× 1.24× 1.50× 1.43× 1.61× 1.52× 2.31 1.48×
Medusa 1.58× 1.42× 1.23× 1.48× 1.70× 1.17× 2.37 1.46×
REST 1.41× 1.22× 1.10× 1.32× 1.35× 1.20× 1.71 1.24×
Lookahead 1.13× 1.03× 1.17× 1.07× 1.24× 1.10× 1.63 1.12×

Table 1: Speed-up over greedy autoregressive decoding on six benchmarks. “#Acc. Tok.” counts mean accepted
tokens per verification step; “Overall” is the geometric mean across tasks.

A2: VLM Bench

Experimental setup We conduct experiments on five VLMs representing a range of parameter scales, in-
cluding LLaVA-v1.6-Vicuna (7B, 13B) (Liu et al., 2024c), Pixtral (12B) (Agrawal et al., 2024), SmolVLM
(2B) (Marafioti et al., 2025), and Gemma3 (12B) (Team et al., 2025). DREAM is evaluated across eight di-
verse benchmarks: MMT-Bench (Ying et al., 2024), SEED-Bench-2 (Li et al., 2023), ScienceQA (Lu et al.,
2022), OCRBench (Liu et al., 2024g) , ChartQA (Masry et al., 2022), and MathVista (Lu et al., 2024). All
evaluations are performed under two softmax temperature settings: Temp “ 0 and Temp “ 1. We report
two key metrics: (1) Speedup ratio over standard autoregressive generation, defined as tAR{tmethod,
where tAR is the average wall-clock time per token for standard decoding, and tmethod is the corresponding
time for each evaluated method. A larger speedup directly corresponds to lower end-to-end latency in
real-world use. (2) Average token acceptance length τ , representing the number of consecutive draft
tokens accepted by the verification model. A larger τ implies fewer verification steps and higher effective
decoding throughput. We implement six recent SD baselines for VLMs, including SPD (Gagrani et al.,
2024), Kangaroo (Liu et al., 2024b), Medusa (Cai et al., 2024), Hydra (Ankner et al., 2024), and EAGLE
1 and 2 (Li et al., 2024e,d).
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Table 2: Evaluation of SD methods through speedup ratio (S) and average accepted token length (τ ).
MMT SEED ScienceQA OCRBench ChartQA MathVista Average

Models Methods S τ S τ S τ S τ S τ S τ S τ

Temperature = 0

LLaVA-v1.6Vicuna-7B

SPD (Gagrani et al., 2024) 1.10 1.88 0.81 1.17 1.08 1.87 0.89 1.25 0.91 1.24 1.06 1.76 0.97 1.53
Kangaroo (Liu et al., 2024b) 1.32 2.11 1.33 2.12 1.31 2.09 1.17 1.89 1.18 1.98 1.15 1.86 1.24 2.01

Medusa (Cai et al., 2024) 1.58 2.88 1.59 3.01 1.44 2.77 1.22 2.33 1.25 2.41 1.22 2.34 1.38 2.62
Hydra (Ankner et al., 2024) 1.78 3.86 1.72 3.88 1.68 3.79 1.41 3.21 1.35 3.11 1.42 3.25 1.56 3.52
EAGLE (Li et al., 2024e) 2.10 5.04 2.09 5.01 1.98 4.88 1.72 4.13 1.56 3.98 1.78 4.25 1.87 4.55

EAGLE-2 (Li et al., 2024d) 2.31 5.48 2.31 5.61 2.15 5.22 1.92 4.88 1.77 4.22 1.87 4.67 2.05 5.01
DREAM (Hu et al., 2025a) 2.52 6.40 2.48 6.20 2.33 5.82 2.05 4.88 1.89 4.44 2.11 5.32 2.23 5.51

LLaVA-v1.6Vicuna-13B

SPD 1.07 1.78 1.06 1.79 1.09 1.88 0.86 1.12 0.89 1.25 0.87 1.22 1.00 1.58
Kangaroo 1.43 1.77 1.51 1.87 1.22 1.55 1.21 1.54 1.27 1.61 1.53 2.01 1.36 1.72
Medusa 1.99 2.67 1.96 2.76 1.93 2.77 1.40 2.92 1.51 2.82 1.51 2.62 1.72 2.76
Hydra 2.12 2.87 2.08 2.99 2.21 3.12 1.49 3.07 1.65 3.03 1.66 2.87 1.87 2.99

EAGLE 2.45 3.56 2.19 3.24 2.63 3.98 1.65 3.31 1.85 3.27 1.8 3.09 2.10 3.41
EAGLE-2 2.89 4.05 3.18 4.33 3.09 4.97 2.20 4.12 2.41 4.15 2.39 3.76 2.69 4.23
DREAM 3.34 5.38 3.32 5.06 3.20 5.98 2.22 3.89 2.43 4.04 2.29 4.03 2.80 4.73

Pixtral-12B

SPD 1.08 1.51 1.03 1.47 1.05 1.49 1.05 1.49 1.04 1.43 1.04 1.46 1.05 1.47
Kangaroo 1.26 1.54 1.09 1.39 1.14 1.51 1.16 1.52 1.12 1.47 1.13 1.49 1.15 1.49
Medusa 1.37 1.81 1.37 1.81 1.35 1.87 1.24 1.69 1.22 1.68 1.16 1.47 1.28 1.72
Hydra 1.58 2.24 1.47 2.04 1.53 2.06 1.38 1.81 1.34 1.79 1.36 1.78 1.44 1.95

EAGLE 2.38 3.47 1.97 2.53 2.31 3.64 1.69 2.73 1.78 2.84 1.64 2.47 1.96 2.95
EAGLE-2 2.81 3.95 2.31 3.07 2.64 4.03 2.12 3.25 2.14 3.17 1.81 2.73 2.31 3.37
DREAM 2.93 4.52 2.61 3.67 2.98 4.33 2.38 3.55 2.35 3.49 2.36 3.42 2.65 3.78

SmolVLM-2B

SPD 1.02 1.33 1.04 1.41 1.06 1.43 1.06 1.42 1.07 1.46 1.02 1.34 1.04 1.40
Kangaroo 1.28 1.48 1.08 1.18 1.03 1.17 1.06 1.22 1.04 1.14 1.08 1.23 1.10 1.24
Medusa 2.12 2.71 1.51 2.00 1.72 2.22 1.20 1.61 1.15 1.55 1.35 1.75 1.51 1.97
Hydra 2.33 3.07 1.62 2.08 1.98 2.66 1.32 1.74 1.22 1.58 1.51 1.98 1.66 2.19

EAGLE 2.57 3.42 1.85 2.56 2.16 2.76 1.42 1.88 1.34 1.77 1.65 2.22 1.83 2.44
EAGLE-2 2.96 3.89 2.12 2.93 2.39 3.21 1.65 2.11 1.51 2.13 1.81 2.63 2.07 2.82
DREAM 3.05 3.97 2.24 3.18 2.85 3.62 1.85 2.56 1.62 2.33 2.01 2.88 2.27 3.09

Gemma3-12B

Kangaroo 1.37 1.66 1.47 1.79 1.52 1.57 3.17 2.28 2.28 1.85 1.18 1.64 1.83 1.80
EAGLE 1.73 1.98 1.69 2.52 1.72 1.97 4.26 2.42 3.40 1.99 1.42 1.89 2.37 2.13

EAGLE-2 2.92 1.99 1.74 2.79 1.92 1.98 4.68 2.57 3.48 2.23 1.52 1.91 2.71 2.25
DREAM 2.99 2.13 3.53 2.84 2.60 2.05 4.81 2.58 3.68 2.56 1.98 1.99 3.27 2.36

Temperature = 1

LLaVA-v1.6Vicuna-7B

SPD 0.83 1.19 0.81 1.15 0.85 1.18 0.75 1.06 0.72 1.08 0.92 1.48 0.81 1.19
Kangaroo 1.20 1.97 1.26 2.03 1.23 2.01 1.09 1.80 1.11 1.89 1.07 1.77 1.16 1.91
DREAM 2.39 6.29 2.35 6.07 2.25 5.68 1.99 4.88 1.84 4.41 2.02 5.23 2.14 5.43

LLAVA-v1.6Vicuna-13B

SPD 0.88 1.22 0.84 1.25 0.84 1.32 0.79 1.18 0.81 1.14 0.88 1.24 0.84 1.22
Kangaroo 1.23 1.57 1.17 1.53 1.07 1.44 1.01 1.24 1.07 1.34 1.21 1.67 1.13 1.46
EAGLE-2 2.35 3.75 3.02 4.30 3.03 4.67 2.03 3.87 2.18 3.83 2.18 3.41 2.46 3.97
DREAM 3.34 5.38 3.32 5.06 3.20 5.98 2.22 3.89 2.43 4.04 2.29 4.03 2.80 4.73

Pixtral-12B

SPD 0.81 1.15 0.79 1.11 0.80 1.12 0.80 1.13 0.75 1.07 0.77 1.09 0.79 1.11
Kangaroo 1.18 1.41 1.08 1.35 1.03 1.36 1.19 1.48 1.14 1.45 1.09 1.41 1.12 1.41
EAGLE-2 2.76 3.81 2.24 3.01 2.76 3.87 2.23 3.24 2.03 3.09 1.79 2.69 2.30 3.28
DREAM 2.90 4.02 2.47 3.57 2.93 3.94 2.29 3.46 2.21 3.21 2.16 3.27 2.49 3.58

SmolVLM-2B

SPD 1.07 1.47 1.01 1.33 1.07 1.46 0.97 1.26 1.06 1.44 0.85 1.20 1.00 1.36
Kangaroo 1.37 1.59 1.12 1.24 1.22 1.41 1.12 1.29 1.18 1.36 1.28 1.42 1.22 1.39
EAGLE-2 2.62 3.60 1.92 2.67 2.24 3.11 1.41 1.77 1.60 2.18 1.77 2.49 1.93 2.64
DREAM 2.88 3.66 2.25 3.33 2.91 3.74 1.54 2.12 1.77 2.51 1.97 2.70 2.22 3.01

Gemma3-12B

Kangaroo 1.83 1.66 1.23 2.61 1.56 2.29 3.34 2.27 2.23 1.86 1.16 1.65 1.89 2.06
EAGLE 2.23 1.96 1.60 2.52 2.16 1.97 3.74 2.65 3.30 2.03 1.59 1.86 2.44 2.16

EAGLE-2 2.73 1.94 2.13 2.79 2.21 2.07 4.67 2.47 3.35 2.23 1.65 1.89 2.79 2.23
DREAM 2.88 2.07 3.49 2.84 2.39 2.12 4.79 2.56 3.61 2.43 1.96 1.91 3.19 2.32
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