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Abstract
The spread of fake news on social media poses
a serious threat to public trust and societal sta-
bility. While propagation-based methods im-
prove fake news detection by modeling how
information spreads, they often suffer from in-
complete propagation data. Recent work lever-
ages large language models (LLMs) to generate
synthetic propagation, but typically overlooks
the structural patterns of real-world discussions.
In this paper, we propose a novel structure-
aware synthetic propagation enhanced detec-
tion (StruSP) framework to fully capture struc-
tural dynamics from real propagation. It en-
ables LLMs to generate realistic and struc-
turally consistent propagation for better detec-
tion. StruSP explicitly aligns synthetic prop-
agation with real-world propagation in both
semantic and structural dimensions. Besides,
we also design a new bidirectional evolutionary
propagation (BEP) learning strategy to better
align LLMs with structural patterns of prop-
agation in the real world via structure-aware
hybrid sampling and masked propagation mod-
eling objective. Experiments on three public
datasets demonstrate that StruSP significantly
improves fake news detection performance in
various practical detection scenarios. Further
analysis indicates that BEP enables the LLM to
generate more realistic and diverse propagation
semantically and structurally.

1 Introduction

The rapid advancement of online media has led
to an alarming rise in fake news, posing signifi-
cant threats to public trust and societal stability
(Fisher et al., 2016; Vosoughi et al., 2018; Faris
et al., 2017).

Existing methods of fake news detection mainly
focus on textual content such as news text and con-
texts (Castillo et al., 2011; Ma et al., 2015; Yu et al.,
2017), and propagation information such as inter-
actions between users (Lu and te Li, 2020; Su et al.,
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Figure 1: A comparison of LLM-generated propagation
(e.g., DELL (Wan et al., 2024)) and original propagation
of the news "Donald Trump has been disqualified from
running for president. "

2023; Liu and fang Brook Wu, 2018; Bian et al.,
2020; Wei et al., 2021; Wu and Hooi, 2023; Chen
et al., 2024). Despite their promise, propagation-
based methods often suffer in incomplete propaga-
tion scenarios due to limited data collection and
some malicious user interactions on social media
(Ma et al., 2022; Wei et al., 2024). Recently, LLMs
have shown potential in alleviating data scarcity
by simulating user-generated propagation through
role-playing approaches (Wan et al., 2024; Nan
et al., 2024; Liu et al., 2024; Qiu et al., 2025; Yue
et al., 2024).

However, these LLM-enhanced methods typi-
cally operate only at the semantic level, neglecting
the structural patterns of real-world propagation.
As shown in Figure 1, the generated propagation
trees often exhibit overly uniform structures due to
the predefined branch probability (Wan et al., 2024)
and prompt-induced alignment behavior (Denison
et al., 2024; Sharma et al.), failing to capture the
irregular branching and hierarchical depth that char-
acterize real-world information spread (Zhao et al.,
2020). In addition, their generated content often
lacks emotional diversity and context sensitivity,
tending toward overly cautious or generic tones
(Muñoz-Ortiz et al., 2023; Frisch and Giulianelli,
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2024). The mismatch between the generated and
real propagation structures and semantics signifi-
cantly limits their effectiveness in downstream de-
tection, particularly in early detection and cross-
platform generalization. This highlights the need
for a structure-aware generation framework that
captures both the semantic plausibility and struc-
tural dynamics of real-world propagation.

To address the above limitation, we propose a
novel Structure-aware Synthetic Propagation en-
hanced detection (StruSP) framework to fully cap-
ture sufficient features from real-world and LLM-
generated synthetic propagation structure. StruSP
enriches incomplete propagation trees by generat-
ing realistic and structurally consistent propaga-
tion paths, thereby improving the effectiveness of
propagation-based fake news detection. To ensure
the generated propagation reflects real-world struc-
tural dynamics, we introduce a bidirectional evo-
lutionary propagation (BEP) learning strategy to
align LLMs with structural patterns of propagation
in the real world. BEP consists of two main compo-
nents. The structure-aware hybrid sampling mod-
ule first samples propagation substructures via both
breadth-wise and depth-wise progression of avail-
able propagation trees. Based on these sampled
paths, the masked propagation modeling objective
captures structural dependencies by reconstruct-
ing masked nodes in both forward and backward
directions. This design enables the LLM to effec-
tively learn structural evolution patterns in real-
world propagation, equipping it with the ability to
enrich incomplete propagation through a structure
propagation enhancement module for more accu-
rate detection.

Experiments on three real-world datasets demon-
strate that StruSP not only improves detection per-
formance under incomplete propagation conditions
but also generates propagation patterns that closely
match real data, consistently surpassing baseline
methods across structural and semantic metrics.

The contributions of this work can be summa-
rized as follows:

1) We propose StruSP, a novel structure-aware
framework for fake news detection in incomplete
propagation scenarios. StruSP enhances fake news
detection by generating realistic and structure-
aware propagation trees that integrate both seman-
tic and structural signals from partial real propaga-
tion.

2) To capture the structural evolution of the real
propagation, we introduce a bidirectional evolu-

tionary propagation learning strategy. It enables
LLMs to generate structurally diverse and coherent
propagation trees.

3) We conduct extensive experiments on three
real-world datasets, demonstrating that StruSP sig-
nificantly improves detection performance and bet-
ter aligns with real propagation in both structure
and semantics.

2 Related Work

Fake News Detection The goal of detecting fake
news is to identify and assess the authenticity of a
piece of information. Existing methods for detect-
ing fake news mainly focus on two aspects: textual
content and propagation of news.

Content-based Fake News Detection Methods
extract semantic patterns from news content for de-
tection through feature engineering (Castillo et al.,
2011; Popat, 2017; Ma et al., 2015) and a wide
array of deep learning architectures, including neu-
ral networks (Ruchansky et al., 2017; Karimi and
Tang, 2019) and pre-trained language models (Kali-
yar et al., 2021; Jwa et al., 2019). Some works also
integrate tasks such as stance detection and senti-
ment analysis with fake news detection, enabling
multi-task learning (Luvembe et al., 2023; Hamed
et al., 2023). Since some fake news creators imitate
the style of real news, methods based solely on
news content often face limitations. Consequently,
some researchers use news comments as a basis for
assessing the authenticity of news (Shu et al., 2019;
Zhang et al., 2021).

Propagation-based Fake News Detection
Methods capture the propagation patterns of news
by modeling the interactions between news and
comments into time series (Ma et al., 2016; Liu
and fang Brook Wu, 2018) or topological struc-
tures such as propagation trees (Ma et al., 2018; Hu
et al., 2021) and propagation graphs (Bian et al.,
2020; Wei et al., 2021, 2022). Some studies fur-
ther explore multi-relational interactions between
the users and news in the propagation graph (Yuan
et al., 2020; Dou et al., 2021). However, these meth-
ods suffer significant performance losses when con-
fronted with scenarios of incomplete propagation
(Wei et al., 2024; Ma et al., 2022).

LLM-based Propagation Generation LLMs
have been proven to have the potential to simulate
human behavior (Argyle et al., 2023) and possess
a certain level of social knowledge (Choi et al.,
2023).
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Figure 2: Overall framework of StruSP. We first perform bidirectional evolutionary propagation learning to capture
the structural evolution of real propagation. We sample a set of propagation paths for both breadth-wise and
depth-wise evolution based on the propagation tree, and then train the LLM to reconstruct masked nodes in forward
and backward directions along the sampled path. Then, we generate synthetic propagation to enrich existing
propagation for the downstream detection.

Recently, some studies have utilized LLMs to
simulate social users and generate social con-
texts (Gao et al., 2023; Liu et al., 2024; Jiang
and Ferrara, 2023). These methods typically lever-
age LLMs to role-play various users and generate
replies to news items, thereby forming synthetic
propagation data (Nan et al., 2024; Qiu et al., 2025;
Wan et al., 2024). For instance, Nan et al. (2024)
simulated discussions by prompting LLMs to adopt
different user identities and respond iteratively. Qiu
et al. (2025) further guided the generation process
by modeling user behavior through a multilayer
perceptron based on historical interactions. Wan
et al. (2024) attempted to construct propagation
structures by probabilistically controlling whether
the LLM comments directly on the news or replies
to existing comments.

However, existing methods either overlook the
modeling of propagation structures or generate
propagation patterns that do not match real-world
structures. Our proposed StruSP framework ex-
plicitly models the structural evolution of propa-
gation and produces propagation trees that better
reflect real-world topologies, improving fake news
detection performance, especially in scenarios with
incomplete propagation.

3 StruSP Framework

Problem Statement Fake News Detection is to
verify the authenticity of a given news article, we
take it as a binary classification problem, where

each sample is annotated with a ground truth label
indicating its authenticity. Formally, DatasetD con-
sists of N samples and each sample is represented
by G = (V, E), where V = {n, c1, ..., cN} repre-
sents the news n and its comments (c1, ..., cN ), E
represents a set of explicit interactive behaviors
(e.g., retweet). The task objective of fake news de-
tection is to learn a classifier f to classify samples
and determine whether the news is true (labeled as
0) or false (labeled as 1), i.e.,

f : G −→ y, y ∈ {0, 1}. (1)

3.1 Overview

As illustrated in Figure 2, StruSP consists of two
key components: bidirectional evolutionary prop-
agation (BEP) learning and structure-aware prop-
agation enhancement (SPE). The BEP module in-
cludes: (1) a structure-aware hybrid sampling strat-
egy that traverses the propagation graph to capture
both breadth-wise expansion and depth-wise pro-
gression patterns; and (2) a masked propagation
modeling objective, which trains the LLM to recon-
struct masked nodes along sampled propagation
paths, thereby capturing structural dependencies
within the diffusion process. In the SPE module,
the trained LLM is used to generate structurally co-
herent extensions based on incomplete propagation
trees. The synthetic propagation is then integrated
into the original propagation structure for enhanced
fake news detection.
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3.2 Bidirectional Evolutionary Propagation
Learning

To better model the structural dynamics of news
propagation and support realistic propagation gen-
eration, we propose a bidirectional evolution propa-
gation learning strategy (BEP), which comprises a
structure-aware hybrid sampling mechanism and a
direction-aware masked node prediction objective.

3.2.1 Structure-aware Hybrid Sampling
In real-world scenarios, news propagation typi-
cally exhibits complex bidirectional dynamics. On
one hand, breadth-wise expansion emerges through
wide dissemination across social networks (e.g.,
being shared among diverse user communities), re-
sulting in multi-branched propagation structures.
On the other hand, depth-wise progression arises
from layered discussions (e.g., multiple rounds of
comments and interactions), forming deep sequen-
tial chains. Inspired by Tan et al. (2023), we adopt a
structure-aware hybrid sampling to model propaga-
tion dynamics along both dimensions. Specifically,
given a propagation graph G = (V, E), we utilize
two graph traversal strategies: Breadth-First Search
(BFS) and Depth-First Search (DFS) to encode the
bidirectional evolution of the propagation tree:

PB
G = BFS(G), PD

G = DFS(G), (2)

where PB
G captures breadth-wise expansion of G,

while PD
G models depth-wise progression of G. By

encoding the propagation tree of each news, we
obtain two sets of propagation paths: breadth-wise
expansion paths (PB = {PB

G ,G ∈ D}) and depth-
wise progression paths (PD = {PD

G ,G ∈ D}).
Each propagation path P ∈ P = PD ∪ PB is
represented as a sequence of traversal nodes:

P = (v0, v1, ..., v|P |),

vi =< idparent, i, ci >,
(3)

where each traversal node vi is represented as a
triple 1, idparent ∈ {0, 1, ..., i − 1} represents the
parent node index of vi and ci indicates the content
of vi.

3.2.2 Masked Propagation Modeling
While LLMs demonstrate remarkable generaliza-
tion abilities, domain-specific fine-tuning remains
crucial to adapt their broad linguistic knowledge to
the unique structural patterns of propagation graphs.

1v0 = (None, 0, [news content]) denotes the news node
in the path.

Drawing inspiration from masked language model-
ing approaches, we implement a context modeling
objective called masked propagation modeling that
enhances the LLM’s ability to capture the hierarchi-
cal evolution patterns inherent in real-world prop-
agation. Specifically, we iteratively select node
vm(m ∈ {1, 2, ..., |P |} from P ∈ P and mask
its preceding and subsequent nodes respectively,
generating two sub-paths P−1

m (predict the preced-
ing node vm−1) and P+1m (predict the subsequent
node vm+1) from P :

P−1
m = (v0, ..., vm−2, v[mask], vm),

P+1
m = (v0, ..., vm−1, vm, v[mask]),

(4)

where v[mask] represents the node to be predicted.
These sub-paths P z

m(z ∈ {−1,+1} are then textu-
alized using a predefined prompt template Φ1(·) to
create training samples:

Given the propagation tree: P z
m, please predict

the masked comment node ({’parent node in-
dex’: ’[masked]’, ’node index’: ’[masked]’,
’content’: ’[masked]’}) in a JSON format as
same as other nodes, i.e.,{parent node index:
num, node index: num, content: text}.

The objective essentially constitutes a next-token
prediction problem, where the LLM predicts the
masked node v[mask] given input Φ1(P

z
m) and com-

pares it with the ground truth node vm+z . The
optimization objective is formulated as:

L =
∑

P∈P
(

|P |−1∑

m=0

− logP(vm+1|Φ1(P
+1
m )))

−
|P |∑

m=2

logP(vm−1|Φ1(P
−1
m ))).

(5)

3.3 Structure-aware Propagation
Enhancement

Unlike prior approaches (Wan et al., 2024; Nan
et al., 2024) that simulate propagation solely based
on news content, we generate propagation under
the guidance of existing propagation using the BEP-
trained LLM. This allows structurally consistent
extensions that better reflect real-world propaga-
tion patterns and improve downstream detection
effectiveness.

Starting with a given news propagation G′
0, we

traverse it into a sequence PG′ ,0 like the ones in
Equation 3 by time order. And then the trained
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Datasets Twitter CED PHEME5
Number of News 1,154 3,387 5,801

Number of True News 575 1,538 3,829
Number of False News 579 1,849 1,973
Number of Comments 59,255 1,275,180 85,408

Average number of Comments 52 377 15

Table 1: The statistics of datasets.

LLM iteratively generates a comment node, which
is added to the propagation sequence:

v
′
i = LLM(Φ2(PG′ ,i−1)),

PG′ ,i = PG′ ,i−1 ∪ {v
′
i},

(6)

where LLM refers to the BEP-trained LLM, v
′
i

represents the generated traversal node as shown
in Equation 3. Φ2(·) is the function that encodes
P

′
n,vi−1

into a textual sequence following a prede-
fined prompt template :

Given the propagation tree: PG′ ,i−1, please pre-
dict the next comment node in a JSON format
as same as other nodes, i.e.,{parent node index:
num, node index: num, content: text}.

3.4 Propagation-enhanced Detection

Ultimately, we reconstruct the enriched propaga-
tion tree G′

k by aggregating all node information in
PG′

,k from Equation 6, where k specifies the pre-
defined scale of the number of nodes to generate.

In downstream fake news detection, we use the
trained detector f(·) to detect and predict the au-
thenticity label ŷ of news using the enriched propa-
gation G′

k:

ŷ = f(G′
k). (7)

4 Experiments Setups

4.1 Datasets

We conduct experiments on three public datasets:
Twitter (Siska et al., 2024), CED (Song et al.,
2019) and PHEME5 (Zubiaga et al., 2016). Twit-
ter contains tweets published on Twitter2, and each
tweet is annotated with true of false. CED contains
Chinese rumor data scraped from Weibo, includ-
ing forwarding and comment information related
to the original Weibo posts. PHEME5 contains
collections of rumors and non-rumors released on
Twitter during 5 emergency events between 2014
and 2016. The statistics of the three datasets are

2In July 2023, Twitter has been rebranded to X.

shown in Table 1. Following Chen et al. (2025), we
divided the datasets into training, validation, and
testing sets in a ratio of 7:1:2.

4.2 Evaluation Metrics
We evaluate our approach using two categories of
metrics. For detection performance, we employ
standard classification metrics including Accuracy,
Macro-F1, Precision, Recall, and Area Under the
ROC Curve (AUC).

To assess the quality of synthetic propagation,
we utilize both structural and semantic metrics.
The structural metrics comprise Structural En-
tropy (SE), Maximum Depth (MD), and Maximum
Breadth (MB), which capture the topological char-
acteristics of propagation trees. The semantic met-
rics include Semantic Consistency (SemC), Sen-
timent Consistency (SenC), and Semantic Homo-
geneity (SemH), which measure the coherence of
textual content within the propagation. Detailed
definitions of these propagation evaluation metrics
are provided in Appendix A.

4.3 Baseline
For the evaluation of our propagation generation
methods, we employ the following approaches:

BERT (Devlin et al., 2019) is a widely used pre-
trained language model for fake news detection,
with the output from the last layer commonly fed
into a classifier. dEFEND (Shu et al., 2019) devel-
ops a sentence-comment co-attention sub-network
for fake news detection. GCN (Kipf and Welling,
2016) applies graph convolutional operations on
the news propagation graph to learn news repre-
sentations. Bi-GCN (Bian et al., 2020) models
bidirectional propagation graphs based on the news
propagation graph for detection. EBGCN (Wei
et al., 2021) learns structural features from un-
certain propagation using Bayesian graph convo-
lutional networks. RAGCL (Cui and Jia, 2024)
learns robust rumor representations through adap-
tive propagation graph contrastive learning. We
utilize the above four propagation-based detection
models to evaluate the effectiveness of synthetic
propagation for detection. GenFEND (Nan et al.,
2024) obtains 30 specific user profiles from three
perspectives: gender, age, and education level.
Then, LLMs are made to act as these thirty users
to comment on news articles. DELL (Wan et al.,
2024) makes LLMs act as designated users to com-
ment on news articles or reply to other comments
through an iterative process, thereby generating
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Methods
Twitter PHEME5

Accuracy Macro-F1 Recall Precision AUC Accuracy Macro-F1 Recall Precision AUC
BERT 71.12 70.86 71.44 71.83 71.13 81.83 79.22 85.56 87.63 78.88
LLMtext 56.00 54.60 53.20 55.23 57.24 33.74 28.64 32.78 34.14 31.78
dEFEND 75.12 73.56 75.56 75.89 75.13 83.24 82.45 83.54 92.45 89.42
LLMcomments 60.75 60.47 59.47 65.23 61.27 53.51 52.77 54.56 60.27 54.18
GCN 78.02 77.67 80.59 75.39 86.61 80.29 75.16 81.85 91.07 86.96
BiGCN 82.76 82.71 84.51 81.09 90.67 82.70 80.28 86.44 87.86 88.44
EBGCN 83.19 82.60 82.13 83.44 91.32 83.89 80.72 85.51 90.71 89.14
RAGCL 84.05 83.72 83.76 85.96 90.88 84.81 82.11 87.29 89.82 89.25
LLMpropagation 48.84 46.76 40.24 49.47 47.72 52.14 52.04 53.94 54.57 55.62
GenFEND
w/BERT 78.26 75.64 78.12 76.64 74.78 83.84 81.23 87.57 89.64 87.89
w/dEFEND 82.25 82.04 83.54 81.42 90.70 85.07 84.66 86.75 92.46 91.63

DELL
w/single 80.17 79.75 81.61 78.91 88.39 82.60 80.75 88.84 84.54 88.89
w/vanilla 80.17 82.55 83.34 76.14 90.75 82.52 80.60 88.50 84.80 89.20
w/confidence 78.97 78.10 83.14 77.34 90.21 83.03 81.08 88.62 85.60 89.07
w/selective 81.22 81.02 81.06 78.96 86.79 83.29 82.75 88.80 89.54 89.02

StruSP (Ours)
w/GCN 81.03 79.75 81.61 78.91 88.39 81.54 80.24 86.36 88.41 80.65
w/BiGCN 84.04 83.78 85.68 84.59 92.08 84.45 83.25 87.85 88.96 90.70
w/EBGCN 84.48 84.23 84.60 84.85 92.56 86.21 84.96 89.88 93.12 90.38
w/RAGCL 85.43 84.84 85.05 86.22 92.45 87.76 85.43 90.58 93.17 92.71

Table 2: Results (%) of general fake news detection on Twitter and PHEME5. For each method, we run it five
times and report the average results. The results of methods enhanced by StruSP are statistically significant than its
baseline model (p-value < 0.05). The best results on each metric are in boldface.

propagation.
Additionally, following Chen et al. (2025), we

evaluate LLMs as fake news detectors, categorizing
the models into three types based on input content:
LLMtext, LLMcomments, and LLMpropagation.

4.4 Implementation Details

All experiments are conducted on a single NVIDIA
A40 GPU with 46GB of memory. The predefined
number of generated nodes is set to 30. We im-
plement all baseline methods under the same en-
vironment, following the parameter configurations
reported in their original papers. Two large lan-
guage models are used in our study: LLaMa3-8B-
Instruct and Qwen3-4B. Unless otherwise specified,
we report the results of LLM-based methods using
LLaMa3-8B-Instruct.

For training the LLM backbone in StruSP, we
construct a joint training set by merging the training
portions of the Twitter and PHEME5 datasets. We
adopt a parameter-efficient fine-tuning approach
using LoRA (Hu et al.) with a rank of 8, applied
to all transformer layers. The model is optimized
using the AdamW optimizer with a cosine learning
rate schedule, a base learning rate of 5e-5, and
a warmup ratio of 0.1. All LLM backbones are
trained for 4 epochs with Brain Floating Point 16-
bit (BF16) precision enabled.

5 Experimental Results

We evaluate the effectiveness of StruSP on three
real-world fake news datasets across different de-
tection scenarios (Section 5.1) and conduct abla-
tion studies to evaluate the effectiveness of each
component in StruSP (Section 5.2). We further an-
alyze the structural differences between synthetic
and real propagation at two levels (Section 5.3):
a macro-level analysis, which compares average
metric values across samples, and a micro-level
analysis, which examines their distribution at the
individual sample level. We replace the LLM back-
bone of StruSP to investigate the impact of LLM
choice on the framework’s performance (Section
5.4).

5.1 Main Results

5.1.1 General Detection
Table 2 shows the performance of baselines and
our method in general detection. Our method effec-
tively enhances existing fake news detection meth-
ods. Specifically, StruSP w/RAGCL achieves the
state-of-the-art performance on both datasets, and
it gains 2.95% improvement in accuracy compared
to RAGCL on PHEME5.

From the results, we have the following obser-
vations. First, compared to GenFEDN and DELL,
our propagation-enhanced method performs bet-
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Figure 3: Results of StruSP and comparison methods
on early detection. RAGCL is the backbone model.
Full refers to using all available propagation data for
prediction, i.e., general detection. None refers to only
using limited real-world propagation for early detection.
DELL and StruSP use both limited real-world and LLM-
generated propagation for early detection.

ter, indicating that StruSP generates more infor-
mative and structurally realistic propagation trees
that empower strong baselines again. Addition-
ally, across all backbone models (GCN, BiGCN,
EBGCN, RAGCL), integrating StruSP consistently
boosts performance on both Twitter and PHEME5
datasets. This demonstrates that synthetic propaga-
tion generated by StruSP effectively complements
real propagation in detection.

5.1.2 Early Detection
To evaluate the effectiveness of our method in early
detection, where only limited propagation data is
available, we test RAGCL (Cui and Jia, 2024)
trained on full propagation data. During testing,
only a fixed proportion of the propagation structure
is retained to simulate early-stage scenarios (Chen
et al., 2024). We utilize different methods to enrich
the early-stage propagation for testing.

Figure 3 shows early detection results of our
StruSP and comparison methods under the RAGCL

Methods
Twitter −→ CED PHEME5 −→ CED

Accuracy Macro-F1 Accuracy Macro-F1
RAGCL 89.47 88.94 73.23 71.68
w/DELL 88.21 86.34 78.48 76.92
w/StruSP 92.28 91.56 82.69 80.65

Table 3: Performance of StruSP and other comparison
methods in cross-domain detection. RAGCL is the back-
bone model. Twitter −→ CED refers to training on the
source domain (i.e., Twitter) and testing on the target
domain (i.e., CED).

base model. The results indicate that: 1) StruSP
effectively complements early-stage propagation,
achieving detection performance close to the Full
setting. This demonstrates its ability to generate
structurally and semantically consistent propaga-
tion aligned with real-world dynamics. 2) DELL-
generated propagation hinders detection perfor-
mance, highlighting a mismatch between its role-
playing generation and actual propagation patterns.
This underscores the advantage of structure-aware
generation in enhancing early detection.

5.1.3 Cross-platform Detection
To investigate generalization ability of StruSP-
enhanced fake news detectors in the cross-platform
detection, where there is little propagation data on
some platform for the platform-specific detectors,
we train RAGCL on two English Twitter datasets
separately and test it on the CED dataset from
Weibo platform, with the test samples translated
into English3. We compare StruSP with DELL by
using both to generate propagation data for CED
and then perform detection on the generated propa-
gation trees.

As shown in Table 3, RAGCL with StruSP
achieves the best performance, demonstrating its
ability to retain source-platform (Twitter) propa-
gation dynamics while adapting to target content
(Weibo). In contrast, using the original or DELL-
generated propagation leads to poor performance,
highlighting the difficulty of direct transfer and
the importance of structure-aware generation for
cross-platform fake news detection.

5.2 Ablation Study

To validate the effectiveness of StruSP, we con-
duct an ablation study of four ablative versions
by removing structure-aware hybrid sampling(w/o
SHS), masked propagation modeling (w/o MPM),

3To avoid differences caused by different languages, we
translate the text of the samples in the CED test set into English
with LLaMa3-8B-Instruct .
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Methods
Twitter PHEME5

Accuracy Macro-F1 Accuracy Macro-F1
StruSP 85.43 84.84 87.76 85.43

w/o SHS 84.48 84.25 85.78 85.14
w/o MPM 84.56 84.12 85.60 84.02
w/o BEP 83.62 83.22 83.55 81.06
w/o SPE 84.48 84.24 86.12 85.41

Table 4: Results (%) comparison between StruSP and
its ablative variants. RAGCL is the backbone model.

Methods
Structural Metrics Semantic Metrics
SE MD MB SemC ↑ SenC↑ SemH

Orginal 0.94 3.56 14.17 - - 0.85
GenFEND - - - 0.89 0.53 0.91
DELL 1.75 4.71 10.09 0.91 0.50 0.92
LLM 1.54 4.10 11.13 0.94 0.79 0.88
StruSP 0.84 3.99 13.72 0.97 0.85 0.86

Table 5: Results of macro-level propagation analysis on
the combined Twitter and PHEME5 datasets. Structural
Entropy (SE), Maximum Depth (MD), and Maximum
Breadth (MB) evaluate the structural features of propa-
gation. Semantic Consistency (SemC), Sentiment Con-
sistency (SenC), and Semantic Homogeneity (SemH)
evaluate the semantic features of propagation.

bidirectional evolutionary propagation learning
strategy (w/o BEP), and structure-aware propaga-
tion enhancement (w/o SPE). The results are shown
in Table 4. It can be observed that the full StruSP
w/RAGCL achieves better performance on both
datasets. The performance drop of w/o SHS on
both datasets demonstrates the importance of mod-
eling bidirectional evolutionary propagation. Simi-
larly, w/o MPM shows degraded results, indicating
that providing LLMs with contextual propagation
paths aids in capturing propagation dynamics. And
the removal of both modules (w/o BEP) leads to
the most significant decline, confirming that the
two components are complementary and jointly
crucial for realistic propagation generation. Fur-
thermore, removing the structure-aware propaga-
tion enhancement module (w/o SPE) results in a
noticeable performance drop, indicating that gener-
ating propagation solely from news content is less
effective. This confirms that leveraging partial real
propagation as guidance leads to more informative
and structurally aligned synthetic propagation for
detection.

5.3 Propagation Evaluation

We evaluate the quality of propagation generated
by StruSP and other comparison methods. LLM
refers to the use of an unfine-tuned LLaMa3-8B-
Instruct model to generate propagation, following

(a) Structure Entropy (b) Max Depth

(c) Max Breadth (d) Semantic Homogeneity

Figure 4: Results of micro-level propagation analy-
sis on the combined Twitter and PHEME5 datasets.
The distributions of Structural Entropy, Instance-level
Depth/Breadth, and Semantic Homogeneity across prop-
agation generated by different methods

the approach described in Section 3.3. We conduct
both macro-level and micro-level analyses. The
macro-level evaluation assesses the overall struc-
tural and semantic similarity to real-world propa-
gation, while the micro-level evaluation focuses on
intra-propagation variation. Detailed definitions of
all evaluation metrics are provided in Appendix A.

The evaluation results are shown in Table 5 and
Figure 4. It can be observed that synthetic propa-
gation generated by StruSP best aligns with real-
world propagation, outperforming non-fine-tuned
LLMs and role-playing methods (e.g., GenFEND,
DELL) in both structural and semantic metrics. It
indicates that the effectiveness of StruSP in guiding
LLMs to generate realistic and informative propa-
gation. Moreover, StruSP shows higher similarity
to real propagation across semantic metrics com-
pared to non-fine-tuned baselines, confirming the
benefit of incorporating real-world propagation sig-
nals during training.

5.4 Performance with Different LLM
Backbones

To validate the generalization of our method for
different LLMs, we compare the performance of
StruSP with LLaMa3-8B-Instruct and Qwen3-4B
as the backbone and conduct a comprehensive
performance comparison. As shown in Table 6,
LLaMa3-8B-Instruct and Qwen3-4B achieved com-
parable performance. It indicates that StruSP is
robust to the choice of backbone LLM, as both
LLaMa3-8B-Instruct and Qwen3-4B can effec-
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Method
Twitter PHEME5

Accuracy Macro-F1 Accuracy Macro-F1
LLaMa3-8B as backbone
GCN 81.03 79.75 81.54 80.24
BiGCN 84.04 83.78 84.45 83.25
EBGCN 84.48 84.23 86.21 84.96
RAGCL 85.43 84.84 87.76 85.43
Qwen3-4B as backbone
GCN 80.72 78.14 81.82 80.56
BiGCN 83.62 83.19 84.07 83.16
EBGCN 84.48 84.23 85.96 84.87
RAGCL 84.91 84.42 87.07 86.48

Table 6: Results (%) of StruSP with different LLM
backbones and GNN variants in general fake news detec-
tion. All models are evaluated on Twitter and PHEME5
datasets.

tively generate synthetic propagation data to en-
hance fake news detection. Moreover, our method
shows the best detection performance with the dif-
ferent LLM backbones.

6 Conclusion

This paper proposes a structure-aware synthetic
propagation enhanced fake news detection frame-
work (StruSP). By employing a bidirectional evo-
lutionary propagation learning strategy, StruSP
enables LLMs to generate realistic and informa-
tive propagation trees and enrich the existing in-
complete propagation tree. Experiments on three
datasets demonstrate that StruSP significantly im-
proves fake news detection performance in differ-
ent incomplete propagation settings and produces
realistic and diverse propagation.
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Limitations

As an initial attempt to generate synthetic propa-
gation that structurally aligns with real-world dif-
fusion patterns, the proposed StruSP framework
presents several limitations. First, it relies on ob-
served propagation data to train the LLM-based
generator, which makes its performance sensitive
to the quality and coverage of the training data.
Second, the generation quality is closely tied to

prompt design; less expressive or overly generic
prompts may struggle to capture complex structural
dependencies. Lastly, StruSP does not explicitly
model user-level behaviors or social dynamics, po-
tentially limiting the realism and personalization of
the generated content, particularly in emotionally
charged or user-driven conversations.

Ethics Statement

Our proposed method, StruSP, leverages large lan-
guage models (LLMs) to generate synthetic propa-
gation structures for the purpose of enhancing fake
news detection under incomplete propagation sce-
narios. All generated content is used solely for
research purposes and is not intended for public
dissemination.

While our approach improves detection perfor-
mance, we acknowledge the potential misuse of
synthetic propagation generation for malicious pur-
poses, such as falsifying social media diffusion.
To mitigate this, we emphasize that our system
is designed for controlled research and evaluation
within the context of fake news detection.

We also recognize that LLM-generated content
may reflect unintended biases or sentiments. To re-
duce this risk, we employ structure-aware training
grounded in real-world data and evaluate outputs
using semantic and sentiment alignment metrics.

Overall, this study aims to advance the under-
standing and mitigation of fake news on social plat-
forms, and we encourage the responsible use of the
techniques proposed.
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A Propagation Evaluation Metrics

We provide detailed definitions and calculation
methods for the metrics used in evaluations of prop-
agation quality.

Structural Entropy (SE) quantifies uncertainty
in node degree distribution using Shannon entropy:

SE = −
∑

k

pk log pk, (8)

where pk is the proportion of nodes with degree k.

Max Depth (MD) measures the maximum
depth of a single propagation instance.

Max Breadth (MB) measures the maximum
number of nodes at any depth level.

Semantic Consistency (SemC) measures the
average semantic alignment between the generated
propagation tree G′

and the corresponding original
propagation tree G by comparing their aggregated
semantic representations:

SemC =
1

N

N∑

i=1

cos

(
1

|V (G′
i)|

∑

v∈V
(G′

i
)

emb(v),

1

|V (Gi)|
∑

v∈V (Gi)

emb(v)

)
,

where N denotes the number of samples. V (G)
i and

V
(G′

)
i are the node sets of Gi and G′

i respectively.
emb(v) is the BERT-based embedding of node V .
The cosine similarity is computed between the av-
erage embedding of each tree pair.

Sentiment Consistency (SenC) measures the
alignment of overall sentiment across generated
and original propagation. It reflects whether the
generated propagation G′

preserves the dominant
sentiment polarity of the original ones G.

SenC =
1

N

N∑

i=1

I
(

MajSent(G′
i) = MajSent(Gi)

)
, (9)

where N denotes the number of samples.
MajSent(Gi) represents the majority sentiment la-
bel (e.g., Positive or Negative) of the i-th tree in
the datasets. The function I(·) is the indicator func-
tion that returns 1 if the two labels are equal, and
0 otherwise. Sentiment labels are obtained using
a pretrained sentiment classifier4 applied to each

4https://huggingface.co/distilbert/distilbert-base-uncased-
finetuned-sst-2-english

comment in the propagation tree. The majority sen-
timent of a tree is determined by the most frequent
label among its nodes.

Semantic Homogeneity (SemH) measures pair-
wise coherence among all comments in a propaga-
tion, the cosine similarity is used to calculate the
semantic homogeneity:

SemH =
2

|V |(|V | − 1)

∑

i<j

cos (emb(vi), emb(vj)) (10)

B Prompt Design and Robustness
Analysis

B.1 Robustness Through Fine-tuning and
Structure

Our framework achieves robustness against prompt
variations through two core design principles:

1. Deep Structural Learning via BEP: The
Bidirectional Evolutionary Propagation learning
strategy (Section 3.2 in the main paper) explicitly
trains the LLM to become an expert in propagation
dynamics. This process deeply ingrains structural
awareness into the model’s parameters, making its
behavior inherently stable and far less sensitive
to minor prompt variations compared to methods
relying solely on in-context learning.

2. Formal API Design: By treating prompts as
a formal API with structured JSON I/O (detailed in
Section B.2), we ensure that the LLM engages with
the task’s logic directly. This structured interface
minimizes ambiguity and ensures consistent inter-
pretation regardless of natural language variations
in the prompt.

These design choices collectively ensure that our
method’s performance is robust and reliable across
different prompt formulations.

B.2 Structured JSON I/O Format
Our framework employs a structured JSON format
for both input and output:

Input:
Propagation tree with nodes: [{node_index: 0,
parent_index: -1, content: "text"}, ...]
Output:
Predicted node: {parent_node_index: num,
node_index: num, content: "text"}

This structured approach transforms the interac-
tion into a clear, machine-readable function call,
ensuring reliable and predictable outputs while min-
imizing ambiguity in the LLM’s interpretation of
the task.

13270



Method Accuracy ↑ Macro-F1 ↑ |SEori. − SEsyn.|↓ SemC ↑
StruSP w/P1 (Ours) 85.43 84.84 0.10 0.97

StruSP w/P2 84.91 84.45 0.14 0.97
StruSP w/P3 85.12 84.36 0.10 0.97

DELL 81.22 81.02 0.81 0.91
GenFEND 82.25 82.04 - 0.89

Table 7: Performance comparison across different
prompt variants on the Twitter dataset. |SEorg.−SEsyn.|
denotes the absolute value of the difference between
the structural entropy score of the original propagation
(SEori.) and the structural entropy score of the synthetic
propagation (SEsyn.). The results demonstrate that our
BEP learning strategy ensures robust performance re-
gardless of prompt formulation.

B.3 Prompt Sensitivity Analysis
To demonstrate the robustness of our Bidirectional
Evolutionary Propagation (BEP) learning strategy
against prompt variations, we conducted compre-
hensive experiments using three different prompt
formulations on the Twitter dataset.

B.3.1 Prompt Variants
We evaluated the following prompt variants:

P1 (Structured - Ours): "Given the propaga-
tion tree: {tree}, please predict the next comment
node in a JSON format as same as other nodes, i.e.,
{parent node index: num, node index: num, content:
text}."

P2 (Minimal): "Given the propagation tree:
{tree}, please predict the next comment node."

P3 (Detailed): "Given the propagation tree:
{tree}, please carefully analyze the structural pat-
terns and semantic context, then predict the next
comment node that maintains both structural con-
sistency and semantic coherence in a JSON format,
i.e., {parent node index: num, node index: num,
content: text}."

B.3.2 Experimental Results
Table 7 presents the performance comparison
across different prompt variants, demonstrating the
stability of our approach.

B.3.3 Analysis and Discussion
The experimental results reveal several key in-
sights:

1. Minimal Performance Variation: The per-
formance difference between prompt variants
is marginal (less than 0.52% in ACC and
0.39% in Macro-F1), demonstrating that our
BEP learning strategy successfully reduces
sensitivity to prompt formulation.

2. Consistent Structural Understanding: All
prompt variants maintain similar Structural
Entropy and identical Semantic Consistency
with original propagation, indicating that the
model’s understanding of propagation dynam-
ics is deeply ingrained through fine-tuning
rather than dependent on prompt engineering.

3. Superiority over Baselines: Even with the
minimal prompt (P2), our method outper-
forms baseline approaches by significant mar-
gins, confirming that the robustness stems
from our fine-tuning strategy rather than
prompt sophistication.

C Computational Cost Analysis

We employed Parameter-Efficient Fine-Tuning
(PEFT) using LoRA (rank=8) to significantly re-
duce the training cost while maintaining model per-
formance. Fine-tuning the LLaMa3-8B-Instruct
model on the combined Twitter and PHEME5
datasets took approximately 4 hours on a single
NVIDIA A40 GPU, representing a one-time, man-
ageable cost. This approach reduces the number
of trainable parameters to approximately 0.1% of
the original model size, making the fine-tuning pro-
cess highly memory-efficient and accessible even
in resource-constrained environments.

During inference, generating 30 synthetic com-
ments for a single news propagation tree takes on
average 1 minute on a single NVIDIA A40 GPU.
This modest one-time training cost creates a power-
ful, reusable generator that can produce unlimited
amounts of high-quality training data, enabling sig-
nificant performance gains for lightweight GNN
detectors in low-resource scenarios. For example,
augmenting 1000 propagation trees would require
approximately 16.7 GPU hours but would yield
30,000 high-quality training samples, demonstrat-
ing an excellent cost-benefit ratio for practical de-
ployment.

D Generation Process and Automated
Quality Assurance

Our generation process employs carefully selected
parameters to balance diversity with coherence. We
generate 30 nodes per propagation tree using the
fine-tuned LLaMA3-8B model with LoRA adapta-
tion. For decoding, we use nucleus sampling (top-p
= 0.9) with a temperature of 0.6, allowing up to 3
retry attempts per node generation. These param-
eters were empirically determined to ensure syn-

13271



thetic propagation patterns remain realistic while
providing sufficient variability for effective data
augmentation.

The quality of generated data is ensured through
a rigorous automated validation pipeline, as de-
tailed in Algorithm 1. Each generated node must
pass through three sequential validation gates be-
fore being accepted into the propagation tree. The
Syntactic Filter ensures the LLM’s output is well-
formed JSON, triggering re-generation for any mal-
formed responses. The Structural Filter validates
topological integrity by checking for valid parent
references, preventing self-loops, ensuring unique
node identifiers, and maintaining proper tree struc-
ture without cycles. Finally, the Content Filter
ensures semantic quality by filtering out empty con-
tent, boilerplate refusal messages, repetitive text,
and responses shorter than a minimum threshold.

Algorithm 1: Automated Node Validation
Pipeline

1 Existing propagation tree Pcurrent,
LLMgenerator, Max_retries = 3 A new
valid node vnew or Failure
GenerateValidNodePcurrent for i = 1 to
Max_retries + 1 do

2 // Generate a candidate node
raw_output← LLMgenerator(Pcurrent)

3 // — Validation Gate 1: Syntactic Filter —
4 try:

node_json← ParseJSON(raw_output)
except JSONDecodeError: continue
Retry if output is not valid JSON

5 // — Validation Gate 2: Structural Filter —
6 if not

IsStructurallyValid(node_json, Pcurrent)
then

7 continue Retry if parent_id or node_id is
invalid

8 // — Validation Gate 3: Content Filter —
9 if IsContentInvalid(node_json[’content’])

then

10 continue Retry if content is empty, refusal,
etc.

11 // — Success: Node is valid —
12 return CreateNode(node_json)
13 // If all retries fail, return Failure
14 return Failure
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