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Abstract

Large Language Models (LLMs) have demon-
strated an impressive level of general knowl-
edge. However, they often struggle in highly
specialized and cost-sensitive domains such as
drug discovery and rare disease research due
to the lack of expert knowledge. In this paper,
we propose a novel framework (PU-ADKA) de-
signed to efficiently enhance domain-specific
LLMs by actively engaging domain experts
within a fixed budget. Unlike traditional fine-
tuning approaches, PU-ADKA selectively iden-
tifies and queries the most appropriate expert
from a team, taking into account each expert’s
availability, knowledge boundaries, and consul-
tation costs. We train PU-ADKA using simula-
tions on PubMed data and validate it through
both controlled expert interactions and real-
world deployment with a drug development
team, demonstrating its effectiveness in enhanc-
ing LLM performance in specialized domains
under strict budget constraints. In addition to
outlining our methodological innovations and
experimental results, we introduce a new bench-
mark dataset, CKAD, for cost-effective LLM
domain knowledge acquisition to foster further
research in this challenging area.1

1 Introduction

Recent advancements in large language models
(LLMs) have led to impressive performance gains
across a wide range of tasks (Naveed et al., 2023;
Pal et al., 2024; Yao et al., 2025a). However, these
gains are not uniformly observed across all do-
mains. In highly specialized and cost-sensitive
fields, such as drug discovery and rare disease ex-
ploration, the acquisition of domain knowledge
remains a challenge. Traditional approaches like
Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022; Kaufmann et al.,
2023) have demonstrated value in general settings,

∗Corresponding author.
1https://github.com/YANGWU001/PU-ADKA.

Figure 1: Domain LLM Knowledge Acquisition via
Cost-Efficient, Expert-Involved Interaction. The dia-
gram depicts how PU-ADKA selectively engages do-
main experts with varying expertise and costs to acquire
knowledge efficiently within a limited budget.

yet they struggle in contexts where expert knowl-
edge is extremely expensive and sparse. This sce-
nario is particularly pronounced in domains where
domain expertise is fragmented among profession-
als with diverse competencies and availability con-
straints (Szymanski et al., 2025; Dhar, 2024). Con-
sequently, there is a pressing need for novel ap-
proaches that can efficiently integrate domain ex-
pert feedback into LLMs while operating under
tight budgetary and expert availability restrictions.

To respond to this demand, we propose Posi-
tive Unlabeled Active Domain Knowledge Acquisi-
tion (PU-ADKA), which is designed to selectively
engage with domain experts and acquire targeted
feedback that can significantly enhance the per-
formance of LLMs in specialized fields. Unlike
conventional fine-tuning methods that passively
incorporate affordable human feedback (Zhang
et al., 2023; Wu et al., 2024a), PU-ADKA actively
queries the most appropriate expert from a team
given each member’s computational profile. The
model can elaborately consider factors such as the
candidate expert’s knowledge boundary, cost of
consultation, and expert availability, thereby opti-
mizing the knowledge acquisition process within a
fixed budget (e.g., total $100). The model training
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process leveraged newly released PubMed publi-
cations (PubMed, 2024), legacy architectures of
LLMs and innovative simulations of expert-domain
knowledge interactions. Through an intelligent
knowledge selection process and cost-aware query-
ing mechanism, PU-ADKA bridges the gap be-
tween the limited availability of expert input and
the high demand for domain-specific information.

Figure 1 illustrates the concept behind the pro-
posed PU-ADKA. In this case, a domain LLM
acknowledges gaps in its knowledge related to top-
ics like mRNA vaccines, CAT-T, and adenocarci-
noma (to support a cancer drug development team)
(Patel et al., 2025; Yao et al., 2025b). Instead of
relying on static, pre-existing datasets, PU-ADKA
selectively engages with domain experts to acquire
precise knowledge within a limited budget. The
model evaluates the expertise, cost, and availabil-
ity of different specialists, including PI, lead, se-
nior, and junior scholars, to optimize knowledge
acquisition. For example, in the image, the LLM
selectively queries Dr. Jean for insights on mRNA
vaccines at a cost of $7, while consulting Mary,
a different expert, about CAT-T for $4, ensuring
cost-effective expert engagement. This dynamic
querying mechanism allows the LLM to refine its
domain knowledge efficiently, making it particu-
larly useful in critical domains like drug discovery
and rare disease research, where expert knowledge
is both sparse and expensive.

Our contributions in this paper are threefold and
can be summarized as follows:
• We propose PU-ADKA, a cost-aware frame-

work that strategically selects and queries domain
experts by considering their availability, knowledge
scope, and consultation cost, in order to enhance
LLM performance under limited expert access and
fixed budget constraints.
• We introduce the Cost-effective Knowledge

Acquisition Dataset (CKAD), a new benchmark
for LLM domain knowledge acquisition, to foster
further research in the area of domain-specific LLM
enhancement.
• We empirically validate the effectiveness of

PU-ADKA through both simulation evaluation and
a real-world cancer drug development study. The
latter experiment involves a drug development team
in which five experts with diverse backgrounds
participate. The results show that PU-ADKA is
promising in enhancing domain LLMs within a
fixed budgetary restriction.

2 Related Work

2.1 Human Feedback Integration in
Domain-Specific LLMs

Domain-specific adaptation of LLMs has been
advanced significantly by techniques such as
domain-adaptive pretraining (DAPT) (Gururangan
et al., 2020) and various biomedical LLMs like
BioMedLM (Bolton et al., 2024), ClinicalBLIP (Ji
et al., 2024), and BioGPT (Luo et al., 2022). These
methods effectively utilize large domain-specific
corpora (e.g., PubMed) to incorporate static knowl-
edge. However, they often fall short in capturing
the dynamic insights from domain experts, cru-
cial for rapidly evolving areas like drug discovery.
RLHF (Ouyang et al., 2022) aims to align gen-
eral LLMs with human preferences but typically
depends on more homogeneous and less costly an-
notators, limiting its effectiveness in specialized
domains where expert feedback is sparse and ex-
pensive. Attempts like ExpertQA (Malaviya et al.,
2023) simulate multi-expert interactions but over-
look practical constraints like budget limitations
and asynchronous availability of experts. Our ap-
proach, PU-ADKA, overcomes these shortcomings
by redefining expert knowledge acquisition as a
budget-constrained optimization task, engaging ex-
perts based on their knowledge, cost, and availabil-
ity, thereby transitioning from static data-driven
adaptation to expert-guided learning.

2.2 Budget-Constrained Active Learning with
Multi-Expert Collaboration

Traditional active learning models primarily fo-
cus on maximizing sample information through
uncertainty (Gal et al., 2017; Kim et al., 2021;
Wang et al., 2024; Yao et al., 2025a) or diversity
(Chakraborty et al., 2015; Parvaneh et al., 2022;
Citovsky et al., 2021), often neglecting the varying
costs associated with expert annotations, partic-
ularly in complex fields like biomedicine. Cost-
sensitive approaches (Huang et al., 2017; Henkel
et al., 2023; Li et al., 2022) attempt to address
this by optimizing for lower-cost annotators but
fail to differentiate between the varied expertise
levels necessary for accurately labeling complex
cases. Unlike these methods, PU-ADKA integrates
active learning with strategic expert collaboration,
emphasizing both data sample selection based on
the potential to update the model and efficient en-
gagement of experts, balancing cost against their
competency and availability.
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3 Methodology

3.1 Problem Definition
Given a fixed annotation budget B, an unlabeled
question pool Dtr = {qi}|Dtr|

i=1 , and a team of do-
main experts E = {ej}|E|j=1, our goal is to select
an optimal set of (qi, ej) pairs to acquire expert-
labeled data for finetuning a large language model
θ, maximizing finetuning performance on a target
test set Dte = {pm}|Dte|

m=1.
Formally, we define an allocation function f :

Dtr → E that assigns each selected question qi to
an expert ej , ensuring that the total annotation cost
remains within the budget B. The optimization
objective is:

S∗ = argmax
S⊆Dtr×E

F(θS ,Dte)

s.t.,
∑

(qi,ej)∈S
c(qi, ej) ≤ B,

where, S∗ denotes the optimal set of (qi, ej) pairs
that maximizes the performance metric F(θS ,Dte)
of the fine-tuned model θS on the target test set.
The term c(qi, ej) represents the annotation cost
incurred when expert ej annotates question qi.

Table 1: Notations.

Notation Description
B Total annotation budget available.
Dtr Unlabeled question pool for training.
Dte Target test set for evaluation.
qi The i-th question in the unlabeled pool.
ej The j-th domain expert.
f Allocation function assigning questions to experts.
θ Base language model.
θS Fine-tuned model using selected question-expert pairs S.
S Selected set of question–expert pairs for annotation.
c(qi, ej) Cost for expert ej to label question qi.
xp
k Positive question–expert pair used in PU learning.

xu
k Unlabeled question–expert pair used in PU learning.

πp Prior probability of a positive sample in PU learning.
g Expert-wise attention network.
l(·, ·) Surrogate loss function (e.g., zero-one loss).
Γt
j Number of times expert ej has been selected up to time t.

wt
j Sampling weight of expert ej at time t.

rt Reward at time step t in multi-agent RL.
ϕi Diversity score for question qi.
d(Ei

q, E
z
q ) Distance between question embeddings i and z.

Zi Expert-wise representation of question qi.

3.2 Simulation Environment Construction
To facilitate our study, we introduce a novel bench-
mark dataset, CKAD, designed to simulate biomed-
ical expert consultations and domain knowledge
acquisition for LLMs. This dataset is constructed
by strategically leveraging PubMed articles pub-
lished after the knowledge cutoff date of the base
model, ensuring that the selected content represents

genuinely novel information. To further isolate new
knowledge from prior model capabilities, we imple-
ment a temporal knowledge separation mechanism
that enforces strict chronological boundaries be-
tween the base model’s existing knowledge and the
newly acquired domain content. This is achieved
through three key components detailed below:

Predated Base Model Selection: We employ
Llama2-7B (Touvron et al., 2023) as our predated
base model, chosen for its knowledge limitations
to information available up to early 2023, prior
to our target corpus. This temporal separation en-
sures a controlled setting for evaluating knowledge
acquisition.

Dataset Curation: We construct CKAD from
2024 PubMed Central (PMC) (PubMed, 2024), ex-
tracting question-answer (QA) pairs using GPT-
4o-2024-08-06 (OpenAI, 2024). For each paper,
five mechanism-focused QA pairs are generated
using prompting2 and manually validated. To es-
tablish a well-isolated environment for assessing
knowledge acquisition, we filter out QA pairs that
can be answered by the base model. This process
results in a final dataset of 48,219 QA pairs (the
base model cannot correctly answer) representing
post-2023 knowledge. To assess the quality of our
dataset, we conduct a human evaluation on 100
randomly sampled QA pairs. Two PhD researchers
with biomedical backgrounds independently scored
each QA pair on a 1–5 scale3. The average score is
3.85, and Cohen’s Kappa (McHugh, 2012) between
the evaluators is 0.73, reflecting high data quality
and strong human agreement.

Expert Simulation. To simulate realistic an-
notation constraints, we construct a binary expert
capability matrix A ∈ RQ×N , where Aji = 1 in-
dicates that expert ej is assumed to be capable of
annotating question qi, and 0 otherwise. This ma-
trix is used to restrict which expert–question pairs
are considered valid during simulation. Without
such a constraint, every expert would be able to
annotate every question, leading to minimal vari-
ation in annotation quality across experts—even
for questions unrelated to their domain expertise.
To construct A, we use GPT-4o-2024-08-06 to ana-
lyze each expert’s publications and determine their
capacity to annotate specific questions. The top
20 authors ranked by publication count are used
as proxy experts. Each expert is assigned a per-

2The detail of question-answer extraction prompt is pro-
vided in Appendix C.

3Quality scoring form is depicted in the Appendix I
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Figure 2: Illustration of our proposed PU-ADKA framework. Given an unlabeled question pool and a team of
experts with varying expertise and cost, the question-expert PU learning network identifies the experts that can
annotate specific questions based on limited positive examples. A multi-agent reinforcement learning module then
selects which questions to annotate and assigns them to appropriate experts under a fixed budget. This process
enables efficient acquisition of domain-specific knowledge for the base LLM through expert-in-the-loop supervision.

question annotation rate, determined proportionally
by the cumulative impact factor of their publica-
tions (Clarivate, 2025).

3.3 Positive Unlabeled Active Domain
Knowledge Acquisition

In this section, we present our Positive-Unlabeled
Active Domain Knowledge Acquisition (PU-
ADKA) framework, which selectively engages do-
main experts to acquire targeted feedback for im-
proving LLM performance in specialized domains.
PU-ADKA comprises two components: (1) Ques-
tion–Expert Matching, formulated as a Positive-
Unlabeled (PU) learning problem to model expert
suitability; and (2) Multi-Agent Reinforcement
Learning, which selects question–expert pairs un-
der budget constraints. We elaborate on each com-
ponent below.

3.3.1 Expert Allocation with Positive
Unlabeled Learning

Motivation. A key challenge in modeling ex-
pert–question suitability lies in the absence of ex-
plicit supervision: we can identify which expert
authored the source publication from which a ques-
tion is derived, and thus assume they are qualified
to answer it; however, we cannot assume that all
other experts are unqualified. This makes standard
binary classification infeasible. To address this, we
frame the question-expert matching task as a Pos-
itive–Unlabeled (PU) learning problem. Given a
question–expert pair (qi, ej), we label it as positive
if qi originates from a publication authored by ej .
If qi does not come from ej’s paper, we do not

treat (qi, ej) as a negative pair—instead, it remains
unlabeled, since the expert may still be qualified.
For example, a scholar specializing in cancer NK
cells may be able to answer a sepsis-related ques-
tion involving extracellular vesicles, even without
directly publishing in the sepsis domain.

Model Training. We use LLM-based text rep-
resentations, leveraging a pretrained Llama2-7B
model to encode questions Ei

q and experts Ej
e , with

embeddings taken from the last hidden layer. Par-
ticularly, an expert’s embedding is obtained by av-
eraging the representations of their publications.
To train our PU model to estimate expert knowl-
edge boundary, we employ an expert-wise attention
mechanism4 g and training with the non-negative
PU risk estimator (Kiryo et al., 2017), which is
defined as follows:

Riskpu(g) =
πp

np

np∑

i=1

l(g(xp
k),+1)+

max(0,
1

nu

nu∑

i=1

l(g(xu
k),−1)−

πp

np

np∑

i=1

l(g(xp
k),−1)),

(1)

where πp denotes positive class prior (πp = 0.1
in our dataset), l(·, ·) is the surrogate loss of zero-
one loss (Du Plessis et al., 2015; Wu et al., 2023),
np represents the number of labeled positive in-
stances, nu represents the number of unlabeled
instances, xpk and xuk denote question-expert pairs
in the labeled positive set and the unlabeled set,
respectively.

4The attention network is detailed in Appendix D
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3.3.2 Domain Knowledge Acquisition via
Multi-Agent Reinforcement Learning

The PU learning module is designed to estimate
how well each expert aligns with a given question.
This section builds on these estimates to select ex-
pert–question pairs for annotation under budget
constraints, aiming to maximize domain knowl-
edge acquisition.

Motivation. Effective knowledge acquisition
requires selecting questions that are not only in-
formative individually, but also complementary as
a set. This necessitates modeling dependencies
among questions—two high-value questions may
become redundant when answered together. For
example, questions about extracellular vesicles in
different disease contexts may overlap in the knowl-
edge they elicit. Single-agent or greedy methods
typically overlook such redundancy, leading to in-
efficient use of limited annotation budgets. To ad-
dress this, we formulate the question selection as a
multi-agent reinforcement learning (RL) problem,
where each agent selects a question–expert pair
while coordinating through shared rewards. This
enables the model to account for inter-question de-
pendencies and optimize the utility of the selected
set.

Multi-Agent RL State. The environment state
is represented by a combination of features that
capture both task-related and budgetary aspects:
(1). The question–expert matching score g(qi, ej)
is derived from the trained PU learning model and
measures the suitability of assigning question qi
to expert ej . (2). The remaining budget Bt indi-
cates the available annotation budget at time step t.
(3). The expert sampling weight wt

j quantifies the
likelihood of selecting each expert ej , defined as:

wt
j =

Bt

c(qi, ej)
× (1− αΓt

j), (2)

where α is a decay factor, and Γt
j denotes the num-

ber of times expert ej has been selected up to time
step t. This formulation encourages diversity in ex-
pert selection to enhance overall information gain
while ensuring balanced workload distribution.

Multi-Agent Competition. Different from
previous studies, our framework allows multiple
agents within the same model to simultaneously
seek (qi, ej) pairs, enabling different experts to
compete for answering the same question. Leverag-
ing our PU-based question-expert matching model,
each question qi is associated with a ranked list

of potential experts. As a result, multiple experts
e1, e2, . . . , eh may select the same question qi. In
such cases, qi should be assigned to the expert with
the highest matching score based on our PU match-
ing network. To enforce this competitive selection,
we introduce a competition function:

Compete(qi | e1, e2, . . . , eh) = ev,

s.t. ev = argmax
ej

g(qi, ej),
(3)

where g(qi, ej) represents the PU-based matching
score between question qi and expert ej , ensuring
that the most suitable expert is selected. For experts
who lose the competition for a given question in the
current iteration, the corresponding agents will then
select alternative pairs and re-enter the competition
process. This recursive procedure continues until
all agents in the current state have been assigned
unique questions.

Multi-Agent Cooperation. To effectively
encourage collaborative decision-making among
agents and optimize knowledge acquisition under
a fixed annotation budget, we define the reward
function as:

rt =
∆Ft ×

∑
qi∈St

ϕi∑
(qi,ej)∈St

c(qi, ej)
, (4)

where ∆Ft denotes the improvement in model per-
formance on the validation set after incorporating
newly labeled data at step t, and the denominator
represents the total annotation cost (Gao and Saar-
Tsechansky, 2020; Huang et al., 2017; Golazizian
et al., 2024). The diversity term ϕi measures the
distinctiveness of each selected question and is de-
fined as:

ϕi = min
qz∈St

d(Ei
q, E

z
q ), (5)

where St denotes the current labeled question set,
and d(·, ·) is the Euclidean distance function. A
larger ϕi value indicates that the selected question
is more diverse relative to past selections, thereby
enhancing knowledge coverage and reducing re-
dundancy.

Model Training. To stabilize learning, we em-
ploy a Double DQN architecture (Wang et al.,
2020). The temporal-difference (TD) target Yt is
computed as:

Yt = rt + γQ
(
st+1, argmax

ut+1

Q(st+1, ut+1; Ωt); Ω
′
t

)
,

(6)
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where st+1 denotes the next state, γ is the discount
factor, Q(s, u; θ) is the action-value function, Ωt

and Ω′
t represent parameters of the policy and tar-

get network, respectively. To enhance generaliza-
tion, we employ bootstrap sampling by selecting a
random subset of experts (e.g., five per iteration)
during the training stage. This strategy prevents
overfitting to a specific set of experts, ensuring that
the learned policy remains robust across diverse
labeling scenarios.

4 Experiments

4.1 Experimental Setup

As described in Section 3.2, we use the PubMed
dataset for sepsis and cancer NK research from
2024 and adopt Llama2-7B as the base architec-
ture. The experimental setup for our PU-ADKA
model utilizes Llama2-7B with a sampling tem-
perature of 1.0, a nucleus sampling top_p value of
0.9, and a maximum token length of 4,096. The
question and expert document encoders use the last
hidden layer of Llama2-7B. For fine-tuning, we
apply LoRA (Hu et al., 2021) to improve training
efficiency for large-scale models. The LoRA con-
figuration includes a rank of 16, an alpha of 128,
and a dropout rate of 0.1. Training involves learn-
ing LoRA matrices for all attention mechanisms
in each configuration. The models are optimized
using the AdamW optimizer with a learning rate
of 2 × 10−5. Each configuration undergoes three
trials with different random seeds.

In the multi-agent reinforcement learning frame-
work, we employ the Double DQN (Wang et al.,
2020) architecture. The default number of agents
is 10, with five experts selected per iteration. In
each iteration, experts are ranked based on the sum
of their papers’ impact factors (Clarivate, 2025),
and their unit prices are assigned accordingly as
[$0.5, $0.4, $0.3, $0.2, $0.1] per labeled question.
The total annotation budget is set to $100. All im-
plementations are conducted with Pytorch (Paszke
et al., 2017), PEFT (Mangrulkar et al., 2022) and
Transformers (Wolf et al., 2020) on a computa-
tion node configured with a 64-core CPU and four
80GB H100 GPUs.

4.2 Baselines

To ensure a comprehensive evaluation, our experi-
ment includes a variety of baseline methodologies
that encompass both question selection and expert
allocation strategies. The comparison provides in-

sights into the effectiveness of different active learn-
ing frameworks applied to LLMs. Below we detail
the question selection used in baselines:
RAND - Questions are selected randomly, provid-
ing a baseline for minimal strategic intervention in
data selection.
DEITA - Liu et al. (2023) evaluates data across
complexity, quality, and diversity using pretrained
complexity scorer5 and quality scorer 6 to score
each unlabeled questions.
CHERRY - Li et al. (2023a) applies the
Instruction-Following Difficulty (IFD) metric to
assess question quality autonomously.
NUGGETS - Li et al. (2023b) assesses the rele-
vance of questions by considering each as a single
instance in one-shot learning contexts.
LESS - Xia et al. (2024) calculates the influence
of questions on the validation set to prioritize data
that may yield the most significant insights during
finetuning.
ROSE - Wu et al. (2024b) utilizes gradient simi-
larity to evaluate the potential contribution of each
question to the model’s performance.

For expert allocation, we implement the follow-
ing methods:
Random - Experts are assigned randomly to ques-
tions.
Cost-Greedy - This method always selects the least
expensive expert available, optimizing for cost effi-
ciency.
Match-Greedy - Matches questions to experts
based on the highest embedding similarity between
them, facilitating a more informed allocation.

Each baseline represents a specific combination
of question selection and expert allocation methods,
providing a meaningful benchmark against which
our proposed approach can be evaluated.

4.3 Evaluation Benchmarks and Metrics.

To ensure a clean evaluation of knowledge acqui-
sition, our CKAD dataset consists of general dis-
ease mechanism question-answer pairs7 that can-
not be answered by base LLM (Llama2-7B) ini-
tially (i.e., the initial answerable rate is 0). Dur-
ing the simulation training stage, we employ two
advanced models, GPT-4o-2024-08-06 (OpenAI,
2024) and GPT-4-Turbo (Achiam et al., 2023), as

5https://huggingface.co/hkust-nlp/deita-complexity-
scorer

6https://huggingface.co/hkust-nlp/deita-complexity-
scorer

7Dataset statistics are provided in Appendix A.
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Table 2: Overall performance comparison on CKAD dataset. The best result is highlighted in bold, and the
second-best is underlined. Numbers in parentheses denote the standard deviation across three runs.

Expert
Allocation

Question
Selection

GPT-4o-2024-08-06 GPT-4-Turbo GPT-4o-2024-08-06 GPT-4-Turbo Avg.Length

WR (%) WR (%) LC_WR (%) LC_WR (%) -

Random RAND 4.7 (0.4) 6.7 (0.8) 20.3 (0.9) 20.4 (0.8) 2220
DEITA 9.6 (0.3) 7.9 (0.1) 21.0 (0.9) 22.1 (0.8) 2212
CHERRY 7.8 (0.1) 8.3 (0.2) 20.4 (0.9) 21.5 (0.9) 2221
NUGGETS 10.4 (0.1) 10.7 (0.4) 21.0 (0.8) 20.4 (0.8) 2204
LESS 7.9 (0.2) 7.9 (0.2) 22.0 (1.0) 24.0 (1.1) 2212
ROSE 8.1 (0.4) 10.0 (0.2) 21.5 (1.0) 22.7 (1.0) 2194

Cost-Greedy RAND 6.2 (0.4) 6.7 (0.8) 20.4 (0.9) 20.5 (0.9) 2207
DEITA 14.2 (0.8) 11.7 (0.2) 20.9 (1.0) 20.9 (0.9) 2246
CHERRY 11.7 (0.3) 10.0 (0.4) 23.4 (0.9) 22.1 (1.1) 2236
NUGGETS 7.9 (0.4) 8.7 (0.4) 21.5 (0.9) 20.4 (0.9) 2182
LESS 12.1 (0.4) 9.6 (0.4) 22.1 (0.8) 21.2 (1.0) 2218
ROSE 8.3 (0.8) 9.7 (0.2) 20.4 (0.9) 22.7 (1.0) 2174

Match-Greedy RAND 6.7 (0.8) 7.9 (0.4) 20.9 (1.0) 19.9 (0.8) 2204
DEITA 10.0 (0.3) 9.2 (0.8) 21.2 (1.0) 22.3 (0.9) 2214
CHERRY 7.5 (0.0) 9.2 (0.2) 21.0 (0.9) 23.3 (1.1) 2173
NUGGETS 9.5 (0.3) 11.6 (0.2) 22.1 (1.0) 21.6 (0.9) 2182
LESS 12.1 (0.4) 10.4 (0.2) 23.5 (1.0) 22.5 (1.0) 2252
ROSE 9.2 (0.1) 10.9 (0.4) 22.5 (0.9) 21.9 (1.0) 2229

Ours PU-ADKA 18.2 (0.6) 16.7 (0.4) 25.6 (1.0) 26.5 (0.9) 1781

judge models. The evaluation metrics include: Win
Rate (WR), which measures the percentage of in-
stances where the judge LLM determines that the
model-generated answer adequately captures the
core meaning of the golden answer; and Length-
Controlled Win Rate (LC_WR) (Dubois et al.,
2024a), a variant of WR that filters out samples
with large answer length discrepancies between the
model output and the golden answer, helping to
control for verbosity bias during evaluation.

Additionally, following Wang et al. (2023), we
conduct human-involved experiments to validate
the effectiveness of our method. The expert team
consists of three sepsis specialists and two cancer
specialists, representing different levels of exper-
tise. Among them, one expert is a medical doctor,
and the remaining four are PhD students8.

4.4 Experimental Results

Our experimental results are detailed in Table 2,
where we compare the performance of our method,
PU-ADKA, against various baseline strategies. PU-
ADKA consistently outperforms all baselines in
terms of knowledge acquisition across different
judging models. Specifically, with the GPT-40-
2024-08-06 model as judge, PU-ADKA achieves
a WR of 18.2% and an LC_WR of 25.65%. When

8Detailed information about the human experts is provided
in Ethics Statement.

evaluated by the GPT-4-Turbo model, it records a
WR of 16.7% and an LC_WR of 26.57%. These re-
sults exceed those of the next best baseline, DEITA
under the Cost-Greedy strategy, by margins of 4%
and 5% in WR, and 2.1% and 3.2% in LC_WR, re-
spectively, under the two judging conditions. Note-
ably, LESS performs stable when under both Cost-
Greedy and Match-Greedy settings, the GPT-4o-
2024-08-06 and GPT-4-Turbo judge the WR at
12.1% and 10% in both settings. Furthermore,
the minimal baseline performance under fully ran-
dom conditions, with WR of 4.7% and 6.7%, high-
lights the baseline challenge and emphasizes the
robustness of our method against less strategic ap-
proaches.

Table 3: Human-involved results judged by GPT-4-
Turbo.

WR (%) LC_WR (%)

Random (Random) 7.5 (0.7) 20.3 (0.8)

LESS (Random) 9.2 (0.5) 20.5(0.9)

LESS (Cost-Greedy) 11.4 (0.6) 21.0 (1.0)

LESS (Match-Greedy) 12.5 (0.7) 21.2 (0.8)

PU-ADKA 15.2 (0.8) 24.3 (0.9)

4.5 Human Involved Validation
To further substantiate the robustness of our
method, PU-ADKA, we implement it within a pro-
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fessional biomedical team of experts under a simu-
lated budget constraint of $100 per game. The cost
of human experts is varied, reflecting their respec-
tive professional knowledge in the domain, with
unit prices set at [$0.5, $0.2, $0.1, $0.1, $0.1] per
labeled question. We assess the performance in
terms of WR and LC_WR using GPT-4-Turbo as
the judge under various settings: fully random, and
LESS for question selection combined with each
of the three expert allocation strategies (Random,
Cost-Greedy, and Match-Greedy). The detailed
results are presented in Table 3.
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Figure 3: Performance comparison under different bud-
gets ($) evaluated by GPT-4-Turbo

Table 4: Ablation results on CKAD dataset with ✓
indicating the enabling of the corresponding module.
Evaluation performed by GPT-4-Turbo.

Variant PU MA WR (%) LC_WR (%)
I ✓ 13.3 (0.7) 23.2 (1.1)

II ✓ 14.2 (0.6) 23.0 (1.0)

PU-ADKA ✓ ✓ 16.7 (0.4) 26.5 (0.9)

The results reveal that PU-ADKA notably
surpasses the most competitive baseline, LESS
(Match-Greedy), by margins of 2.7% and 3.1% in
WR and LC_WR, respectively. This enhancement
in performance in a practical setting underscores
the effectiveness of our method, particularly in sce-
narios constrained by budget. This real-world ap-
plication not only validates the utility of PU-ADKA
but also establishes it as a formidable approach in
the domain of budget-limited active learning.

4.6 Ablation Study
4.6.1 Validating the Utility of Each Module
To thoroughly assess the contributions of each com-
ponent within PU-ADKA, specifically the multi-
agent (MA) framework and the positive-unlabeled

(PU) learning approach, we perform a series of
ablation studies. These studies are conducted on
the QA dataset, with GPT-4-Turbo serving as the
judge. We explore two key variants:
Variant I - Utilizes unsupervised embedding-based
similarity measures in place of the PU learning
model to understand the impact of the PU approach
on the overall performance.
Variant II - Operates under a single-agent setup to
evaluate the effectiveness of our multi-agent con-
figuration.

The results, detailed in Table 4, highlight the
integral role each module plays in the success of
PU-ADKA. The comparison with Variant I under-
scores the superiority of our PU-based question-
expert matching technique. Similarly, when con-
trasted with the single-agent model of Variant II,
our multi-agent method demonstrates its enhanced
capability in expert allocation strategy, confirming
the benefits of our comprehensive framework in
active learning scenarios.

4.6.2 Performance under Different Budgets
Following Hacohen et al. (2022); Li et al. (2022),
we evaluate the performance of our model, PU-
ADKA, against various baseline methods under
differing budget scenarios, as depicted in Figure 3.
The results indicate that our method achieves con-
sistently robust outcomes across all tested budget
levels compared to the baselines. Notably, at a bud-
get of $100, PU-ADKA significantly outperforms
the next best approach, LESS (Match-Greedy). Be-
yond this budget point, the rate of knowledge acqui-
sition stabilizes, showing no substantial further in-
creases. This observation suggests that our method
is particularly effective at rapidly acquiring knowl-
edge within constrained budget settings, demon-
strating a distinct advantage over competing meth-
ods in efficiently utilizing available resources.

5 Conclusion and Future Work

We propose PU-ADKA, a cost-aware active learn-
ing framework that enhances LLMs by selectively
engaging domain experts based on their expertise,
availability, and annotation cost. PU-ADKA im-
proves budget efficiency and LLM performance,
as validated through simulations and real-world
biomedical tasks. The release of the CKAD dataset
supports further research on domain-specific LLM
tuning. In future work, we plan to explore alter-
native backbone models and extend PU-ADKA to
specialized domains beyond biomedical domain.
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Limitations

• Scalability with Increasing Data and Experts. As
the number of unlabeled data points and available
experts grows, the scale of PU-ADKA changes sig-
nificantly. Larger datasets require more efficient
selection strategies, while an increasing pool of
experts introduces greater complexity in allocation
and coordination. Future research should explore
more scalable solutions to maintain efficiency as
the system scales to real-world, large-scale applica-
tions.
• Impact of Number of Agents and Computational
Constraints. The number of agents directly affects
the system’s performance and computational de-
mands. While PU-ADKA operates within a multi-
agent framework, we do not extensively experiment
with varying agent numbers due to the high com-
putational cost associated with training and coordi-
nation. Additionally, we do not explore different
batch sizes or report computational efficiency un-
der varying agent settings. Future work should
investigate the trade-offs between agent scalability,
computational efficiency, and performance opti-
mization.
• Generalizability to Other Domains. While this
study primarily focuses on biomedical expert in-
teractions, other high-cost domains such as law
and finance face similar challenges. Expanding
PU-ADKA to these fields and evaluating its adapt-
ability to different datasets and model architectures
will be essential for broader applicability.
• Backbone Diversity and Model Size. We adopt
Llama2-7B as the fixed backbone to ensure con-
sistent evaluation. However, this limits the explo-
ration of PU-ADKA’s effectiveness across other
model families and sizes. Future work should in-
vestigate its adaptability to diverse architectures,
including larger models, instruction-tuned variants,
and domain-specific LLMs.

Ethics Statement

All human annotation work in this study is con-
ducted by domain experts in an external biomedical
research group. Importantly, none of the experts
are listed as co-authors of this paper. The process is
coordinated by a biomedical Principal Investigator
(PI), who is a co-author, but does not participate in
any annotation work directly. The experts include
one medical doctor and four PhD-level biomedi-
cal researchers, and they are blind to the study’s
hypotheses, model design, and experiments.

All annotation work is performed during the ex-
perts’ regular paid working hours as part of their
institutional responsibilities, and no additional com-
pensation is provided. To simulate annotation cost
in our experiments, we adopt a relative cost scheme
based on typical salary ratios across seniority levels
(e.g., doctor : senior PhD : junior PhD = 5 : 2 : 1),
without disclosing any actual salary details. All
experts agree that their annotations will be used in
this study and released alongside the dataset. The
content they annotate is derived entirely from pub-
licly available biomedical literature and contains
no personal or sensitive information. Accordingly,
no additional ethics board review is required under
the ACL Ethics Policy.
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A Dataset Statistics

In this section, we present key statistics of the
CKAD dataset in Table 5, which includes ques-
tion–answer pairs generated from PubMed 2024 ar-
ticles focused on Sepsis and Cancer NK cell mech-
anisms.

Table 5: Statistics of CKAD dataset.

Disease Type Cancer_NK and Sepsis
#Train 38,575
#Dev 4,722
#Test 4,722

#Avg. Tokens in Question 12
#Avg. Tokens in Answer 29

B Generated Question-Answer Examples
from PubMed Publications

Cancer QA Example from PubMed
Question:

What role does MHC-I play in modulat-
ing NK cell activity against tumor cells?

Answer:

MHC-I molecules on tumor cells can en-
gage with inhibitory receptors on natural killer
(NK) cells, such as KIRs and NKG2A, reducing
NK cell activation and cytotoxic activity against
the tumor.

Sepsis QA Example from PubMed
Question:

How does anti-thrombin administration in-
fluence the risk of bleeding complications in
sepsis patients?

Answer:

Anti-thrombin administration can increase
the risk of bleeding complications by enhancing
anticoagulant activity, which may impair the
body’s ability to form necessary clots and
maintain hemostasis.

C Prompts

In this section, we present the detailed prompts
used for generating Question-Answer data and the
specific prompts employed for model evaluation
across all experiments. For evaluation, we slightly
rephrase the final prompt instruction—asking the
model to choose between output a or b—to sim-
plify post-processing and ensure compatibility with
the AlpacaEval (Dubois et al., 2024b) evaluation
package. This modification does not affect the

evaluation result, which remains to judge whether
output b correctly reflects the meaning of output
a. Notably, this evaluation does not simply reflect
the judge model’s general preference between two
answers but specifically assesses whether the tar-
get model’s answer adequately captures the core
meaning of the golden answer.

C.1 QA Extraction

PubMed Paper Question-Answer Generation
<|im_start|>system
You are an expert in extracting specific and
relevant question-answer pairs from scientific
papers. Your task is to generate five QA pairs
based on the unique mechanisms or processes
described in the provided paper. Focus on
extracting detailed mechanisms or processes,
avoiding generic or summarization-style ques-
tions.

Guidelines:
1. The questions must specifically target
mechanisms, processes, or detailed explanations
provided in the paper. Focus on "how" or "why"
certain processes or mechanisms work according
to the paper.
2. Avoid generic or summarization-style
questions, such as broad overviews or general
statements about findings.
3. Each question should be clear, concise, and
specific, addressing a mechanism, interaction,
or process described in the paper.
4. The answers must directly explain the mech-
anism or process, based on specific information
from the paper, and be precise and to the point.

Examples:
- Question 1: How does cytokine IL-15 regulate
the activation of natural killer cells in the
study?
Answer: Cytokine IL-15 regulates natural
killer cell activation by binding to its receptor,
triggering a signaling cascade that enhances
proliferation and cytotoxic activity.
- Question 2: What mechanism underlies the
feedback loop described for natural killer cell
regulation?
Answer: The feedback loop involves cytokine
signaling that stimulates metabolic reprogram-
ming in natural killer cells, which in turn
amplifies cytokine production.

<|im_end|>
<|im_start|>user

Below is the content of the paper:
<Insert the paper’s abstract, introduction, and
methodology here.>
Your task is to generate five QA pairs based on
the unique mechanisms or processes described
in the provided paper. Focus on extracting
detailed mechanisms or processes, avoiding
generic or summarization-style questions. The
response format should be:
<Question: The generated question>
<Answer: The generated answer>
The generated five QA pairs are:

<|im_end|>
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C.2 Judge Prompt

Evaluation Prompt
<|im_start|>system
You are a teacher assessing whether a Output
(b) correctly covers the core meaning of a
Output (a) for a given Question. The Output
(b) must fully address the question, just as the
Output (a) does. Follow these rules strictly:
## Scoring Criteria

1. **Semantic Match**: - The Output
(b) must **precisely match** the meaning of
the Output (a) without significant divergence. -
Output (b) must address the Question in the
same way as the Output (a).
2. **Supplementary Information**: - Addi-
tional details are allowed **only if they do not
conflict** with the Output (a). - Output (b)
must not contain any contradictions, factual
errors, or misleading information.

## Evaluation Process

1. **Key Point Extraction**: - Extract
core facts, entities, and logical relationships
from the Output (b). - Compare these with
the Output (a). - Identify missing points,
contradictory statements, or factual errors. -
Output (b) must address the Question in the
same way as the Output (a).
<|im_end|>
<|im_start|>user
I require an assessment of whether Output (b)
correctly conveys the core meaning of Output
(a). I’ll provide you with a question and two
model outputs. Your task is to evaluate and
return either Output (a) or Output (b), based
on the scoring criteria.

## Question

{
“question”: ““{Question}””

}

## Model Outputs

Here are the unordered outputs from the
models. Each output is associated with a
specific model, identified by a unique model
identifier.

{
{

“model_identifier”: “m”,
“output”: ““{Output (a)}””

},
{

“model_identifier”: “M”,
“output”: ““{Output (b)}””

}
}

## What’s your evaluation, Output (a)
or Output (b)?

<|im_end|>

D Expert-Wise Attention

Given a question embedding Ei
q and expert em-

beddings Ej
e , we define the expert-wise attention

mechanism as follows:

eij = σ
(
W ·

[
Ei

q, E
j
e

]
+ b

)
(7)

αij =
exp

(
σ
(
W ·

[
Ei

q, E
j
e

]
+ b

))
∑

k∈Ee
exp

(
σ
(
W ·

[
Ei

q, Ek
e

]
+ b

)) (8)

Zi =
∑

k∈Ee

αijE
k
e (9)

where σ denotes the ReLU activation function,
and [., .] represents embedding concatenation. Fur-
thermore, we concatenate expert-wise question rep-
resentation Zi with each expert embedding Ej

e and
pass it through an MLP Υ to obtain the output
probability:

P
(
Ei

q, E
j
e

)
= Υ

([
Zi, E

j
e

])
(10)

E Overall Comparison of Question
Selection Methods

Table 6 summarizes the average performance of dif-
ferent question selection methods across all expert
allocation strategies. PU-ADKA shows superior re-
sults on both WR and LC_WR metrics, with LESS
ranking second in overall effectiveness. We there-
fore use LESS as the default question selection
method for baselines in our ablation studies.

Table 6: Average performance of different question se-
lection methods across three expert allocation strategies.

Method WR.Avg (%) LC_WR.Avg (%) Overall.Avg (%)

RAND 6.48 20.40 13.44
DEITA 10.43 21.40 15.92
CHERRY 9.08 21.95 15.52
NUGGETS 9.80 21.17 15.49
LESS 10.00 22.55 16.27
ROSE 9.37 21.95 15.66
PU-ADKA 17.45 26.05 21.75

F Comparison with Fully Annotated
Upper Bound

To understand the upper performance bound achiev-
able without cost constraints, we compare PU-
ADKA against a setting where all training data are
fully annotated (FULL). As expected, FULL yields
the highest scores in Table 7, serving as an empiri-
cal upper bound. However, PU-ADKA approaches
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Table 7: Performance comparison under fixed-budget and fully annotated settings. The FULL setting denotes that
all available data are exhaustively annotated without any budget constraints, serving as an empirical upper bound.

Expert
Allocation

Question
Selection

GPT-4o-2024-08-06 GPT-4-Turbo GPT-4o-2024-08-06 GPT-4-Turbo Avg.Length

WR (%) WR (%) LC_WR (%) LC_WR (%) -

- FULL 22.1 (0.7) 19.3 (0.9) 27.8 (1.0) 28.1 (0.8) 1752

Random LESS 7.9 (0.2) 7.9 (0.2) 22.0 (1.0) 24.0 (1.1) 2212
Cost-Greedy 12.1 (0.4) 9.6 (0.4) 22.1 (0.8) 21.2 (1.0) 2218
Match-Greedy 12.1 (0.4) 10.4 (0.2) 23.5 (1.0) 22.5 (1.0) 2252

Ours PU-ADKA 18.2 (0.6) 16.7 (0.4) 25.6 (1.0) 26.5 (0.9) 1781

Table 8: Performance comparison between different encoders used for question representation within PU-ADKA
framework.

Encoder GPT-4o-2024-08-06 GPT-4-Turbo GPT-4o-2024-08-06 GPT-4-Turbo Avg.Length

WR (%) WR (%) LC_WR (%) LC_WR (%) -

BERT-base 16.3 (0.9) 12.9 (0.7) 24.0 (1.0) 25.4 (1.2) 1967

Llama2-7B (ours) 18.2 (0.6) 16.7 (0.4) 25.6 (1.0) 26.5 (0.9) 1781

Table 9: Number of annotated QA pairs and evalua-
tion results under different expert allocation strategies
(questions selected by LESS; judged by GPT-4o-2024-
08-06).

Method Annotated QA Pairs WR (%) LC_WR (%)

Random 312 7.9 22.0
Cost-Greedy 1000 12.1 22.1
Match-Greedy 508 12.1 23.5
Ours (PU-ADKA) 632 18.2 25.6

this upper limit while operating under a strict $100
budget—substantially outperforming all baselines
in both WR and LC_WR scores. This highlights
the effectiveness of PU-ADKA in achieving strong
domain adaptation with fewer annotations.

G Effect of Encoder Architecture on
Performance

To assess the impact of the encoder architecture
on our framework, we compare a standard BERT-
base (Devlin et al., 2019) model with our default
Llama2-7B encoder. Results in Table 8 show that
Llama2-7B consistently outperforms BERT-base
encoder across all evaluation metrics.

H Annotation Quantity under Budget
Constraints

Table 9 shows that although the Cost-Greedy strat-
egy yields the largest number of annotated QA
pairs, it does not achieve the best performance. In
contrast, PU-ADKA achieves a balance between
annotation quantity and quality: it produces more

Table 10: Data Quality Scoring Form

Score Description
1 Incorrect or irrelevant.
2 Partially correct, key issues.
3 Correct and main point covered.
4 Correct with minor omissions.
5 Fully correct and complete.

annotations than Random and Match-Greedy strate-
gies and achieves the highest WR and LC_WR
scores. This demonstrates PU-ADKA’s effective-
ness in utilizing limited budgets to acquire high-
quality supervision.

I Data Quality Scoring Form

The quality of each QA pair is scored on a 1–5 scale
based on the correctness and completeness of its
biomedical mechanistic explanation. The scoring
rubric is shown in Table 10.

J Discussion

We adopt the base Llama2-7B model rather than an
instruction-tuned variant to ensure a controlled set-
ting where observed improvements are attributable
solely to our expert-interaction framework, with-
out influence from pretrained instruction-following
capabilities. Besides, GPT-4o-2024-08-06 is used
to generate QA pairs based on the factual content
of 2024 PubMed articles. This generation process
is independent of any model comparison or evalua-
tion. To mitigate potential bias from using a single
evaluation model, we also include GPT-4-Turbo as
a second judge model.
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