
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 13220–13233
November 4-9, 2025 ©2025 Association for Computational Linguistics

SimBA: Simplifying Benchmark Analysis
Using Performance Matrices Alone

Nishant Subramani♠* Alfredo Gomez♠∗ Mona Diab♠

♠Carnegie Mellon University - Language Technologies Institute
{nishant2,alfredo3,mdiab}@cs.cmu.edu

Abstract

Modern language models are evaluated on large
benchmarks, which are difficult to make sense
of, especially for model selection. Looking at
the raw evaluation numbers themselves using
a model-centric lens, we propose SimBA, a
three phase framework to Simplify Benchmark
Analysis. The three phases of SimBA are:
stalk, where we conduct dataset & model
comparisons, prowl, where we discover a
representative subset, and pounce, where we
use the representative subset to predict per-
formance on a held-out set of models. Apply-
ing SimBA to three popular LM benchmarks:
HELM, MMLU, and BigBenchLite reveals that
across all three benchmarks, datasets and mod-
els relate strongly to one another (stalk).
We develop an representative set discovery
algorithm which covers a benchmark using
raw evaluation scores alone. Using our algo-
rithm, we find that with 6.25% (1/16), 1.7%
(1/58), and 28.4% (21/74) of the datasets for
HELM, MMLU, and BigBenchLite respec-
tively, we achieve coverage levels of at least
95% (prowl). Additionally, using just these
representative subsets, we can both preserve
model ranks and predict performance on a held-
out set of models with near zero mean-squared
error (pounce). Taken together, SimBA can
help model developers improve efficiency dur-
ing model training and dataset creators validate
whether their newly created dataset differs from
existing datasets in a benchmark. Our code is
open source, available at https://github.
com/nishantsubramani/simba.

1 Introduction

The rapid expansion of language model (LM)
benchmarks has resulted in an overabundance of
evaluation datasets. However, the relationships
among these datasets remain poorly understood.
Current evaluation methods primarily focus on

*Equal Contribution

overall model win rates or simple aggregate mea-
sures, which fail to provide fine-grained insights
into dataset characteristics and model performance
trends (Liang et al., 2023). One approach that the
community has taken to mitigate this problem is
to look at instance-level predictions and construct
coresets, where each individual dataset in a bench-
mark is subsampled using various heuristics (Ro-
driguez et al., 2021; Perlitz et al., 2024; Zouhar
et al., 2025). This resulting subset is used as a
proxy for the entire benchmark. Coreset identifica-
tion, often done using influence functions (Koh and
Liang, 2017; Schioppa et al., 2021), has many draw-
backs: integration into an already existing evalua-
tion framework is hard, weak statistical signal hin-
ders generalization, and collecting instance-level
predictions across many models may be computa-
tionally infeasible (Chatterjee and Hadi, 1986).

Our work looks to uncover a more structured and
simplified understanding of benchmarks through
an analysis of the datasets and models directly
from the performance matrix without collecting
any instance-level predictions. Our framework to
Simplify Benchmark Analysis is called SimBA and
has three phases:

1. Stalk: Analyzing relationships between
datasets and measuring how models relate to
one another across a benchmark.

2. Prowl: Discovering a representative subset
of datasets from a benchmark that maintains
model order.

3. Pounce: Predicting model performances us-
ing the representative set based on perfor-
mance patterns.

Using our three phase approach in Figure 1,
we analyze HELM (Liang et al., 2023),
MMLU (Hendrycks et al., 2020), and Big-
BenchLite (Srivastava et al., 2022) and find that
both datasets and models correlate well with one
another (§2). Motivated by this, we find that:

1. We can identify representative subsets SHELM,

13220

https://github.com/nishantsubramani/simba
https://github.com/nishantsubramani/simba

Figure 1: An overview of SimBA, our three phase analysis framework. Its three phases are: stalk: dataset &
model comparison, prowl: representative dataset discovery, and pounce: performance prediction.

SMMLU, and SBBL with just 6.25% (1/16),
1.7% (1/58), and 28.4% (21/74) of datasets re-
spectively that achieve greater than 95% cov-
erage (§3).

2. Our representative subsets preserve model
ranks and can predict performance on a held-
out set of models with near zero error (§4).

Taken together, our three phase analysis, SimBA,
can be used directly by language model practition-
ers and dataset developers alike to improve effi-
ciency and efficacy.

2 Stalk: Dataset & Model Comparison

A benchmark is represented as a matrix B ∈ Rm×d,
where m is the number of models and d is the
number of datasets. B can have missing values.
Different datasets evaluate different metrics, which
often are scaled differently (e.g. classification vs.
generation), so we normalize B. For every dataset
Di with random chance performance xrandom, we
modify every observation x1, . . . , xm to be:

xj = max

(
0,

xj − xrandom
1− xrandom

)
(1)

Note these new xj values correspond to percent
above random chance. We use this normalization

for all analysis. 1 Moreover, all values are further
normalized to be within the interval [0, 1], where 0
corresponds to random chance and 1 corresponds
to the maximum possible performance.

2.1 Dataset Comparison

Datasets are the essence of a benchmark and the
first step in our recipe is to compare datasets. For
every pair of datasets Di and Dj , we compare their
performance numbers to identify how they relate to
each other using one of four relationships: LINEAR,
EXPONENTIAL, POWER-LAW, or NONE. To mea-
sure this, we learn a multi-variate linear regressor
f with parameters Wreg ∈ Rm×1 and b ∈ R to
optimize the objective:

B[:, j] = W T
reg ·B[:, i] + b (2)

Here, M [:, i] and M [:, j] are the performance num-
bers across all models for datasets Di and Dj . We
then obtain the R2 value to quantify the amount of
variation explained by the regressor. This naturally
works to establish the strength of a linear relation-
ship. To measure an EXPONENTIAL or POWER-
LAW relationship, we apply a transformation to the
measurements of one dataset before learning the lin-

1Srivastava et al. (2022) use the same normalization for
BigBench for some of their analyses.

13221

ear regressor. 2 Since we are predicting one dataset
from another, we learn a total of 6 regressors: two
per type of relationship (LINEAR, EXPONENTIAL,
POWER-LAW), one were Dj is predicted from Di

and vice-versa. We choose the one with the largest
R2 value. If that R2 < 0.5 between two datasets,
we classify its relationship as NONE. 3

2.2 Model Comparison
We compare models across a benchmark in the
same way as datasets: for every pair of models
M1, M2, we follow the procedure in §2.1 to clas-
sify whether the relationship is one of four types:
LINEAR, EXPONENTIAL, POWER-LAW, or NONE.
Crucially, we only use performance numbers across
the benchmark to make this classification. 4 Iden-
tical to dataset comparison, we learn 6 regressors
and choose the relationship with the largest R2

value. We classify the relationship between two
models to be NONE if the best regressor results in
an R2 < 0.5, just as in §2.1.

3 Prowl: Representative Dataset
Discovery

Equipped with an understanding of a benchmark,
our next step is to identify a target. More specifi-
cally, we want to discover a representative subset
of a benchmark S from the performance matrix
B ∈ Rm×d alone, where m is the number of mod-
els and d is the total number of datasets.

3.1 Dataset Similarity
To discover a representative subset, we need a
method to determine whether a dataset is redun-
dant. 5 We compare datasets based on model
performance patterns alone using 9 similarity
measures: three correlations (PEARSON, SPEAR-
MAN, KENDALL-TAU) and six similarities (COSINE,
MANHATTAN, EUCLIDEAN, MINKOWSKI (P=3),
WASSERSTEIN, and JENSEN-SHANNON). 6 We

2This step resembles applying a nonlinear kernel (e.g.,
radial-basis function kernel) to an SVM to learn a nonlinear
relationship.

3R2 = 0.5 indicates that only 50% of the variation is
explained by the regressor, which we deem is too low to confi-
dently claim a specific relationship. This threshold is a tunable
hyperparameter.

4We explicitly do not use any information about the model
architecture, size, or family, but one could to improve upon
the model comparison phase.

5If there exists a set of datasets {D1, . . . , Dk} that are
redundant, we need to keep only one in our representative set.

6All similarities are computed as: SIM = 1 - DISTANCE or
SIM = expDISTANCE based on whether DISTANCE is bounded.
See Appendix A for more details.

compute similarities between all pairs of datasets,
resulting in a matrix CSIM ∈ Rd×d, where each
entry is a similarity score based on a similarity
measure SIM.

3.2 Discovering a Representative Subset

First, we define a proxy metric for the cover-
age of a candidate representative set S. The
PROXY_COVERAGE (δ) of S under a similarity
measure SIM is computed as:

δ(S, SIM) =

∑
i∈D λi

|D| (3)

where λi is defined as:

λi =

{
1, if i ∈ S

maxj∈S CSIM[i, j], otherwise
(4)

Additionally, we need to define the COVER-
AGE_GAIN (Ψ) of a set S when a dataset Di

is added under a similarity measure SIM. This
is used as a heuristic to measure how much
PROXY_COVERAGE (δ) is gained when adding a
new dataset Di to S:

Ψ(S,Di) = δ({S,Di}, SIM)− δ(S, SIM) (5)

Equipped with these measures, we propose Algo-
rithm 1 to discover a representative subset S from a
collection of datasets {D1, . . . Dd}. While our im-
plementation supports beam search for representa-
tive dataset discovery, empirical evaluation showed
that larger beam widths (5, 10, 20) provided no
meaningful improvement over the greedy approach
across HELM, MMLU, and BigBenchLite. 7

Algorithm 1 Representative Dataset Discovery

input CSIM ∈ Rd×d, γ, D = {D1, . . . , Dd}
output S

1: S ← ∅
2: while δ(S) < γ ∧ |S| ≤ d do
3: D∗ ← argmaxDi∈D\S Ψ(S,Di)
4: S ← S ∪ {D∗}
5: end while
6: return S

7γ is a PROXY_COVERAGE threshold set by the user. A
value of 1 would entail iteratively building S until it contains
all the datasets in the benchmark {D1, . . . Dd}.

13222

Baselines: We also evaluate the following base-
lines as random and simple baselines in dataset se-
lection have been shown to be strong (Diddee and
Ippolito, 2025). RANDOM is a baseline where S is
populated with a random dataset iteratively with-
out replacement. We average across 1000 random
runs in our experiments. GREEDY MINIMUM is a
baseline where S is populated with the dataset with
the lowest average performance across all models.
GREEDY MAXIMUM is a baseline where S is pop-
ulated with the dataset with the highest average
performance across all models. For both greedy
baselines, S is also populated iteratively.

3.3 Representative Subset Evaluation

Using Algorithm 1, we discover a representative
subset S that has n datasets. To measure how well
S covers the original benchmark B, we first find the
mean win rate (MWR) of each model as compared
to the other models based entirely on S:

MWR(B′) =

∑
µ≤m,d≤n I[B′[µ, d] > B′[µ′, d]]

m− 1
(6)

Remember that B′ ∈ Rm×n, where m is the
number of models and n is the number of datasets
in S. B′ is matrix formed by collecting all per-
formance numbers for all models for the datasets
in S, so MWR(B′) ∈ Rm. We then compute the
PEARSON-CORRELATION between MWR(B′) and
the mean-win-rate obtained on the full benchmark,
MWR(B) ∈ Rm, to obtain coverage η:

η(B′) = PEARSON(MWR(B), MWR(B′)) (7)

Identifying S is a greedy process involving a sim-
ilarity function SIM. Since S iteratively increases
from having one to two to many datasets, we re-
quire an algorithm to identify how good a similarity
function SIM is in discovering a strong represen-
tative subset at every size. Additionally, we also
require a method to compare two similarity func-
tions SIM1 and SIM2. Taking inspiration from the
receiver-operating characteristic curve and taking
the area under it (AUROC) (Marcum, 1960), we
develop our own signed AUC measure called sub-
set coverage AUC (SCAUC). 8 To compute SCAUC,
we iteratively build S one dataset at a time until
we get to the full benchmark (S = {D1, . . . , Dd}).
Starting with the first dataset chosen (|S| = 1), we

8Subramani et al. (2025) also develop a signed AUC mea-
sure to measure the tool-calling utility of LLMs.

compute η(B′) using equation 7. 9 B′ is the matrix
formed by taking all the performance numbers for
all the datasets in S from the original benchmark
matrix B. We then construct a curve using the d
coverage values (η) and compute the signed area
under that curve. 10 To compare two similarity func-
tions, we measure their SCAUC values and choose
the one with a higher value.

4 Pounce: Performance Prediction

Equipped with the results of the first two phases of
our analysis pipeline, we predict the performances
directly using a representative subset. Since the
representative subset S is just a subset of the full
benchmark B, we evaluate whether different re-
gression based approaches can predict D \ S (i.e.,
the subset of D that is not in S) from S alone.

One general approach for matrix prediction is
Singular Value Decomposition (SVD; Candes and
Recht (2009)). However, SVD works only on a
partially observed matrix, where rows (models) and
columns (datasets) have at least one observation.
In a realistic setting, we want to use our subset
S to predict the other dataset performances D \
S on entirely new models, so SVD would not be
immediately applicable. As a result, we focus on
three regressor types: RIDGE REGRESSION, KNN

REGRESSION, and MLP REGRESSION.

Regularized Linear Regression RIDGE RE-
GRESSION uses a linear function with L2 regu-
larization penalty between a model’s performance
scores on S and its performance on D \S. This reg-
ularization helps prevent overfitting when training
on small representative subsets (Hoerl and Kennard,
1970; Hastie et al., 2009).

KNN Regression KNN REGRESSION estimates
the performance score y for a dataset by averaging
the performance scores of its k nearest neighbors
in feature space as follows:

y =
1

k

∑

i∈Nk(X)

yi (8)

Here Nk(X) denotes the set of the k closest
datasets to X using a chosen distance metric (e.g.,
EUCLIDEAN) (Altman, 1992). We use k = 5 neigh-
bors, or the size of the training set if smaller than 5.
Additionally, KNN REGRESSION does not impose

9Note: η(∅) is undefined and η(B) = 1.
10This is signed area because correlations can be negative.

13223

a functional form, allowing it to capture non-linear
relationships.

MLP Regression A Multi-Layer Perceptron
(MLP) is a feedforward neural network that mod-
els non-linear relationships using multiple lay-
ers (Rosenblatt, 1958). We experiment with two
MLP architectures a single hidden layer with 12
neurons and a two-layer architecture with 12 neu-
rons in each hidden layer. We include MLP REGRES-
SION because it can capture complex non-linear
relationships between dataset features and model
performance.

4.1 Performance Prediction Evaluation
To evaluate how well we can predict performance,
mean squared error (MSE) is a natural choice. For
a given representative set S, we train a regressor to
predict performance on the remaining datasets in
the benchmark (D \ S). 11 We compute the MSE
of the regressor on the held-out test set on (D \ S).

In our experiments, we build S sequentially, by
greedily adding one dataset at a time according
to Algorithm 1. As a result, we can measure MSE
at each point for |S| = 1, ..., |S| = |D|−1. 12 This
traces an MSE curve. Using a similar approach
to tracing the area under the coverage curve like
in §3, we can compute the area under the MSE
curve, which we term AUC-MSE. 13 Note that high
values of AUC-MSE indicate high error because
this curve is an error curve not a performance curve
like other AUC curves. To measure which regressor
is best, we compare AUC-MSE values and choose
the method with the lowest AUC-MSE value.

5 Experiments

Benchmarks For our analysis, we look at
three benchmarks: HELM (Liang et al., 2023),
MMLU (Hendrycks et al., 2020), and BigBench-
Lite (Srivastava et al., 2022). We look at the
core scenarios of HELM (17 datasets, 29 models),
MMLU (58 datasets, 79 models), and BigBench-
Lite (74 datasets, 45 models), splitting each bench-
mark into training and test sets to validate our anal-
ysis. All datasets are included in both splits, but
models are separated across training and test sets
randomly with 80% of models in training and 20%

11D is the set of datasets in the benchmark D =
{D1, ..., Dd}.

12When |S| > |D| − 1, (|D \ S| = 0).
13AUC-MSE is not signed because the minimum error one

can get is 0.0, so every point on this curve is in the top right
quadrant of a cartesian coordinate plane (x, y > 0).

Relationships HELM MMLU BBLite

LINEAR 6 67 754
EXPONENTIAL 25 649 139
POWER-LAW 44 810 143
NONE 45 127 1665

Total 120 1653 2701

Table 1: Dataset comparison results with counts between
each pair of datasets and their classifications as LINEAR,
EXPONENTIAL, POWER-LAW, and NONE based on the
highest R2 value. See §2.1 for details.

of the models in test. This means that HELM has
23 models in train and 6 models in test, MMLU has
63 models in train and 16 in test, and BigBench-
Lite has 36 models in train and 9 in test. For each
benchmark, we go through the 3 analysis phases
from Figure 1, discuss those results in §6, and ex-
pand the analysis to look at robustness in §7.

6 Results

6.1 Stalk: Dataset & Model Comparison

Dataset Comparison: We measure how datasets
relate to one another using the methodology
in §2.1. Table 1 shows that for HELM, only 5%
of the pairs of datasets have a LINEAR relation-
ship, while 37.5% lack any relationship, indicating
minor redundancy among datasets.

For MMLU, 4.1% of dataset pairs have a LIN-
EAR relationship and only 7.7% lack a relation-
ship, suggesting that most datasets are predictive
of one another through non-linear relationships
(EXPONENTIAL: 39.3%, POWER-LAW: 49.0%). For
BigBenchLite (BBLite), 27.9% of dataset pairs
have a LINEAR relationship while 61.6% show
no relationship at all, indicating that BBLite has
the most diverse and independent datasets among
the three benchmarks. Taken together, we suspect
that finding a small representative dataset would be
most difficult for BBLite.

Model Comparison: We measure how models
relate to one another via the method in §2.2. Ta-
ble 2 shows that for HELM, only 4.9% of model
pairs have LINEAR relationships, with the major-
ity showing POWER-LAW relationships (72.4%).
MMLU demonstrates more complex model rela-
tionships with 9.4% LINEAR, 40.8% EXPONEN-
TIAL, and 42.3% POWER-LAW relationships. Big-
BenchLite shows 7.6% LINEAR relationships and

13224

2 4 6 8 10 12 14 16
Number of Datasets in S

0.75

0.80

0.85

0.90

0.95

1.00
Co

ve
ra

ge
 (

)
HELM

0 10 20 30 40 50 60
Number of Datasets in S

MMLU

0 10 20 30 40 50 60 70
Number of Datasets in S

BigBenchLite

Random (n=1000)
Pearson

Spearman
Kendall Tau

Cosine
Euclidean

Wasserstein
Jensen-Shannon

Manhattan
Minkowski (p=3)

Greedy Max
Greedy Min

Figure 2: Here, we measure the coverage (η) across HELM, MMLU, and BigBenchLite as our representative subset
S grows. We report performance for all three baselines and all nine similarity measures discussed in §3.

Relationships HELM MMLU BBLite

LINEAR 20 290 75
EXPONENTIAL 72 1258 41
POWER-LAW 294 1302 549
NONE 20 231 325

Total 406 3081 990

Table 2: Model comparison results with counts between
each pair of datasets and their classifications as LINEAR,
EXPONENTIAL, POWER-LAW, and NONE based on the
highest R2 value. See §2.2 for details.

55.5% POWER-LAW relationships. Notably, all
three benchmarks have relatively few model pairs
with no discernible relationship (HELM: 4.9%,
MMLU: 7.5%, BigBenchLite: 32.8%). BigBench-
Lite again has the highest rate of no relationships
further hinting that discovering a representative
subset for BigBenchLite may be the most difficult.

6.2 Prowl: Coverage Analysis

Our goal is to determine the minimum number of
datasets needed to achieve a specific coverage level
η on a specific benchmark. Since we experiment
with nine similarity functions, we want to identify
the best similarity measure for this task. To do this,
we first compare every pair of datasets Di, Dj us-
ing each of the similarity functions defined in §3.
This results in a similarity matrix CSIM ∈ Rd×d

for each similarity function. 14 On each similar-
ity matrix CSIM, we apply our coverage algorithm
(Algorithm 1) using its respective similarity func-
tion and construct S. We measure coverage (η)
using equation 7 at each iteration as S is being con-
structed until S = D. This traces a coverage curve
and we measure the area under this coverage curve
and report this SCAUC value in Table 3. We also
report the size of the smallest representative subset
S∗ that achieves a coverage η ≥ 0.95.

We find that we can achieve coverage levels of at
least 95% with just 6.25% (1/16), 1.7% (1/58), and
28.4% (21/74) of the datasets for HELM, MMLU,
and BigBenchLite respectively. This represents a
substantial efficiency gain: particularly for MMLU
and HELM, where a single well-chosen dataset
can effectively represent nearly the entire bench-
mark for model ranking purposes. Additionally, Ta-
ble 3 shows that the choice of similarity measure
has varying effects across benchmarks. For HELM
and MMLU, most similarity measures perform
similarly well, with several achieving the optimal
single-dataset representative subset. However, for
BigBenchLite, there is more variation in perfor-
mance, with WASSERSTEIN achieving the best re-
sults (|S*| = 21) and several measures like PEAR-
SON and SPEARMAN requiring substantially more
datasets (|S*| = 42 and 41 respectively).

Finally, using Algorithm 1 with most similar-
ity measures outperforms all baselines on average

14CSIM could be an upper (or lower) triangular matrix be-
cause our similarity functions are symmetric.

13225

HELM MMLU BigBenchLite
Similarity Methods SCAUC (↑) |S∗|(↓) SCAUC (↑) |S∗|(↓) SCAUC (↑) |S∗|(↓)
RANDOM (n = 1000) 0.980 2.5 0.994 2.3 0.928 25.2
GREEDY MINIMUM 0.967 4 0.980 8 0.607 51
GREEDY MAXIMUM 0.957 4 0.988 4 0.933 33

PEARSON 0.984 1 0.997 1 0.886 42
SPEARMAN 0.975 1 0.992 1 0.884 41
KENDALL-TAU 0.983 1 0.994 1 0.899 40
COSINE 0.981 3 0.992 1 0.896 48
MANHATTAN 0.985 3 0.996 1 0.945 32
EUCLIDEAN 0.984 1 0.996 1 0.943 27
MINKOWSKI (P=3) 0.983 1 0.996 1 0.950 22
WASSERSTEIN 0.983 3 0.997 1 0.943 21
JENSEN-SHANNON 0.980 3 0.991 1 0.903 36

Table 3: Performance of our three baselines and seven similarity measures on the identification of a representative
subset task for HELM, MMLU, and BigBenchLite. SCAUC is the area under the coverage curves present in Figure 2.
S∗ is the smallest subset that achieves η(S∗) = 0.95. Bold indicates the best performing system for each metric.

AUC-MSE (↓)
Regressor HELM MMLU BBLite

RIDGE 0.005 0.002 0.002
KNN 0.004 0.002 0.002
MLP (1 layer) 0.081 0.110 0.006
MLP (2 layer) 0.031 0.081 0.006

Table 4: Performance as measured by AUC-MSE
across HELM, MMLU, and BigBenchLite. We use
MINKOWSKI (P=3) as the similarity measure SIM to
identify representative subsets S for our four regres-
sors: RIDGE, KNN, MLP (1 layer), and MLP (2 layer).
AUC-MSE is the area under the curves in the top row
of Figure 3. Bold indicates the best performing method
for each benchmark.

across all three benchmarks, though the improve-
ment is less pronounced for BigBenchLite due to
its more diverse dataset composition. We also com-
pute how often using Algorithm 1 with a similar-
ity measure outperforms the RANDOM baseline.
See Table 6 for details on the proportion of times
a system outperforms the random baseline across
1000 random runs.

6.3 Pounce: Performance Prediction

Our goal in this phase is to validate that representa-
tive datasets enable accurate performance predic-
tion. Having identified efficient representative sub-
sets in phase II (prowl), we now assess whether
performance on these subsets can predict perfor-

mance on the remaining datasets. We first split our
models into training (80%) and test (20%) sets. Us-
ing only the models in the training set, we identify
representative datasets at 80% coverage and train
four performance predictors: RIDGE REGRESSION,
KNN REGRESSION, and MLP REGRESSION with
one and two layers. We then evaluate these pre-
dictors on the test set of models, measuring their
ability to predict scores (MSE) for the remaining
datasets based solely on performance patterns ob-
served in the representative subset.

As shown in Table 4, both RIDGE REGRES-
SION and KNN REGRESSION perform exception-
ally well across all three benchmarks, achieving
near zero AUC-MSE values. RIDGE REGRESSION

achieves (0.005, 0.002, 0.002) and KNN REGRES-
SION achieves (0.004, 0.002, 0.002) for HELM,
MMLU, and BigBenchLite respectively. Mean-
while, Figure 3 shows that prediction error gen-
erally decreases as the representative subset size
increases, but with diminishing returns. The MLP
models consistently underperform, with the single-
layer MLP showing particularly poor results on
HELM and MMLU. Additionally, in Figure 3, we
find that KNN REGRESSION achieves negligible
error with just one dataset on both HELM and
MMLU. This could suggest that these benchmarks
are saturated.

For MMLU, all four regressors maintain consis-
tently low error rates across different subset sizes,
with RIDGE and KNN maintaining the lowest error

13226

0 4 8 12 16
0.00
0.05
0.10
0.15

M
SE

 (N
o

No
ise

) HELM

0 10 20 30 40 50 60

MMLU

0 10 20 30 40 50 60

BigBenchLite
KNN
RIDGE
MLP (1 layer)
MLP (2 layer)

0 4 8 12 16
0.00
0.05
0.10
0.15

M
SE

 (
=0

.0
5)

0 10 20 30 40 50 60 0 10 20 30 40 50 60

0 4 8 12 16
Number of Datasets in S

0.00
0.05
0.10
0.15

M
SE

 (
=0

.1
)

0 10 20 30 40 50 60
Number of Datasets in S

0 10 20 30 40 50 60
Number of Datasets in S

Figure 3: We measure the mean squared error (MSE) on a held-out test set of models of regressors trained on a
representative subset S using MINKOWSKI (P=3) as SIM. This is measured for HELM, MMLU, and BigBenchLite
for the three regressors we experiment with in §4. Additionally, we repeat this experiment after adding two
magnitudes of noise to the training set of B according to §7.1 (σ = 0.05 and σ = 0.1). Lower scores are better.

rates throughout. This complements the analysis
presented in §2.1, where MMLU showed the high-
est proportion of inter-dataset relationships, mak-
ing it the most predictable benchmark.

7 Analysis

7.1 Is Pounce robust to noise?
Our evaluation framework relies on point esti-
mates of the performances of models on individual
datasets. As such, robustness to noise is a critical
consideration when evaluating different approaches
of performance prediction. We evaluate the robust-
ness of performance prediction by perturbing the
training set of the benchmark matrix Btrain as
B′

train = Btrain +N (µ, σ2) where µ is mean and
σ is the noise level parameter. For all noise pertur-
bations we use µ = 0 and σ2 = 0.05 or σ2 = 0.1.
This evaluation framework enables us to quantify
the stability of our methods under varying noise
conditions.

As shown in Figure 3, generally, error rates for
all methods increase with greater noise. However,
we observe that both RIDGE and KNN REGRESSION

achieve low error rates under both noise conditions,

across all three benchmarks (AUC-MSE < 0.03).
RIDGE consistently maintains AUC-MSE values of
0.013 for all benchmarks and noise conditions. Pre-
dictably, the MLP systems are the least robust, but
maintain similar error rates to the no noise version.
In other words, the MLP systems just are not great
at performance prediction.

7.2 Is Pounce robust to varying data splits?

Here, we look at how different subsets or selections
of data change the pounce stage. This is related to
the noise level analysis in §7.1, but requires its own
investigation. The former approximates uncertainty
for individual observations, whereas here, we care
about measuring the variance of pounce when the
training and test splits vary.

To keep the test set uncontaminated, we look
at just the training set. On this, we perform k-
fold cross validation and measure performance via
AUC-MSE. 15. We observe low standard deviations
across different training splits (< 0.01) indicating
that performance prediction is stable. Intuitively,

15We use 5-fold cross validation for HELM and 10-fold for
MMLU and BigBenchLite.

13227

AUC-MSE (↓)
Regressor HELM MMLU BBLite

σ
=

0.
0
5 RIDGE 0.010 0.004 0.004

KNN 0.017 0.012 0.013
MLP (1 layer) 0.081 0.079 0.007
MLP (2 layer) 0.031 0.068 0.007

σ
=

0.
1

RIDGE 0.013 0.007 0.006
KNN 0.027 0.021 0.013
MLP (1 layer) 0.087 0.078 0.009
MLP (2 layer) 0.033 0.067 0.008

Table 5: Performance as measured by AUC-MSE across
HELM, MMLU, and BigBenchLite in the presence of
noise (§7.1). We use MINKOWSKI (P=3) as the simi-
larity measure SIM to identify representative subsets S
for our four regressors: RIDGE, KNN, MLP (1 layer), and
MLP (2 layer). AUC-MSE is the area under the curves
in Figure 3. Bold indicates the best performing method
for each benchmark.

the simpler models, RIDGE and KNN, are the most
stable as they are the least prone to overfitting.
Taken together, our analysis suggests that similar
models tend to perform similarly on related tasks,
hinting that local neighborhood relationships are ef-
fective for pounce. Overall our error rates remain
small and are robust to perturbations or changes in
both the training and evaluation sets.

8 Related Work

The NLP community increasingly evaluates on
large benchmarks (Srivastava et al., 2022; Li et al.,
2023; Liang et al., 2023). Some approaches at-
tempt to make evaluation more efficient by doing
instance-level reduction (Vivek et al., 2023; Polo
et al., 2024; Perlitz et al., 2024). Magnusson et al.
(2025) look at a loosely related problem and use
small scale experiments for pretraining data selec-
tion. They, too, require instance-level information,
but are focused on analyzing how training on differ-
ent subsets of pretraining data affect performance
rather than looking at a representative set of pre-
training corpora. We differ in that we focus on
aggregate metrics and do not need access to any
instance-level information for efficiency and per-
formance prediction.

As mentioned earlier, most work looks at identi-
fying coresets of benchmarks at the instance-level
and there exist numerous methods to do this across
many different application areas (Lewis and Catlett,
1994; Killamsetty et al., 2021; Paul et al., 2021;

Moser et al., 2025). Ye et al. (2023) is one of the
few works that, like us, goes beyond instance-level
work and tackles the performance prediction task
using simple regressors on BigBench. However,
their approach is not as lightweight as ours because
they requires features of the model and datasets for
accurate prediction.

From the field of psychometrics and measure-
ment theory, there exists the idea of convergent
and divergent validity (Campbell and Fiske, 1959).
Convergent validity suggests that metrics measur-
ing similar underlying constructs should correlate
highly with each other. Conversely, discriminant
validity indicates that metrics capturing fundamen-
tally different aspects should show minimal cor-
relation. Xiao et al. (2023) propose MetricEval, a
framework motivated by measurement theory to
conceptualize and evaluate the reliable and valid of
natural language generation metrics.

9 Conclusion

We propose a three phase approach to Simplify
Benchmark Analysis called SimBA: stalk
(dataset & model comparison), prowl (represen-
tative set discovery), and pounce (performance
prediction). Using our approach, we analyze the
HELM, MMLU, and BigBenchLite benchmarks.
Our analysis shows that models and datasets alike
correlate well with one another (stalk). Addi-
tionally, using Algorithm 1, we can identify rep-
resentative subsets with 1, 1, and 21 datasets re-
spectively that achieve a greater than 95% cover-
age (prowl). These representative sets preserve
the original model ranks on the benchmark and
can be used to predict performance on held-out
models with negligible error (pounce). Further-
more, SimBA can be used by LM practitioners and
dataset developers directly to reduce evaluation
costs and validate dataset uniqueness.

10 Limitations

Dataset & Model Comparison Our analysis as-
sumes that the relationships between datasets are
sufficiently stable over time. As models continue to
improve and scale, the nature of these relationships
may evolve, potentially requiring periodic reassess-
ment of representative subsets. The approach pro-
vides a snapshot analysis based on current model
performance matrices, but doesn’t account for how
these relationships might change with fundamen-
tally new architectures or training paradigms.

13228

Moreover, the presented analyses requires hav-
ing a sufficient number of models evaluated on the
benchmarks. If the available models lack in diver-
sity in their underlying architectures, training data,
or training methodologies, the identified relation-
ships may not generalize to future models.

Identifying the Representative Dataset Our
method is a greedy approach that iteratively
chooses datasets such that PROXY_COVERAGE in-
creases. A different, albeit more expensive, ap-
proach could exhaustively identify the best combi-
nation of datasets using a better search algorithm.
We experimented with adapting to beam search,
but found no significant improvement, perhaps be-
cause PROXY_COVERAGE is correlated, but can be
slightly disconnected with COVERAGE depending
on the similarity function used.

Performance Prediction Although KNN per-
forms reasonably well, its AUC-MSE values are
consistently 2-3 times higher than RIDGE in the
presence of noise. In these settings the MLP mod-
els perform the worst with AUC-MSE values 5-10
times higher than RIDGE, possibly due to overfit-
ting on the limited training data. Models trained
with better regularization on more data would have
greater stability and be less prone to overfitting, so
this is something we recommend for practitioners
using SimBA.

Overall Risks Our evaluation framework offers
a three stage approach to better understand a bench-
mark. Although representative sets get high cover-
age, there could be cases when the representative
set gets high coverage by chance. In this case, it
would be risky to make major decisions that affect
users based on a small sample of data.

11 Ethical Considerations

Since SimBA does not involve training generative
models, the primary ethical concerns center on po-
tential misuse of our framework’s insights and the
risk of overconfidence in representative subset eval-
uations.

Our finding that small representative subsets can
achieve high coverage creates opportunities for ma-
nipulation. Model developers could strategically
evaluate only on datasets where their models per-
form well, then use SimBA to claim coverage over
the entire benchmark without actually testing on
challenging datasets. This could mislead the re-
search community and downstream users about true

model capabilities. Similarly, the choice of similar-
ity measure presents another avenue for selective
reporting, as our analysis shows that different sim-
ilarity functions (PEARSON, MINKOWSKI (P=3),
WASSERSTEIN, etc.) can yield different representa-
tive subsets and coverage results.

To aid in mitigating these concerns, we recom-
mend transparent reporting of representative set
selection methodologies, evaluation across multi-
ple correlation methods, and validation on diverse
datasets. SimBA does not aim to replace compre-
hensive evaluation, especially for high-stakes de-
ployments. Rather, it serves as a supplementary
tool for understanding benchmark structure and
improving evaluation efficiency in appropriate con-
texts.

Acknowledgments

We thank Iz Beltagy, Pradeep Dasigi, Dirk Groen-
eveld, and Alexis Ross for feedback on very
early scoping of this work. Additionally, we thank
Harshita Diddee, Athiya Deviyani, and members
of MD’s R3Lit lab for helpful discussions and feed-
back on later versions of the work. AG is supported
by the NSF CSGrad4US Fellowship.

References
N. S. Altman. 1992. An introduction to kernel and

nearest-neighbor nonparametric regression. The
American Statistician, 46(3):175–185.

Donald T Campbell and Donald W Fiske. 1959.
Convergent and discriminant validation by the
multitrait-multimethod matrix. Psychological bul-
letin, 56(2):81.

Emmanuel J. Candes and Benjamin Recht. 2009. Exact
matrix completion via convex optimization. Founda-
tions of Computational Mathematics, 9(6):717–772.

Samprit Chatterjee and Ali S. Hadi. 1986. Influential
observations, high leverage points, and outliers in
linear regression. Statistical Science, 1:379–393.

Harshita Diddee and Daphne Ippolito. 2025. Chasing
random: Instruction selection strategies fail to gen-
eralize. In Findings of the Association for Computa-
tional Linguistics: NAACL 2025, pages 1943–1957,
Albuquerque, New Mexico. Association for Compu-
tational Linguistics.

Trevor Hastie, Robert Tibshirani, and Jerome Fried-
man. 2009. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, 2nd edition.
Springer.

13229

https://api.semanticscholar.org/CorpusID:120490098
https://api.semanticscholar.org/CorpusID:120490098
https://api.semanticscholar.org/CorpusID:120490098
https://aclanthology.org/2025.findings-naacl.103/
https://aclanthology.org/2025.findings-naacl.103/
https://aclanthology.org/2025.findings-naacl.103/

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Xiaodong Song, and Jacob
Steinhardt. 2020. Measuring massive multitask lan-
guage understanding. ArXiv, abs/2009.03300.

Arthur E Hoerl and Robert W Kennard. 1970. Ridge
regression: Biased estimation for nonorthogonal prob-
lems. Technometrics, 12(1):55–67.

Maurice G Kendall. 1938. A new measure of rank
correlation. Biometrika, 30(1-2):81–93.

Krishnateja Killamsetty, Durga Sivasubramanian,
Ganesh Ramakrishnan, Abir De, and Rishabh K. Iyer.
2021. Grad-match: Gradient matching based data
subset selection for efficient deep model training. In
International Conference on Machine Learning.

Pang Wei Koh and Percy Liang. 2017. Understanding
black-box predictions via influence functions. In
International Conference on Machine Learning.

David D. Lewis and Jason Catlett. 1994. Heterogeneous
uncertainty sampling for supervised learning. In In-
ternational Conference on Machine Learning.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Alpacaeval:
An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/
alpaca_eval.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Alexander Cosgrove, Christo-
pher D Manning, Christopher Re, Diana Acosta-
Navas, Drew Arad Hudson, and 31 others. 2023.
Holistic evaluation of language models. Transactions
on Machine Learning Research. Featured Certifica-
tion, Expert Certification.

Ian Magnusson, Nguyen Tai, Ben Bogin, David Heine-
man, Jena Hwang, Luca Soldaini, Akshita Bhagia,
Jiacheng Liu, Dirk Groeneveld, Oyvind Tafjord,
Noah A. Smith, Pang Wei Koh, and Jesse Dodge.
2025. DataDecide: How to Predict Best Pretraining
Data with Small Experiments. arXiv preprint.

Colin L Mallows. 1972. A note on asymptotic joint
normality. The Annals of Mathematical Statistics,
pages 508–515.

J.I. Marcum. 1960. A statistical theory of target detec-
tion by pulsed radar. IRE Transactions on Informa-
tion Theory, 6(2):59–267.

Brian B. Moser, Arundhati S. Shanbhag, Stanislav
Frolov, Federico Raue, Joachim Folz, and Andreas
Dengel. 2025. A coreset selection of coreset se-
lection literature: Introduction and recent advances.
ArXiv, abs/2505.17799.

Mansheej Paul, Surya Ganguli, and Gintare Karolina
Dziugaite. 2021. Deep learning on a data diet: Find-
ing important examples early in training. In Neural
Information Processing Systems.

Yotam Perlitz, Elron Bandel, Ariel Gera, Ofir Arviv,
Liat Ein-Dor, Eyal Shnarch, Noam Slonim, Michal
Shmueli-Scheuer, and Leshem Choshen. 2024. Ef-
ficient benchmarking (of language models). In Pro-
ceedings of the 2024 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume
1: Long Papers), pages 2519–2536, Mexico City,
Mexico. Association for Computational Linguistics.

Felipe Maia Polo, Lucas Weber, Leshem Choshen,
Yuekai Sun, Gongjun Xu, and Mikhail Yurochkin.
2024. tinybenchmarks: evaluating llms with fewer
examples. ArXiv, abs/2402.14992.

Pedro Rodriguez, Joe Barrow, Alexander Miserlis
Hoyle, John P. Lalor, Robin Jia, and Jordan Boyd-
Graber. 2021. Evaluation examples are not equally
informative: How should that change NLP leader-
boards? In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 4486–4503, Online. Association for Computa-
tional Linguistics.

Frank Rosenblatt. 1958. The perceptron: a probabilistic
model for information storage and organization in
the brain. Psychological review, 65 6:386–408.

Walter Rudin. 1987. Real and complex analysis.
McGraw-Hill, Inc.

Andrea Schioppa, Polina Zablotskaia, David Vilar, and
Artem Sokolov. 2021. Scaling up influence functions.
In AAAI Conference on Artificial Intelligence.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R. Brown, Adam Santoro, Aditya Gupta,
Adrià Garriga-Alonso, Agnieszka Kluska, Aitor
Lewkowycz, Akshat Agarwal, Alethea Power, Alex
Ray, Alex Warstadt, Alexander W. Kocurek, Ali
Safaya, Ali Tazarv, and 431 others. 2022. Be-
yond the imitation game: Quantifying and extrap-
olating the capabilities of language models. ArXiv,
abs/2206.04615.

Nishant Subramani, Jason Eisner, Justin Svegliato, Ben-
jamin Van Durme, Yu Su, and Sam Thomson. 2025.
MICE for CATs: Model-internal confidence estima-
tion for calibrating agents with tools. In Proceedings
of the 2025 Conference of the Nations of the Amer-
icas Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume
1: Long Papers), pages 12362–12375, Albuquerque,
New Mexico. Association for Computational Linguis-
tics.

Rajan Vivek, Kawin Ethayarajh, Diyi Yang, and Douwe
Kiela. 2023. Anchor points: Benchmarking models
with much fewer examples. ArXiv, abs/2309.08638.

13230

https://api.semanticscholar.org/CorpusID:221516475
https://api.semanticscholar.org/CorpusID:221516475
https://api.semanticscholar.org/CorpusID:235421747
https://api.semanticscholar.org/CorpusID:235421747
https://api.semanticscholar.org/CorpusID:13193974
https://api.semanticscholar.org/CorpusID:13193974
https://api.semanticscholar.org/CorpusID:5319590
https://api.semanticscholar.org/CorpusID:5319590
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval
https://openreview.net/forum?id=iO4LZibEqW
https://api.semanticscholar.org/CorpusID:278886355
https://api.semanticscholar.org/CorpusID:278886355
https://api.semanticscholar.org/CorpusID:235898952
https://api.semanticscholar.org/CorpusID:235898952
https://doi.org/10.18653/v1/2024.naacl-long.139
https://doi.org/10.18653/v1/2024.naacl-long.139
https://api.semanticscholar.org/CorpusID:267897919
https://api.semanticscholar.org/CorpusID:267897919
https://doi.org/10.18653/v1/2021.acl-long.346
https://doi.org/10.18653/v1/2021.acl-long.346
https://doi.org/10.18653/v1/2021.acl-long.346
https://api.semanticscholar.org/CorpusID:12781225
https://api.semanticscholar.org/CorpusID:12781225
https://api.semanticscholar.org/CorpusID:12781225
https://api.semanticscholar.org/CorpusID:244908828
https://api.semanticscholar.org/CorpusID:263625818
https://api.semanticscholar.org/CorpusID:263625818
https://api.semanticscholar.org/CorpusID:263625818
https://aclanthology.org/2025.naacl-long.615/
https://aclanthology.org/2025.naacl-long.615/
https://api.semanticscholar.org/CorpusID:262045288
https://api.semanticscholar.org/CorpusID:262045288

Ziang Xiao, Susu Zhang, Vivian Lai, and Q. Vera Liao.
2023. Evaluating evaluation metrics: A framework
for analyzing NLG evaluation metrics using measure-
ment theory. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 10967–10982, Singapore. Association for
Computational Linguistics.

Qinyuan Ye, Harvey Fu, Xiang Ren, and Robin Jia. 2023.
How predictable are large language model capabili-
ties? a case study on BIG-bench. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 7493–7517, Singapore. Association for
Computational Linguistics.

Vilém Zouhar, Peng Cui, and Mrinmaya Sachan. 2025.
How to select datapoints for efficient human evalua-
tion of nlg models? ArXiv, abs/2501.18251.

13231

https://doi.org/10.18653/v1/2023.emnlp-main.676
https://doi.org/10.18653/v1/2023.emnlp-main.676
https://doi.org/10.18653/v1/2023.emnlp-main.676
https://doi.org/10.18653/v1/2023.findings-emnlp.503
https://doi.org/10.18653/v1/2023.findings-emnlp.503
https://api.semanticscholar.org/CorpusID:275993492
https://api.semanticscholar.org/CorpusID:275993492

A Dataset Similarity Metrics

Here are more details about the dataset similarity metrics used in our analysis. Consider a pair of datasets
(Di, Dj); we use seven similarity measures SIM.

PEARSON CORRELATION: Measures linear relationships between dataset performance vectors but is
sensitive to outliers and assumes linearity. We compute the PEARSON CORRELATION:

ρDi,Dj =

∑
(Rm,Di − R̄Di)(Rm,Dj − R̄Dj)√∑

(Rm,Di − R̄Di)
2
∑

(Rm,Dj − R̄Dj)
2

(9)

where Rm,Di is the performance of model m on dataset Di and R̄Di is the average performance across all
models for dataset Di,

SPEARMAN CORRELATION: A ranked correlation that handles non-linear monotonic relationships but
is sensitive to small perturbations that flip ranks.

ρs = 1− 6
∑

d2i
n(n2 − 1)

(10)

where di is the rank difference between model performances on datasets Di and Dj ,

KENDALL-TAU CORRELATION (KENDALL, 1938): Another ranked correlation that measures agree-
ment in the orderings of data but also sensitive to small perturbations.

τ =
C −D

C +D
(11)

where C represents concordant model rankings across two datasets, and D represents discordant rankings.

COSINE SIMILARITY: Measures the cosine of the angle between performance vectors, capturing
directional similarity regardless of magnitude differences between datasets.

COSINE_SIMILARITY(Di, Dj) =
B[:, i]B[:, j]

||B[:, i]||||B[:, j]|| (12)

LP NORM (RUDIN, 1987) BASED SIMILARITIES: We define a family of similarity measures based on
Lp norms with exponential normalization:

LP_SIMILARITY(Di, Dj) = exp (−||B[:, i]−B[:, j]||p) (13)

We employed various distance-based similarity measures using exponential normalization to capture
different aspects of performance similarity between datasets. We specifically use L1 (MANHATTAN), L2
(EUCLIDEAN), and L3 (MINKOWSKI) norms. The exponential normalization ensures all similarities are
bounded in (0,1], with identical performance patterns yielding similarity 1 and increasingly dissimilar
patterns approaching 0.

WASSERSTEIN SIMILARITY (MALLOWS, 1972): Measures the minimum "cost" of transforming
one performance distribution into another, capturing both shape and statistical differences. We also
exponentially normalize this such that similarities are bounded in (0, 1].

WASSERSTEIN_SIMILARITY(Di, Dj) = exp

(−W1(B[:, i], B[:, j])

maxk,l W1(B[:, k], B[:, l])

)
(14)

JENSEN-SHANNON SIMILARITY:

JENSEN_SHANNON_SIMILARITY(Di, Dj) = 1−
√

DKL(Pi||M) +DKL(Pj ||M)

2
(15)

Here M = 1
2(Pi + Pj) and Pi, Pj are normalized distributions of B[:, i], B[:, j]. Jensen-Shannon simi-

larity provides a symmetric measure based on information theory that quantifies dataset distributional
differences.

13232

B Proportions Better than Random

To measure how well each system (other than random) fares across the 1000 random runs of the RANDOM

baseline, we measure the proportion of the 1000 random runs that each system does as well or better than.
We measure this across two metrics on all three benchmarks. The first metric, "AUC", is measured by
SCAUC. The second metric, "Max2", looks at the SCAUC up until a representative dataset S is discovered
that achieves at least 95% coverage (S*). This is compared to the RANDOM baseline for the same number of
datasets (|S*| under a similarity function SIM) across all 1000 runs. Note that SCAUC cannot be computed
if |S*|=1, so if |S*|=1, we consider the first two datasets here. These results are below in Table 6 as
proportions. We find that GREEDY MINIMUM and GREEDY MAXIMUM both perform worse than RANDOM.
On MMLU, all similarity measures outperform RANDOM, but on HELM and BigBenchLite, only about
half the systems outperform RANDOM on SCAUC on average. Our representative dataset discovery
algorithm generally outperforms RANDOM early on until S* is discovered regardless of similarity function,
with most systems strongly outperforming RANDOM on "Max2."

HELM MMLU BigBenchLite
Similarity Methods AUC (↑) Max2 (↑) AUC (↑) Max2 (↑) AUC (↑) Max2 (↑)
RANDOM (baseline) – – – – – –
GREEDY MINIMUM 0.095 0.095 0.000 0.000 0.000 0.000
GREEDY MAXIMUM 0.030 0.028 0.002 0.223 0.521 0.504

PEARSON 0.626 0.970 0.972 1.000 0.068 0.086
SPEARMAN 0.213 0.415 0.108 0.994 0.057 0.072
KENDALL-TAU 0.552 0.970 0.330 0.994 0.141 0.154
COSINE 0.427 0.409 0.124 0.880 0.115 0.132
MANHATTAN (L1) 0.685 0.501 0.825 0.924 0.727 0.849
EUCLIDEAN 0.595 0.944 0.931 0.868 0.692 0.832
MINKOWSKI (L3) 0.538 0.973 0.939 0.965 0.815 0.928
WASSERSTEIN 0.581 0.507 0.962 0.965 0.692 0.791
JENSEN-SHANNON 0.377 0.409 0.060 0.919 0.155 0.303

Table 6: Proportion of methods that perform better than or equal to RANDOM across three evaluation metrics. Values
closer to 1.0 indicate better performance relative to RANDOM. Bold indicates the best performing method for each
metric within each dataset.

13233

