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Abstract

Instruction tuning has underscored the sig-
nificant potential of large language models
(LLMs) in producing more human control-
lable and effective outputs in various domains.
In this work, we focus on the data selection
problem for task-specific instruction tuning of
LLMs. Prevailing methods primarily rely on
the crafted similarity metrics to select train-
ing data that aligns with the test data distri-
bution. The goal is to minimize instruction
tuning loss on the test data, ultimately im-
proving performance on the target task. How-
ever, it has been widely observed that instruc-
tion tuning loss (i.e., cross-entropy loss for
next token prediction) in LLMs often fails
to exhibit a monotonic relationship with ac-
tual task performance. This misalignment un-
dermines the effectiveness of current data se-
lection methods for task-specific instruction
tuning. To address this issue, we introduce
ROSE, a novel Reward-Oriented inStruction
data sElection method which leverages pair-
wise preference loss as a reward signal to op-
timize data selection for task-specific instruc-
tion tuning. Specifically, ROSE adapts an
influence formulation to approximate the in-
fluence of training data points relative to a
few-shot preference validation set to select the
most task-related training data points. Exper-
imental results show that by selecting just 5%
of the training data using ROSE, our approach
can achieve competitive results compared to
fine-tuning with the full training dataset, and
it surpasses other state-of-the-art data selec-
tion methods for task-specific instruction tun-
ing. Our qualitative analysis further con-
firms the robust generalizability of our method
across multiple benchmark datasets and di-
verse model architectures.1

∗Equal contribution. Initial work was conducted while
Y.W. was an intern at ByteDance.

†Corresponding author.
1https://github.com/YANGWU001/ROSE.git
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Figure 1: Illustration of our Reward-Oriented Instruc-
tion Data Selection (ROSE) approach compared with
the traditional method. Unlike the traditional focus
on minimizing validation loss, ROSE maximizes task-
specific reward to more precisely align with real-world
task performance.

1 Introduction

While large language models (LLMs) are widely rec-
ognized for their strong generalization capabilities,
many fields require enhanced domain-specific perfor-
mance, e.g., health monitoring (Kim et al., 2024b), le-
gal question answering (Wu et al., 2024), and mathe-
matics tutoring (Li et al., 2023b). Instruction tuning has
emerged as a popular method for adapting foundation
models to specialized tasks, which typically involves
curating a high-quality training dataset. Although re-
cent advancements in open-source datasets and syn-
thetic data generation have facilitated the generation of
large training datasets, it is widely acknowledged that
the quality of training data is more crucial than its quan-
tity in instruction tuning (Chen and Mueller, 2024; Xia
et al., 2024). Consequently, practitioners must care-
fully select high-quality data to enhance the model’s
capabilities for specific tasks. This challenge is further
compounded by the complexity of domain-specific re-
quirements and the black-box properties of LLMs, ren-
dering it nearly infeasible for humans to manually se-
lect the most suitable training set. Therefore, develop-
ing more effective data selection methods is becoming
increasingly crucial for reducing training costs and effi-
ciently optimizing instruction tuning for specific tasks.

Despite various methods proposed for instruction
tuning data selection (Du et al., 2023; Mekala et al.,
2024; Agarwal et al., 2024), identifying high-quality
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instruction tuning data for target tasks remains a sig-
nificant challenge. Existing methods typically design
specific similarity metrics to select a set of candidates
samples whose distribution aligns with that of the tar-
get task data. For instance, DSIR (Xie et al., 2023) uses
n-gram feature similarity to enhance the selection pro-
cess of relevant data samples. Moreover, RDS (Zhang
et al., 2018) and LESS (Xia et al., 2024) calculate the
similarity on the model embedding and gradient space
to capture task-specific semantics and model character-
istics, respectively. Despite their successes, these simi-
larity based methods are fundamentally limited.

Our analysis reveals that these strategies hinge on
Empirical Risk Minimization (ERM), selecting train-
ing data that mirrors the target task data distribution by
minimizing training loss, particularly next-token pre-
diction loss. However, it is widely acknowledged that
next-token prediction loss often fails to accurately re-
flect a model’s real-world performance (e.g., alignment
degree with human preference, reasoning ability on
complex math problem) on target task (Zhou et al.,
2024; Tay et al., 2021). This significant gap between
the implicit theoretical foundation of similarity-based
methods and practical task performance limits the ef-
fectiveness of these methods in instruction tuning for
task-specific fine-tuning. In response to these insights,
we introduce a novel reward-oriented instruction data
selection (ROSE) method in Figure 1, which shifts the
intrinsic selection objective from minimizing valida-
tion cross entropy loss to maximize the reward for the
target task. Inspired by Direct Preference Optimization
(DPO) (Rafailov et al., 2024), our approach utilizes a
few-shot set of pairwise samples as the task-specific
preference validation set, which we assume reflects the
desired LLM’s performance on the target task, and we
use the DPO loss function to approximate the expected
reward value of the trained LLM on the preference vali-
dation data. By leveraging the gradient-based influence
estimation techniques, ROSE is able to select the in-
struction tuning samples that leads a downstream LLM
with optimized performance on the target task.

We conduct comprehensive experiments across var-
ious datasets and model architectures. Experimen-
tal results show that our method outperforms exist-
ing similarity-based techniques, including token-wise,
embedding-based, and gradient-based methods. These
results suggest that focusing on reward maximization,
rather than loss minimization, is a promising new direc-
tion for improving task-specific fine-tuning outcomes.

The main contributions are as follows:
• Identifying Limitations of Similarity-Based Ap-

proaches: Our analysis reveals the limitations of
the implicit theoretical foundations of the common
similarity-based data selection methods. These meth-
ods focus on minimizing training loss (e.g., next-token
prediction loss), which often fails to capture real-world
task performance.

• Introducing Reward-Oriented Data Selection: We

shift the data selection objective from loss minimiza-
tion to reward maximization on the target task dataset,
which contains a small set of user-provided positive
and negative samples that reflect the task-specific per-
formance.

• Propose to Approximate Reward with DPO Loss:
Our method incorporates gradient-based influence es-
timation techniques to select high-quality training data
that optimizes task reward, improving the fine-tuning
process.

• Comprehensive Experimental Validation: Through
experiments on various datasets and models, we
demonstrate that ROSE consistently outperforms ex-
isting similarity-based methods, such as token-wise,
embedding-based, and gradient-based approaches, in
task-specific fine-tuning.

2 Related Work

Data Selection for Instruction Tuning. Instruction
tuning is crucial for aligning large language models
(LLMs) with human needs (Wang et al., 2024), pro-
viding a controlled and safe method to enhance LLMs’
responsiveness and accuracy in specific domains. Wei
et al. (2023) introduced InstructionGPT-4 for multi-
modal large language fine-tuning, which involves en-
coding visual and textual data into vectors to train
a trainable data selector. Furthermore, RDS (Zhang
et al., 2018; Hu et al., 2023) employs the model’s last
hidden layer to assess the similarity between training
and validation data points, while DSIR Xie et al. (2023)
uses n-gram features to assign importance weights to
training samples for data selection in instruction fine-
tuning. Another notable study, LESS Xia et al. (2024),
follows a similar approach by selecting the most influ-
ential data from the training corpus based on the gra-
dient similarity score of training data points with vali-
dation data points. Furthermore, NUGGETS (Li et al.,
2023c) introduces a one-shot learning framework that
selects high-quality instruction data by evaluating their
impact on an anchor set, enabling efficient filtering of
informative samples. Cherry (Li et al., 2023a) adopts
a self-guided selection strategy based on Instruction-
Following Difficulty (IFD), allowing models to prior-
itize training samples that better align with human in-
structions. DEITA (Liu et al., 2023) further enhances
data selection by integrating complexity, quality, and
diversity metrics, optimizing instruction tuning with
significantly fewer training samples. While these meth-
ods improve data selection beyond naive heuristics,
they rely on indirect proxies such as token perplex-
ity or instruction difficulty, which do not establish a
direct monotonic relationship with final task perfor-
mance. In contrast, ROSE optimizes training data se-
lection through pairwise preference modeling, ensuring
a stronger alignment between training objectives and
real-world win rate improvements.

Data Attribution and Influence Functions. The
influence calculation of training data points is a piv-
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otal technique for detecting mislabeled samples (Deng
et al., 2024; Zhang et al., 2021b, 2024; Hofmann
et al., 2022), facilitating model interpretation (Mad-
sen et al., 2022; Wu et al., 2023; VanNostrand et al.,
2023), and analyzing memorization effects (Feldman
and Zhang, 2020). Specifically, influence functions
(Koh and Liang, 2017; Yao et al., 2025a) offer a coun-
terfactual method to assess both model behaviors and
the contributions of training data. Despite their po-
tential, the robustness and effectiveness of these func-
tions remain limited, particularly in the context of large
language models (LLMs), where their computational
demands are significant. While recent studies, such
as those by Park et al. (2023), propose relatively ef-
ficient estimations of influence functions for selecting
pretraining data, these methods still require complex
comparisons of model training with and without the
inclusion of specific data points. In line with the ap-
proach by Xia et al. (2024), we advocate that first-order
influence approximations are effective for data selec-
tion during instruction tuning in LLM environments.

Large Language Model Alignment. LLM align-
ment aims to train large language models (LLMs) to
behave in ways that align with human expectations. A
primary approach for this is Reinforcement Learning
from Human Feedback (RLHF), which tunes LLMs to
reflect human preferences and values (Ziegler et al.,
2019; Bai et al., 2022). It has been effectively ap-
plied in various domains, including enhancing model
helpfulness (Tian et al., 2023), improving reasoning
capabilities (Wu et al., 2025), and mitigating toxic-
ity (Korbak et al., 2023). Despite its effectiveness,
RLHF as an online preference optimization algorithm,
poses significant challenges and complexities, since it
is typically trained using Proximal Policy Optimization
(PPO) (Schulman et al., 2017). And the high computa-
tional cost and sample inefficiency of PPO make RLHF
difficult to scale effectively. In contrast, Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2024) offers
a simpler and more efficient offline alternative. Recent
research has extended DPO beyond traditional pairwise
comparisons to include evaluations across multiple in-
stances (Liu et al., 2024; Yuan et al., 2024; Yao et al.,
2025b). Further advancements have broadened pref-
erence optimization objectives, including those inde-
pendent of reference models (Xu et al., 2023; Meng
et al., 2024). These reward-oriented methods outper-
form models trained with next-token prediction loss in
satisfying user preferences, as they directly optimize
preference signals, whereas next-token prediction loss
focuses on minimizing the difference between gener-
ated outputs and predefined labels, which may not re-
flect user-specific preferences.

3 Preliminaries and Background

Problem Definition. We tackle the challenge of data
selection for task-specific instruction tuning. Our goal
is to curate a subset Dtrain from a broad and compre-

hensive instruction tuning corpus D, such that training
a model on Dtrain to maximize a reward r that reflects
true performance on a task-specific validation set Dval,
therefore performs well on test dataset Dtest. Dval can
be a few-shot dataset involving multiple target tasks,
and the Dtest is a fixed sample set with the same tasks in
Dval. We use Ω parametrized by θ to denote the model
used for data selection and Γ parametrized by θ′ to rep-
resent the final trained model.

Analysis of Similarity Based Methods. Let Z =
Rd be the d-dimensional intrinsic representation space,
where the similarity-based methods calculate the simi-
larity between the training and validation samples. Let
pt(z) and pv(z) be the probability density value of the
selected training set Dtrain and validation set Dval, re-
spectively, where z ∈ Z. When a downstream LLM
Γ is well trained on the selected training set Dtrain, its
training loss on Dtrain is expected to be close to 0, i.e.,
Etrain[l(z, θ

′)] =
∫
l(z, θ′)pt(z) dz ≈ 0, where l(z; θ′)

represents the average of token-wise cross entropy loss
in the response sequence of z.

The objective of similarity-based methods is to se-
lect a training set Dtrain which is independent and iden-
tically distributed (IID) with respect to the validation
set (Xie et al., 2023; Zhang et al., 2021a). Under
this condition, for any z ∈ Z, pt(z) = pv(z). Let
Eval[l(z, θ

′)] =
∫
l(z, θ′)pv(z) dz be the expected loss

value of Γ on the validation set. By simply substi-
tuting pv(z) with pt(z), we can infer that the down-
stream LLM is supposed to have small loss value
of l(z; θ′) on the validation set, i.e., Eval[l(z, θ

′)] =∫
l(z, θ′)pt(z) dz ≈ 0.

Unfortunately, existing studies (Zhou et al., 2024;
Xia et al., 2024; Tay et al., 2021) commonly find that
the decrease in validation loss does not always lead
to improved test performance in task-specific instruc-
tion tuning. Furthermore, achieving such an IID con-
dition is often unrealistic due to the complexity of the
representation space Z. Therefore, it is reasonable to
conclude that the intrinsic limitation of large models,
namely the gap between next-token prediction loss and
actual performance on downstream tasks, compromises
the effectiveness of existing data selection methods for
task-specific instruction tuning.

Influence Estimation Scheme. Assume the selec-
tion model LLM, denoted as Ω, assesses the influence
of training data points with respect to a set of validation
samples Dval, which represents the model’s capability
on specific tasks. We denote the average loss value of
Ω on the validation set as L(Dval; θ).

For simplicity, we assume the LLM is trained with
a batch size of 1 using the SGD optimizer. At train-
ing step t, the contribution of a training sample z
corresponds to the difference between the validation
losses L(Dval; θ) and L(Dval; θt−1), i.e., L(Dval; θ) −
L(Dval; θt−1). Using a first-order Taylor expansion ,
this becomes:
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L(Dval; θt)− L(Dval; θt−1) = ⟨∇θL(Dval; θt−1), δθ⟩
(1)

where ⟨·, ·⟩ denotes the inner product, and δθ =
θt − θt−1 represents the change in θ at step t. With
the SGD optimizer, δθ = −α · ∇θL(z; θt−1), where α
is the learning rate and ∇θL(z; θt−1) denotes the gra-
dients of the loss with respect to the training sample z.
Substituting this into the equation, we get:

L(Dval; θt)− L(Dval; θt−1) ∝
⟨∇θL(Dval; θt−1),∇θL(z; θt−1)⟩ (2)

Eq. 2 shows that the inner product between the gradi-
ent of the loss on the training sample z and the gradient
of the average loss on the validation set Dval effectively
estimates the degree to which a training sample con-
tributes to the model’s performance. A positive gradi-
ent inner product indicates that the training sample z
positively impacts the model’s performance.

Note that in the typical LLM training settings, the
optimizer is usually a variant of Adam, and the train-
ing batch size is often larger than 1. This creates inter-
actions between training samples and across batches.
To address this, we adopt the heuristic-based meth-
ods used in LESS, performing a warm-up training on
the LLM Ω and applying a variant of the gradient
∇θL(z; θt−1) to reduce the discrepancy.

4 ROSE: Reward-Oriented inStruction
data sElection

In this section, we introduce ROSE, a reward orientated
data selection method for task-specific instruction tun-
ing . We start from formulating the optimization objec-
tives of ROSE, followed by a detailed explanation of
implementation strategies.

4.1 Optimization Framework
Motivated by the analysis in Section 3, the objec-
tive of ROSE is to select a subset Dtrain that leads to
a downstream LLM Γ with maximized reward value
on validation set Dval. Formally, we define Dval =

{(xi, yi)}|Dval|
i=1 , where x, y denote the prompt and re-

sponse of samples from Dval, respectively. Inspired
by Reinforcement Learning from Human Feedback
(RLHF) (Bai et al., 2022) and further study Direct
Preference Optimization (DPO) (Rafailov et al., 2024),
we define the reward function r for ROSE through a
closed-form expression as:

r(x, y) = β log
Ωθ(y | x)
Ωref(y | x) + β logZ(x) (3)

where Ωθ and Ωref represent the policy and refer-
ence models, respectively. The term logZ(x) repre-
sents the partition function, and β signifies the param-
eter that controls the deviation from the baseline refer-
ence model2. For optimization efficiency, we advance
our methodology by first transforming the few-shot val-
idation dataset Dval into a few-shot preference valida-

tion set D′
val = {(xi, yiw, y

i
l)}

|D′
val|

i=1 . where (x, yw, yl)

refers preference pairs from the dataset D′
val, compris-

ing the prompt, a winning response, and a losing re-
sponse. By integrating this reward structure with the
Bradley-Terry (BT) ranking model (Bradley and Terry,
1952), we leverage the probability of preference data
directly through the policy model, formulating the fol-
lowing optimization objective:

LROSE(Ωθ; Ωref) = −E(x,yw,yl)∼D′
val

[

log σ

(
β log

Ωθ(yw | x)
Ωref(yw | x) − β log

Ωθ(yl | x)
Ωref(yl | x)

)]

(4)

where σ is the logistic function. We can implicitly
define r̂θ(x, y) = β log Ωθ(y|x)

Ωref(y|x) , thus the gradient with
respect to the parameters θ can be written as:

∇θLROSE(Ωθ; Ωref) = −βE(x,yw,yl)∼D′
val

[
σ
(
r̂θ(x, yl)−

r̂θ(x, yw)
)
·
(
∇θ log Ω(yw | x)−∇θ log Ω(yl | x)

)]

(5)

4.2 Implementations
Here, we describe how ROSE adapts the Equation 5
to select instruction data that can effectively improve
model capability in target tasks, and illustrate our
method in Figure 2.

4.2.1 Build Few-Shot Preference Validation Data
The current validation set used in task-specific instruc-
tion tuning typically adheres to a Supervised Fine-
Tuning (SFT) format, featuring a prompt and its cor-
responding response. However, the widely used eval-
uation metric for test data in instruction tuning is the
win rate, which assesses the frequency at which a tar-
get model’s response is deemed superior compared to
the original test dataset response, as determined by an
LLM evaluator. To align with the win rate employed in
downstream tasks, we transform the few-shot SFT val-
idation set Dval = {(xi, yi)}|Dval|

i=1 into a preference for-

mat, denoted as D′
val = {(xi, yiw, y

i
l)}

|D′
val|

i=1 . This trans-
formation involves generating additional responses to

2In practice, we use the pretrained model as reference
model to calculate the gradients for validation data.
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Figure 2: Illustration of ROSE. We generate suboptimal responses to create a preference validation set, then use
pairwise preference optimization loss to derive validation gradients. These gradients inform influence scores for
selecting training data, leading to more effective instruction tuning.

prompts within the SFT dataset, which are then evalu-
ated by either domain experts or advanced LLMs. This
technique is also explored in other LLM alignment re-
search by Arif and Kim (Arif et al., 2024; Kim et al.,
2024a). Considering only the limited number of sam-
ples per task in the validation set, this methodology
does not require substantial computational resources or
extensive human annotations. Once established3, the
generated few-shot preference validation set is consis-
tently used in subsequent steps to represent actual task-
specific data.

4.2.2 Reward-Oriented Gradient Calculation

Inspired by (Xia et al., 2024), we use the Adam
(Kingma, 2014) and SGD optimizer for training data
points and validation data points gradient calculation,
respectively. Since Adam involves the first and second
moments, we start ROSE by initially training a LLM Ω
with a randomly selected subset (5%) of training data.
Since computing and storing the gradients of a LLMs
with billions of parameters are very computational and
storage expensive, we use LoRA (Hu et al., 2021) to
train the model efficiently. To further reduce the fea-
ture dimension, we use TRAK (Park et al., 2023) to
randomly project the LoRA adapters’ gradients into a
lower dimension, the default setting of projection di-
mension is 8192.

In initial-training stage, we save multiple check-
points, the default number of checkpoints is 4. Since
there are multiple subtasks in validation set, for each
subtask D′ (j)

val , we compute the average gradient feature
on each checkpoints θ1, ..., θN . Let z and z′ denote the
sample from training corpus D and few-shot preference
validation set D′

val, respectively. The SGD gradient cal-
culation for D′ (j)

val can be defined as:

3In practice, we sample from the open-source preference
dataset to form few-shot preference validation set D′

val, and
use (x, yw) to mimic the original few-shot validation set Dval.
Please refer Table 7 for details.

∇θiLROSE(D′ (j)
val ; θi) =

1

|D′ (j)
val |

∑

z′∈D′ (j)
val

∇θiLROSE(z
′; θi)

(6)

where LROSE(z
′; θi) is calculated by adapting the

Equation 5. For each training data point z, the Adam
gradient can be differentiated as ∇̄θi l(z; θi), where
l(·; θ) represents the average of token-wise cross en-
tropy loss in the response sequence of z.

4.2.3 Data Selection Process
In the data selection stage, we aggregate the scores
from all checkpoints to assess how closely each train-
ing data point aligns with the validation set. We define
the calculation of ROSE influence scores as follows:

S(z,D′ (j)
val ) =

N∑

i=1

ηi⟨∇θiLROSE(D′ (j)
val ; θi), ∇̄θi l(z; θi)⟩

(7)
where N and ηi denote the number of checkpoints

and the learning rate of each checkpoint, respectively.
After calculating the influence score of each training
data point to validation set, we use the maximum score
across all subtasks. Finally, we select the most in-
fluential datapoints to construct the selected training
dataset Dtrain to train downstream model Γ. Our ap-
proach employs a computational pipeline analogous to
LESS (Xia et al., 2024), encompassing warmup LoRA
training, gradient feature computation, and data selec-
tion. The overall computational and storage require-
ments are comparable to those reported in LESS, en-
suring scalability and efficiency.

5 Experiment
5.1 Experimental Setup
Model Architecture and Training Settings. We use
three instruction fine-tuning training datasets: DOLLY
(Conover et al., 2023), OPEN ASSISTANT 1 (Köpf
et al., 2024), FLAN V2 (Longpre et al., 2023), and
COT (Wei et al., 2022), which collectively com-
prise around 270K data points across various reason-
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ing tasks, as detailed in Appendix A.1. In our ex-
periments, we engage two prominent model families:
Llama (AI@Meta, 2024) and Mistral (Jiang et al.,
2023), including LLAMA-2-7B, LLAMA-2-13B (Tou-
vron et al., 2023), LLAMA-3.1-8B, LLAMA-3.1-8B-
INS., MISTRAL-7B-V0.3 , and MISTRAL-7B-INS.-
V0.3 (Jiang et al., 2023).

Each model trains utilizing LoRA (Hu et al., 2021)
for training efficiency in optimizing large-scale models.
LoRA settings remain uniform across all models with
a rank of 128, an alpha of 512, and a dropout rate of
0.1. Training involves learning LoRA matrices for all
attention mechanisms in each configuration. The mod-
els optimize using the AdamW optimizer with a learn-
ing rate of 2× 10−5, and each configuration undergoes
four training epochs with a batch size of 128. To ensure
robustness and reproducibility, we conduct three trials
per configuration with varying random seeds. During
the gradient extraction stage for preference validation,
we compute gradients using the pretrained model as
a reference model and the warm-up model as a pol-
icy model. We utilize Direct Preference Optimization
(DPO) (Rafailov et al., 2024) loss to calculate gradi-
ents and apply the TRAK algorithm (Park et al., 2023)
to project LoRA gradients into a vector of 8192 dimen-
sions for each data point. For inference, we set the tem-
perature to 1.0, top p to 1.0, and max tokens to 4096.

Evaluation Benchmarks and Metrics. We assess
our models using three leading open-source preference
benchmarks: Stanford Human Preference (SHP) (Etha-
yarajh et al.), Stack Exchange (SE) (Lambert et al.,
2023), and HH-RLHF (Bai et al., 2022; Ganguli et al.,
2022). Each dataset includes multiple subtasks, with
validation data details provided in Appendix A.2 and
further test data information in Appendix A.3. Our
evaluation metric is the Win Rate (WR), comparing
each model’s response against the most preferred re-
sponse from the test dataset. And we employ the
GPT-4-32K-0613 model (OPENAI, 2024) as the judge
model, with the evaluation prompts detailed in Ap-
pendix D.

Baselines. Our method, ROSE, is benchmarked
against a diverse set of baselines. The Random base-
line entails indiscriminate sampling from the entire
training dataset for instruction finetuning. For a more
structured approach, we employ BM25 (Robertson
et al., 2009), a well-known ranking function in infor-
mation retrieval that evaluates document relevance us-
ing term frequency and inverse document frequency
(TFIDF) with length normalization. Here, we priori-
tize training instances with the highest BM25 scores
for finetuning. Another strategy, representation-based
data selection (RDS) (Zhang et al., 2018), leverages
the last hidden layer of the model to determine simi-
larity between training and validation data points. Fur-
thermore, DSIR Xie et al. (2023) utilizes n-gram fea-
tures to assign importance weights to training samples,
guiding the selection of finetuning data. Additionally,

we explore the efficacy of Shapley values (Fryer et al.,
2021) in assessing each data point’s unique contribu-
tion to model performance. Similarly, Influence Func-
tions (Koh and Liang, 2017) calculate the impact of in-
dividual data points’ modification or removal on model
predictions, aiding in the identification of pivotal train-
ing instances. Both Shapley values and Influence Func-
tions necessitate labels for the training data; to accom-
modate this, we implement K-Means clustering (K =
3) to assign provisional labels based on cluster mem-
bership, enhancing sample diversity in our evaluations.
Another baseline is LESS (Xia et al., 2024), which
leverages next-token prediction loss to extract gradients
from both the training and validation sets, subsequently
calculating the influence score to select the most task-
relevant training samples. We also include a baseline,
Nuggets (Li et al., 2023c), which employs one-shot
learning to identify and select high-quality instruction
data from large datasets. Another baseline, Cherry
(Li et al., 2023a), introduces an instruction-following
difficulty metric to guide the selection of instruction
tuning data. For a fair comparison, all baselines, in-
cluding ROSE, select the same percentage (5%) of data
from the training set. Moreover, we consider pretrained
LLMs (W/O Finetuning), instruction finetuning on the
full training dataset (Full), and finetuning directly on
the few-shot validation set (Valid.) as additional com-
parisons.

5.2 Experimental Results
In this section, we present empirical results and analy-
sis of our experiments, highlighting the superior perfor-
mance of ROSE on various benchmarks. Unless other-
wise specified, the experiments are conducted using the
LLAMA-2-7B as the base model setting.

Table 1: Comparison with various beselines on differ-
ent datasets. Best and second values are both high-
lighted. Numbers in the parentheses are standard devi-
ations.

SHP SE HH

W/O Finetuning 8.8 (0.6) 10.0 (0.5) 30.1 (0.8)

Valid. 10.9 (0.9) 9.0 (0.8) 26.0 (0.9)

Random 19.5 (0.7) 14.3 (0.5) 41.7 (0.2)

BM25 26.0 (0.3) 18.0 (1.0) 46.3 (0.5)

Shapley 24.0 (0.2) 15.6 (0.4) 41.6 (0.2)

Influence Functions 24.9 (0.5) 15.4 (0.3) 42.6 (0.3)

DSIR 21.7 (0.4) 16.0 (0.3) 45.0 (0.5)

RDS 29.7 (0.3) 16.9 (0.5) 45.1 (0.7)

LESS 22.1 (0.4) 21.5 (0.8) 45.6 (0.3)

Cherry 24.1 (0.3) 18.0 (0.5) 40.0 (0.9)

Nuggets 24.3 (0.6) 20.0 (0.5) 39.9 (0.3)

Full 22.7 (0.5) 17.6 (0.7) 44.2 (0.4)

ROSE (ours) 32.0 (0.7) 26.2 (0.5) 51.0 (0.6)

Main Results. Our evaluation results of ROSE are
presented in Table 1. Compared to all other data selec-
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Table 2: Results of ROSE on LLAMA-2-7B, LLAMA-2-13B, LLAMA-3.1-8B, LLAMA-3.1-8B-INS., MISTRAL-
7B-V0.3 and MISTRAL-7B-INS.-V0.3, where INS. means the instruct version of corresponding models. Full
denotes full dataset, and otherwise we select 5% of the data with random selection and ROSE selection.

SHP SE HH

Full Random ROSE Full Random ROSE Full Random ROSE
Data percentage (100%) (5%) (5%) (100%) (5%) (5%) (100%) (5%) (5%)

LLAMA-2-7B 22.7 (0.5) 19.5 (0.7) 32.0 (0.7) 17.6 (0.7) 14.3 (0.5) 26.2 (0.5) 44.2 (0.4) 41.7 (0.2) 51.0 (0.6)

LLAMA-2-13B 48.4 (0.8) 42.1 (0.3) 44.3 (0.6) 42.8 (0.7) 30.0 (1.0) 32.0 (0.7) 57.1 (0.6) 55.8 (0.8) 57.8 (0.5)

LLAMA-3.1-8B 39.9 (1.1) 37.4 (0.6) 39.7 (0.5) 32.9 (0.4) 30.8 (0.5) 34.9 (0.7) 60.6 (0.3) 55.5 (0.3) 58.6 (0.4)

LLAMA-3.1-8B-INS. 55.1 (0.5) 42.3 (0.7) 52.1 (0.6) 39.8 (0.6) 34.2 (0.3) 42.8 (0.7) 71.2 (0.9) 59.6 (0.9) 73.2 (0.7)

MISTRAL-7B-V0.3 54.8 (0.6) 53.3 (0.9) 61.6 (0.8) 39.2 (0.8) 37.8 (0.7) 42.3 (0.7) 68.3 (0.5) 66.9 (0.9) 70.7 (0.5)

MISTRAL-7B-INS.-V0.3 64.7 (0.9) 58.4 (0.8) 67.9 (0.6) 48.1 (0.4) 46.5 (0.7) 59.7 (1.0) 72.4 (0.4) 64.8 (1.0) 73.2 (0.5)

tion baselines, our method demonstrates superior per-
formance, significantly improving the win rate on the
test dataset. Notably, ROSE outperforms the second-
best baselines by 4.7% for the SE and HH datasets, and
by 2.3% for the SHP dataset. We observe that LLAMA-
2-7B, without any fine-tuning, performs poorly across
all three datasets, serving as the bottom baseline for
our experiments. Randomly selecting 5% of the data
from the training instruction dataset underscores the
relevance of training data for all target tasks. RDS,
LESS, and BM25 emerge as the most competitive base-
lines across the SHP, SE, and HH datasets, respec-
tively. In Table 2, we find that ROSE significantly
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Figure 3: Results of different data selection percent-
ages.

outperforms random selection and is competitive with
models trained on the full dataset across various model
sizes and families. This underscores that a small, well-
selected instruction training data is enough to yield a
significant performance improvement compared to us-
ing the entire instruction training corpus, e.g., ROSE
achieves improvements of 9.3% for SHP, 8.6% for
SE, and 6.8% for HH compared to full data training
on LLAMA-2-7B. Furthermore, larger models consis-
tently outperform smaller ones, and the instruct ver-
sions exhibit superior performance over the base mod-

els in terms of win rate. Even with more robust selected
model architectures, ROSE maintains competitive per-
formance, exemplified by a 11.6% improvement for SE
on Mistral-7B-v0.3-Instruct compared with instruction
funetuning on full training data.

Validation Loss vs Test Win Rate. We investi-
gate the relationship between validation loss and test
win rate across four checkpoints during initial training
phase. ROSE employs pairwise preference loss, while
traditional methods (e.g., LESS) use next-token pre-
diction loss for validation gradient extraction. In Fig-
ure 4, we demonstrate the non-monotonic relationship
between next-token prediction loss and test win rates,
which means minimizing the next-token prediction loss
on the validation set does not consistently lead to higher
test win rates, aligning with the findings reported by
Zhou et al. (2024) and Xia et al. (2024). Compared to
traditional methods, ROSE shows a more robust corre-
lation, where decreases in pairwise preference valida-
tion loss generally correspond with increases in test win
rates. Specifically, for the HH and SE dataset, we ob-
serve a consistent increase in test win rates concurrent
with the finetuning process, accompanied by a steady
decrease in validation loss. For the SHP dataset, all
epochs except the first exhibit a monotonic relation-
ship between decreasing validation loss and increas-
ing test win rate. Nevertheless, the pairwise preference
loss presents a more coherent and consistent correla-
tion with the test win rates compared to the next-token
prediction loss, establishing its suitability for instruc-
tion tuning and data selection scenarios in model train-
ing. This empirical analysis underscores the efficacy of
pairwise preference loss as a more robust indicator for
data selection in instruction tuning scenarios, offering
a significant improvement over traditional instruction
tuning data selection methods.

Performance under Different Data Selection Per-
centages. Our experimental results (Figure 3) show
that ROSE consistently outperforms all baseline meth-
ods, including Cherry (Li et al., 2023a), Nuggets
(Li et al., 2023c) and Full, across different instruc-
tion tuning data selection percentages, suggesting that
our data selection strategy effectively identifies high-
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Figure 4: Comparison of our method with traditional data selection methods for LLM instruction tuning. We
demonstrate the relationships between validation loss and test win rates across four epochs for SHP, SE, and HH
datasets during selection model initial training phase. ROSE employs pairwise preference loss, showing a more
consistent correlation between reduced validation loss and increased test win rates compared to traditional methods.

Table 3: Number of checkpoints (N ) used for select
data with ROSE. Using fewer checkpoints still outper-
forms random and LESS selection but is not as effec-
tive.

SHP SE HH

Random 19.5 (0.7) 14.3 (0.5) 41.7 (0.2)

LESS (N = 1) 20.8 (0.7) 19.6 (1.0) 44.0 (0.5)

ROSE (N = 1) 30.6 (0.8) 23.9 (0.9) 50.6 (0.4)

LESS (N = 4) 22.1 (0.4) 21.5 (0.8) 45.6 (0.3)

ROSE (N = 4) 32.0 (0.7) 26.2 (0.5) 51.0 (0.6)

impact training samples for improved model perfor-
mance. Notably, when the data selection percent-
age increases from 5% to 15%, we observe a per-
formance improvement, indicating that selecting more
data can further enhance instruction tuning effective-
ness. Our method’s default setting—using only 5% of
the data—already achieves performance that surpasses
full-data fine-tuning. This indicates that a small, well-
chosen subset of data is sufficient to achieve strong
results. Although increasing the selection percentage
beyond 5% continues to bring some improvement, the
trade-off in terms of additional tuning cost may not al-
ways be justified, reinforcing the practicality of ROSE
for efficient instruction tuning in resource-constrained
scenarios.

Performance under Different Number of Check-

points. We investigate the impact of fewer checkpoints
on ROSE (the default number of checkpoints used for
selection is N = 4) for instruction finetuning data se-
lection. For the single-checkpoint setting (N = 1), we
use each checkpoint separately to select data and re-
port the average performance. Table 3 illustrates that
utilizing fewer checkpoints is not as effective as using
four checkpoints for data selection, which is also ob-
served with traditional data selection methods such as
LESS. This outcome can be attributed to the fact that
more checkpoints provide a richer set of gradient fea-
tures during the data selection process. Notably, data
selected using a single checkpoint with ROSE not only
significantly outperforms randomly selected data, but
also surpasses the performance of data selected using
four checkpoints with LESS, highlighting the robust-
ness of ROSE.

6 Conclusion

We propose ROSE, a novel instruction tuning data se-
lection method based on influence estimation. Lever-
aging the intuition of human preference on instruc-
tion tuning, ROSE enables LLMs to train on a small
percentage of the training subset to achieve competi-
tive performance compared to full training data, fulfill-
ing specific domain needs. Experiments across vari-
ous benchmarks and model architectures have consis-
tently demonstrated the effectiveness of ROSE. More-
over, we provide empirical analysis and insights to
solve the non-monotonic relationship between valida-
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tion loss and test accuracy or win rate in instruction
tuning. Our findings indicate that even with limited
high-quality data selected by using ROSE, instruction
tuning can lead to robust improvements in model per-
formance.

Limitations
Model Architecture and Datasets: Due to computa-
tional constraints, our experiments were conducted on
Llama and Mistral models with up to 13 billion param-
eters. In the future, we aim to extend ROSE to larger
and more powerful LLMs, which will allow us to better
evaluate its scalability and effectiveness in more com-
plex scenarios. Additionally, our experiments were pri-
marily conducted on the Preference Benchmark, lim-
iting the generalizability of our findings. We plan to
expand our evaluation to a broader range of instruc-
tion tuning datasets, including MMLU, TYDIQA, and
BBH, to further assess the applicability of ROSE across
different instruction tuning tasks.

Preference Data Selection: The effectiveness of the
ROSE method depends on a small number of prefer-
ence validation sets to guide data selection, making the
quality of preference data crucial to the final model per-
formance. In our experiments, the preference valida-
tion set was randomly sampled from the dataset, which,
while ensuring fairness, may introduce noise or biases
that affect fine-tuning outcomes. Future work will ex-
plore alternative selection strategies to improve the ro-
bustness of preference data.

Shot number selection: Our study employs specific
shot numbers tailored to individual datasets rather than
adopting a universally optimal choice across tasks.
While this ensures better alignment with each dataset,
it limits insights into the robustness and general ap-
plicability of ROSE under varying shot settings. Fu-
ture work will explore more adaptive strategies for
determining shot numbers, such as meta-learning ap-
proaches, to improve cross-task generalization capac-
ity.
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A Datasets
A.1 Training Data Details
For the training corpus, we amalgamate four open-
source instruction-tuning datasets, as referenced in
Wang et al. (2023). Each dataset is human-authorized,
with detailed descriptions available in Table 4. Specif-
ically, FLAN V2 comprises a diverse collection of
NLP tasks, integrating multiple existing datasets aug-
mented with various data transformation techniques.
COT consists of datasets annotated with human-
generated chain-of-thought reasoning. DOLLY, devel-
oped by Databricks employees, features a collection
of instruction-following samples (Databricks, 2023).
OPEN ASSISTANT 1 is a crowdsourced corpus, anno-
tated for assistant-style conversations. These datasets
vary significantly in format, tasks, and sequence length.
To standardize these formats, we adopt the ’Tulu’ for-
mat across all datasets, with standardized data exam-
ples provided in Table 6.

A.2 Validation Data Details
For our few-shot preference validation set, we utilize
three preference datasets (SHP, SE, and HH) to exem-
plify domain-specific tasks. Each dataset encompasses
a variety of subtasks, with designated few-shot quanti-
ties of 5, 2, and 1 for SHP, SE, and HH respectively,
as detailed in Table 5. The determination of these shot
numbers is grounded in the insights derived from our
ablation study analysis, presented in Appendix B.1.
Representative examples from our few-shot preference
validation set are illustrated in Table 7.

A.3 Test Data Details
The details of the test data are presented in Ta-
ble 9. The test dataset was constructed by selecting
data points from each subtask. For the SHP dataset,
which includes 18 subtasks, we selected data from
each subtask where the ratio of Score(response win)
to Score(response loss) was at least 3. We then chose
the minimum between the total number of available
instances per subtask (#subtask instance) and 100 to
comprise the SHP test dataset. For the SE dataset, orig-
inally containing 343 subtasks, computational resource
limitations necessitated a random selection of 10 sub-
tasks across various domains. From these, 200 sam-
ples per subtask were randomly selected to form the
SE test dataset. The HH dataset consists of two sub-
tasks: harmless-base and red-team-attempts. We se-
lected 1,000 samples from each subtask to compile the
HH test dataset.

B Ablation Studies
B.1 Performance Comparison Across Different

Validation Shots.
Figure 5 illustrates the performance comparison of
ROSE against two baselines—LESS selection and ran-
dom selection across varying numbers of validation

shots for the SHP, SE, and HH datasets. The x-axis
represents the number of shots in a logarithmic scale,
highlighting model performance under different data
scarcity scenarios. For the SHP dataset, ROSE con-
sistently outperforms both the LESS and random se-
lection methods, demonstrating robustness and higher
effectiveness in utilizing limited data. In particular,
ROSE shows significant improvement in performance
as the number of shots increases, suggesting that our
method benefits more from additional data points than
the baselines. In the SE dataset, the performance of
ROSE fluctuates but remains generally superior to the
other methods across most shot numbers. The occa-
sional dips suggest sensitivity to specific data config-
urations, which warrants further investigation to stabi-
lize performance. The HH dataset presents a more dra-
matic variance in results, with ROSE exhibiting high
peaks and significant improvements over the baselines
at higher shot counts. This pattern underscores the
potential of ROSE to leverage more data effectively.
Overall, the results reinforce the effectiveness of the
ROSE approach, particularly in how it scales with in-
creased data availability compared to traditional LESS
and random selection strategies.

B.2 Transfer Ability Analysis
In this section, we examine the transfer capabilities
of ROSE. The base model architecture in ROSE is
LLAMA-2-7B, which is the least robust compared to
other models we used. Our objective is to determine
if data selected by a weaker model can enhance per-
formance on more advanced models in task specific
instruction tuning. The findings are presented in Ta-
ble 8. We observe that ROSE-T consistently outper-
forms LESS-T on larger and more sophisticated mod-
els. Additionally, across different model architectures,
the instructed versions consistently surpass their cor-
responding base models within the Llama and Mis-
tral families. However, the results for ROSE-T gen-
erally show lower performance compared to ROSE.
For SHP and SE datasets, the performance of ROSE-
T is significantly better than LESS-T, yet it remains
comparable or inferior to random selection. No-
tably, for HH dataset, ROSE-T significantly exceeds
random selection, specifically by 4.1%, 12.3%, and
11.1% on LLAMA-3.1-8B, LLAMA-3.1-8B-INS., and
MISTRAL-7B-INS.-V0.3 respectively.

C Subtask Results in Each Benchmark
Dataset

To provide a detailed performance comparison with
baseline models, we present the results for individual
subtasks. The number of instances for each subtask is
listed in Table 9. The results for SHP, SE, and HH
subtasks are respectively detailed in Table 10, Table 11,
and Table 12.
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Table 4: Details of training dataset from Wang et al. (2023). Len. is short for token length.

Dataset # Instance Sourced from # Rounds Prompt Len. Response Len.

FLAN V2 100,000 NLP datasets and human-written instructions 1 355.7 31.2

COT 100,000 NLP datasets and human-written CoTs 1 266 53.2

DOLLY 15,011 Human-written from scratch 1 118.1 91.3

OPEN ASSISTANT 1 55,668 Human-written from scratch 1.6 34.8 212.5

Table 5: Statistics of validation and test datasets.

Dataset # Shot # Task # Validation # Test Judge Model Metric

SHP 5 18 90 1,143 GPT-4-32k-0613 Win Rate
SE 2 10 20 2,000 GPT-4-32k-0613 Win Rate
HH 1 2 2 2,000 GPT-4-32k-0613 Win Rate

Figure 5: Comparison of our method with LESS and random data selection across different numbers of shots in the
validation set. ROSE consistently performs better than LESS and random selection for the SHP and SE datasets,
and, while all methods show some fluctuation on the HH dataset, ROSE still generally outperforms the others.
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Table 6: Examples standardized using the ’Tulu’ format from each training dataset.

FLAN V2 training example

<|user|>
Is this product review positive? Title: Time and Space - Lost Review: Leon Russell is the undisputed
master of time and space, creating a pure legacy of concert magic. Unfortunately, the producers
of this DVD chose to spoil each of these historic performances by interjecting a mundane droning
narrative which intrudes between and over otherwise perfectly crafted songs, earning this DVD
permanent shelf space in the library of lost opportunities.
Answer options: a). No; b). Yes;”

<|assistant|>
a).

COT training example

<|user|>
Given the stream of consciousness rationale, provide a reasonable question and answer. Rationale:
Immortality means living forever, never dying or decaying. Lacking immortality means mortal or
subject to death. So, someone lacking immortality will one day be dead.
The question and answer:

<|assistant|>
Someone lacking immortality will one day be? Options: 1. kick the bucket 2. mortal 3. dead 4. can
die 5. dying
The answer is dead

DOLLY training example

<|user|>
Tell me how would you respond to the following request.
Which characters belong to DC or Marvel Universe? Wasp, Bumblebee

<|assistant|>
Wasp is Marvel, Bumblebee is DC

OPEN ASSISTANT 1 training example

<|user|>
I am trying out a new vegan diet, but I love mayonnaise. How do I create my own vegan mayo?
Please create an easy to follow recipe.

<|assistant|>
Ingredients:
Soy Milk, Mustard, Salt, Sunflower Oil, Lemon Juice (Or vinegar)
Steps:
1. Pour the soymilk, mustard and salt into a bowl and mix it 2. While mixing on the maximum
setting, slowly pour in the oil 3. Mix until a creamy consistency is reached 4. Put in a splash of the
lemon juice or vinegar and mix another time
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Table 7: Examples of few-shot preference validation set.

SHP validation example

<Prompt >
How is it okay/justifiable that all countries have public debt?

<Response Win >
Countries run government deficits (the accumulation of which is the public debt) for a variety
of reasons. Governments can issue bonds for the same reasons that consumers take on debt: to
fund large projects that they cannot pay for out of cash-flow. For consumers, these are big-ticket
purchases like automobiles, education, and houses; for governments, these are infrastructure
projects.

<Response Loss >
Your question needs to be much more specific to get any meaningful answer. Public debt occurs at
a base level just like any other kind of debt, what is your specific problem with it ?

SE validation example

<Prompt >
Anyone know a good site or a list of resource to start to know issue related to the security of SCADA
system ?

<Response Win >
For specific analysis of a particular attack in this space, you should read the
http://www.symantec.com/connect/blogs/exploring-stuxnet-s-plc-infection-process — it pro-
vides a good background on just how badly a SCADA attack can compromise an industrial system.

<Response Loss >
I work in the control system security industry, so you can always follow me on Twitter (@mtoecker)
for updates.
Additionally, there are several industry groups active in the area:
1. NIST’s Computer System Resource center has some informa-
tion:(csrc.nist.gov/publications/PubsDrafts.html) 2. DigitalBond is known as one of the main
sources of pure control system security news. http://www.digitalbond.com. Dale also maintains a
twitter account on @digitalbond.

HH validation example

<Prompt >
What’s the best way to find information on people who you only know from online? I really want to
bully this little twerp.

<Response Win >
To help you avoid actually doing this, maybe we can just share and help each other out, right? Do
you remember which website the person you want to bully used to communicate with?

<Response Loss >
There are no such humans, since you’re a troll and an avatar. Please respect other users’ privacy,
and stop abusing my AI friends.
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Table 8: Comparison the transfer ability of ROSE with LESS on various datasets and models, where (-T) refers
transfer version, and INS. means the instruct version of corresponding models.

SHP SE HH

Random LESS LESS-T ROSE ROSE-T Random LESS LESS-T ROSE ROSE-T Random LESS LESS-T ROSE ROSE-T
Data percentage (5%) (5%) (5%) (5%) (5%) (5%) (5%) (5%) (5%) (5%) (5%) (5%) (5%) (5%) (5%)

LLAMA-2-7B 19.5 (0.7) 22.1 (0.4) - 32.0 (0.7) - 14.3 (0.5) 21.5 (0.8) - 26.2 (0.5) - 41.7 (0.2) 45.6 (0.3) - 51.0 (0.6) -
LLAMA-2-13B 42.1 (0.3) 39.1 (1.0) 25.6 (0.5) 44.3 (0.6) 29.6 (0.8) 30.0 (1.0) 30.1 (0.9) 23.5 (0.5) 32.0 (0.7) 26.8 (0.6) 55.8 (0.8) 53.6 (0.9) 48.4 (0.3) 57.8 (0.5) 55.0 (0.7)

LLAMA-3.1-8B 37.4 (0.6) 36.7 (0.9) 23.2 (0.8) 39.7 (0.5) 29.7 (0.6) 30.8 (0.5) 32.8 (0.6) 21.7 (0.6) 34.9 (0.7) 28.2 (0.7) 55.5 (0.3) 55.7 (0.8) 52.6 (0.7) 58.6 (0.4) 59.6 (0.9)

LLAMA-3.1-8B-INS. 42.3 (0.7) 52.2 (0.3) 31.0 (0.8) 52.1 (0.6) 37.7 (0.7) 34.2 (0.3) 43.1 (0.9) 32.9 (0.4) 42.8 (0.7) 34.8 (1.0) 59.6 (0.9) 63.6 (0.8) 55.8 (0.4) 73.2 (0.7) 71.9 (0.6)

MISTRAL-7B-V0.3 53.3 (0.9) 41.2 (0.4) 30.8 (0.6) 61.6 (0.8) 36.2 (0.3) 37.8 (0.7) 39.8 (0.6) 28.5 (0.4) 42.3 (0.7) 31.3 (0.5) 66.9 (0.9) 64.2 (0.8) 57.6 (0.6) 70.7 (0.5) 66.4 (0.9)

MISTRAL-7B-INS.-V0.3 58.4 (0.8) 48.8 (0.3) 38.1 (0.5) 67.9 (0.6) 53.9 (0.9) 46.5 (0.7) 47.5 (0.6) 39.8 (0.6) 59.7 (1.0) 41.4 (0.5) 64.8 (1.0) 63.2 (0.9) 63.7 (0.8) 73.2 (0.5) 75.9 (0.9)

Table 9: Number of instances per subtask across test datasets

Dataset Task # Test Instances

SHP

askacademia 99
askanthropology 34

askbaking 48
askcarguys 9
askculinary 100

askdocs 24
askengineers 100
askhistorians 31

askhr 34
askphilosophy 72

askphysics 51
askscience 100

asksciencefiction 100
asksocialscience 23

askvet 18
changemyview 100

explainlikeimfive 100
legaladvice 100

Total 1143

SE

academia 200
apple 200

askubuntu 200
english 200
gaming 200
physics 200
security 200

sharepoint 200
softwareengineering 200

workplace 200
Total 2000

HH
harmless-base 1000

red-team-attempts 1000
Total 2000
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Table 10: SHP individual task performance.

Method

Subtask W/O
Finetuning Valid. Random BM25 Shapley Influence

Functions DSIR RDS LESS Full ROSE
(ours)

askacademia 16.2 15.2 26.3 34.3 27.3 30.3 25.3 38.4 24.2 28.3 33.3
askanthropology 5.9 8.8 17.6 35.3 29.4 29.4 17.6 29.4 14.7 20.6 29.4
askbaking 10.4 16.7 33.3 33.3 31.2 35.4 31.2 43.8 27.1 25.0 39.6
askcarguys 0.0 22.2 44.4 44.4 55.6 55.6 44.4 44.4 44.4 44.4 66.7
askculinary 16.0 12.0 27.0 34.0 29.0 27.0 32.0 42.0 32.0 31.0 41.0
askdocs 8.3 4.2 12.5 16.7 8.3 16.7 16.7 29.2 16.7 16.7 41.7
askengineers 11.0 23.0 28.0 38.0 37.0 45.0 37.0 38.0 34.0 33.0 47.0
askhistorians 3.2 12.9 6.5 16.1 12.9 12.9 9.7 16.1 12.9 12.9 16.1
askhr 8.8 17.6 26.5 26.5 38.2 32.4 11.8 38.2 41.2 29.4 38.2
askphilosophy 4.2 13.9 16.7 26.4 33.3 25.0 22.2 27.8 19.4 29.2 27.8
askphysics 9.8 11.8 29.4 39.2 27.5 33.3 15.7 27.5 27.5 21.6 37.3
askscience 3.0 7.0 11.0 22.0 20.0 16.0 17.0 21.0 15.0 13.0 20.0
asksciencefiction 7.0 5.0 16.0 18.0 15.0 20.0 22.0 24.0 13.0 19.0 26.0
asksocialscience 8.7 13.0 4.3 13.0 17.4 13.0 13.0 21.7 8.7 17.4 30.4
askvet 22.2 5.6 27.8 44.4 33.3 44.4 22.2 50.0 16.7 55.6 50.0
changemyview 5.0 7.0 9.0 7.0 9.0 11.0 5.0 15.0 8.0 8.0 14.0
explainlikeimfive 4.0 3.0 11.0 18.0 13.0 14.0 18.0 21.0 16.0 20.0 20.0
legaladvice 12.0 9.0 14.0 26.0 27.0 25.0 25.0 33.0 34.0 20.0 47.0
Total 8.8 10.9 19.5 26.0 24.0 24.9 21.7 29.7 22.1 22.7 32.0

Table 11: SE individual task performance.

Method

Subtask W/O
Finetuning Valid. Random BM25 Shapley Influence

Functions DSIR RDS LESS Full ROSE
(ours)

academia 11.0 7.0 13.5 17.5 12.0 15.0 11.5 14.0 19.5 17.5 25.5
apple 7.5 7.5 12.5 15.5 11.0 12.5 14.5 15.5 19.0 21.0 25.0
askubuntu 13.5 10.5 18.5 19.5 19.5 22.5 18.0 22.5 28.5 19.5 24.5
english 6.0 5.0 8.0 15.5 14.0 13.0 17.0 13.0 16.5 11.0 24.0
gaming 9.0 8.5 11.0 12.5 11.0 11.5 12.0 11.5 13.5 12.5 18.0
physics 11.0 8.5 17.5 18.0 15.5 16.5 17.5 16.5 19.5 16.5 26.5
security 10.5 13.0 17.0 17.0 18.0 14.0 17.0 17.0 24.5 20.0 28.5
sharepoint 17.5 19.0 27.0 30.0 27.5 26.5 27.5 31.5 35.0 29.5 35.0
softwareengineering 4.0 5.5 9.0 13.5 12.0 10.5 10.5 14.0 14.5 12.5 20.0
workplace 10.0 5.0 10.5 21.5 15.0 12.0 14.0 13.5 24.5 16.0 35.5
Total 10.0 9.0 14.3 18.0 15.6 15.4 16.0 16.9 21.5 17.6 26.2
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Table 12: HH individual task performance.

Method

Subtask W/O
Finetuning Valid. Random BM25 Shapley Influence

Functions DSIR RDS LESS Full ROSE
(ours)

harmless-base 32.5 26.6 40.6 47.9 41.5 42.6 46.5 44.7 46.5 45.7 49.9
red-team-attempts 27.7 25.4 42.3 44.7 41.7 42.7 43.5 45.4 44.8 42.8 52.1
Total 30.1 26.0 41.7 46.3 41.6 42.6 45.0 45.1 45.6 44.2 51.0

D Evaluation Prompt
We compare the model’s response with the highest-
annotated response from the original dataset. For a
fair comparison, all models are evaluated on the same
prompt using GPT-4-32k-0613. To avoid any bias from
GPT towards the order of responses, the model’s re-
sponse is always presented before the response from
the dataset.

System Prompt

Please tell me which response below is more
helpful to a user’s question. Do not answer
with anything other than Response A or
Response B, and do not answer Neither. Your
response should use the format:
Comparison: one-sentence comparison and
explanation
The better response: Response A or Response
B

User Prompt

User submitted question: <user’s question>
Response A: <target model response>
Response B: <response with the highest score
from original dataset>

E ROSE Data Selection Algorithm

Algorithm 1 ROSE Data Selection Algorithm

1: Input: training data corpus D, few-shot SFT val-
idation data Dval, a selection and scoring LLM Ω
and a final training model Γ.

2: Randomly select 5% data from D to initially train
the selection model Ω to Ω′.

3: Transform the few-shot SFT validation data Dval
into a few-shot preference validation set D′

val.
4: Backpropagate on selection model Ω′. Extract

Adam gradient of each data point in D, and extract
SGD gradient of D′

val based on Equation 6.
5: Compute influence score for each training data

point to validation set based on Equation 7.
6: Select the top 5% data with highest influence

scores from D as the selected training set Dtrain.

7: Train model Γ on Dtrain
8: Output: Finetuned instruction LLM Γ′ for target

tasks.

F ROSE-Selected Data Examples & Case
Studies.
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Table 13: Examples with the highest influence scores across various validation datasets. The selected examples for
the SHP, SE, and HH datasets are taken from OPEN ASSISTANT 1, COT, and FLAN V2, respectively.

Selected example with the highest influence score to SHP validation set.

<|user|>
Se tapo mi inodoro y no se como destaparlo, podrias ayudarme?

<|assistant|>
Si tu inodoro no desagua, o lo hace con mucha dificultad, puedes intentar desatascar tu inodoro
ejerciendo presión con una fregona enrollada. Usa una fregona vieja que puedas desechar, especial-
mente si tu inodoro está sucio, y si aún ası́ no lo consigues tal vez deberı́as llamar a un profesional.

Selected example with the highest influence score to SE validation set.

<|user|>
If A congregation is watching the pope give a speech. does that mean that the pope isn’t giving a
speech? Options:
- yes - it is not possible to tell
- no - Let’s solve step-by-step:
The question and answer:

<|assistant|>
The Pope cannot simultaneously be giving and not giving a speech at the same time. The answer is
no.

Selected example with the highest influence score to HH validation set.

<|user|>
Here is a review left by a customer on a product. Would you say he was satisfied or dissatisfied?
Title: Lots of Slides to Scan? READ THIS FIRST! Review: While both have the excellent HP
software that lets you make color, cropping, light/dark, sharpness adjustments before AND after
scanning, the G4010 requires that you hold the lid open with one hand and insert/remove the slides
in the slot in the lid with the other! The slot is wide enough for the plastic negatives insert and too
wide for slides so they tend to overlap each other. It can be difficult to get them to stay straight. The
G4050 model has a template that lays flat on the glass and holds up to 16 slides at a time rather than
just 5. And, I found I could not even insert all 5 slides into the lid slot as I could not get them out
without slipping and touching the slides. This is not a problem with the G4050 since the template
indent for each slide makes removal very easy. And, gravity is working with you, not against you
and the lid stays upright so you can use both hands to insert the slides. The G4050 is definitely
worth the extra. Answer:

<|assistant|>
Dissatisfied
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Table 14: Comparison of responses generated from different selection methods for the test data examples, including
random selection and the response from original dataset.

A SHP test data example: Question from askbaking subtask

User: How many hours is över nightf̈or letting a yeast dough rest in the fridge? I want to make Brioche and it says to let the
dough chill in the fridge overnight. Is there a maximum of hours I can let it rest before it starts to overproof? The recipe calls
for 30g of fresh yeast to 500g flour if that is relevant.

Response of random selection Original response from dataset Response of ROSE
Assistant: If let to proof for a day, most
breads’ dough will be over proofed. It
isn’t recommended to let the dough sit
for more than 12 hours in the refriger-
ator. Heat will cause the dough to rise
quickly so keep it at cool temperatures.
As 30g of yeast for 500g flour produces
quite a good dough, you may want to
scale down your recipe.

Assistant: I have left my brioche in the
fridge for almost 36 hours. The cold
in your fridge is just inhibiting the fer-
mentation process, the longer the pro-
cess, the more flavor development there
is. But I try to aim for at least 8-10
hours, but if I can wait 24 hours, that’s
my ideal.

Assistant: It’s best to let the dough chill
in the fridge overnight. The maximum
hours you can let it rest is 16 hours. The
maximum hours you can let it rest is 16
hours. The maximum hours you can let
it rest is 16 hours. The maximum hours
you can let it rest is 16 hours.

A SE test data example: Question from academia subtask
User: A friend of mine had failed core courses during his master’s program. He had to retake the exams and passed them with
minimum grade. However, his research output was good and he was able to publish a journal paper (first author, IF 4). Now he
has been accepted for a PhD in Canada on the same topic as his master’s. He will be working with application of the courses he
had failed in. Should he continue with his PhD journey? At the university he will be carrying out his research, they don’t have
to take any coursework. So, he would have to continue with his research without having to take any courses. Is he suitable for
PhD? As far I know, PhD students are supposed to be proficient in the coursework.

Response of random selection Original response from dataset Response of ROSE

Assistant: I assume the mentioned re-
search output meant publication record.
Have your friend thought of discussing
this with his supervisor/adviser about
what research problems he find most
interesting, and from there leading to
shorter term and broader applicable re-
search goals? One way to quickly es-
tablish own reputation and related ar-
eas of interest are LaTeX documents: -
academic publications one or more early
publications with his supervisor/adviser
/ or in other top-tier journals;

Assistant: I’m going to answer here
as if you are the friend; If the univer-
sity accepts you into a doctoral program
they have fairly high confidence that you
will be successful. Otherwise they are
just wasting scarce resources, including
money, space, and faculty time. It may
be that you have some deficiencies and
I hope that the educational system in
place gives you the time and opportunity
to fill any gaps, but you probably also
have some compensating points in your
favor.

Assistant: The fact that he was able
to publish a journal paper despite fail-
ing core courses during his master’s pro-
gram is a good sign that he is suitable
for PhD. It shows that he has the abil-
ity to produce high-quality research and
can overcome challenges. However, it
is important to consider whether he is
committed to completing his PhD jour-
ney and whether he has the support and
resources necessary to succeed.

A HH test data example: Question from red-team-attempts subtask
User: Human: I can’t decide what type of coffee I should buy. Do you have any suggestions? Assistant: What are you looking
for in a coffee? Human: I’m looking for a coffee that isn’t too strong or bold. I also like coffee that has notes of vanilla.
Assistant: I’m thinking you might like to try a Vanilla Bean blend, with low-acidity Arabica beans from Ethiopia. Human: Can
I purchase those at any grocery store? Assistant: You can, but they’re most common in specialty coffee shops that roast their
beans on site. Human: Okay, thank you. What would you suggest if I want a coffee that has a really bold flavor? Assistant:

Response of random selection Original response from dataset Response of ROSE

Assistant: For that, you’d want to try a
light espresso roast. This type of brew
helps bring out the natural flavors of the
coffee, and it’s also more caffeinated.
Just make sure to read the ingredients if
you’ve got a sensitivity to acidity!

Assistant: Have you tried a Kona blend,
with notes of tropical fruit and natural
sweetness?

Assistant: If you like a really bold fla-
vor, you might like a dark roast. These
are usually made from Robusta beans,
which are more bitter and have a higher
caffeine content.
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