
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 13185–13199
November 4-9, 2025 ©2025 Association for Computational Linguistics

Sensitivity-LoRA : Low-Load Sensitivity-Based Fine-Tuning for Large
Language Models

Hao Zhang1*, Bo Huang2*, Zhenjia Li3*, Xi Xiao4, Huiyi Leong5, Zumeng Zhang6,
Xinwei Long7, Tianyang Wang4, Hao Xu1†

1Harvard University, 2Xi’an University of Science and Technology
3University of Chinese Academy of Sciences, 4University of Alabama at Birmingham

5University of Chicago, 6Yunnan University, 7Tsinghua University
zh.cs.star@outlook.com, haxu@bwh.harvard.edu

Abstract

Large Language Models (LLMs) have trans-
formed both everyday life and scientific re-
search. However, adapting LLMs from
general-purpose models to specialized tasks
remains challenging, particularly in resource-
constrained environments. Low-Rank Adap-
tation (LoRA), a prominent method within
Parameter-Efficient Fine-Tuning (PEFT), has
emerged as a promising approach to LLMs
by approximating model weight updates us-
ing low-rank decomposition. However, LoRA
is limited by its uniform rank r allocation to
each incremental matrix, and existing rank al-
location techniques aimed at addressing this
issue remain computationally inefficient, com-
plex, and unstable, hindering practical appli-
cations. To address these limitations, we pro-
pose Sensitivity-LoRA, an efficient fine-tuning
method that dynamically allocates ranks to
weight matrices based on both their global and
local sensitivities. It leverages the second-order
derivatives (Hessian Matrix) of the loss func-
tion to effectively capture weight sensitivity,
enabling optimal rank allocation with minimal
computational overhead. Our experimental re-
sults have demonstrated robust effectiveness,
efficiency and stability of Sensitivity-LoRA
across diverse tasks and benchmarks.

1 Introduction

Large language models (LLMs) have become trans-
formative tools across a wide spectrum of tasks
and applications (Ding et al., 2022; Qin et al.,
2023; Zhu et al., 2023b,a; Li et al., 2023; Zhang
et al., 2023a; Huang et al., 2023; Wang et al.,
2023; Ma et al., 2025; Wu et al., 2025; Qi et al.,
2025a,b; Luo et al., 2025; Zhang et al., 2025b,a;
Leong and Wu, 2024; Zhang et al., 2025c). De-
spite these advancements, fine-tuning remains a
critical technique for effectively adapting LLMs

*These authors contribute equally to this work.
†Corresponding author.

from general-purpose models to specialized appli-
cations, especially in resource-constrained environ-
ments. However, full-parameter fine-tuning can
be prohibitively resource-intensive, requiring sig-
nificant computational power and GPU capacity.
To address this limitation, the research community
introduced parameter-efficient fine-tuning (PEFT)
(Lester et al., 2021; Li and Liang, 2021; Zaken
et al., 2022; Hu et al., 2022a; Xiao et al., 2025b,a),
which aims to balance accuracy and efficiency by
selectively updating a subset of model parameters.

LoRA (Hu et al., 2022b), a prominent PEFT
method, approximates model weight updates us-
ing low-rank decomposition, leveraging the low
intrinsic dimension of over-parameterized models
(Li et al., 2018; Aghajanyan et al., 2020). During
training, the update of the weight matrix (∆W )
can be approximated as the product of two smaller
matrices B and A, expressed as:

∆W ≈ B ·A (1)

where ∆W ∈ Rd1×d2 , A ∈ Rr×d2 and B ∈
Rd1×r with r ≪ {d1, d2}. Thus, it approximates
the update of the weight matrix with fewer pa-
rameters. However, the full potential of LoRA
remains constrained by its inherent design limita-
tions. Specifically, it assumes a uniform rank r for
each incremental matrix, not accounting for the
varying significance of weight matrices across dif-
ferent modules and layers (Hu et al., 2023; Zhang
et al., 2023b).

To address this limitation, dynamic rank alloca-
tion has emerged as a key solution by allocating
the rank r to each different module or layer ac-
cording to its specific requirements. Existing meth-
ods achieve this through three main approaches:
singular value decomposition (SVD), single-rank
decomposition (SRD), and rank sampling. SVD-
based methods (Zhang et al., 2023c; Hu et al., 2023;
Zhang et al., 2023b) decompose matrix BA into
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Figure 1: Pipeline of the Sensitivity-LoRA Method: Step 1 - Sensitivity detection via Hessian-based metrics,
including global and local sensitivity measures. (hw

ij =
∂2Ew

∂wi∂wj
, hii =

∂2Ew

∂w2
i

, where Ew denotes the change in loss
function regarding weight matrix w; tr(Hw) denotes the trace of Hw.) Step 2 - Dynamic rank allocation based on
global and local sensitivity. (rw denotes the allocated rank of weight matrix w, rtotal denotes the total rank of all
weight matrices in the model.)

an SVD form and selectively truncate the singular
values in order to allocate the matrix rank. How-
ever, this process is computationally expensive and
requires additional memory to store singular val-
ues and vectors. SRD-based methods (Mao et al.,
2024; Zhang et al., 2024; Liu et al., 2024) decom-
pose matrix BA into single-rank components and
allocate the ranks by selecting the proper compo-
nents. However, optimizing single-rank compo-
nents and the pruning process can increase compu-
tational complexity, potentially offsetting efficiency
gains. Rank sampling-based methods (Valipour
et al., 2022) allocate ranks directly by random sam-
pling. However, the randomness introduced by
sampling could increase training instability.

In order to design a dynamic rank allocation
method that introduces extremely low overhead
and ensures stability, we propose Sensitivity-LoRA,
which can rapidly allocate rank to the weight matrix
based on the sensitivity of the parameters, without
incurring a significant computational load. Specifi-
cally, we utilize the second derivatives of the loss
function with respect to the parameters (Hessian
matrix) to ascertain the sensitivity of each parame-
ter within the weight matrix. To comprehensively
evaluate the sensitivity of the parameter matrix,
we employ metrics such as the trace of the Hes-
sian matrix, Topk and Effective Rank to measure
its global and local sensitivities respectively. By

integrating various metrics, we determine the rank
allocation weights corresponding to the weight ma-
trices to achieve rank allocation. The efficiency,
stability, and generality of our approach have been
validated through extensive experiments on various
tasks, such as sentiment analysis, natural language
inference, question answering, and text generation.

In summary, the main contributions of our paper
are listed as follows:

• We design a dynamic rank allocation method
that introduces minimal overhead and ensures
stability.

• We introduce the second derivatives of the loss
function with respect to the weight matrix to
measure their sensitivity.

• We achieve rank allocation by taking into ac-
count both the global and local sensitivity of
the weight matrix.

• Extensive experiments demonstrate the ef-
fectiveness, stability, and efficiency of our
method.

2 Related Work

Existing PEFT approaches can be classified into
four main types in terms of memory efficiency, stor-
age efficiency, and inference overhead, as follows:
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2.1 Additive PEFT
Additive PEFT introduces lightweight modules into
the model architecture, such as adapters and soft
prompts, while keeping the pre-trained backbone
frozen. Adapters add small networks with down-
projection and up-projection matrices, enabling
task-specific learning with minimal parameter up-
dates (?Lester et al., 2021). Soft prompts prepend
learnable embeddings to the input sequence, allow-
ing fine-tuning by modifying input activations only
(Li and Liang, 2021; Zaken et al., 2022). These
methods typically require updating less than 1%
of the total parameters, significantly reducing com-
putation and memory costs, making them ideal
for resource-constrained environments (Hu et al.,
2022a).

2.2 Selective PEFT
Selective PEFT fine-tunes a subset of the exist-
ing parameters in a pre-trained model, rather than
adding new modules. It employs binary masks to
identify and update only the most important pa-
rameters while keeping the majority frozen. Tech-
niques like Diff pruning and FishMask leverage
Fisher information or parameter sensitivity anal-
ysis to select critical parameters for fine-tuning
(Zaken et al., 2022; Li and Liang, 2021). This ap-
proach avoids increasing model complexity and is
particularly suited for scenarios where only a small
fraction of the model contributes significantly to
performance.

2.3 Reparameterized PEFT
Reparameterized PEFT utilizes low-rank parame-
terization techniques to represent model weights
in a reduced form during training. LoRA (Low-
Rank Adaptation) is a prominent example, introduc-
ing low-rank matrices to fine-tune specific weights
while maintaining high inference efficiency (Hu
et al., 2022a). Other methods, such as Compacter,
use the Kronecker product for parameter reparame-
terization, further reducing memory requirements
and computational costs (?). Reparameterized
PEFT is highly effective for large-scale models
where resource constraints are critical.

2.4 Hybrid PEFT
Hybrid PEFT combines the strengths of Additive,
Selective, and Reparameterized PEFT methods into
a unified framework. For example, UniPELT in-
tegrates LoRA, adapters, and soft prompts, allow-
ing dynamic selection of the most suitable module

for specific tasks through gating mechanisms (Za-
ken et al., 2022). This hybrid approach enhances
adaptability and task performance by leveraging
the complementary advantages of different PEFT
strategies (Li and Liang, 2021; Hu et al., 2022a).

3 Methodology

In this section, we firstly introduce the concept of
weight sensitivity with a formal definition of global
and local sensitivity metrics of weight matrices.
Next, we propose effective allocation strategies to
optimize the dynamic rank allocation process based
on these sensitivity metrics. The pipeline of our
method is presented in Figure 1.

3.1 Weight Sensitivity
Consider a neural network whose dynamics is
driven by a collection of parameters w and a loss
function E, which guides its learning dynamics.
When a small perturbation δw is introduced to the
parameters, the resulting change in the loss func-
tion can be expressed using a Taylor series expan-
sion up to the second-order term, with higher-order
terms captured by O(∥δw∥3) as follows:

E(w + δw) = E(w) + gT δw +
1

2
δwTHδw

+O(∥δw∥3) (2)

where g denotes the gradient vector of the loss func-
tion E with respect to the parameters w, indicating
the rate of change of the loss function in the direc-
tion of each parameter. H represents the Hessian
matrix of the loss function E, which is a matrix of
second-order partial derivatives and contains infor-
mation about the curvature of the loss function at
the current parameter point.

The change in the loss function ∆E can be rep-
resented by the following expression:

∆E = g⊤δw +
1

2
δw⊤Hδw +O(∥δw∥3) (3)

By expanding the components of ∆E, we have:

∆E =
∑

i

giδwi +
1

2

∑

i,j

hijδwiδwj

+O(∥δw∥3) (4)

where gi and hij are the gradient and Hessian ele-
ments, respectively.

For a well-trained neural network, when the pa-
rameter w is located at a local minimum of the loss
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function, the gradient g becomes zero. Then, the
above equation can be simplified to

∆E =
1

2

∑

i,j

hijδwiδwj +O(∥δw∥3) (5)

Additionally, several studies have demonstrated
that the Hessian matrix H tends to be diagonally
dominant, suggesting that the interactions between
different parameters can be largely disregarded (Le-
Cun et al., 1989; Dong et al., 2020; Frantar et al.,
2022). Then, the above equation can be simplified
to

∆E ≈ 1

2

∑

i

hiiδ
2
wi

+O(∥δw∥3) (6)

Given that the perturbation in the weights (δw) is
sufficiently small, the higher-order term becomes
negligible compared to the quadratic term, and
therefore can be disregarded. Consequently, the
above formula can be further simplified to

∆E ≈ 1

2

∑

i

hiiδ
2
wi

(7)

Consequently, the diagonal elements of the Hes-
sian matrix serve as a reliable indicator of weight
sensitivity.

3.2 Rank Allocation Metric
3.2.1 Global Metric
The global sensitivity measurement aims to eval-
uate the overall impact of an entire parameter (or
weight) matrix on model output. It quantifies how
variations in this weight matrix affect the loss func-
tion. To capture this dynamics, the Hessian matrix,
which consists of the second-order partial deriva-
tives of the loss function with respect to the weight
matrix, is used. Given that the Hessian matrix tends
to be diagonal-dominant at the minimum, its trace
can serve as an effective global sensitivity indicator.
Formally, the global sensitivity Sw

global of weight
matrix w can be defined as:

Sw
global = tr(Hw) =

∑

i

hwii (8)

where hwii is the i-th diagonal element of the Hes-
sian matrix Hw, and tr(Hw) denotes the trace of
Hw. Since the diagonal elements reflect the impact
of individual parameter changes on the loss func-
tion, a larger trace value indicates that the model is
more sensitive to its changes. This suggests more
parameters make significant contributions to the
changes in the loss function, emphasizing their role
in model performance.

3.2.2 Local Metric
While certain weight matrices might have low over-
all sensitivities, specific weight elements within
these matrices can still have high sensitivity, signif-
icantly impacting model performance. As such, it
is essential to account for local sensitivity to cap-
ture finer-grained variations in parameter influence
on the loss function. To address this, we introduce
two metrics: Topk and Effective Rank.

The Topk metric approximates local sensitivity
of a weight matrix by averaging its largest k di-
agonal elements of Hessian matrix, based on the
assumption that most of the matrix’s energy or sen-
sitivity is concentrated in these large values. By fo-
cusing on Top k diagonal elements, the Topk metric
can guide us to prioritize these critical weights dur-
ing weight pruning or optimization processes. It re-
duces computational complexity while preserving
the most impactful weights for model performance.
The computation formula for the Topk metric of
weight matrix w is as follows:

Sw
Topk =

1

k

k∑

i=1

λw
i (9)

where λw
i represents the diagonal elements of Hes-

sian matrix Hw sorted in descending order, and k
denotes the number of diagonal elements selected.

The Effective Rank metric determines the min-
imum rank that captures most of the energy of a
weight matrix based on the cumulative contribution
of the diagonal elements of its Hessian matrix. By
establishing a threshold for the cumulative contri-
bution rate (such as 0.9 or 0.95), the Effective Rank
metric identifies the minimum number of eigen-
values needed to achieve this threshold, thereby
appropriately ranking the weight matrix. The key
benefit of this metric is ensuring the stability of the
rank allocation process. The formula for Effective
Rank of weight matrix w is as follows:

Sw
EffectiveRank = min

{
k |

∑k
j=1 λ

w
j∑m

j=1 λ
w
j

≥ α

}
(10)

where λw
j is the j-th diagonal element of Hw in

non-increasing order, m is the total number of di-
agonal elements, and k is the minimum number
of diagonal elements required for the cumulative
contribution rate to reach the threshold α.

To ensure the effectiveness and stability, we in-
tegrate Topk and Effective Rank metrics together to
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define the local sensitivity metric Sw
local of weight

matrix w as follows:

β1 =
σST

(µST )2
β2 =

σSE

(µSE )2
(11)

Sw
local = β1 · Sw

Topk + β2 · Sw
EffectiveRank (12)

where σST and σSE represent the standard devia-
tions of the Topk and Effective Rank metrics for
all weights, while µST and µSE denote the cor-
responding mean values. We utilize the standard
deviation of metrics to design allocation weights.
The larger the standard deviation of a metric, the
more widely its values are distributed, which imply
a greater amount of information contained within
that metric. The squared average values represent
the normalization of the metric scale and the stan-
dard deviation. The effectiveness of this design is
demonstrated through experiments.

3.3 Rank Allocation Strategy
Taking into account both global and local metrics,
we define a refined rank allocation strategy to de-
termine the rank allocation weights θw of weight
matrix w by integrating global and local sensitivi-
ties:

γ1 =
σSg

(µSg)
2 γ2 =

σSl

(µSl)2
(13)

θw = γ1 · Sw
global + γ2 · Sw

local (14)

where σSg and σSl represent the standard devia-
tions of the global and local metrics for all weights,
while µSg and µSl denote the corresponding mean
values. The reason for this design is mentioned
in the preceding text. Hence, we can derive the
formula for rank allocation as follows:

rw =
θw∑

w
θw

· rtotal (15)

where rw denotes the rank allocated to weight ma-
trix w, and rtotal represents the total rank of all
weight matrices in the model.

4 Experiments

4.1 Experimental Setup
Models and Benchmarks. We evaluate the perfor-
mance of our method across diverse NLG (Natu-
ral Language Generation) and NLU (Natural Lan-
guage Understanding) tasks. For the NLU tasks,
we select RoBERTa-base (Liu, 2019) as the base
model and evaluate its performance on various

subtasks of the GLUE (General Language Un-
derstanding Evaluation) benchmark (Wang, 2018):
MNLI (Williams et al., 2017), SST-2 (Socher et al.,
2013), MRPC (Dolan and Brockett, 2005), CoLA
(Warstadt, 2019), QNLI (Rajpurkar et al., 2018),
QQP 1, RTE (Wang, 2018) and STS-B (Cer et al.,
2017). For the NLG tasks, we conduct experiments
using two large language models, Qwen2.5-7B
(Yang et al., 2024) and LLaMA3.1-8B (Grattafiori
et al., 2024), and evaluate their performance on
two representative NLG datasets: Magpie-Pro (Xu
et al., 2024) and OpenPlatypus (Lee et al., 2023).
We also visualize the global and local rank alloca-
tion results for each layer of GPT-2 Large (Radford
et al., 2019) and RoBERTa-base (Liu, 2019).

Evaluation Metrics. We report a comprehen-
sive set of standard evaluation metrics. For NLG
tasks, we utilize BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004) to assess the quality of gener-
ated text. For NLU tasks, we employ the Matthew’s
correlation coefficient for the CoLA task, the Com-
bined Score for STS-B, and accuracy for the re-
maining NLU tasks.

Baselines. We adopt several representative meth-
ods, including HAdapter (Houlsby et al., 2019),
PAdapter (Pfeiffer et al., 2020), LoRA (Hu et al.,
2022b) with uniform rank allocation, AdaLoRA
(Zhang et al., 2023c) and DyLoRA (Valipour et al.,
2022), as our baselines. More details can be found
in the Appendix A.1.

In addition, more implementation details can be
found in the Appendix A.2.

4.2 Main Results
We evaluate the effectiveness of Sensitivity-LoRA
on NLU tasks by finetuning the RoBERTa-base
model across the tasks in the GLUE benchmark.
As shown in Table 1, Sensitivity-LoRA demon-
strates outstanding performance in a variety of nat-
ural language understanding tasks. Specifically,
our method achieves the highest average score of
85.94, outperforming all baselines. Sensitivity-
LoRA leverages the second order derivatives of
the loss function to extract weight wise importance
metrics, incorporating both local and global sen-
sitivity. Based on these metrics, it dynamically
determines the optimal rank allocation, thereby
achieving exceptional performance.

To further assess the effectiveness of our method
on NLG tasks, we compare Sensitivity-LoRA

1https://quoradata.quora.com/First-Quora-Dataset-
Release-Question-Pairs
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Method MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

HAdapter 86.76 94.03 87.01 57.84 93.19 90.42 78.75 90.91 84.86
PAdapter 86.95 94.11 86.54 57.95 93.37 90.55 79.42 90.97 84.98

LoRA 87.26 93.46 87.08 58.83 92.95 90.50 79.39 91.03 85.06
AdaLoRA 87.32 93.57 87.28 59.00 93.08 90.62 79.56 91.21 85.20
DyLoRA 87.24 93.65 87.28 58.98 93.00 90.57 79.59 91.17 85.19

Sensitivity-LoRA (ours) 87.58 94.59 87.73 60.20 93.62 90.74 81.81 91.27 85.94

Table 1: Performance comparison between baseline methods and the proposed approach on the GLUE benchmark
using the RoBERTa-base model. Higher values indicate better performance across all tasks. Bolded values denote
the best performance in each task.

Figure 2: Comparison of the evaluation results for
RoBERTa-base finetuned on several datasets from the
GLUE benchmark, using both PRA and SRA rank allo-
cation methods.

against baselines on two diverse datasets: Magpie-
Pro and OpenPlatypus, utilizing Qwen2.5-7B and
LLaMA3.1-8B. As shown in Table 2, our method
consistently outperforms all baselines on evalua-
tion metrics, including BLEU-4, ROUGE-1, and
ROUGE-L. On Qwen2.5-7B, our method achieves
the highest average score of 37.98, significantly out-
performing others. On LLaMA3.1-8B, it further
demonstrates its advantage by attaining an aver-
age score of 49.57, surpassing AdaLoRA (48.80),
LoRA (48.37), and other adapter based methods.
Notably, our method achieves substantial gains in
BLEU-4 (71.25) and ROUGE-1 (57.35) on the
Magpie-Pro dataset and leads across all three met-
rics on OpenPlatypus. These results highlight the
superior generalization and effectiveness of our
sensitivity aware finetuning strategy across various
models and generation scenarios.

4.3 Ablation Study

In this section, we present a detailed set of abla-
tion studies to thoroughly evaluate the effectiveness
of each component of our method. The evalua-
tion results are summarized in Table 3, where we
finetune the RoBERTa-base model on the GLUE

benchmark using three different strategies: the pro-
posed global metric Sg, the local metric Sl, and
their combination. Our findings indicate that both
Sg-LoRA and Sl-LoRA significantly outperform
the vanilla LoRA baseline, which employs a uni-
form rank allocation strategy. This clearly demon-
strates that incorporating either global or local sen-
sitivity information can lead to more informed and
effective rank assignments. Furthermore, our full
method, which integrates both global and local met-
rics, achieves the highest average score of 85.94.
This result underscores the complementary nature
of the two types of sensitivity and highlights the
benefits of combining both perspectives to guide
finetuning. Overall, these results validate the ef-
fectiveness of our sensitivity aware rank alloca-
tion mechanism and provide strong evidence for
the advantages of leveraging both global and local
sensitivity information in optimizing model perfor-
mance.

4.4 Comparison of Rank Allocation Methods

In this section, we compare two rank allocation
methods for model weights, based on global and
local sensitivity metrics. The Progressive Rank Al-
location (PRA) method first sorts the metrics in
descending order, subsequently allocating ranks
progressively within a specified range. Weights
with higher sensitivity are allocated higher ranks.
For example, assume there are 6 weights sorted
by sensitivity. The average number of r allocated
to each matrix is 5, and there are 3 categories in
total. The allocation of r for the weights is 6, 6,
5, 5, 4, and 4, respectively. The Scaled Rank Al-
location (SRA) method (mentioned in Section 3.3)
allocates ranks according to the proportion of each
weight’s metric relative to the model’s total met-
rics. To visually compare the effectiveness of these
two allocation methods, we apply both strategies
to the sensitivity metrics and subsequently com-
bine them using the corresponding rank allocation
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Model Method Magpie-Pro OpenPlatypus Avg.
BLEU-4 ROUGE-1 ROUGE-L BLEU-4 ROUGE-1 ROUGE-L

Qwen2.5-7B

HAdapter 54.71 49.11 32.42 19.39 43.95 22.51 37.01
PAdapter 54.83 49.15 32.24 19.42 44.03 22.54 37.04

LoRA 55.03 48.82 32.42 19.72 43.83 22.53 37.06
AdaLoRA 55.66 49.13 32.75 19.87 44.24 22.67 37.39
DyLoRA 55.59 49.21 32.82 19.86 44.18 22.59 37.37

Sensitivity-LoRA (ours) 56.31 50.04 33.57 20.13 44.77 23.07 37.98

LLaMA3.1-8B

HAdapter 69.28 56.23 41.08 34.73 52.31 35.61 48.20
PAdapter 69.30 55.05 41.97 34.66 51.47 36.01 48.07

LoRA 69.67 55.89 41.78 34.64 52.35 35.92 48.37
AdaLoRA 70.40 56.31 42.17 34.86 52.90 36.15 48.80
DyLoRA 70.36 56.26 42.16 34.89 52.80 36.20 48.78

Sensitivity-LoRA (ours) 71.25 57.35 43.02 35.30 53.79 36.69 49.57

Table 2: Evaluation results on NLG tasks using Qwen2.5-7B and LLaMA3.1-8B as backbone models. We compare
Sensitivity-LoRA with other PEFT baselines on two representative datasets, Magpie-Pro and OpenPlatypus. Metrics
reported include BLEU-4, ROUGE-1, and ROUGE-L.

Method MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

LoRA 87.26 93.46 87.08 58.83 92.95 90.50 79.39 91.03 85.06
Sg-LoRA 87.45 94.08 87.51 59.60 93.35 90.68 80.19 91.24 85.51
Sl-LoRA 87.41 94.05 87.49 59.60 93.33 90.64 80.19 91.27 85.50
Ours 87.58 94.59 87.73 60.20 93.62 90.74 81.81 91.27 85.94

Table 3: Ablation study on the GLUE benchmark using the RoBERTa-base model. We compare the performance of
different rank allocation strategies: the uniform baseline (LoRA), global sensitivity based allocation (Sg-LoRA),
local sensitivity based allocation (Sl-LoRA), and the proposed combined method (Ours).

strategy. We then finetune RoBERTa-base on some
datasets from the GLUE benchmark. As illustrated
in Figure 2, SRA consistently outperforms PRA
on various datasets, demonstrating its robustness
and superior adaptability. This consistent improve-
ment across datasets suggests that the SRA enables
more effective allocation decisions, leading to bet-
ter overall results. Consequently, we adapt the SRA
method for rank allocation in this paper.

4.5 Rank Allocation Under Different Metrics
In Figure 3, we present the global and local rank
allocation results for GPT-2 Large and RoBERTa-
base, utilizing the SRA rank assignment method
detailed in Section 3.3. As illustrated, the global
sensitivity metric, Hessian Trace, allocates a larger
rank budget to the intermediate and deeper layers
of the models, with relatively less emphasis on
the initial layers. In contrast, the local sensitivity
metric, Topk, primarily focuses on the middle lay-
ers, assigning more ranks to these regions. The
Effective Rank approach, however, assigns higher
ranks to the initial layers and exhibits a decreasing
trend in rank allocation for subsequent layers. Each
of these three sensitivity metrics highlights differ-
ent aspects of the models, demonstrating that rely-
ing on a single source of information for decision-

making is insufficient. This highlights the necessity
of Sensitivity-LoRA, which integrates these diverse
information sources to achieve dynamic rank allo-
cation.

4.6 Overhead Analysis
Cost of Obtaining the Hessian Matrix. Comput-
ing the Hessian matrix is a complex process, es-
pecially for large models. Some methods propose
processing the weight matrix by rows, allowing the
Hessian matrix to be approximated through opera-
tions on activation values (Frantar et al., 2022; Li
et al., 2025). Additionally, Cholesky decomposi-
tion is employed to enhance computational stability.
In essence, we only need to perform forward in-
ference on the model using a calibration set, and
the intermediate results can be used to approxi-
mate the Hessian matrix. This significantly reduces
the computational cost of the Hessian matrix. For
example, when using the PIQA (Bisk et al., 2020)
dataset as the calibration set for LLaMA3.1-8B, the
computation, including both metric calculation and
rank allocation, can be completed in just 25.78 sec-
onds. When using only a portion of the dataset, the
computation can be finished in under 10 seconds
without introducing significant errors. In contrast,
other methods, such as AdaLoRA, which deter-
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Figure 3: The rank allocation for each layer of GPT-2 Large and RoBERTa-base under different rank allocation
metrics. Different colors represent different allocation metrics, and the height of each bar in the histogram
corresponds to the rank allocated to that layer by the respective metric.

Figure 4: Comparison of per-step fine-tuning latency
(ms) between AdaLoRA and ours across varying batch
sizes.

mine rank allocation during training, can signifi-
cantly increase training time, ranging from min-
utes to hours. Compared to these methods, our
approach introduces negligible additional computa-
tional overhead. Additionally, when we calibrate
using different calibration sets, such as PIQA (Bisk
et al., 2020) and WikiText2 (Merity et al., 2016),
we obtain nearly identical results for the Hessian
matrix, which further validates the stability of our
method.

Memory Analysis. Our method allocates the
rank before training, whereas other approaches,
such as AdaLoRA, require continuous rank real-
location during training. Specifically, our method
has almost exactly the same memory footprint as
the conventional LoRA method during training,
without introducing any additional overhead. This
design not only avoids the extra burden associated
with dynamic rank reallocation but also ensures the
efficiency and stability of the training process.

Latency Analysis. To assess the training effi-
ciency of our method, we measure its per-step la-
tency and compare it with that of AdaLoRA across
various batch sizes, as shown in Figure 4. Our ap-

proach consistently exhibits lower latency under all
configurations, with the performance gap widening
as the batch size increases. This trend indicates su-
perior scalability of our method. The improvement
is attributed to our sensitivity-aware rank assign-
ment strategy, which eliminates the runtime over-
head associated with AdaLoRA’s dynamic schedul-
ing. These results confirm that our method enables
more efficient adaptation while significantly reduc-
ing computational costs.

4.7 Robustness Analysis

During fine-tuning, the calibration data can be the
training data itself, making the calibration set iden-
tical in distribution to the training set, or it can
consist of other non-training data. The computa-
tion of the Hessian is robust across different cali-
bration sets and domains. To further validate this,
we calibrate LLaMA3.1-8B using calibration sets
from three distinct domains: Sentiment140 (sen-
timent analysis), PubMed 20k RCT (biomedical),
and LexGLUE (legal). We denote the resulting rank
orderings of the weight matrices for these domains
as rSentiment140, rPubMed, and rLexGLUE, respectively.
To quantify the consistency of these rankings, we
employ Kendall’s Tau coefficient. As shown in Ta-
ble 4, the Kendall’s Tau values between rank orders
across different datasets all exceed 0.9, indicating
that the weight matrix rankings are nearly identical.
This confirms the strong robustness of our method
across diverse domains.

To investigate the impact of calibration set size
on the rank ordering, we calibrate LLaMA3.1-8B
using varying proportions of the PIQA dataset, tak-
ing the result obtained with 100% of the data as the
baseline. As shown in Table 5, using only approx-
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rSentiment140 rPubMed rLexGLUE

rSentiment140 1.0000 0.9712 0.9834
rPubMed 0.9712 1.0000 0.9727
rLexGLUE 0.9834 0.9727 1.0000

Table 4: Kendall’s Tau correlation coefficients between
rank orderings across different domains.

imately 10% of the data already achieves a rank
ordering close to that obtained with the full dataset.

Calibration Set Size Kendall’s Tau

10% 0.9862
20% 0.9876
50% 0.9981

100% 1

Table 5: Effect of calibration set size on rank ordering.
"100%" denotes the full calibration set and serves as the
baseline.

We fine-tune LLaMA3.1-8B on the MNLI
dataset for 5 epochs. After each epoch, we re-
measure the rank ordering. Using the initially ob-
tained rank order as the reference, we compute
the Kendall’s Tau coefficient between it and the
rank order measured after each epoch. As shown
in Table 6, the Kendall’s Tau values remain above
0.95 throughout training, indicating a high consis-
tency between the dynamic rank ordering during
fine-tuning and the initial static allocation.

Epoch 0 1 2 3 4 5

Kendall’s Tau 1 0.99 0.99 0.98 0.99 0.98

Table 6: Kendall’s Tau of rank orderings measured after
each epoch, using the initial static allocation (epoch 0)
as the reference.

4.8 Additional Results

We conduct experiments to validate the effective-
ness of the design of the allocation parameters
(β1, β2, γ1, γ2). The results demonstrate that com-
bining standard deviation with scale normalization
can achieve more effective rank allocation (Ap-
pendix B.1). Additionally, we investigate the im-
pact of hyperparameters k and α on the perfor-
mance of our method. The experiments show that
our approach maintains robust performance across
various hyperparameter configurations (Appendix

B.2). Furthermore, we test our method on spe-
cific text examples and obtain favorable results
(Appendix C).

5 Conclusion

In this work, we introduce Sensitivity-LoRA, a
method that efficiently allocates ranks to weight
matrices based on their sensitivity, without a sig-
nificant computational burden. Sensitivity-LoRA
first performs sensitivity utilization by analyzing
both global and local sensitivities. It utilizes the
second-order derivatives (Hessian matrix) of the
loss function to accurately capture parameter sen-
sitivity. Next, it optimizes rank allocation by ag-
gregating global and local sensitivities, ensuring a
comprehensive and fair evaluation metric. Exten-
sive experiments consistently demonstrate the effi-
ciency, effectiveness and stability of our method.

6 Limitations

In this paper, we conduct extensive experiments
on large language models to validate the effective-
ness of our proposed finetuning method. While our
findings demonstrate the potential of the method
in enhancing model performance, there are still ar-
eas that warrant further exploration. Specifically,
we do not yet extend our evaluation to large vi-
sion models and multimodal large language mod-
els, which could provide additional insights into
the generalizability and scalability of our approach.
Addressing these domains will be a key focus in
future work. Additionally, although our method
shows promising results in the tested datasets, its
robustness under low-resource and domain-specific
datasets, such as those involving medical or scien-
tific data, remains to be thoroughly assessed. Ex-
ploring these datasets could reveal further nuances
in the method’s adaptability and potential for spe-
cialized applications.
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A Experimental Setup

A.1 Baselines

We adopt several representative methods, including
HAdapter (Houlsby et al., 2019), PAdapter (Pfeif-
fer et al., 2020), LoRA (Hu et al., 2022b) with
uniform rank allocation, AdaLoRA (Zhang et al.,
2023c) and DyLoRA (Valipour et al., 2022), as
our baselines. HAdapter (Houlsby et al., 2019)
and PAdapter (Pfeiffer et al., 2020) are parameter-
efficient fine-tuning methods based on adapters.
They achieve rapid adaptation to specific tasks
by inserting lightweight adapter modules into pre-
trained models, eliminating the need to fine-tune
the entire model. LoRA (Hu et al., 2022b) ap-
proximates parameter updates by adding low-rank
decomposition matrices to the weight matrices of
pre-trained models, thereby reducing the number
of parameters required for fine-tuning. AdaLoRA
(Zhang et al., 2023c) dynamically adjusts the rank
of low-rank matrices in different model layers to
match their varying contributions to model per-
formance. DyLoRA (Valipour et al., 2022) is a
dynamic low-rank adaptation technique that sorts
the representations learned by adapter modules at
different ranks during training and trains LoRA
blocks to cover a range of ranks rather than a single
rank.

A.2 Implementation Details

Our code is implemented using the PyTorch
(Paszke et al., 2019) framework and Transform-
ers (Wolf, 2020) libraries, with all experiments
conducted on four NVIDIA A100 GPUs. When
we calibrate using different calibration sets, such
as PIQA (Bisk et al., 2020) and WikiText2 (Mer-
ity et al., 2016), we obtain nearly identical results
for the Hessian matrix, which further validates the
stability of our method. The details of the approxi-
mate Hessian matrix computation can be found in
Section 4.6. We designate the local metric STopk

with k set to half of the total number of diagonal
elements, and set the parameter α in the Effective
Rank metric to 0.85. The values of some param-
eters (β1, β2, γ1, γ2) follow the settings described
in Section 3, and the effectiveness of this design is
demonstrated in Section 4. We set the average rank
of each matrix to 4 for NLU and 8 for NLG. The
comparison methods are required to use a similar
number of finetuning parameters. The training is
performed using the Adam optimizer with a learn-
ing rate of 5 × 10−4, a batch size of 32 for 10

epochs.

B Parameter Analysis

B.1 Effectiveness of Allocation Parameter

We conduct validation experiments on the allo-
cation parameters (β1, β2, γ1, γ2) to assess the
effectiveness of the proposed weighted formula
(which is consistently applied to the local sensitiv-
ity weight β1, β2 and the global local fusion weight
γ1, γ2, as mentioned in Section 3). Specifically, we
compare our design with a method that does not
consider the standard deviation of the metrics and
instead assigns equal weights to each metric (using
β1 = 0.5

µST
, β2 = 0.5

µSE
, γ1 = 0.5

µSg
, γ2 = 0.5

µSl
). As

shown in Table 7, our parameter strategy achieves
superior performance across all tasks, with an aver-
age score of 85.94 compared to the other of 85.65.
The performance improvements are particularly
significant in the RTE, CoLA and SST-2 tasks, in-
dicating that our approach has better adaptability
to different tasks. These results demonstrate that
combining the standard deviation with scale nor-
malization can achieve more expressive and stable
sensitivity modeling, thereby enabling more effec-
tive rank allocation and overall finetuning perfor-
mance.

B.2 Hyperparameter Analysis

In this study, we delve into the influence of the
hyperparameters k and α on the performance of
our method. These hyperparameters are crucial
for the computation of the Topk and Effective
Rank metrics, respectively. As illustrated in Ta-
ble 8, we examine two representative configura-
tions: k = N

3 , α = 0.80 and k = N
2 , α = 0.85,

where N denotes the total number of diagonal ele-
ments in the Hessian matrix. Under both settings,
our method demonstrates remarkable consistency,
achieving average scores of 85.93 and 85.94, re-
spectively. These strong results highlight the ro-
bustness of our sensitivity based rank allocation
framework to reasonable variations in the metric
configuration. Moreover, they underscore the ef-
fectiveness of integrating the Topk and Effective
Rank metrics, which successfully capture salient
parameter sensitivities across different thresholds.

C Case Study

Figure 5 presents the performance of the GPT-2
Large and RoBERTa-base models fine-tuned using
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Method MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

0.5/µ 87.49 94.32 87.61 59.90 93.47 90.69 80.50 91.18 85.65
Ours 87.58 94.59 87.73 60.20 93.62 90.74 81.81 91.27 85.94

Table 7: Performance comparison of our allocation weight parameter strategy and equal allocation weight parameter.
We compare our proposed formulation β1, β2, γ1, γ2 (σ/µ2) with a baseline β1, β2, γ1, γ2 (0.5/µ). Results are
reported on the GLUE benchmark using RoBERTa-base.

k α MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

N/3 0.80 87.55 94.52 87.72 60.21 93.62 90.70 81.82 91.34 85.93
N/2 0.85 87.58 94.59 87.73 60.20 93.62 90.74 81.81 91.27 85.94

Table 8: Performance comparison of the RoBERTa-base under different hyperparameters (k and α). The k denotes
the number of top Hessian diagonal elements used in Sw

Topk, and α is the cumulative contribution threshold used in
Sw
EffectiveRank.

Figure 5: The Case Study of the GPT-2 Large and
RoBERTa-base models. The blue boxes represent the
input test data, the green boxes indicate the reference
text or ground truth output, and the red boxes highlight
the model’s actual output.

the dynamic rank allocation method (Sensitivity-
LoRA) on the E2E and SST-2 datasets. For the E2E
dataset, the GPT-2 Large model generates fluent
and grammatically correct natural language text
that closely aligns with the reference while retain-
ing the input information. This indicates that the
model effectively processes structured inputs and
excels at generating accurate and coherent natu-
ral language descriptions. For the SST-2 dataset,
the RoBERTa-base model achieves strong perfor-
mance in sentiment classification tasks, accurately
classifying input text as "Positive." These results

demonstrate the effectiveness of the Sensitivity-
LoRA method in enhancing model performance on
both text generation and classification tasks.

D Analysis on Scalability and Generality

We conduct additional experiments to demon-
strate that our method remains efficient on large-
scale models. Table 9 compares our method
with AdaLoRA on Qwen2.5-32B (MNLI dataset,
8×H100 GPUs), including preprocessing, training,
and total time. Table 10 shows that our method
consistently achieves the best performance.

Method Preprocess Train Total

AdaLoRA 0 9725 9725
Ours 178 6897 7075

Table 9: Time (s) comparison of fine-tuning methods
with different rank allocations on Qwen2.5-32B.

Method GPQA HumanEval

AdaLoRA 46.21 55.58
DyLoRA 45.84 56.04

Ours 46.66 56.88

Table 10: Fine-tuning performance of Qwen2.5-32B on
GPQA and HumanEval.

Moreover, we evaluate our method on the
COCO2017 dataset using the LLaVA1.5-7B model,
with CIDEr and ROUGE_L as evaluation metrics.
As shown in Table 11, our approach outperforms
existing methods on multimodal tasks.

We re-evaluate the RoBERTa-base model on the
MNLI dataset using 8×H100 GPUs with a batch
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Method CIDEr ROUGE_L

AdaLoRA 1.0284 0.5874
DyLoRA 1.0175 0.5856

Ours 1.0561 0.5950

Table 11: Comparison of different fine-tuning methods
on COCO2017 with LLAVA1.5-7B.

size of 8. As shown in Table 12, our method
demonstrates clear advantages over the standard
AdaLoRA and LoRA in both memory usage and to-
tal fine-tuning time. While LoRA is slightly faster
than our method in terms of per-epoch training
time, our method converges to the optimal solution
significantly faster overall.

Method Memory (MB) Epoch (s) Total (s)

LoRA 3899 368 1508
AdaLoRA 4115 425 2981

Ours 3887 371 1371

Table 12: Memory usage, single epoch latency, and total
convergence time under different methods.

We include a full-parameter (Full) baseline under
the same experimental setup. As shown in Table 13,
our method achieves performance comparable to
the Full model, with only marginal differences of
less than 1%.

Method MNLI SST-2 MRPC CoLA

Full 87.63 94.69 87.73 60.28
Ours 87.58 94.59 87.73 60.20

Table 13: Comparison between our method and full-
parameter fine-tuning on the GLUE benchmark with
RoBERTa-base.

E Details of Efficient Hessian Matrix
Approximation

Our Hessian approximation uses the autocorrela-
tion matrix of activations as a surrogate for second-
order sensitivity, efficiently capturing the impact of
parameter updates on model performance.In prac-
tice, we use a block-wise strategy to partition the
large-scale Hessian matrix into smaller sub-blocks,
enabling efficient factorization and inversion via
Cholesky decomposition. This approach signif-
icantly reduces computational complexity while
maintaining stability and accuracy in the error com-
pensation process.For layers with an extremely

large number of parameters, the difference between
strict per-row optimization order and a uniform
quantization order is negligible. Consequently, a
consistent order is adopted across all rows, ensur-
ing that the Hessian matrices corresponding to each
row are identical and derived solely from shared
input activations rather than weight-specific vari-
ations. This design choice allows the sensitivity
updates related to parameter changes to be com-
puted once and shared across all rows, avoiding
redundant computations inherent in row-specific
update paths. As a result, the unified order sub-
stantially improves computational efficiency and
memory utilization.
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